Acessibilidade / Reportar erro

The first Jurassic theropod from the Sergi Formation, Jatobá Basin, Brazil

Abstract

Archosaur osteological remains are abundant in Brazil, particularly from the Triassic and Cretaceous strata, but in Jurassic, the record is predominantly represented by ichnofossils. The Upper Jurassic archosaur records comprise the Paralligatoridae Batrachomimus pastosbonensis, from the Pastos Bons Formation (Parnaíba Basin), remains of Mesoeucrocodylia from the Aliança Formation (Jatobá Basin), and fragments of Dinosauria from the Brejo Santo Formation (Araripe Basin) with a dubious assignment. Here, we present the first undoubted Dinosauria record for the Jurassic of Brazil, MCT 2670-LE, a middle to distal caudal vertebra belonging to a theropod. MCT 2670-LE was excavated in the 60s by prof. Ignacio Machado Brito, being primarily attributed to strata of the Aliança Formation but the rock matrix involving the specimen allows us to correlate MCT 2670-LE to Sergi Formation, marking this specimen as the first archosaur record of this unit. The caudal vertebra is assigned to Carcharodontosauria based on the hourglass shaped centrum and the deep and narrow ventral groove. The specimen provides new data to the paleogeographic distribution of carcharodontosaurians before the South America-Africa break-up, as well as understanding the theropod faunal turnover of paleoenvironments during the Jurassic-Cretaceous transition in Brazil.

Key words
Theropoda; Carcharodontosauria; Caudal Vertebra; Upper Jurassic; Sergi Formation; Jatobá Basin

INTRODUCTION

In Brazil, archosaur remains are well-known, especially those dating from the Mesozoic Era, and the Triassic and Cretaceous deposits are the main fossiliferous ones (Bittencourt & Langer 2011BITTENCOURT JS & LANGER MC. 2011. Mesozoic dinosaurs from Brazil and their biogeographic implications. An Acad Bras Cienc 83: 23-60.). The Cretaceous represents the most expressive interval with abundant vertebrate fossil record (Bittencourt & Langer 2011BITTENCOURT JS & LANGER MC. 2011. Mesozoic dinosaurs from Brazil and their biogeographic implications. An Acad Bras Cienc 83: 23-60., Brusatte et al. 2017BRUSATTE SL, CANDEIRO CRA & SIMBRAS FM. 2017. The last dinosaurs of Brazil: The Bauru Group and its implication for the end-Cretaceous mass extinction. An Acad Bras Cienc 89: 1465-1485. https://doi.org/10.1590/0001-3765201720160918.), both on the Lower (e.g, Pereira et al. 2020aPEREIRA PVLGC, VEIGA IM, RIBEIRO TB, CARDOZO RH, CANDEIRO CRA, BERGQVIST LP. 2020a. The Path of Giants: A New Occurrence of Rebbachisauridae (Dinosauria, Diplodocoidea) in the Açu Formation, NE Brazil, and its Paleobiogeographic Implications. J South Am Earth Sci 3:102515., b) and Upper levels (e.g., Pinheiro et al. 2018PINHEIRO AEP, PEREIRA PVGC, SOUZA LG, BRUM AS, LOPES RT, MACHADO AS, BERGQVIST LP & SIMBRAS FM. 2018. Reassessment of the enigmatic crocodyliform “Goniopholis” paulistanus Roxo, 1936: Historical approach, systematic, and description by new materials. PLoS ONE 13(8): e0199984., Bandeira et al. 2019BANDEIRA KLN, MACHADO EB, CAMPOS DA & KELLNER AWA. 2019. New titanosaur (Sauropoda, Dinosauria) records from the Morro do Cambambe unit (upper cretaceous), Mato Grosso state, Brazil. Cret Res 103: 04155. https://doi.org/10.1016/j.cretres.2019.06.001., Delcourt et al. 2020DELCOURT R, BRILHANTE NS, GRILLO ON, GHILARDI AM, AUGUSTA BG & RICARDI-BRANCO F. 2020. Carcharodontosauridae theropod tooth crowns from the Upper Cretaceous (Bauru Basin) of Brazil: A reassessment of isolated elements and its implications to palaeobiogeography of the group. Palaeogeogr Palaeoclimatol Palaeoecol 556: 109870. https://doi.org/10.1016/j.palaeo.2020.109870.). Archosaurs are the predominant fossil records especially on the Upper Cretaceous strata (Bandeira et al. 2018BANDEIRA KLN, BRUM AS, PÊGAS RV, CIDADE GM, HOLGADO B, CIDADE A & SOUZA RG. 2018. The Baurusuchidae vs Theropoda record in the Bauru Group (Upper Cretaceous, Brazil): a taphonomic perspective. J Iber Geol 44: 25-54. https://doi.org/10.1007/s41513-018-0048-4.). However, rock exposures from the Brazilian Jurassic are scarce (Bittencourt & Langer 2011BITTENCOURT JS & LANGER MC. 2011. Mesozoic dinosaurs from Brazil and their biogeographic implications. An Acad Bras Cienc 83: 23-60.), due to the sedimentation and tectonic conditions unfavorable to the preservation of bone elements (e.g., Milani 2007MILANI EJ. 2007. Cartas Estratigráficas. Boletim de Geociências da Petrobras 15(2): 573.).

This scenario makes challenging the study and the consequent interpretations of Jurassic fossil data on Brazil (e.g., Gallo & Brito 2004GALLO V & BRITTO PM. 2004. An overview of Brazilian semionotids. In: G. Arratia and A. Tintori (eds.), Mesozoic Fishes 3—Systematics, Paleoenvironments and Biodiversity. Verlag Dr. Friedrich Pfeil, München, p. 253-264., Gallo 2005GALLO V. 2005. Redescription of Lepidotes piauhyensis Roxo and Löfgren, 1936 (Neopterygii, Semionotiformes, Semionotidae) from the Late Jurassic-Early Cretaceous of Brazil. J Vertebr Paleontol 25: 757-769., Bittencourt & Langer 2011BITTENCOURT JS & LANGER MC. 2011. Mesozoic dinosaurs from Brazil and their biogeographic implications. An Acad Bras Cienc 83: 23-60.). Thus, the Jurassic record for Brazil is best represented by the ichnofossils (e.g., Leonardi et al. 2007LEONARDI G, CARVALHO IS & FERNANDES MA. 2007. The desert ichnofauna from Botucatu Formation (Upper Jurassic - Lower Cretaceous), Brazil. In: Carvalho IS, Cassab RCT, Schwanke C, Carvalho MA, Fernandes ACS, Rodrigues MAC, Carvalho MSS, Arai M & Oliveira MEQ (Eds), Paleontologia: Cenários da Vida, vol. 1. Interciência: 379-391. doi: 10.13140/RG.2.2.18583.78240., but see Table I), while the Araripe Basin (Brejo Santo Formation and Missão Velha Formation), the Parnaíba Basin (Pastos Bons Formation) and the Jatobá Basin (Aliança Formation), all from Upper Jurassic, are the only units with tetrapod bone elements - mostly, archosaurs. The Paralligatoridae Batrachomimus pastosbonensis Montefeltro et al. 2013MONTEFELTRO FC, LARSSON HCE, FRANÇA MAG & LANGER MC. 2013. A new neosuchian with Asian affinities from the Jurassic of northeastern Brazil. Naturwissenschaften 100(9): 835-841. doi:10.1007/s00114-013-1083-9., from the Pastos Bons Formation, is the only archosaur species described so far for the Brazilian Jurassic (Montefeltro et al. 2013MONTEFELTRO FC, LARSSON HCE, FRANÇA MAG & LANGER MC. 2013. A new neosuchian with Asian affinities from the Jurassic of northeastern Brazil. Naturwissenschaften 100(9): 835-841. doi:10.1007/s00114-013-1083-9.).

Table I
Jurassic sedimentary basins in Brazil, and their respective fossil contents, (when found). Abbreviations: Fm, Formation, Mb, Member.

Other records consist of small axial elements (about 3-4 cm) found in the Brejo Santo Formation (Melo & Carvalho 2017MELO BGV & CARVALHO IS. 2017. A Fauna da Formação Brejo Santo, Neojurássico da Bacia do Araripe, Brasil: Interpretações Paleoambientais. An Instituto de Geociências UFRJ 40(3/2017): 62-74.), along with Mesoeucrocodylia teeth. These axial elements (which do not have a collection number) were proposed as the first Dinosauria record for the Brazilian Jurassic (Melo & Carvalho 2017MELO BGV & CARVALHO IS. 2017. A Fauna da Formação Brejo Santo, Neojurássico da Bacia do Araripe, Brasil: Interpretações Paleoambientais. An Instituto de Geociências UFRJ 40(3/2017): 62-74.). However, the authors provided no diagnostic feature for this classification, and the description of these elements is superficial. The specimen images also depict just a ventral view of the material, and more detailed comparisons become impossible. Due to the difficulty of knowing the origin in which institution these specimens are allocated, as well as unclear diagnostic characteristics that allow a more accurate systematic assignment, we assume here that the attribution to Dinosauria of these specimens is doubtful. The Missão Velha Formation has a rich fossil assemblage, including anurans, lizards, turtles, mesoeucrocodylians and even nonavian dinosaurs (sensu Brito et al. 1994BRITO PM, BERTINI RJ, MARTILL DM & SALLES LO. 1994. Vertebrate fauna from the Missão Velha Formation (Lower Cretaceous, N.E. Brazil): 139-140. Boletim do 3° sobre o Cretáceo do Brasil, Campus de Rio Claro/SP, UNESP.), but most elements require a formal description and systematic review.

Finally, for the Upper Jurassic of Aliança Formation, there is a brief report of some Mesoeucrocodylia remains (Silva et al. 2011SILVA MC, CARVALHO MSS, BARRETO AMF & CARVALHO ISC. 2011. Paleoictiofauna da Formação Aliança (Jurássico Superior), Bacia de Jatobá, Nordeste do Brasil. In: Carvalho IS, Srivasta NK, Strohschoen O & Lana CC (Eds), Paleontologia: cenários de vida, vol. 4, Rio de Janeiro: Interciência, p. 595-608.) which are more recently reviewed and described together with new mesoeucrocodylian findings (Carvalho et al. 2021CARVALHO ARA, OLIVEIRA GR & BARRETO AMF. 2021. New Crocodylomorpha remains from the Late Jurassic Aliança Formation (Dom João stage), Jatobá Basin. J South Am Earth Sci 109: 103256. https://doi.org/10.1016/j.jsames.2021.103256). Thus, we present the first confirmed Dinosauria record for the Jurassic of Brazil, MCT 2670-LE, collected in 1962 by prof. Ignacio Machado Brito at São Francisco riverbank (see Geological Settings). MCT 2670-LE is identified as a middle caudal vertebra of a carcharodontosaurian theropod. The new specimen improves the understanding of the rare archorsaur remains from the Jurassic period in Brazil. It is also possible to link MCT 2670-LE to theropods of other basins with Jurassic outcrops, allowing an evaluation of the paleogeographic distribution of tetrapods recognized in these formations, as well as the evolutionary and faunal changes of paleoenvironments during the Jurassic-Cretaceous transition in Brazil.

HISTORICAL REMARKS

We describe a new fossil material collected close to the municipality of Petrolândia (Pernambuco) in 1962 by Prof. Dr Ignacio Machado Brito. In the notes associated with the specimen, Brito mentioned that it was recovered in the margins of the São Francisco River upstream the Petrolândia municipality.

This contribution is a tribute to Diogenes de Almeida Campos, the paleontologist of the Museu de Ciências da Terra (Serviço Geológico do Brasil – CPRM), who had prof. Ignacio as advisor and paleontology undergraduate professor. Ignacio led Diogenes to his first collecting fossils fieldwork at this same region. Besides this, Diogenes made a prospect in the area in the 1980s aiming for the rescue of paleontological material prior to the construction of the Luis Gonzaga hydroelectric plan. Therefore, the material here described connects Diogenes with his past advisor and to a region on which he had important historical action.

Geological settings

The Recôncavo-Tucano-Jatobá (or RTJ System, Santos et al. 1990SANTOS CF, CUPERTINO JA & BRAGA JAE. 1990. Síntese sobre a geologia das bacias do Recôncavo, Tucano e Jatobá. In: Raja GP & Milani EJ (Eds), Origem e Evolução de Bacias Sedimentares. Rio de Janeiro: Petrobras, p. 235-266., Costa et al. 2007COSTA IP, BUENO GV, MILHOMEM PS, SILVA HSLE & KOSIN MD. 2007. Sub-bacia de Tucano Norte e Bacia de Jatobá. Boletim de Geociências Petrobras 15(2): 445-453.) is a well-known rift system in Northeastern Brazil (Almeida, 1967ALMEIDA FFM. 1967. Origem e evolução da plataforma brasileira. In: Boletim do Departamento Nacional da Produção Mineral/Divisão de Geologia e Mineralogia, Rio de Janeiro, 241, p. 1-39., Magnavita & Cupertino 1988MAGNAVITA LP & CUPERTINO JA. 1988. Concepção atual sobre as bacias de Tucano e Jatobá, Nordeste do Brasil. Bol Geocie Petrobras 1(2): 119-134. , Guzmán et al. 2015GUZMÁN J, FAMBRINI G, OLIVEIRA E & USMA-CUERVO C. 2015. Estratigrafia da Bacia de Jatobá: estado da arte. Estudos Geológicos 25: 53-76.). The RTJ System is part of the Borborema Province (Almeida et al. 1977ALMEIDA FD, HASUI Y, BRITO NEVES BD & FUCK RA. 1977. Províncias estruturais brasileiras. Simpósio de Geologia do Nordeste 8(1977): 363-391) which strata records the intracontinental evolution of the Gondwana break up in South America and Africa continents (Guzmán et al. 2015GUZMÁN J, FAMBRINI G, OLIVEIRA E & USMA-CUERVO C. 2015. Estratigrafia da Bacia de Jatobá: estado da arte. Estudos Geológicos 25: 53-76., Guzmán-González et al. 2016GUZMÁN-GONZÁLEZ J, PIOVESAN EK, FAMBRINI GL & OLIVEIRA E. 2016. Non-marine ostracoda from the Aliança Formation in the north-central portion of the Jatobá Basin, northeastern Brazil. Rev Bras Paleontol 19: 15-24.). The Jatobá Basin - the northern end of the RTJ System - marks the inflection of the general orientation of the aborted intracontinental rupture in the referred system from NS to N70’E (Magnavita & Cupertino 1988MAGNAVITA LP & CUPERTINO JA. 1988. Concepção atual sobre as bacias de Tucano e Jatobá, Nordeste do Brasil. Bol Geocie Petrobras 1(2): 119-134., Magnavita et al. 2012MAGNAVITA LP, SZATMARI P, CUPERTINO JA & DESTRO NDGR. 2012. The Recôncavo Basin. In: Roberts DG & Bally AW (Eds), Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins. Amsterdam: Elsevier Science, p. 383-420.). The Jatobá Basin (Figure 1) has an expressive sedimentary record known since last century (e.g., Derby 1879DERBY OA. 1879. Contribuições para o estudo da geologia do Valle do rio São Francisco. Arq Mus Nac 4: 87-119. ), where the rift phase is much less pronounced than the other rift Northeastern Basins (Guzmán-González et al. 2016GUZMÁN-GONZÁLEZ J, PIOVESAN EK, FAMBRINI GL & OLIVEIRA E. 2016. Non-marine ostracoda from the Aliança Formation in the north-central portion of the Jatobá Basin, northeastern Brazil. Rev Bras Paleontol 19: 15-24.).

Figure 1
Geological setting. Map of South America (A), close-up of Northeastern Brazil (B), and a close-up of the Tucano-Recôncavo-Jatobá Basins system (C). World map (Tithonian) showing localities of Upper Jurassic carcharodontosaurians (D): MCT 2670-LE (red star), Veterupristisaurus (blue square), and Lusovenator (yellow circle). Surroundings of Petrolândia (corresponding to the red square in C), showing the São Francisco River dam in function in 1969, possibly where the specimen was collected (see text for discussion) in (E), deactivated in 1984, exhibiting greater area of the Sergi Formation along the river in (F), and activated in 2020, flooding a good part of the fossiliferous areas in (G). (A) and (B) extracted from Google Maps; (C) modified from the CPRM database; (D) modified from Palaeobiology Database; (E-G) extracted from Google Earth. Numbers in (C): 1, Sergipe-Alagoas Basin; 2, Recôncavo-Tucano-Jatobá system; 3, Paleozoic Formations; 4, Estância and Palmares Basins; 5, Sergipana Range (Sub-Domain Vaza-Barris); 6, Sergipana Range (Sub-Domain Macururé); 7, Canindé-Marancó Terrain; 8, Pernambuco-Alagoas Terrain; 9, Alto Pajeú and Alto Moxotó Terrains; 10(A), Salvador-Curaçá Orogen; 10(B) Salvador-Esplanada Belt; 11, Serrinha Block.

The Jatobá Basin is divided into its three major sedimentation phases: syneclise (Silurian to Devonian); rift (Upper Jurassic-Lower Cretaceous) and post-rift (Lower Cretaceous; Costa et al. 2007COSTA IP, BUENO GV, MILHOMEM PS, SILVA HSLE & KOSIN MD. 2007. Sub-bacia de Tucano Norte e Bacia de Jatobá. Boletim de Geociências Petrobras 15(2): 445-453., Guzmán et al. 2015GUZMÁN J, FAMBRINI G, OLIVEIRA E & USMA-CUERVO C. 2015. Estratigrafia da Bacia de Jatobá: estado da arte. Estudos Geológicos 25: 53-76., Guzmán-González et al. 2016GUZMÁN-GONZÁLEZ J, PIOVESAN EK, FAMBRINI GL & OLIVEIRA E. 2016. Non-marine ostracoda from the Aliança Formation in the north-central portion of the Jatobá Basin, northeastern Brazil. Rev Bras Paleontol 19: 15-24.). The Brotas Group (Figure 1) represents the rift and post-rift phases and is present in the entire RTJ rift system (Cota et al. 2007, Silva et al. 2011SILVA MC, CARVALHO MSS, BARRETO AMF & CARVALHO ISC. 2011. Paleoictiofauna da Formação Aliança (Jurássico Superior), Bacia de Jatobá, Nordeste do Brasil. In: Carvalho IS, Srivasta NK, Strohschoen O & Lana CC (Eds), Paleontologia: cenários de vida, vol. 4, Rio de Janeiro: Interciência, p. 595-608., Guzmán et al. 2015GUZMÁN J, FAMBRINI G, OLIVEIRA E & USMA-CUERVO C. 2015. Estratigrafia da Bacia de Jatobá: estado da arte. Estudos Geológicos 25: 53-76.), consisting of the Aliança and Sergi formations. The Aliança Formation is composed mainly by packages of massive reddish laminated claystone, interbedded with limestone (Leite et al. 2001LEITE JF, PIRES STM & ROCHA EGAD. 2001. Estudo Hidrogeológico da Bacia do Jatobá/PE. Série Hidrogeologia. Estudos e Projetos (7): 55., Guzmán-González et al 2016). Normally the claystone packages are also interbedded with sandy limestone or calcareous quartz-arenite with a minor proportion of greenish-grey claystone and thin evaporate layers (Leite et al. 2001LEITE JF, PIRES STM & ROCHA EGAD. 2001. Estudo Hidrogeológico da Bacia do Jatobá/PE. Série Hidrogeologia. Estudos e Projetos (7): 55., Guzmán-González et al. 2016GUZMÁN-GONZÁLEZ J, PIOVESAN EK, FAMBRINI GL & OLIVEIRA E. 2016. Non-marine ostracoda from the Aliança Formation in the north-central portion of the Jatobá Basin, northeastern Brazil. Rev Bras Paleontol 19: 15-24.). The Aliança Formation was dated to the Tithonian based on biostratigraphic zones (Viana et al. 1971VIANA CF, GAMA JR EG, SIMÕES JA, MOURA JA, FONSECA JR & ALVES RJ. 1971. Revisão estratigráfica da Bacia Recôncavo/Tucano. Bol Téc Petrobras, Rio de Janeiro, 14(3/4): 157-192., Brito 1987BRITO IM. 1987. As Unidades Litoestratigráficas da passagem Jurássico-Cretáceo no Nordeste do Brasil. Rev Bras Geoci 17(2): 81-85., Magnavita & Cupertino 1988MAGNAVITA LP & CUPERTINO JA. 1988. Concepção atual sobre as bacias de Tucano e Jatobá, Nordeste do Brasil. Bol Geocie Petrobras 1(2): 119-134., Silva et al. 2011SILVA MC, CARVALHO MSS, BARRETO AMF & CARVALHO ISC. 2011. Paleoictiofauna da Formação Aliança (Jurássico Superior), Bacia de Jatobá, Nordeste do Brasil. In: Carvalho IS, Srivasta NK, Strohschoen O & Lana CC (Eds), Paleontologia: cenários de vida, vol. 4, Rio de Janeiro: Interciência, p. 595-608., Guzmán et al. 2015GUZMÁN J, FAMBRINI G, OLIVEIRA E & USMA-CUERVO C. 2015. Estratigrafia da Bacia de Jatobá: estado da arte. Estudos Geológicos 25: 53-76., Guzmán-González et al. 2016GUZMÁN-GONZÁLEZ J, PIOVESAN EK, FAMBRINI GL & OLIVEIRA E. 2016. Non-marine ostracoda from the Aliança Formation in the north-central portion of the Jatobá Basin, northeastern Brazil. Rev Bras Paleontol 19: 15-24.).

Despite more than a century of exploration, few is known about the vertebrate fauna of the Jatobá Basin as a whole. Most of the reports are fish remains (Silva et al. 2011SILVA MC, CARVALHO MSS, BARRETO AMF & CARVALHO ISC. 2011. Paleoictiofauna da Formação Aliança (Jurássico Superior), Bacia de Jatobá, Nordeste do Brasil. In: Carvalho IS, Srivasta NK, Strohschoen O & Lana CC (Eds), Paleontologia: cenários de vida, vol. 4, Rio de Janeiro: Interciência, p. 595-608.), predominantly coelacanths and Lepidotes, dorsal fin spines and isolated teeth from hybodontid sharks, as well as dipnoic dental plates (Silva et al. 2011SILVA MC, CARVALHO MSS, BARRETO AMF & CARVALHO ISC. 2011. Paleoictiofauna da Formação Aliança (Jurássico Superior), Bacia de Jatobá, Nordeste do Brasil. In: Carvalho IS, Srivasta NK, Strohschoen O & Lana CC (Eds), Paleontologia: cenários de vida, vol. 4, Rio de Janeiro: Interciência, p. 595-608.) and some mesoeucrocodylian remains (Silva et al 2011, Carvalho et al. 2021CARVALHO ARA, OLIVEIRA GR & BARRETO AMF. 2021. New Crocodylomorpha remains from the Late Jurassic Aliança Formation (Dom João stage), Jatobá Basin. J South Am Earth Sci 109: 103256. https://doi.org/10.1016/j.jsames.2021.103256). Finally, from the limestone strata came most of the ostracods record (e.g., Guzmán-González et al. 2016GUZMÁN-GONZÁLEZ J, PIOVESAN EK, FAMBRINI GL & OLIVEIRA E. 2016. Non-marine ostracoda from the Aliança Formation in the north-central portion of the Jatobá Basin, northeastern Brazil. Rev Bras Paleontol 19: 15-24.).

Nevertheless, little was given about the exact layer where MCT 2670-R was collected, albeit the specimen was previously encased in a massive clast supported conglomerates, fashioned in pebble granules with sub-rounded to rounded clasts, moderately selected. As said before, the personal annotations of prof. Ignacio Brito pointed out that the specimen came from riverbanks of the São Francisco River, in Petrolândia (Pernambuco state). He set this place as belonging to Aliança Formation (Brito 1987BRITO IM. 1987. As Unidades Litoestratigráficas da passagem Jurássico-Cretáceo no Nordeste do Brasil. Rev Bras Geoci 17(2): 81-85.), whose lithological composition is distinct from the rock matrix in the specimen. However, coarse to fine-grained sandstones intercalated with massive clast supported conglomerates, as described above, are typical of other Jurassic strata from Brotas Group: the almost unknown Sergi Formation (Viana et al. 1971VIANA CF, GAMA JR EG, SIMÕES JA, MOURA JA, FONSECA JR & ALVES RJ. 1971. Revisão estratigráfica da Bacia Recôncavo/Tucano. Bol Téc Petrobras, Rio de Janeiro, 14(3/4): 157-192., Rocha 2011ROCHA DEGA. 2011. Caracterização do intervalo carbonático aptiano da Bacia do Jatobá, NE do Brasil. Tese de Doutorado em Geociências - Centro de Tecnologia e Geociências, UFPE, 124 p., Adegas et al. 2012ADEGAS F, SCHERER CMS & BORN C. 2012. Arcabouço estratigráfico da Formação Sergi (Jurássico Superior) na Bacia de Almada, Bahia. Rev Bras Geocie volume 42(Suppl 1): 1-18., Guzmán et al. 2015GUZMÁN J, FAMBRINI G, OLIVEIRA E & USMA-CUERVO C. 2015. Estratigrafia da Bacia de Jatobá: estado da arte. Estudos Geológicos 25: 53-76.). It is also known that the contact between the Aliança and the Sergi formations is transitional (Rocha 2011ROCHA DEGA. 2011. Caracterização do intervalo carbonático aptiano da Bacia do Jatobá, NE do Brasil. Tese de Doutorado em Geociências - Centro de Tecnologia e Geociências, UFPE, 124 p., Guzman et al. 2015), which may have misleading the original geological assignment made by Brito

Finally, the Sergi Formation is interpreted as a braided river system (Rocha 2011ROCHA DEGA. 2011. Caracterização do intervalo carbonático aptiano da Bacia do Jatobá, NE do Brasil. Tese de Doutorado em Geociências - Centro de Tecnologia e Geociências, UFPE, 124 p., Adegas et al. 2012ADEGAS F, SCHERER CMS & BORN C. 2012. Arcabouço estratigráfico da Formação Sergi (Jurássico Superior) na Bacia de Almada, Bahia. Rev Bras Geocie volume 42(Suppl 1): 1-18.), in an environment characterized by climatic changes, where extensive forests developed after reworked under more dry conditions (Rocha 2011ROCHA DEGA. 2011. Caracterização do intervalo carbonático aptiano da Bacia do Jatobá, NE do Brasil. Tese de Doutorado em Geociências - Centro de Tecnologia e Geociências, UFPE, 124 p.). The extensive wood fossil record, mainly on Petrolândia (Braun 1966BRAUN OPG. 1966. Estratigrafia dos sedimentos da parte interior da região nordeste do Brasil (Bacias de Tucano-Jatobá, Mirandiba e Araripe). Bol Departamento Nacional da Produção Mineral/Divisão de Geologia e Mineralogia, Rio de Janeiro, 236: 1-76., Silva et al. 2003SILVA AJP, LOPES RC, VASCONCELOS AM & BAHIA RBC. 2003. Bacias Sedimentares Paleozóicas e Meso-Cenozóicas Interiores. In: Bizzi LA, Schobbenhaus C, Vidotti RM & Gonçalves JH (Eds), Geologia, Tectônica e Recursos Minerais do Brasil, CPRM - Serviço Geológico do Brasil: 55-85. https://doi.org/10.1371/journal.pone.0003303.
https://doi.org/10.1371/journal.pone.000...
, Guzmán et al. 2015GUZMÁN J, FAMBRINI G, OLIVEIRA E & USMA-CUERVO C. 2015. Estratigrafia da Bacia de Jatobá: estado da arte. Estudos Geológicos 25: 53-76.), also corroborates this scenario. Most of the wood fossil is assigned to gymnosperms, vastly Dadoxylon benderi Mussa, 1959 (Mussa & Muniz 1985MUSSA D & MUNIZ GCB. 1985. Tronco silicificado da Formação Sergi, Estado de Pernambuco, Brasil. Congresso Brasileiro de Geologia, 9. Fortaleza: Anais, p. 58.). The Jurassic age for the Sergi Formation is based on the similar occurrence of D. benderi on the Missão Velha Formation (Braun 1966BRAUN OPG. 1966. Estratigrafia dos sedimentos da parte interior da região nordeste do Brasil (Bacias de Tucano-Jatobá, Mirandiba e Araripe). Bol Departamento Nacional da Produção Mineral/Divisão de Geologia e Mineralogia, Rio de Janeiro, 236: 1-76., Mussa & Muniz 1985MUSSA D & MUNIZ GCB. 1985. Tronco silicificado da Formação Sergi, Estado de Pernambuco, Brasil. Congresso Brasileiro de Geologia, 9. Fortaleza: Anais, p. 58.). The abundant remains of D. benderi on strata of Sergi Formation suggests an extensive tree cover in the marginal areas of higher regions of the Brazilian northeast at that time (Freitas et al. 2008). This made MCT2670-LE as the first vertebrate remain collected on the Sergi Formation, expanding our information about the fauna of the Jatobá Basin.

MATERIALS AND METHODS

Material

The specimen MCT 2670-LE comprises a theropod mid caudal vertebra. Our dataset (Supplementary Appendix) was compiled from the literature and comprises 25 abelisaurid (six specimens; Méndez 2014MÉNDEZ AH. 2014. The caudal vertebral series in abelisaurid dinosaurs. Acta Palaeontol Pol 59(1): 99-107., O’Connor 2007O’CONNOR PM. 2007. The postcranial axial skeleton of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J Vertebr Paleontol 27: 127-163. https://doi.org/10.1671/0272-4634(2007)27.); 10 megalosauroid (five specimens; Benson 2010BENSON RBJ. 2010. A description of Megalosaurus bucklandii (Dinosauria: Theropoda) from the Bathonian of the UK and the relationships of Middle Jurassic theropods. Zoological Zoo J Linn Soc 158: 882-935. https://doi.org/10.1111/j.1096-3642.2009.00569.x., Malafaia et al. 2017MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2017. New data on the anatomy of Torvosaurus and other remains of megalosauroid (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Iber Geol 43: 33-59. https://doi.org/10.1007/s41513-017-0003-9., Mateus et al. 2011MATEUS O, ARAÚJO R, NATÁRIO C & CASTANHINHA R. 2011. A new specimen of the theropod dinosaur Baryonyx from the early Cretaceous of Portugal and taxonomic validity of Suchosaurus. Zootaxa 2827: 54-68. https://doi.org/10.11646/zootaxa.2827.1.3., Rauhut et al. 2016RAUHUT OWM, HÜBNER TR & LANSER K-PL. 2016. A new megalosaurid theropod dinosaur from the late Middle Jurassic (Callovian) of north-western Germany: Implications for theropod evolution and faunal turnover in the Jurassic. Palaeontol Electronica 19: 1-65.), 18 allosauroid (six specimens; Brusatte et al. 2008BRUSATTE SL, BENSON RBJ & HUTT S. 2008. The osteology of Neovenator salerii (Dinosauria: Theropoda) from the Wealden Group (Barremian) of the Isle of Wight. Monogr Palaeontogr Soc: 1-75., Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239., Malafaia et al. 2019MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172., Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319., Pereira et al. 2020bPEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517.); six megaraptoran caudal vertebrae (five specimens; Martinelli et al. 2013MARTINELLI AG, RIBEIRO LCB, MÉNDEZ AH, NETO FM, CAVELLANI CL, FELIX E, FERRAZ MLF & TEIXEIRA VPA. 2013. Insight on the theropod fauna from the Uberaba Formation (Bauru Group), Minas Gerais state: New megaraptoran specimen from the Late Cretaceous of Brazil. Riv Ital Paleontol Stratigr 119: 205-214., Méndez et al. 2012MÉNDEZ AH, NOVAS FE & IORI FV. 2012. First record of Megaraptora (Theropoda, Neovenatoridae) from Brazil. Comptes Rendus Palevol 11: 251-256. https://doi.org/10.1016/j.crpv.2011.12.007., Motta et al. 2016MOTTA MJ, ROLANDO AMA, ROZADILLA S, AGNOLÍN FE, CHIMENTO NR, EGLI FB & NOVAS FE. 2016. New Theropod Fauna From the Upper Cretaceous ( Huincul Formation ) of Northwestern Patagonia , Argentina. New Mex. Museum Nat Hist Sci Bull 71: 231-253., Pereira et al. 2020bPEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517.) and one indeterminate theropod material (Pereira et al. 2020bPEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517.). We focused in large theropod taxa that present some degree of constriction in the mid region of the centrum to observe the distribution of this feature among these groups and if it is possible so distinguish them.

Mechanical Preparation

The specimen MCT 2670-LE was still fixed to the rock matrix since the specimen was collected, which led one of us (PVLCP) to mechanical preparation using specialized pneumatic tools at the preparation lab (DEGEO/UFRJ). Once the matrix was removed, the fragile specimen was treated with a 10% paraloid solution to confer resistance. After this step, the specimen was able to be handled for diagnosis statements.

Institutional abbreviations

BMNH, Natural History Museum, London, UK; CPPLIP, Centro de Pesquisas Paleontológicas “Llewellyn Ivor Price”, Uberaba, MG, Brazil; DGM or MCT, Museu de Ciências da Terra (ancient Companhia de Pesquisa de Recursos Minerais (CPRM) and now Agência Nacional de Mineração (ANM)), Rio de Janeiro, RJ, Brazil; MACN-PV-RN, Museo Argentino de Ciencias Naturales “B. Rivadavia”, Paleontología de Vertebrados, Buenos Aires, Argentina (RN, colección Río Negro); MB, Museum fur Naturkunde, Berlin, Germany; MIWG, Isle of Wight Museum Service, Sandwown, UK; ML, Museu da Lourinhã, Lourinhã, Portugal; MLL-Pv, Museo Municipal de Las Lajas, Las Lajas, Neuquén Province, Argentina; MPMA, Museu de Paleontologia de Monte Alto “Prof. Antonio Celso de Arruda Campos”, Monte Alto, SP, Brazil; SNH, Sociedade de História Natural, Torres Vedras, Portugal; UFRJ-DG, Departamento de Geologia da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Vb, Institut fur Palaontologie of the Free University, Berlin, Germany.

Anatomical and systematic terms

Following Wilson (2006)WILSON JA. 2006. Anatomical nomenclature of fossil vertebrates: standardized terms or ‘lingua franca’? J Vertebr Paleontol 26: 511-518. https://doi.org/10.1671/0272-4634(2006)26., we use the “Romerian” anatomical terms and their respective orientations (e.g., “anterior” instead of “cranial’”). All measurements of the specimen are provided in Table II. For brevity and clarity, MCT 2670-LE is mainly compared with theropod taxa: Aerosteon riocoloradensis Sereno et al. 2008SERENO PC, MARTINEZ RN, WILSON JA, VARRICCHIO DJ, ALCOBER AO & LARSON HCE. 2008. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. Plos ONE 3(9): e3303.; Allosaurus fragilis Marsh 1877; Acrocanthosaurus atokensis Stovall & Langston 1950STOVALL JW & LANGSTON W. 1950. Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma. Am Midl Nat 1950(43): 696.; Baryonyx walkeri Charig & Milner, 1986CHARIG AJ & MILNER AC. 1986. Baryonyx, a remarkable new theropod dinosaur. Nature 324: 359-361. https://doi.org/10.1038/324359a0.; Concavenator corcovatus Ortega et al. 2010ORTEGA F, ESCASO F & SANZ JL. 2010. A bizarre, humped Carcharodontosauria (Theropoda) from the lower cretaceous of Spain. Nature 467: 203-206. https://doi.org/10.1038/nature09181.; Dilophosaurus wetherilli (Welles 1954); Giganotosaurus carolinii Coria & Salgado 1995CORIA RA & SALGADO L. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377: 224-226.; Lajasvenator ascheriae Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319.; Lusovenator santosi Malafaia et al. 2020MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
; Majungasaurus crenatissimus (Depéret 1896); Mapusaurus roseae Coria & Currie 2006CORIA RA & CURRIE PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118.; Megalosaurus bucklandi Mantell, 1827MANTELL GA. 1827. Illustrations of the geology of Sussex. Fellow R Coll Surg, 92 p.; Neovenator salerii Hutt et al. 1996HUTT S, MARTILL DM & BARKER MJ. 1996. The first European allosaurid dinosaur (Lower Cretaceous, Wealden Group, England). Neues Jahrb Geol Palaontol Monatshefi: 635-644.; Siamraptor suwati Chokchaloemwong et al. 2019CHOKCHALOEMWONG D, HATTORI S, CUESTA E, JINTASAKUL P, SHIBATA M & AZUMA Y. 2019. A new carcharodontosaurian theropod (Dinosauria: Saurischia) from the Lower Cretaceous of Thailand. PLoS ONE 14 (10): e0222489. and Veterupristisaurus milneri Rauhut, 2011. Additional comparisons are made with the following specimens: the Bajo de La Carpa Formation (Neuguén Group) abelisaurid material (MACN-PV-RN 1012; Ezcurra & Méndez 2009EZCURRA MD & MÉNDEZ AH. 2009. First report of a derived abelisaurid theropod from the Bajo de la Carpa Formation (Late Cretaceous), Patagonia, Argentina Bull Geosci 84: 547-554. https://doi.org/10.3140/bull.geosci.1106.
https://doi.org/10.3140/bull.geosci.1106...
); the Açu Formation carcharodontosaurian remains (UFRJ-DG523-R and UFRJ-DG524-R; Pereira et al. 2020bPEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517.); the Freixial Formation (Lusitanian Basin) carcharodontosaurid remains (SNH.019/4; Malafaia et al. 2019MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172.); the Wadi Milk Formation caudal (Vb-871, Rauhut 1999RAUHUT OWM. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of northern Sudan. Palaeontol Afr 35: 61-84.) and the Bauru Group megaraptoran material (CPPLIP 1324 and MPMA 08-003-94; Méndez et al. 2012MÉNDEZ AH, NOVAS FE & IORI FV. 2012. First record of Megaraptora (Theropoda, Neovenatoridae) from Brazil. Comptes Rendus Palevol 11: 251-256. https://doi.org/10.1016/j.crpv.2011.12.007., Martinelli et al. 2013MARTINELLI AG, RIBEIRO LCB, MÉNDEZ AH, NETO FM, CAVELLANI CL, FELIX E, FERRAZ MLF & TEIXEIRA VPA. 2013. Insight on the theropod fauna from the Uberaba Formation (Bauru Group), Minas Gerais state: New megaraptoran specimen from the Late Cretaceous of Brazil. Riv Ital Paleontol Stratigr 119: 205-214.). For systematic terminologies, we follow Padian et al. (1999)PADIAN K, HUTCHINSON JR & HOLTZ TR. 1999. Phylogenetic definitions and nomenclature of the major taxonomic categories of the carnivorous Dinosauria (Theropoda). J Vertebr Paleontol 19(1): 69-80., which consider Neotheropoda the least inclusive clade containing Coelophysis bauri and extant birds, and Tetanurae the most inclusive clade containing extant birds but not Ceratosaurus nasicornis.

Table II
Selected measurements of MCT 2670-LE.

Phylogenetic inference

In this work, we present a phylogenetic inference based on a data matrix modified from Malafaia et al. (2020)MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
. Two new characters (i.e., unpublished) relative to mid-caudal centrum anatomy are proposed: character 359 (Mid and posterior caudal vertebrae, centrum, mid-width: 0 – over half of articular facets width; 1 – half or less); and character 360 (Mid and posterior caudals, centrum, ventral surface: 0 – flat, 1 – with a thin sulcus, 2 – with a broad groove). Furthermore, we have added four taxa: Veterupristisaurus, Siamraptor, UFRJ DG 524-R, and MCT 2670-LE. The analysis itself was performed using the free software TNT v. 1.5 (Goloboff & Catalano 2016). To heuristic search, we followed the same protocol (default New Technology Search, driven search stabilizing consensus twice by a factor of 25) as employed by Malafaia et al. (2020)MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
, though we highlight that revisions of both matrix and protocol may be welcome in future contributions.

Linear morphometrics

We performed a linear morphometrics to the mid caudal vertebrae (from 8th to 23rd caudal) with the parameters adapted from Welles (1952)WELLES SP. 1952. A review of the North American Cretaceous elasmosaurs. Univ Calif Publ Geol Sci 29: 47-144. and Brown (1981)BROWN DS. 1981. The English Upper Jurassic Plesiosauroidea (Reptilia) and a review of the phylogeny and classification of the Plesiosauroidea. Bull Br Museum Nat Hist Geol 35: 253-347., which are: height/length ratio (HI = 100*H/L); breadth/length ratio (BI = 100*B/L); and rate of vertebral elongation (VLI = 2*102L/(H+B)). We also added mid centrum width/breadth ratio (MBI = 100*M/B) to observe the variation and segregation among the analyzed neotheropod groups. The measurements were compiled from literature and/or taken from images via ImageJ v. 1.46r (Schneider et al. 2012SCHNEIDER CA, RASBAND WS & ELICEIRI KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. https://doi.org/10.1038/nmeth.2089.).

We used the linear bivariate regressions to test the correlation between parameters and, subsequently, linear discriminant (LDA) and principal component analyses (PCA). Due to the low sample sizes, we considered nonparametric tests to verify the significance between group means with Kruskal-Wallis, followed by Mann Whitney pairwise tests. All statistical analyses were performed in the software PAST v. 4.02 (Hammer et al. 2001HAMMER Ø, HARPER DAT & RYAN PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4: 9.), considering p-value of 0.05 as significant.

RESULTS

Systematic paleontology

Dinosauria Owen, 1842

Theropoda Marsh, 1881

Tetanurae Gauthier, 1986

Avetheropoda Paul, 1988

Allosauroidea Marsh, 1878

cf. Carcharodontosauria Benson, Carrano and Brusatte, 2010

Description

The specimen MCT 2670-LE (Figure 2) comprises an isolated vertebral caudal centrum. Although the neural arch is not preserved, the neurocentral junction exhibits a rugose surface, which indicates that the neurocentral junction was unfused and the neurocentral suture was visible. The amphicoelous vertebral centrum is elongated (Table II) and transversely constricted in its middle length showing an hourglass shape, as it is in several allosauroids middle and posterior caudal centra (e.g., Madsen 1976MADSEN JH. 1976. Allosaurus fragilis: a revised osteology. Utah Geol Surv Bull 109: 1-163., Britt 1991BRITT BB. 1991. Theropods of Dry Mesa Quarry (Morrison Formation, Late Jurassic), Colorado, with emphasis on the osteology of Torvosaurus tanneri. Brigham Young Univ Geol Stud 37: 1-72., Rauhut 1999RAUHUT OWM. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of northern Sudan. Palaeontol Afr 35: 61-84., Chure 2000CHURE DJ. 2000. A new species of Allosaurus from the Morrison Formation of Dinosaur National Monument (UT-CO) and a revision of the theropod family Allosauridae. Columbia University.) but especially carcharodontosaurian ones (e.g., Malafaia et al. 2019MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172., Chokchaloemwong et al. 2019CHOKCHALOEMWONG D, HATTORI S, CUESTA E, JINTASAKUL P, SHIBATA M & AZUMA Y. 2019. A new carcharodontosaurian theropod (Dinosauria: Saurischia) from the Lower Cretaceous of Thailand. PLoS ONE 14 (10): e0222489., Pereira et al. 2020bPEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517.). The articular facets are subcircular, with the anterior facet being mostly flat and the posterior smoothly concave (Figure 2). MCT 2670-LE shows a slight offset between articular facets. In lateral view, the specimen MCT 2670-LE exhibits a slight concavity in its ventral surface. Close to the neurocentral joint, in the mid-region of the centrum, the neurocentral depressions are shallow. The ventral surface of the centrum has a narrow longitudinal groove extending along its anteroposterior length. This longitudinal groove is bounded by faint paired keels, which are slightly eroded. In ventral view, the facets for chevrons joints are quite visible next to the posterior face.

Figure 2
Plate of the allosauroid specimen MCT 2670-LE, a putative carcharodontosaurian, in dorsal (a), ventral (b), right (c) left (d), anterior (e) and posterior views (f), with a scheme on the right. Abbreviations: fo, foramen; nc, neural canal; ncj, neurocentral junction; pcd, pleurocentral depression; vk, ventral keel; vg, ventral groove. Scale bar equals 10 mm.

Comparisons

The offset between articular facets is a feature spread among basal Neotheropoda, being observed in Dilophosaurus (Welles 1984WELLES SP. 1984. Dilophosaurus wetherilli (Dinosauria, Theropoda). Osteology and comparisons. Palaeontographica Abt A 185: 85-180.), abelisaurids (Méndez 2014MÉNDEZ AH. 2014. The caudal vertebral series in abelisaurid dinosaurs. Acta Palaeontol Pol 59(1): 99-107.), Allosaurus (Madsen 1976MADSEN JH. 1976. Allosaurus fragilis: a revised osteology. Utah Geol Surv Bull 109: 1-163.), Acrocanthosaurus (Stovall & Langston 1950STOVALL JW & LANGSTON W. 1950. Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma. Am Midl Nat 1950(43): 696.) as well as in other carcharodontosaurian mid and posterior caudal vertebrae (e.g., Rauhut 1999RAUHUT OWM. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of northern Sudan. Palaeontol Afr 35: 61-84., Coria & Currie 2006CORIA RA & CURRIE PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118., Malafaia et al. 2019MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172.). However, MCT 2670-LE does not show the ventrolateral ridges (Figure 3) that normally seems to accompany this ventral pronounced offset (e.g., present in Dilophosaurus Welles, 1984 and several abelisaurids, Méndez et al. 2012MÉNDEZ AH, NOVAS FE & IORI FV. 2012. First record of Megaraptora (Theropoda, Neovenatoridae) from Brazil. Comptes Rendus Palevol 11: 251-256. https://doi.org/10.1016/j.crpv.2011.12.007.). The hourglass shaped centrum is typical to the middle and posterior caudal centra of several allosauroids (e.g., Madsen 1976MADSEN JH. 1976. Allosaurus fragilis: a revised osteology. Utah Geol Surv Bull 109: 1-163., Britt 1991BRITT BB. 1991. Theropods of Dry Mesa Quarry (Morrison Formation, Late Jurassic), Colorado, with emphasis on the osteology of Torvosaurus tanneri. Brigham Young Univ Geol Stud 37: 1-72., Rauhut 1999RAUHUT OWM. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of northern Sudan. Palaeontol Afr 35: 61-84., Chure 2000CHURE DJ. 2000. A new species of Allosaurus from the Morrison Formation of Dinosaur National Monument (UT-CO) and a revision of the theropod family Allosauridae. Columbia University.) but especially carcharodontosaurian ones (e.g., Malafaia et al. 2019MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172., Chokchaloemwong et al. 2019CHOKCHALOEMWONG D, HATTORI S, CUESTA E, JINTASAKUL P, SHIBATA M & AZUMA Y. 2019. A new carcharodontosaurian theropod (Dinosauria: Saurischia) from the Lower Cretaceous of Thailand. PLoS ONE 14 (10): e0222489., Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319., Pereira et al. 2020bPEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517., Figure 3). Such feature is distinct in the caudal observed in abelisauroids (e.g., MACN-PV-RN 1012; see Ezcurra & Méndez 2009EZCURRA MD & MÉNDEZ AH. 2009. First report of a derived abelisaurid theropod from the Bajo de la Carpa Formation (Late Cretaceous), Patagonia, Argentina Bull Geosci 84: 547-554. https://doi.org/10.3140/bull.geosci.1106.
https://doi.org/10.3140/bull.geosci.1106...
) The narrow longitudinal groove in the ventral surface, bounded by faint keels in the caudal centrum is also commonly found in Abelisauroidea, Allosauroidea, especially carcharodontosaurids and Megalosauroidea (Ezcurra & Méndez 2009EZCURRA MD & MÉNDEZ AH. 2009. First report of a derived abelisaurid theropod from the Bajo de la Carpa Formation (Late Cretaceous), Patagonia, Argentina Bull Geosci 84: 547-554. https://doi.org/10.3140/bull.geosci.1106.
https://doi.org/10.3140/bull.geosci.1106...
, Benson 2010BENSON RBJ. 2010. A description of Megalosaurus bucklandii (Dinosauria: Theropoda) from the Bathonian of the UK and the relationships of Middle Jurassic theropods. Zoological Zoo J Linn Soc 158: 882-935. https://doi.org/10.1111/j.1096-3642.2009.00569.x., Mateus et al. 2011MATEUS O, ARAÚJO R, NATÁRIO C & CASTANHINHA R. 2011. A new specimen of the theropod dinosaur Baryonyx from the early Cretaceous of Portugal and taxonomic validity of Suchosaurus. Zootaxa 2827: 54-68. https://doi.org/10.11646/zootaxa.2827.1.3., Carrano et al. 2012CARRANO MT, BENSON RBJ & SAMPSON SD. 2012. The phylogeny of Tetanurae. J Syst Paleontol 10: 211-300., Rauhut et al. 2016RAUHUT OWM, HÜBNER TR & LANSER K-PL. 2016. A new megalosaurid theropod dinosaur from the late Middle Jurassic (Callovian) of north-western Germany: Implications for theropod evolution and faunal turnover in the Jurassic. Palaeontol Electronica 19: 1-65., Malafaia et al. 2017MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2017. New data on the anatomy of Torvosaurus and other remains of megalosauroid (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Iber Geol 43: 33-59. https://doi.org/10.1007/s41513-017-0003-9., 2020, Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319.). The absence of the ventrolateral ridges when the ventral pronounced offset is present could be a character that can be ascertained in the future phylogenetic approaches. Such feature is something putatively present in Avetheropoda, suggesting a secondary loss of these ventrolateral ridges at least within Allosauroidea, as observed in MCT 2670-R and carcharodontosaurids. Although the hourglass shape is observed in megaraptorans, as Aerosteon (see Sereno et al. 2008SERENO PC, MARTINEZ RN, WILSON JA, VARRICCHIO DJ, ALCOBER AO & LARSON HCE. 2008. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. Plos ONE 3(9): e3303.) and in the specimens CPPLIP 1324 (see Martinelli et al. 2013MARTINELLI AG, RIBEIRO LCB, MÉNDEZ AH, NETO FM, CAVELLANI CL, FELIX E, FERRAZ MLF & TEIXEIRA VPA. 2013. Insight on the theropod fauna from the Uberaba Formation (Bauru Group), Minas Gerais state: New megaraptoran specimen from the Late Cretaceous of Brazil. Riv Ital Paleontol Stratigr 119: 205-214.), MPMA 08-00394 (see Méndez et al. 2012MÉNDEZ AH, NOVAS FE & IORI FV. 2012. First record of Megaraptora (Theropoda, Neovenatoridae) from Brazil. Comptes Rendus Palevol 11: 251-256. https://doi.org/10.1016/j.crpv.2011.12.007.), they have pneumatic foramina and/or lack a ventral groove. Therefore, the hourglass shaped centrum and the presence of a narrow longitudinal groove, bounded by ventral keels along its ventral surface allows referral of the specimen MCT 2670-LE to Allosauroidea.

Figure 3
Comparative left lateral (a) and ventral (b) views between MCT 2670-LE and other caudal vertebrae from allosauroid specimens: UFRJ-DG524-R (modified from Pereira et al. 2020bPEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517.); Veterupristisaurus milneri (MB R 2166, modified from Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239.); Vb-607, Wadi Milk Formation caudal (modified from Rauhut 1999RAUHUT OWM. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of northern Sudan. Palaeontol Afr 35: 61-84.); referred specimen of Lusovenator santosi (SHN.19/04, modified from Malafaia et al. 2019MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172.); Neovenator salerii (MIWG 6348, modified from Brusatte et al. 2008BRUSATTE SL, BENSON RBJ & HUTT S. 2008. The osteology of Neovenator salerii (Dinosauria: Theropoda) from the Wealden Group (Barremian) of the Isle of Wight. Monogr Palaeontogr Soc: 1-75.), Lajasvenator ascheriae (MLL-Pv-005, modified from Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319.); Megalosaurus bucklandi (BMNH R9672, modified from Benson 2010BENSON RBJ. 2010. A description of Megalosaurus bucklandii (Dinosauria: Theropoda) from the Bathonian of the UK and the relationships of Middle Jurassic theropods. Zoological Zoo J Linn Soc 158: 882-935. https://doi.org/10.1111/j.1096-3642.2009.00569.x.); Baryonyx walkeri (ML 1190, modified from Mateus et al. 2011MATEUS O, ARAÚJO R, NATÁRIO C & CASTANHINHA R. 2011. A new specimen of the theropod dinosaur Baryonyx from the early Cretaceous of Portugal and taxonomic validity of Suchosaurus. Zootaxa 2827: 54-68. https://doi.org/10.11646/zootaxa.2827.1.3.); CPPLIP 1324 (modified from Martinelli et al. 2013MARTINELLI AG, RIBEIRO LCB, MÉNDEZ AH, NETO FM, CAVELLANI CL, FELIX E, FERRAZ MLF & TEIXEIRA VPA. 2013. Insight on the theropod fauna from the Uberaba Formation (Bauru Group), Minas Gerais state: New megaraptoran specimen from the Late Cretaceous of Brazil. Riv Ital Paleontol Stratigr 119: 205-214.); MPMA 08-003-94 (modified from Méndez et al. 2012MÉNDEZ AH, NOVAS FE & IORI FV. 2012. First record of Megaraptora (Theropoda, Neovenatoridae) from Brazil. Comptes Rendus Palevol 11: 251-256. https://doi.org/10.1016/j.crpv.2011.12.007.); Aerosteon riocoloradensis (MACN-PV-3137, modified from Méndez et al. 2012MÉNDEZ AH, NOVAS FE & IORI FV. 2012. First record of Megaraptora (Theropoda, Neovenatoridae) from Brazil. Comptes Rendus Palevol 11: 251-256. https://doi.org/10.1016/j.crpv.2011.12.007.); and MACN-PV-RN-1012 (modified from Ezcurra & Méndez 2009EZCURRA MD & MÉNDEZ AH. 2009. First report of a derived abelisaurid theropod from the Bajo de la Carpa Formation (Late Cretaceous), Patagonia, Argentina Bull Geosci 84: 547-554. https://doi.org/10.3140/bull.geosci.1106.
https://doi.org/10.3140/bull.geosci.1106...
). Scale bars equal 10 mm.

The phylogenetic placement of Megaraptora is uncertain, as the group may fall within neovenatorids (as after the dataset Malafaia et al. 2020MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
, which we have utilized here) or as basal coelurosaurs (e.g., Delcourt & Grillo 2018DELCOURT R & GRILLO ON. 2018. Reassessment of a fragmentary maxilla attributed to Carcharodontosauridae from Presidente Prudente Formation, Brazil. Cretac Res 84: 515-524. https://doi.org/10.1016/j.cretres.2017.09.008.). We highlight that the phylogenetic placement of Megaraptora within or outside the Carcharodontosauria has no bearing on the taxonomic referral of MCT 2670-LE, which differs from megaraptorans (as expressed above) whether they are considered as carcharodontosaurians or not.

Among Allosauroidea, MCT 2670-LE is quite similar to the holotypic (SHN.036, Malafaia et al. 2020MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
) and the referred (SHN.19, Malafaia et al. 2019MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172.) mid caudal vertebrae of Lusovenator santosi, as it is similar to Lajasvenator ascheriae. The specimen MCT 2670-R, L. santosi and L. ascheriae share the moderately elongated centra. However, the Brazilian specimen differs from SHN.019 due to the development of the pleurocentral depression well visible in the European specimen. The extremely reduced pleurocentral depression is shared with the vertebra of L. ascheriae (Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319.), Veterupristisaurus milneri (MB R 1938; Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239.), differing from the comparatively deeper depression in the derived carcharodontosaurids Giganotosaurus carolinii (see Coria & Salgado 1995CORIA RA & SALGADO L. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377: 224-226.) and expanded depression in Acrocanthosaurus atokensis (see Storval & Langston 1950). However, the centrum of MCT 2670-LE has a much shallower dorsolateral depression, similar to L. ascheriae and Mapusaurus roseae (see Coria & Currie 2006CORIA RA & CURRIE PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118., Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319.). MCT 2670-LE also differs from L. santosi caudal vertebrae (SHN.06 and SHN.19) for the absence of the lateral lamina in Brazilian specimen, which is also absent in G. carolinii (see Coria & Salgado 1995CORIA RA & SALGADO L. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377: 224-226.) M. roseae (Coria & Currie 2006CORIA RA & CURRIE PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118.) and in the carcharodontosaurian remains from Açu Formation (UFRJ-DG523-R and UFRJ-DG524-R), although those are more anterior caudal vertebrae compared to MCT 2670-LE.

The amphicoelous centra with the anterior articular surface being slightly more concave than the posterior face is a feature shared with MB R 1938 (Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239.). The round articular surface is widely spread in the mid to posterior caudal vertebrae of Torvosaurus (Hanson & Makovicky 2014HANSON M & MAKOVICKY PJ. 2014. A new specimen of Torvosaurus tanneri originally collected by Elmer Riggs, Historical Biology 26(6): 775-784. 10.1080/08912963.2013.853056.) and several allosauroids, such as Allosaurus (Madsen 1976MADSEN JH. 1976. Allosaurus fragilis: a revised osteology. Utah Geol Surv Bull 109: 1-163.), Acrocanthosaurus (Stovall & Langston 1950STOVALL JW & LANGSTON W. 1950. Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma. Am Midl Nat 1950(43): 696., Currie & Carpenter 2000CURRIE PJ & CARPENTER K. 2000. A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the lower Cretaceous Antlers formation (Lower Cretaceous, Aptian) of Oklahoma, USA. Geodiversitas 22: 207-246.), Concavenator (Cuesta et al. 2019CUESTA E, ORTEGA F & SANZ JL. 2019. Axial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain. Cretac Res 95: 106-120.) and in several carcharodontosaurids, but not in Mapusaurus (Coria & Currie 2006CORIA RA & CURRIE PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118.) and Siamraptor (Chokchaloemwong et al. 2019CHOKCHALOEMWONG D, HATTORI S, CUESTA E, JINTASAKUL P, SHIBATA M & AZUMA Y. 2019. A new carcharodontosaurian theropod (Dinosauria: Saurischia) from the Lower Cretaceous of Thailand. PLoS ONE 14 (10): e0222489.), which in turn shows subtriangular articular surfaces on mid to posterior caudal vertebrae (Coria & Currie 2006CORIA RA & CURRIE PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118.) - albeit Siamraptor has a subrectangular posterior face (Chokchaloemwong et al. 2019CHOKCHALOEMWONG D, HATTORI S, CUESTA E, JINTASAKUL P, SHIBATA M & AZUMA Y. 2019. A new carcharodontosaurian theropod (Dinosauria: Saurischia) from the Lower Cretaceous of Thailand. PLoS ONE 14 (10): e0222489.). MCT 2670-LE shares the ventrally pronounced border of the articular facets with Vb-871 (Rauhut 1999RAUHUT OWM. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of northern Sudan. Palaeontol Afr 35: 61-84.), MB R 1938 (Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239.), UFRJ-DG523-R and UFRJ-DG524-R (Pereira et al. 2020bPEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517.) but differs from those specimens due to the less pronounced ventral keels. Such faint ventral keels, surrounding a longitudinal groove, is observed in basal carcharodontosaurids (Figure 3), as in the caudal of Lajasvenator ascheriae (see Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319.).

Phylogenetic inference results

Our phylogenetic inference produced eight minimum-length trees, with 1085 steps, a consistency index of 0.399 and retention index of 0.687. Near the base of the Carcharodontosauria, we have recovered a small clade that includes Lusovenator, Veterupristisaurus, Siamraptor, UFRJ DG 524-R, and MCT 2670-LE (Figure 4). This small clade is recovered in a polytomy including Siats and the node that joins Neovenatoridae + Carcharodontosauridae. This small clade is supported by a single synapomorphy: character 359(1): mid and posterior caudals, centrum, mid-width: half or less of articular facets width.

Figure 4
Consensus tree showing the assignment of MCT 2670-LE within Carcharodontosauria (Allosauroidea) (to access the full tree, see Supplementary Appendix).

Linear morphometrics results

The centrum width lacks correlation with all other parameters (r2 < 0.5; see graphics in Supplementary Appendix). Only the elongation shows strong correlation with both height (r2 = 0.892) and breadth (r2 = 0.799). Therefore, the multivariate analyses lack support based on these parameters (Table SI), with LDA correctly assigning only 38.98% of the specimens. Our results could not significantly segregate the proposed groups in morphospaces based in all parameters and evaluate the mid centrum width.

We regard only the mid centrum width among the theropod groups to evaluate this feature. The specimen MCT 2670-LE is close to the mean of megalosauroids and allosauroids (Figure 5), while the indeterminate theropod UFRJ-DG 528-R is close to the mean of abelisaurids and megaraptorans. However, the Kruskal-Wallis shows no significant difference between the sample medians (H (chi-square) = 1.701; p = 0.637) and the Mann Whitney pairwise shows no significance (Table III). Therefore, the difference between samples regarding the mid centrum width is not significant to distinguish between groups. We also evaluate the variation along the caudal series in more complete specimens (e.g. Majungasaurus and Neovenator) with more incomplete specimens. The mid centrum width is more constricted in more posterior caudal vertebrae and we observed a wide variation along the anteroposterior caudal sequence, which contributes to the wide standard deviation observed among the samples (Figure 5 and 6).

Figure 5
Mean and Whisker plot of vertebral caudal MBI values from Abelisauridae, Megalosauroidea, Allosauroidea, Megaraptora, MCT 2670-LE and UFRJ-DG 528-R.
Figure 6
Plotted MBI values of caudal vertebrae from Abelisauridae, Megalosauroidea, Allosauroidea, Megaraptora, MCT 2670-LE and UFRJ-DG 528-R. When specimens show more than one preserved caudal, it follows the anteroposterior order.
Table III
Pairwise Mann-Whitney test (raw p values, uncorrected significance) based on MBI main groups for caudal vertebrae.

DISCUSSION

Distribution of carcharodontosaurians among Jurassic-Cretaceous boundary

Up-to-date, most of the carcharodontosaurid record from Brazil comprises teeth from the Albian to early Cenomanian (Vilas Bôas et al. 1999VILAS BÔAS I, CARVALHO IS, MEDEIROS MA & PONTES H. 1999. Dentes de Carcharodontosaurus (Dinosauria, Tyrannosauridae) do Cenomaniano, Bacia de São Luíz (norte do Brasil). An Acad Bras Cienc 71: 846-847., Medeiros & Schultz 2002MEDEIROS MA & SCHULTZ CL. 2002. A fauna dinossauriana da “Laje do Coringa”, Cretáceo Médio do nordeste do Brasil. Arq Mus Nac 60: 155-162., Medeiros et al. 2014MEDEIROS MA, LINDOSO RM, MENDES ID, CARVALHO IS. 2014. The Cretaceous (Cenomanian) continental record of the Laje do Coringa flagstone (Alcântara formation), northeastern South America. J South Am Earth Sci 53: 50-58.), and some caudal vertebrae from the Albian-Cenomanian of Potiguar Basin (Pereira et al. 2020bPEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517.). Although the discussion in the literature points out that the latest carcharodontosaurian fossil records are restricted to the Lower Cretaceous strata, with the decline of the lineage in the mid-Cretaceous and a niche occupation by abelisaurids (Novas et al. 2013NOVAS FE, AGNOLÍN FL, EZCURRA MD, PORFIRI J & CANALE JI. 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretac Res 45: 174-215. https://doi.org/10.1016/j.cretres.2013.04.001.). However, some records of Upper Cretaceous outcrops from Bauru Group have been previously assigned to Carcharodontosauridae (Candeiro et al. 2004CANDEIRO CRA, ABRANTES CT, ABRANTES EA, AVILLA LS, MARTINS VC, MOREIRA AL, TORRES SR & BERGQVIST LP. 2004. Dinosaurs remains from western São Paulo state, Brazil (Bauru Basin, Adamantina Formation, Upper Cretaceous). J South Am Earth Sci 18: 1-10. https://doi.org/10.1016/j.jsames.2004.08.004., 2006CANDEIRO CRA, MARTINELLI AG, AVILLA LS & RICH TH. 2006. Tetrapods from the Upper Cretaceous (Turonian-Maastrichtian) Bauru Group of Brazil: a reappraisal. Cretac Res 27: 923-946. https://doi.org/10.1016/j.cretres.2006.05.002., 2012CANDEIRO CRA, CURRIE PJ & BERGQVIST LP. 2012. Theropod teeth from the Marília Formation (late Maastrichtian) at the paleontological site of Peirópolis in Minas Gerais State, Brazil. Rev Bras Geoci 42: 323-330. https://doi.org/10.5327/Z0375-75362012000200008., Azevedo et al. 2013AZEVEDO RPF, SIMBRAS FM, FURTADO MR, CANDEIRO CRA & BERGQVIST LP. 2013. First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the Campanian-Maastrichtian Presidente Prudente Formation, São Paulo State, southeastern Brazil. Cretac Res 40: 131-142. https://doi.org/10.1016/j.cretres.2012.06.004.). The isolated teeth material was reanalyzed, as well as the unique osteological record (a partial maxilla with a tooth in situ; Azevedo et al. 2013AZEVEDO RPF, SIMBRAS FM, FURTADO MR, CANDEIRO CRA & BERGQVIST LP. 2013. First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the Campanian-Maastrichtian Presidente Prudente Formation, São Paulo State, southeastern Brazil. Cretac Res 40: 131-142. https://doi.org/10.1016/j.cretres.2012.06.004.) and all were reassigned to Abelisauridae (e.g., Delcourt et al. 2020DELCOURT R, BRILHANTE NS, GRILLO ON, GHILARDI AM, AUGUSTA BG & RICARDI-BRANCO F. 2020. Carcharodontosauridae theropod tooth crowns from the Upper Cretaceous (Bauru Basin) of Brazil: A reassessment of isolated elements and its implications to palaeobiogeography of the group. Palaeogeogr Palaeoclimatol Palaeoecol 556: 109870. https://doi.org/10.1016/j.palaeo.2020.109870.). Therefore, the current data and analyses in the literature support that carcharodontosaurids were rare at the end of the Early Cretaceous and became extinct up to the Turonian (Apesteguía 2002APESTEGUÍA S. 2002. Successional structure in continental tetrapod faunas from Argentina along the Cretaceous. In: Boletim Do II Simpósio Del Cretácio de América Del Sur. São Pedro, Brazil, p. 135-141., Coria & Salgado 2005CORIA RA & SALGADO L. 2005. Mid-Cretaceous turnover of saurischian dinosaur communities: evidence from the Neuquen Basin. Geological Society, London, Special Publications 252: 317-327. https://doi.org/10.1144/GSL.SP.2005.252.01.16., Novas et al. 2005NOVAS FE, VALAIS S, VICKERS-RICH P & RICH T. 2005. A large Cretaceous theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids. Naturwissenschaften 92: 226-230. https://doi.org/10.1007/s00114-005-0623-3., 2013).

Carcharodontosaurians are generally recognized because of global Cretaceous-age radiation of those distinctive allosauroid theropods (Sereno et al. 1996SERENO PC, DUTHEIL DB, LAROCHENE M, LARSSON HCE, LYON GH, MAGWENE PM, SIDOR CA, VARRICCHIO DJ & WILSON JA. 1996. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272: 986-991. https://doi.org/10.1126/science.272.5264.986.), being most present in southern landmasses (Coria & Salgado 1995CORIA RA & SALGADO L. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377: 224-226., Sereno et al. 1996SERENO PC, DUTHEIL DB, LAROCHENE M, LARSSON HCE, LYON GH, MAGWENE PM, SIDOR CA, VARRICCHIO DJ & WILSON JA. 1996. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272: 986-991. https://doi.org/10.1126/science.272.5264.986., Calvo & Coria 1998CALVO JO & CORIA R. 1998. New specimen of Giganotosaurus carolini Coria & Salgado, 1995, supports it as the largest theropod ever found. Gaia 15: 117-122.). Although most of the fossil record of carcharodontosaurians are mainly associated with southern landmasses, there were some exceptions. The Laurasian records consist of fragmentary materials from Upper Jurassic strata of China (Brusatte et al. 2009BRUSATTE SL, BENSON RBJ, CHURE D, XU X, SULLIVAN C & HONE D. 2009. The first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the delayed ascent of tyrannosaurids. Naturwissenschaften 96(9): 1051-1058. doi:10.1007/s00114-009-0565-2.), Portugal (Malafaia et al. 2019MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172., 2020), Lower Cretaceous of England (Brusatte et al. 2008BRUSATTE SL, BENSON RBJ & HUTT S. 2008. The osteology of Neovenator salerii (Dinosauria: Theropoda) from the Wealden Group (Barremian) of the Isle of Wight. Monogr Palaeontogr Soc: 1-75.) and Spain (Ortega et al. 2010ORTEGA F, ESCASO F & SANZ JL. 2010. A bizarre, humped Carcharodontosauria (Theropoda) from the lower cretaceous of Spain. Nature 467: 203-206. https://doi.org/10.1038/nature09181., Cuesta et al. 2018CUESTA E, ORTEGA F & SANZ JL. 2018. Appendicular osteology of Concavenator corcovatus (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Spain. J Vertebr Paleontol 38 (4): e148515. https://doi.org/10.1080/02724634.2018.1485153.
https://doi.org/10.1080/02724634.2018.14...
). The analysis of a tooth from Romania also indicates the presence of carcharodontosaurids in the Valanginian of Laurasia, but such assignment is still dubious due to the fragmentary nature of the fossil material (Csiki-sava et al. 2016CSIKI-SAVA Z, BRUSATTE SL & VASILE S. 2016. “Megalosaurus cf. superbus” from southeastern Romania: The oldest known Cretaceous carcharodontosaurid (Dinosauria: Theropoda) and its implications for earliest Cretaceous Europe-Gondwana connections. Cretac Res 60: 221-238. https://doi.org/10.1016/j.cretres.2015.12.004.). The report of MCT 2670-LE is one of the oldest for Carcharodontosauria in Gondwana, after Veterupristisaurus, from the Kimmeridgian (Jurassic) of Tendaguru (Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239.).

From the Jurassic to the Lower Cretaceous, the sole occurrence is the allosauroid Acrocanthosaurus which could be a putative carcharodontosaurian from North America (Harris 1998HARRIS JD. 1998. A reanalysis of Acrocanthosaurus atokensis, its phylogenetic status, and paleobiogeographic implications, based on a new specimen from Texas. Bull New Mex Museum Nat Hist Sci 13: 1-75., Currie & Carpenter 2000CURRIE PJ & CARPENTER K. 2000. A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the lower Cretaceous Antlers formation (Lower Cretaceous, Aptian) of Oklahoma, USA. Geodiversitas 22: 207-246.). Among the Gondwanan carcharodontosaurian record, is remarkable the diversification of the clade especially from South America (Patagonia, Argentina; Novas et al. 2013NOVAS FE, AGNOLÍN FL, EZCURRA MD, PORFIRI J & CANALE JI. 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretac Res 45: 174-215. https://doi.org/10.1016/j.cretres.2013.04.001.). This diversification probably occurred just before the Albian-Cenomanian interval, since it is markedly by the origin of carcharadontosaurines (Brusatte et al. 2009BRUSATTE SL, BENSON RBJ, CHURE D, XU X, SULLIVAN C & HONE D. 2009. The first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the delayed ascent of tyrannosaurids. Naturwissenschaften 96(9): 1051-1058. doi:10.1007/s00114-009-0565-2., Brusatte & Sereno 2008BRUSATTE SL & SERENO PC. 2008. Phylogeny of Allosauroidea (Dinosauria: Theropoda): Comparative analysis and resolution. J Syst Palaeontol 6: 155-182. https://doi.org/10.1017/S1477201907002404., Canale et al. 2015CANALE JI, NOVAS FE & POL D. 2015. Osteology and phylogenetic relationships of Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Hist Biol 27: 1-32. https://doi.org/10.1080/08912963.2013.861830., Carrano et al. 2012CARRANO MT, BENSON RBJ & SAMPSON SD. 2012. The phylogeny of Tetanurae. J Syst Paleontol 10: 211-300.) and the subsequent occurrence of the Giganotosaurini (the last is endemic to South America; Canale et al. 2015CANALE JI, NOVAS FE & POL D. 2015. Osteology and phylogenetic relationships of Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Hist Biol 27: 1-32. https://doi.org/10.1080/08912963.2013.861830.).The oldest record of a carcharodontosaurian to South America is from the upper Valanginian (Lower Cretaceous) of Patagonia, with the species Lajasvenator ascheriae (Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319.).

The MCT 2670-LE resembles the caudal vertebrae found among basal carcharodontosaurians species and is the first record of the group in Brazil (Figure 7) before the vicariant event. Such record suggests the presence of these animals in South America since the Jurassic, which corroborates the wide distribution of the group through Gondwana before the Early Cretaceous.

Figure 7
Paleoartistic reconstruction of the specimen MCT 2670-LE in the environment of the Sergi Formation. The first plan shows a medium-sized carcharodontosaurian walking in a dry area, close to a Lepidotes carcass. The background shows aeolian and shallow lacustrine/fluvial depositional systems, with the occurrence of gymnosperm forests, based on Pierini et al. (2010)PIERINI C, MIZUSAKI AM, PIMENTEL FACCINI UF & SCHERER CMS. 2010. Paleoweathering features in the Sergi Formation (Jurassic-Cretaceous), northeastern Brazil, and implications for hydrocarbon exploration. J South Am Earth Sci 29: 412-426. https://doi.org/10.1016/j.jsames.2009.04.002.. Reconstruction scheme by Arthur S. Brum.

Comments on diversification and decline of Carcharodontosauria

The length of the caudal centrum MCT 2670-LE is 44 mm. Comparing with other carcharodontosaurians, Neovenator exhibits middle-posterior caudal around 103-106 mm, with body length estimates of 8 m, while in Acrocantosaurus, 160 mm and 11.5 m, and Veterupristisaurus, 123 mm and 8.5-10 m of body length (Figure 5; Currie & Carpenter 2000CURRIE PJ & CARPENTER K. 2000. A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the lower Cretaceous Antlers formation (Lower Cretaceous, Aptian) of Oklahoma, USA. Geodiversitas 22: 207-246., Brusatte et al. 2008BRUSATTE SL, BENSON RBJ & HUTT S. 2008. The osteology of Neovenator salerii (Dinosauria: Theropoda) from the Wealden Group (Barremian) of the Isle of Wight. Monogr Palaeontogr Soc: 1-75., Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239.). Based on these measurements, we estimate that MCT 2670-LE could represent a 3-4 m body length individual (Figure 7). Although it shows a smaller size in comparison to the pattern observed in Carcharodontosauria (5-12 m in body length), the unfused neurocentral synchondrosis indicates that the individual could be at least a juvenile (for discussion about neurocentral synchondrosis as maturity criteria see Souza 2018SOUZA RG. 2018. Comments on the Serial Homology and Homologues of Vertebral Lateral Projections in Crocodylia (Eusuchia). Anat. Rec 301(7): 1203-1215.) or subadult carcharodontosaurian. Therefore, MCT 2670-LE could grow more than 4 m (Figure 7). The recovery of MCT 2670-LE in the Upper Jurassic of South America indicates that carcharodontosaurians were already widely distributed at this time (e.g., Concavenator, Lajasvenator and Lusovenator). The specimen MCT 2670-LE also supports the medium-sized pattern found among basal carcharodontosaurians. Such medium size in the Jurassic corroborates the pattern of increase in the body length, with the largest derived forms recovered from mid-Cretaceous outcrops (e.g., Currie & Carpenter 2000CURRIE PJ & CARPENTER K. 2000. A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the lower Cretaceous Antlers formation (Lower Cretaceous, Aptian) of Oklahoma, USA. Geodiversitas 22: 207-246., Canale et al. 2015CANALE JI, NOVAS FE & POL D. 2015. Osteology and phylogenetic relationships of Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Hist Biol 27: 1-32. https://doi.org/10.1080/08912963.2013.861830., Coria et al. 2020CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319.). Although the occurrence of an indeterminate carcharodontosaurian from the Tithonian of Portugal suggests a medium to a large-sized individual (Malafaia et al. 2019MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172., 2020), which could weaken such hypothesis, the phylogenies still mark the trend in the increase in body length among derived forms (e.g., Carrano et al. 2012CARRANO MT, BENSON RBJ & SAMPSON SD. 2012. The phylogeny of Tetanurae. J Syst Paleontol 10: 211-300., Novas et al. 2013NOVAS FE, AGNOLÍN FL, EZCURRA MD, PORFIRI J & CANALE JI. 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretac Res 45: 174-215. https://doi.org/10.1016/j.cretres.2013.04.001., Canale et al. 2015CANALE JI, NOVAS FE & POL D. 2015. Osteology and phylogenetic relationships of Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Hist Biol 27: 1-32. https://doi.org/10.1080/08912963.2013.861830., Malafaia et al. 2020MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
). The fossil record of Carcharodontosauria is fragmentary and sparse, reaching its diversity with large forms along the Early-middle Cretaceous (e.g., Coria & Currie 2006CORIA RA & CURRIE PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118., Novas et al. 2013NOVAS FE, AGNOLÍN FL, EZCURRA MD, PORFIRI J & CANALE JI. 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretac Res 45: 174-215. https://doi.org/10.1016/j.cretres.2013.04.001., Canale et al. 2015CANALE JI, NOVAS FE & POL D. 2015. Osteology and phylogenetic relationships of Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Hist Biol 27: 1-32. https://doi.org/10.1080/08912963.2013.861830.), which is encompassed by the rarefaction of the group in post-Turonian. At the same time, the Abelisauridae diversified and increased in body size after the Cenomanian with the group Brachyrostra (Grillo & Delcourt 2018).

Along the Early Cretaceous, the Aptian-Turonian interval is marked by some horizons exhibiting the co-occurrence of a diverse medium-large sized theropod fauna, with abelisauroids, spinosaurids and carcharadontosaurians, such as in North Africa (Novas et al. 2005NOVAS FE, VALAIS S, VICKERS-RICH P & RICH T. 2005. A large Cretaceous theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids. Naturwissenschaften 92: 226-230. https://doi.org/10.1007/s00114-005-0623-3., 2013, Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239.), and ceratosaurians, allosauroids and megalosauroids in North America and Iberian Peninsula (Mateus 2006MATEUS O. 2006. Late Jurassic dinosaurs from the Morrison Formation (USA), the Lourinhã and Alcobaça Formations (Portugal), and the Tendaguru beds (Tanzania): a comparison. New Mex Museum Nat Hist Sci Bull 36: 223-231., Mateus et al. 2006MATEUS O, WALEN A & ANTUNES MT. 2006. The large theropod fauna of the Lourinha Formation (Portugal) and its similarity to the Morrison Formation, with a description of a new species of Allosaurus. New Mex Museum Nat Hist Sci Bull 36: 123-129., Malafaia et al. 2020MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
). The inferred semi-aquatic habits of spinosaurids (e.g., Ibrahim et al. 2020IBRAHIM N, MAGANUCO S, DAL SASSO C, FABBRI M, AUDITORE M, BINDELLINI G & WIEMANN J. 2020. Tail-propelled aquatic locomotion in a theropod dinosaur. Nature 581(7806) 67-70. https://doi.org/10.1038/s41586-020-2190-3.) exclude this group from a niche overlap or competition with other medium-large sized predatory theropods in such environments. Regarding the ecological relationship between abelisaurids and carcharodontosaurids in such habitats, Gillo & Delcourt (2017) pointed out a competition between abelisaurids and carcharodontosaurians, which could be observed by similar cranial biomechanical advantages (Sakamoto 2010SAKAMOTO M. 2010. Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proc R Soc B Biol Sci 277: 3327-3333. https://doi.org/10.1098/rspb.2010.0794.) and the teeth morphology (Canale et al. 2009CANALE JI, SCANFERLA CA, AGNOLIN FL & NOVAS FE. 2009. New carnivorous dinosaur from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid theropods. Naturwissenschaften 96: 409-414. https://doi.org/10.1007/s00114-008-0487-4.), with the post-Turonian replacement of the huge derived carcharodontosaurids by abelisaurids. Recently, Candeiro et al. (2018)CANDEIRO CRA, BRUSATTE SL, VIDAL L & PEREIRA PVLGC. 2018. Paleobiogeographic evolution and distribution of Carcharodontosauridae (Dinosauria, Theropoda) during the middle Cretaceous of North Africa. Pap Avulsos Zool 58: 0-4. https://doi.org/10.11606/1807-0205/2018.58.29. discussed niche partitioning and competition attributed to the cohabitation of spinosaurids, abelisaurids and carcharodontosaurians in the Early-middle Cretaceous. They supported the niche partitioning, based on the theropod fauna observed in North Africa (see Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239.). Such co-existing between different taxa of medium-large body sizes is also well-known in the Morrison Formation and outcrops from the Iberian Peninsula (Mateus 2006MATEUS O. 2006. Late Jurassic dinosaurs from the Morrison Formation (USA), the Lourinhã and Alcobaça Formations (Portugal), and the Tendaguru beds (Tanzania): a comparison. New Mex Museum Nat Hist Sci Bull 36: 223-231., Mateus et al. 2006MATEUS O, WALEN A & ANTUNES MT. 2006. The large theropod fauna of the Lourinha Formation (Portugal) and its similarity to the Morrison Formation, with a description of a new species of Allosaurus. New Mex Museum Nat Hist Sci Bull 36: 123-129., Malafaia et al. 2020MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
). In the case of the Morrison Formation, the fossil record and the distinct body sizes between theropods reveals a niche partitioning, mainly based on factors that include the influence of facultative scavenging, the potential foraging area and energy demand by the body mass among different theropod size classes (Kane et al. 2016KANE A, HEALY K, RUXTON GD & JACKSON AL. 2016. Body size as a driver of scavenging in theropod dinosaurs. Am Nat 187: 706-716. https://doi.org/10.1086/686094.).

As many dinosaur taxa, basal theropods also show some pattern in the development of body size dimensions that encompass the Cope’s rule (Hone et al. 2005HONE DWE, KEESEY TM, PISANI D & PURVIS A. 2005. Macroevolutionary trends in the Dinosauria: Cope’s rule. J Evol Biol 18: 587-595. https://doi.org/10.1111/j.1420-9101.2004.00870.x.), in which the diversification of a group is also followed by the increase of body mass and niche specificity. Among basal theropod lineages, we observed such a trend in both abelisauroids and allosauroids, but in distinct times of diversification. The earlier diversification and decline process of the lineage is evidenced by the change from the occurrence of medium-sized Jurassic forms, with a wide distribution, to large carcharodontosaurians through the Early Cretaceous and the endemicity in this period, as observed in Giganotosaurini (Canale et al. 2015CANALE JI, NOVAS FE & POL D. 2015. Osteology and phylogenetic relationships of Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Hist Biol 27: 1-32. https://doi.org/10.1080/08912963.2013.861830.). Regarding abelisauroids, especially abelisaurids, they show an advantage in cursorial potential (Person IV & Currie 2011) over carcharodontosaurians, as indicated by Grillo & Delcourt (2018). The rarefaction of the derived large carcharodontosaurids in the Turonian would enable the abelisaurids diversification, with the increase of their body sizes and occupation of a niche once occupied by carcharodontosaurids. Such occupation may reflect convergent features, as the cranial biomechanics and teeth (Sakamoto 2010SAKAMOTO M. 2010. Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proc R Soc B Biol Sci 277: 3327-3333. https://doi.org/10.1098/rspb.2010.0794., Canale et al. 2009CANALE JI, SCANFERLA CA, AGNOLIN FL & NOVAS FE. 2009. New carnivorous dinosaur from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid theropods. Naturwissenschaften 96: 409-414. https://doi.org/10.1007/s00114-008-0487-4., Delcourt et al. 2020DELCOURT R, BRILHANTE NS, GRILLO ON, GHILARDI AM, AUGUSTA BG & RICARDI-BRANCO F. 2020. Carcharodontosauridae theropod tooth crowns from the Upper Cretaceous (Bauru Basin) of Brazil: A reassessment of isolated elements and its implications to palaeobiogeography of the group. Palaeogeogr Palaeoclimatol Palaeoecol 556: 109870. https://doi.org/10.1016/j.palaeo.2020.109870.). However, both competition and niche partitioning scenarios should be better delimited with more fossil material of these groups, especially during the Jurassic-Early Cretaceous (Figure 8), which is marked by a gap in both carcharodontosaurian and abelisauroid lineages. Therefore, we provided an alternative scenario, and we could not discard the competition hypothesis.

Figure 8
Hypothetical cladogram of abelisauroids and allosauroids (with the assignment of MCT 2670-LE), showing estimated body lengths and distribution from Middle Jurassic to Upper Cretaceous. Body lengths to abelisauroids based on Grillo & Delcourt (2018). Cladogram based on the phylogenies of Langer et al. (2019)LANGER MC ET AL. 2019. A new desert-dwelling dinosaur (Theropoda, Noasaurinae) from the Cretaceous of south Brazil. Sci Rep 9: 9379. https://doi.org/10.1038/s41598-019-45306-9. to Noasauridae, Filippi et al. (2016)FILIPPI LS, MÉNDEZ AH, VALIERI RDJ & GARRIDO AC. 2016. A new brachyrostran with hypertrophied axial structures reveals an unexpected radiation of the latest Cretaceous abelisaurids. Cretac Res 61: 209-219. https://doi.org/10.1016/j.cretres.2015.12.018. to Abelisauridae, Malafaia et al. (2020)MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
to basal Allosauroidea, Canale et al. (2015)CANALE JI, NOVAS FE & POL D. 2015. Osteology and phylogenetic relationships of Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Hist Biol 27: 1-32. https://doi.org/10.1080/08912963.2013.861830. and our phylogenetic results to Carcharodontosauridae. Silhouettes from PhyloPic, by Ian Reid and Scott Hartman.

Comments on the phylogenetic relationships of MCT 2670-LE

An interesting result of our phylogenetic inference is the recovery of a small clade at the base of the Carcharodontosauria, comprehending the earliest records of the group – the Late Jurassic OTUs Lusovenator, Veterupristisaurus, and MCT 2670-LE. This clade further includes the Early Cretaceous Siamraptor and the Albian-Cenomanian UFRJ DG 524-R. All these five taxa share a single synapomorphy: character 359(1): mid and posterior caudals, centrum, mid-width: half or less of articular facets width. This small clade was recovered in a polytomy involving Siats as well as (Neovenatoridae + Carcharodontosauridae) and is thus comprised within the Carcharodontosauria, since it is defined as a branch-based clade containing Carcharodontosaurus and Neovenator but not Allosaurus or Sinraptor (Benson et al. 2010BENSON RBJ, CARRANO MT & BRUSATTE SL. 2010. A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic. Naturwissenschaften 97: 71-78).

The carcharodontosaurian nature of each of these OTUs is well supported (e.g., see Rauhut 2011RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239., Chokchaloemwong et al. 2019CHOKCHALOEMWONG D, HATTORI S, CUESTA E, JINTASAKUL P, SHIBATA M & AZUMA Y. 2019. A new carcharodontosaurian theropod (Dinosauria: Saurischia) from the Lower Cretaceous of Thailand. PLoS ONE 14 (10): e0222489., Malafaia et al. 2020MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
). In fact, we replicate the results of Malafaia et al. (2020)MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106.
https://doi.org/10.1080/02724634.2020.17...
regarding the phylogenetic position of Lusovenator as a carcharodontosaurian; we simply add to its branch the OTUs Veterupristisaurus, Siamraptor, MCT 2670-LE and UFRJ DG 524-R based on the synapomorphy mentioned above, character 359(1). The position of Lusovenator itself is supported by three carcharodontosaurian synapomorphies (characters 160(2), 273(2) and 294(1); see the Supplementary Material). However, the monophyly of this possible new clade is still questionable and must be viewed with caution, since it is based on a single synapomorphy and very fragmentary specimens. Future discoveries are needed to shed light on this possible clade.

The new character proposed on this study, 360(2): mid and posterior caudals, centrum, ventral surface with a thin and deep sulcus, is recovered as a synapomorphy of the Allosauroidea, corroborating the allosauroid nature of MCT 2670-LE. This character state is reversed in Shaochilong + Carcharodontosaurinae (see Coria & Currie 2006CORIA RA & CURRIE PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118. for Mapusaurus, and Benson et al. 2010BENSON RBJ, CARRANO MT & BRUSATTE SL. 2010. A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic. Naturwissenschaften 97: 71-78 for Shaochilong). The presence of this feature indicates that MCT 2670-LE could be a basal carcharodontosaurian, or at least an allosauroid taxon closely related to the Carcharodontosauria clade.

Therefore, despite the fragmentary status of the newly described specimen, our phylogenetic results demonstrate the presence of a combined set of features that undoubtedly resolves MCT 2670-LE as a carcharodontosaurian. Therefore, our results are in agreement with previous work that demonstrates that, despite fragmentary, some fossil specimens have enough combination of features that enable a precise recognition of their evolutionary affinities (e.g., Kearney 2002KEARNEY M. 2002. Fragmentary taxa, missing data, and ambiguity: Mistaken assumptions and conclusions. Syst Biol 51: 369-381. https://doi.org/10.1080/10635150252899824., Wiens 2003aWIENS JJ. 2003a. Incomplete taxa, incomplete characters, and phylogenetic accuracy: Is there a missing data problem? J Vertebr Paleontol 23: 297-310. https://doi.org/10.1671/0272-4634(2003)023[0297:ITICAP]2.0.CO;2., bWIENS JJ. 2003b. Missing Data, Incomplete Taxa, and Phylogenetic Accuracy. Syst Biol 52(4): 528-538. https://doi.org/10.1080/10635150390218330., Kearney & Clark 2003KEARNEY M & CLARK JM. 2003. Problems due to missing data in phylogenetic analyses including fossils: a critical review. J Vertebr Paleontol 23(2): 263-274. https://doi.org/10.1671/0272-4634(2003)023[0263:PDTMDI]2.0.CO;2.).

CONCLUSIONS

The Sergi Formation has a yet unexplored potential for understanding the relationships of Mesozoic fossil vertebrates. The faunistic content discussed here provides a significant contribution to South American paleontology, especially the knowledge of the Upper Jurassic in Brazil. MCT 2670-LE is the first confirmed dinosaur record for the Jurassic of Brazil and it is assigned to the Allosauroidea, with affinities to the Carcharodontosauria, due to the hour-glass shaped centrum and the ventral surface showing a narrow longitudinal groove, bounded by ventral keels. Within Carcharodontosauria, the specimen is quite similar to Lusovenator santosi, Lajasvenator ascheriae and Veterupristisaurus milneri. Based on this, the material could represent one of the oldest carcharodontosaurian remains known. Further studies are needed to promote the stratigraphic and temporal refinement of the formation, which in the future may bring more data on a putative Gondwanan origin of the carcharodontosaurians.

ACKNOWLEDGMENTS

We are grateful to Dr. Rodrigo Machado and Dr. Rafael Costa for allowing us to study the specimen deposited at the Museu de Ciências da Terra (MCT-DNPM-CPRM). We are grateful to Profa. Dra. Lilian P. Bergqvist for allowing us to use of equipment in the preparation laboratory. Also, we make a posthumous thanks to Prof. Dr. Ignacio Machado Brito, for all his contributions to vertebrate paleontology in Brazil, in which without his effort, the present work would not exist. The authors would like to acknowledge Dr. Federico Agnolin and the two anonymous reviewers for their comments that helped to improve this article. We thank Victoria Barros for the English revision. Credits for silhouettes from PhyloPic (Figure 8): Ian Reid and Scott Hartman (https://creativecommons.org/licenses/by/3.0/). This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP #2019/10231-6 to RVP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES-PROANTAR #88887.336584/2019-00 to ASB), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ #PDR10E-26/201.995/2020 to PVLGCP). LGS thanks to the financial support granted by Paleo and Geohistory exhibition at Museu da Amazônia (PRONAC 183808) and the postdoctoral scholarship granted by Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM #062.00166/2020).

REFERENCES

  • ADEGAS F, SCHERER CMS & BORN C. 2012. Arcabouço estratigráfico da Formação Sergi (Jurássico Superior) na Bacia de Almada, Bahia. Rev Bras Geocie volume 42(Suppl 1): 1-18.
  • ALMEIDA FFM. 1967. Origem e evolução da plataforma brasileira. In: Boletim do Departamento Nacional da Produção Mineral/Divisão de Geologia e Mineralogia, Rio de Janeiro, 241, p. 1-39.
  • ALMEIDA FD, HASUI Y, BRITO NEVES BD & FUCK RA. 1977. Províncias estruturais brasileiras. Simpósio de Geologia do Nordeste 8(1977): 363-391
  • APESTEGUÍA S. 2002. Successional structure in continental tetrapod faunas from Argentina along the Cretaceous. In: Boletim Do II Simpósio Del Cretácio de América Del Sur. São Pedro, Brazil, p. 135-141.
  • ASSINE ML. 1992. Análise Estratigráfica da Bacia do Araripe, Nordeste do Brasil. Rev Bras Geoci 22(3): 289-300.
  • ASSINE ML. 2007. A Bacia do Araripe. Boletim de Geociências PETROBRAS, Rio de Janeiro 15(2): 371-389.
  • AZAMBUJA FILHO NC. 1998. Guidebook to the Rift-Drift Sergipe-Alagoas Basin. Prepared during the 1998 AAPG International Conference & Exhibition. doi: 10.13140/RG.2.2.17330.22729.
  • AZEVEDO RPF, SIMBRAS FM, FURTADO MR, CANDEIRO CRA & BERGQVIST LP. 2013. First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the Campanian-Maastrichtian Presidente Prudente Formation, São Paulo State, southeastern Brazil. Cretac Res 40: 131-142. https://doi.org/10.1016/j.cretres.2012.06.004.
  • BACIA DE CAMAMU-ALMADA: Sumário Geológico e Setores em Oferta. 2015. Décima Terceira rodada de licitações, Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Superintendência de Definição de Blocos - SDB. Retrieved from: http://rodadas.anp.gov.br/arquivos/Round_13/areas_oferecidas_r13/Sumarios_Geologicos/Sumario_Geologico_Bacia_Camamu-Almada_R13.pdf
    » http://rodadas.anp.gov.br/arquivos/Round_13/areas_oferecidas_r13/Sumarios_Geologicos/Sumario_Geologico_Bacia_Camamu-Almada_R13.pdf
  • BAHIA RBC. 2007. Evolução Tectonossedimentar da Bacia dos Parecis - Amazônia. Phd Thesis of Universidade Federal de Ouro Preto, Minas Gerais, 150 p.
  • BANDEIRA KLN, BRUM AS, PÊGAS RV, CIDADE GM, HOLGADO B, CIDADE A & SOUZA RG. 2018. The Baurusuchidae vs Theropoda record in the Bauru Group (Upper Cretaceous, Brazil): a taphonomic perspective. J Iber Geol 44: 25-54. https://doi.org/10.1007/s41513-018-0048-4.
  • BANDEIRA KLN, MACHADO EB, CAMPOS DA & KELLNER AWA. 2019. New titanosaur (Sauropoda, Dinosauria) records from the Morro do Cambambe unit (upper cretaceous), Mato Grosso state, Brazil. Cret Res 103: 04155. https://doi.org/10.1016/j.cretres.2019.06.001.
  • BENSON RBJ. 2010. A description of Megalosaurus bucklandii (Dinosauria: Theropoda) from the Bathonian of the UK and the relationships of Middle Jurassic theropods. Zoological Zoo J Linn Soc 158: 882-935. https://doi.org/10.1111/j.1096-3642.2009.00569.x.
  • BENSON RBJ, CARRANO MT & BRUSATTE SL. 2010. A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic. Naturwissenschaften 97: 71-78
  • BELLIENI G ET AL. 1992. Evidence of magmatic activity related to Middle Jurassic and Lower Cretaceous rifting from northeastern Brazil (Cearfi-Mirim): K/Ar age, palaeomagnetism, petrology and Sr-Nd isotope characteristics. Chem Geol 97: 9-32.
  • BITTENCOURT JS & LANGER MC. 2011. Mesozoic dinosaurs from Brazil and their biogeographic implications. An Acad Bras Cienc 83: 23-60.
  • BONGIOLO DE & SCHERER CMS. 2010. Facies architecture and heterogeneity of the fluvial and aeolian reservoirs of the Sergi formation (Upper Jurassic), Recôncavo Basin, NE Brazil. Marine Petrol Geol 27: 1885-1897.
  • BORBA C, PAIM PSG & GARCIA AJV. 2011. Estratigrafia dos depósitos iniciais do rifte no Campo de Furado, região de São Miguel dos Campos, Bacia de Sergipe-Alagoas. Rev Bras Geoci 41(1): 18.
  • BRASIL. 1975. Projeto RADAMBRASIL: Levantamento dos Recursos Naturais. Folha NA 20 Boa Vista e parte das Folhas NA 21 Tumucumaque, NB 20 Roraima e NB 2, vol.8. IBGE: 428 p.
  • BRAUN OPG. 1966. Estratigrafia dos sedimentos da parte interior da região nordeste do Brasil (Bacias de Tucano-Jatobá, Mirandiba e Araripe). Bol Departamento Nacional da Produção Mineral/Divisão de Geologia e Mineralogia, Rio de Janeiro, 236: 1-76.
  • BRITT BB. 1991. Theropods of Dry Mesa Quarry (Morrison Formation, Late Jurassic), Colorado, with emphasis on the osteology of Torvosaurus tanneri. Brigham Young Univ Geol Stud 37: 1-72.
  • BRITO IM. 1987. As Unidades Litoestratigráficas da passagem Jurássico-Cretáceo no Nordeste do Brasil. Rev Bras Geoci 17(2): 81-85.
  • BRITO PM, BERTINI RJ, MARTILL DM & SALLES LO. 1994. Vertebrate fauna from the Missão Velha Formation (Lower Cretaceous, N.E. Brazil): 139-140. Boletim do 3° sobre o Cretáceo do Brasil, Campus de Rio Claro/SP, UNESP.
  • BROWN DS. 1981. The English Upper Jurassic Plesiosauroidea (Reptilia) and a review of the phylogeny and classification of the Plesiosauroidea. Bull Br Museum Nat Hist Geol 35: 253-347.
  • BRUSATTE SL, BENSON RBJ & HUTT S. 2008. The osteology of Neovenator salerii (Dinosauria: Theropoda) from the Wealden Group (Barremian) of the Isle of Wight. Monogr Palaeontogr Soc: 1-75.
  • BRUSATTE SL, BENSON RBJ, CHURE D, XU X, SULLIVAN C & HONE D. 2009. The first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the delayed ascent of tyrannosaurids. Naturwissenschaften 96(9): 1051-1058. doi:10.1007/s00114-009-0565-2.
  • BRUSATTE SL, CANDEIRO CRA & SIMBRAS FM. 2017. The last dinosaurs of Brazil: The Bauru Group and its implication for the end-Cretaceous mass extinction. An Acad Bras Cienc 89: 1465-1485. https://doi.org/10.1590/0001-3765201720160918.
  • BRUSATTE SL & SERENO PC. 2008. Phylogeny of Allosauroidea (Dinosauria: Theropoda): Comparative analysis and resolution. J Syst Palaeontol 6: 155-182. https://doi.org/10.1017/S1477201907002404.
  • CALVO JO & CORIA R. 1998. New specimen of Giganotosaurus carolini Coria & Salgado, 1995, supports it as the largest theropod ever found. Gaia 15: 117-122.
  • CANALE JI, NOVAS FE & POL D. 2015. Osteology and phylogenetic relationships of Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Hist Biol 27: 1-32. https://doi.org/10.1080/08912963.2013.861830.
  • CANALE JI, SCANFERLA CA, AGNOLIN FL & NOVAS FE. 2009. New carnivorous dinosaur from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid theropods. Naturwissenschaften 96: 409-414. https://doi.org/10.1007/s00114-008-0487-4.
  • CANDEIRO CRA, ABRANTES CT, ABRANTES EA, AVILLA LS, MARTINS VC, MOREIRA AL, TORRES SR & BERGQVIST LP. 2004. Dinosaurs remains from western São Paulo state, Brazil (Bauru Basin, Adamantina Formation, Upper Cretaceous). J South Am Earth Sci 18: 1-10. https://doi.org/10.1016/j.jsames.2004.08.004.
  • CANDEIRO CRA, MARTINELLI AG, AVILLA LS & RICH TH. 2006. Tetrapods from the Upper Cretaceous (Turonian-Maastrichtian) Bauru Group of Brazil: a reappraisal. Cretac Res 27: 923-946. https://doi.org/10.1016/j.cretres.2006.05.002.
  • CANDEIRO CRA, CURRIE PJ & BERGQVIST LP. 2012. Theropod teeth from the Marília Formation (late Maastrichtian) at the paleontological site of Peirópolis in Minas Gerais State, Brazil. Rev Bras Geoci 42: 323-330. https://doi.org/10.5327/Z0375-75362012000200008.
  • CANDEIRO CRA, BRUSATTE SL, VIDAL L & PEREIRA PVLGC. 2018. Paleobiogeographic evolution and distribution of Carcharodontosauridae (Dinosauria, Theropoda) during the middle Cretaceous of North Africa. Pap Avulsos Zool 58: 0-4. https://doi.org/10.11606/1807-0205/2018.58.29.
  • CARRANO MT, BENSON RBJ & SAMPSON SD. 2012. The phylogeny of Tetanurae. J Syst Paleontol 10: 211-300.
  • CARVALHO IS. 1993. Os conchostráceos fósseis das bacias interiores do Nordeste do Brasil. Programa de Pós-Graduação em Geologia, Universidade Federal do Rio de Janeiro. Tese (Doutorado), Rio de Janeiro: 319pp.
  • CARVALHO ARA, OLIVEIRA GR & BARRETO AMF. 2021. New Crocodylomorpha remains from the Late Jurassic Aliança Formation (Dom João stage), Jatobá Basin. J South Am Earth Sci 109: 103256. https://doi.org/10.1016/j.jsames.2021.103256
  • CARVALHO IS, NOVAS FE, AGNOLÍN FL, ISASI MP, FREITAS FI & ANDRADE JA. 2015. A new genus and species of enantiornithine bird from the Early Cretaceous of Brazil. Braz J Geol 45(2): 161-171.
  • CARVALHO IS & FERNANDES ACS. 1993. Icnologia da Bacia de Mangabeira, Cretáceo do Ceará. Anais da Academia Brasileira de Ciências, 65(3): 253-264
  • CHARIG AJ & MILNER AC. 1986. Baryonyx, a remarkable new theropod dinosaur. Nature 324: 359-361. https://doi.org/10.1038/324359a0.
  • CHOKCHALOEMWONG D, HATTORI S, CUESTA E, JINTASAKUL P, SHIBATA M & AZUMA Y. 2019. A new carcharodontosaurian theropod (Dinosauria: Saurischia) from the Lower Cretaceous of Thailand. PLoS ONE 14 (10): e0222489.
  • CHURE DJ. 2000. A new species of Allosaurus from the Morrison Formation of Dinosaur National Monument (UT-CO) and a revision of the theropod family Allosauridae. Columbia University.
  • CORIA RA & CURRIE PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118.
  • CORIA RA & CURRIE PJ. 2016. A New Megaraptoran Dinosaur (Dinosauria, Theropoda, Megaraptoridae) from the Late Cretaceous of Patagonia. PLoS ONE 11(7): e0157973. https://doi.org/10.1371/journal.pone.0157973.
  • CORIA RA & SALGADO L. 2005. Mid-Cretaceous turnover of saurischian dinosaur communities: evidence from the Neuquen Basin. Geological Society, London, Special Publications 252: 317-327. https://doi.org/10.1144/GSL.SP.2005.252.01.16.
  • CORIA RA & SALGADO L. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377: 224-226.
  • CORIA RA, CURRIE PJ, ORTEGA F & BAIANO MA. 2020. An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina. Cretac Res 111: 104319. https://doi.org/10.1016/j.cretres.2019.104319.
  • COSTA IP, BUENO GV, MILHOMEM PS, SILVA HSLE & KOSIN MD. 2007. Sub-bacia de Tucano Norte e Bacia de Jatobá. Boletim de Geociências Petrobras 15(2): 445-453.
  • CSIKI-SAVA Z, BRUSATTE SL & VASILE S. 2016. “Megalosaurus cf. superbus” from southeastern Romania: The oldest known Cretaceous carcharodontosaurid (Dinosauria: Theropoda) and its implications for earliest Cretaceous Europe-Gondwana connections. Cretac Res 60: 221-238. https://doi.org/10.1016/j.cretres.2015.12.004.
  • CRAWFORD FD, SZELEWSKI CE & ALVEY GD. 1984. Geology and exploration in the Takutu Graben of Guyana. Oil & Gas J 82(10): 122-139.
  • CUESTA E, ORTEGA F & SANZ JL. 2018. Appendicular osteology of Concavenator corcovatus (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Spain. J Vertebr Paleontol 38 (4): e148515. https://doi.org/10.1080/02724634.2018.1485153
    » https://doi.org/10.1080/02724634.2018.1485153
  • CUESTA E, ORTEGA F & SANZ JL. 2019. Axial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain. Cretac Res 95: 106-120.
  • CURRIE PJ & CARPENTER K. 2000. A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the lower Cretaceous Antlers formation (Lower Cretaceous, Aptian) of Oklahoma, USA. Geodiversitas 22: 207-246.
  • DELCOURT R, BRILHANTE NS, GRILLO ON, GHILARDI AM, AUGUSTA BG & RICARDI-BRANCO F. 2020. Carcharodontosauridae theropod tooth crowns from the Upper Cretaceous (Bauru Basin) of Brazil: A reassessment of isolated elements and its implications to palaeobiogeography of the group. Palaeogeogr Palaeoclimatol Palaeoecol 556: 109870. https://doi.org/10.1016/j.palaeo.2020.109870.
  • DELCOURT R & GRILLO ON. 2018. Reassessment of a fragmentary maxilla attributed to Carcharodontosauridae from Presidente Prudente Formation, Brazil. Cretac Res 84: 515-524. https://doi.org/10.1016/j.cretres.2017.09.008.
  • DERBY OA. 1879. Contribuições para o estudo da geologia do Valle do rio São Francisco. Arq Mus Nac 4: 87-119.
  • EIRAS JF & KINOSHITA K. 2006. Bacias sedimentares brasileiras: Bacia do Tacutu. Phoenix 87: 1-6.
  • EZCURRA MD & MÉNDEZ AH. 2009. First report of a derived abelisaurid theropod from the Bajo de la Carpa Formation (Late Cretaceous), Patagonia, Argentina Bull Geosci 84: 547-554. https://doi.org/10.3140/bull.geosci.1106
    » https://doi.org/10.3140/bull.geosci.1106
  • FAMBRINI GL, TESSER JR S, NEUMANN VHML, SOUZA BYC & FILHO WFS. 2009. Fácies e Sistemas Deposicionais na área-tipo da Formação Missão Velha, Bacia do Araripe, Nordeste do Brasil. Estudos Geológicos 19(1): 161-190.
  • FERNANDES MA, FERNANDES LBR & SOUTO PRF. 2004. Occurence of Urolites related to Dinosaurs in the Lower Cretaceous of the Botucatu Formation, Paraná Basin, São Paulo State, Brazil. Revista Brasileira de Paleontologia: 7(2): 263-268.
  • FERREIRA TS, CAIXETA JM & LIMA FD. 2009. Controle do embasamento do rifteamento das bacias de Camamu e Almada. Boletim de Geociências da Petrobrás, Rio de Janeiro 17(1): 724: 69-88.
  • FILIPPI LS, MÉNDEZ AH, VALIERI RDJ & GARRIDO AC. 2016. A new brachyrostran with hypertrophied axial structures reveals an unexpected radiation of the latest Cretaceous abelisaurids. Cretac Res 61: 209-219. https://doi.org/10.1016/j.cretres.2015.12.018.
  • FRANCISCHINI H, SALES MAF, DENTZIEN-DIAS P & SCHULTZ CL. 2017. The Presence of Ankylosaur Tracks in the Guará Formation (Brazil) and Remarks on the Spatial and Temporal Distribution of Late Jurassic Dinosaurs. Ichnos. https://doi.org/10.1080/10420940.2017.1337573
    » https://doi.org/10.1080/10420940.2017.1337573
  • FRANCO LS. 2018. Interpretação paleoambiental de um afloramento da Formação Serraria da Sub-bacia de Alagoas e caracterização petrográfica do nível estratigráfico correlato. Scientific initiation monograph of Universidade Federal de Sergipe, Sergipe, Brazil: 74 p.
  • FREITAS FI, HESSEL MH & NETO JAN. 2008. Troncos fósseis da Formação Missão Velha na porção leste da Bacia do Araripe, Ceará. Rev Geol 21(2): 193-206.
  • FREITAS VA & SILVEIRA RL. 2017. Bacia de Sergipe-Alagoas - Terra: Sumário Geológico e Setores em Oferta. 2015. Décima Quarta rodada de licitações, Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Superintendência de Definição de Blocos - SDB. Retrieved from: http://rodadas.anp.gov.br/arquivos/Round14/Mapas/sumarios/Sumario_Geologico_R14_SEL_Terra.pdf
    » http://rodadas.anp.gov.br/arquivos/Round14/Mapas/sumarios/Sumario_Geologico_R14_SEL_Terra.pdf
  • GALLO V. 2005. Redescription of Lepidotes piauhyensis Roxo and Löfgren, 1936 (Neopterygii, Semionotiformes, Semionotidae) from the Late Jurassic-Early Cretaceous of Brazil. J Vertebr Paleontol 25: 757-769.
  • GALLO V & BRITTO PM. 2004. An overview of Brazilian semionotids. In: G. Arratia and A. Tintori (eds.), Mesozoic Fishes 3—Systematics, Paleoenvironments and Biodiversity. Verlag Dr. Friedrich Pfeil, München, p. 253-264.
  • GOLOBOFF PA & CATALANO SA. 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32: 221-238.
  • GRILLO ON & DELCOURT R. 2017. Allometry and body length of abelisauroid theropods: Pycnonemosaurus nevesi is the new king. Cretac Res 69: 71-89. https://doi.org/10.1016/j.cretres.2016.09.001.
  • GUZMÁN J, FAMBRINI G, OLIVEIRA E & USMA-CUERVO C. 2015. Estratigrafia da Bacia de Jatobá: estado da arte. Estudos Geológicos 25: 53-76.
  • GUZMÁN-GONZÁLEZ J, PIOVESAN EK, FAMBRINI GL & OLIVEIRA E. 2016. Non-marine ostracoda from the Aliança Formation in the north-central portion of the Jatobá Basin, northeastern Brazil. Rev Bras Paleontol 19: 15-24.
  • HAMMER Ø, HARPER DAT & RYAN PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4: 9.
  • HANSON M & MAKOVICKY PJ. 2014. A new specimen of Torvosaurus tanneri originally collected by Elmer Riggs, Historical Biology 26(6): 775-784. 10.1080/08912963.2013.853056.
  • HARRIS JD. 1998. A reanalysis of Acrocanthosaurus atokensis, its phylogenetic status, and paleobiogeographic implications, based on a new specimen from Texas. Bull New Mex Museum Nat Hist Sci 13: 1-75.
  • HESSEL MH. 2014. Bacias interiores do nordeste brasileiro e seus fósseis de invertebrados. In: Ghilardi RP & Scheffler SM (Eds), Paleontologia de Invertebrados, o legado brasileiro. Porto Alegre, Sociedade Brasileira de Paleontologia: 55-74.
  • HONE DWE, KEESEY TM, PISANI D & PURVIS A. 2005. Macroevolutionary trends in the Dinosauria: Cope’s rule. J Evol Biol 18: 587-595. https://doi.org/10.1111/j.1420-9101.2004.00870.x.
  • HUTT S, MARTILL DM & BARKER MJ. 1996. The first European allosaurid dinosaur (Lower Cretaceous, Wealden Group, England). Neues Jahrb Geol Palaontol Monatshefi: 635-644.
  • IBRAHIM N, MAGANUCO S, DAL SASSO C, FABBRI M, AUDITORE M, BINDELLINI G & WIEMANN J. 2020. Tail-propelled aquatic locomotion in a theropod dinosaur. Nature 581(7806) 67-70. https://doi.org/10.1038/s41586-020-2190-3.
  • KANE A, HEALY K, RUXTON GD & JACKSON AL. 2016. Body size as a driver of scavenging in theropod dinosaurs. Am Nat 187: 706-716. https://doi.org/10.1086/686094.
  • KEARNEY M. 2002. Fragmentary taxa, missing data, and ambiguity: Mistaken assumptions and conclusions. Syst Biol 51: 369-381. https://doi.org/10.1080/10635150252899824.
  • KEARNEY M & CLARK JM. 2003. Problems due to missing data in phylogenetic analyses including fossils: a critical review. J Vertebr Paleontol 23(2): 263-274. https://doi.org/10.1671/0272-4634(2003)023[0263:PDTMDI]2.0.CO;2.
  • KUCHLE J, SCHERER CMS, BORN CC, ALVARENGA RS & ADEGAS F. 2011. A contribution to regional stratigraphic correlations of the Afro-Brazilian depression e The Dom João Stage (Brotas Group and equivalent units e Late Jurassic) in Northeastern Brazilian sedimentary basins. J S Am Earth Sci 31: 358-371.
  • LANGER MC ET AL. 2019. A new desert-dwelling dinosaur (Theropoda, Noasaurinae) from the Cretaceous of south Brazil. Sci Rep 9: 9379. https://doi.org/10.1038/s41598-019-45306-9.
  • LEITE JF, PIRES STM & ROCHA EGAD. 2001. Estudo Hidrogeológico da Bacia do Jatobá/PE. Série Hidrogeologia. Estudos e Projetos (7): 55.
  • LEONARDI G, CARVALHO IS & FERNANDES MA. 2007. The desert ichnofauna from Botucatu Formation (Upper Jurassic - Lower Cretaceous), Brazil. In: Carvalho IS, Cassab RCT, Schwanke C, Carvalho MA, Fernandes ACS, Rodrigues MAC, Carvalho MSS, Arai M & Oliveira MEQ (Eds), Paleontologia: Cenários da Vida, vol. 1. Interciência: 379-391. doi: 10.13140/RG.2.2.18583.78240.
  • MANTELL GA. 1827. Illustrations of the geology of Sussex. Fellow R Coll Surg, 92 p.
  • MADSEN JH. 1976. Allosaurus fragilis: a revised osteology. Utah Geol Surv Bull 109: 1-163.
  • MAGNAVITA LP & CUPERTINO JA. 1988. Concepção atual sobre as bacias de Tucano e Jatobá, Nordeste do Brasil. Bol Geocie Petrobras 1(2): 119-134.
  • MAGNAVITA LP, SZATMARI P, CUPERTINO JA & DESTRO NDGR. 2012. The Recôncavo Basin. In: Roberts DG & Bally AW (Eds), Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins. Amsterdam: Elsevier Science, p. 383-420.
  • MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2020. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J Vertebr Paleontol: e1768106. https://doi.org/10.1080/02724634.2020.1768106
    » https://doi.org/10.1080/02724634.2020.1768106
  • MALAFAIA E, MOCHO P, ESCASO F & ORTEGA F. 2017. New data on the anatomy of Torvosaurus and other remains of megalosauroid (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Iber Geol 43: 33-59. https://doi.org/10.1007/s41513-017-0003-9.
  • MALAFAIA E, MOCHO P, ESCASO F, DANTAS P & ORTEGA F. 2019. Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal. J Paleontol 93: 157-172.
  • MARTINELLI AG, RIBEIRO LCB, MÉNDEZ AH, NETO FM, CAVELLANI CL, FELIX E, FERRAZ MLF & TEIXEIRA VPA. 2013. Insight on the theropod fauna from the Uberaba Formation (Bauru Group), Minas Gerais state: New megaraptoran specimen from the Late Cretaceous of Brazil. Riv Ital Paleontol Stratigr 119: 205-214.
  • MARZOLI A, RENNE PR, PICCIRILLO EM, ERNESTO M, BELLIENI G & MIN A. 1999. Extensive 200-Million-Year-Old continental flood basalts of the Central Atlantic Magmatic Province. Science 284: 616-618. doi: 10.1126/science.284.5414.616.
  • MATEUS O. 2006. Late Jurassic dinosaurs from the Morrison Formation (USA), the Lourinhã and Alcobaça Formations (Portugal), and the Tendaguru beds (Tanzania): a comparison. New Mex Museum Nat Hist Sci Bull 36: 223-231.
  • MATEUS O, ARAÚJO R, NATÁRIO C & CASTANHINHA R. 2011. A new specimen of the theropod dinosaur Baryonyx from the early Cretaceous of Portugal and taxonomic validity of Suchosaurus. Zootaxa 2827: 54-68. https://doi.org/10.11646/zootaxa.2827.1.3.
  • MATEUS O, WALEN A & ANTUNES MT. 2006. The large theropod fauna of the Lourinha Formation (Portugal) and its similarity to the Morrison Formation, with a description of a new species of Allosaurus. New Mex Museum Nat Hist Sci Bull 36: 123-129.
  • MEDEIROS MA, LINDOSO RM, MENDES ID, CARVALHO IS. 2014. The Cretaceous (Cenomanian) continental record of the Laje do Coringa flagstone (Alcântara formation), northeastern South America. J South Am Earth Sci 53: 50-58.
  • MEDEIROS MA & SCHULTZ CL. 2002. A fauna dinossauriana da “Laje do Coringa”, Cretáceo Médio do nordeste do Brasil. Arq Mus Nac 60: 155-162.
  • MELO BGV & CARVALHO IS. 2017. A Fauna da Formação Brejo Santo, Neojurássico da Bacia do Araripe, Brasil: Interpretações Paleoambientais. An Instituto de Geociências UFRJ 40(3/2017): 62-74.
  • MELTON B. 2008. A geological and Geophysical study of the Sergipe-Alagoras Basin. MSc thesis from Texas A&M University: 60 p. (Unpublished).
  • MÉNDEZ AH, NOVAS FE & IORI FV. 2012. First record of Megaraptora (Theropoda, Neovenatoridae) from Brazil. Comptes Rendus Palevol 11: 251-256. https://doi.org/10.1016/j.crpv.2011.12.007.
  • MÉNDEZ AH. 2014. The caudal vertebral series in abelisaurid dinosaurs. Acta Palaeontol Pol 59(1): 99-107.
  • MILANI EJ. 2007. Cartas Estratigráficas. Boletim de Geociências da Petrobras 15(2): 573.
  • MONTEFELTRO FC, LARSSON HCE, FRANÇA MAG & LANGER MC. 2013. A new neosuchian with Asian affinities from the Jurassic of northeastern Brazil. Naturwissenschaften 100(9): 835-841. doi:10.1007/s00114-013-1083-9.
  • MOTTA MJ, ROLANDO AMA, ROZADILLA S, AGNOLÍN FE, CHIMENTO NR, EGLI FB & NOVAS FE. 2016. New Theropod Fauna From the Upper Cretaceous ( Huincul Formation ) of Northwestern Patagonia , Argentina. New Mex. Museum Nat Hist Sci Bull 71: 231-253.
  • MUSSA D & MUNIZ GCB. 1985. Tronco silicificado da Formação Sergi, Estado de Pernambuco, Brasil. Congresso Brasileiro de Geologia, 9. Fortaleza: Anais, p. 58.
  • NETTO AST & OLIVEIRA JJ. 1985. O preenchimento da Rift-Valley na Bacia do Recôncavo. Rev Bras Geoci 15(2): 97-102.
  • NOVAS FE, AGNOLÍN FL, EZCURRA MD, PORFIRI J & CANALE JI. 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. Cretac Res 45: 174-215. https://doi.org/10.1016/j.cretres.2013.04.001.
  • NOVAS FE, VALAIS S, VICKERS-RICH P & RICH T. 2005. A large Cretaceous theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids. Naturwissenschaften 92: 226-230. https://doi.org/10.1007/s00114-005-0623-3.
  • O’CONNOR PM. 2007. The postcranial axial skeleton of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J Vertebr Paleontol 27: 127-163. https://doi.org/10.1671/0272-4634(2007)27.
  • ORTEGA F, ESCASO F & SANZ JL. 2010. A bizarre, humped Carcharodontosauria (Theropoda) from the lower cretaceous of Spain. Nature 467: 203-206. https://doi.org/10.1038/nature09181.
  • PADIAN K, HUTCHINSON JR & HOLTZ TR. 1999. Phylogenetic definitions and nomenclature of the major taxonomic categories of the carnivorous Dinosauria (Theropoda). J Vertebr Paleontol 19(1): 69-80.
  • PEDREIRA AJ. 2000. Sergi River Canyon, Brazil. In: Schobbenhaus C, Campos DA, Queiroz ET, Winge M & Berbert-Born M (Eds), Sítios Geológicos e Paleontológicos do Brasil, SIGEP. http://sigep.cprm.gov.br/sitio095/sitio095english.html
    » http://sigep.cprm.gov.br/sitio095/sitio095english.html
  • PEDREIRA AJ & BAHIA RBC. 2000. Sedimentary Basins of Rondônia State, Brazil: Response to the Geotectonic Evolution of the Amazonic Craton. Rev Bras Geoci 30(3): 477-480.
  • PEDREIRA AJ & BAHIA RBC. 2004. Estratigrafia e Evolução da Bacia dos Parecis Região Amazônica, Brasil. CPRM - Serviço Geológico do Brasil: 40 p.
  • PEREIRA PVLGC, VEIGA IM, RIBEIRO TB, CARDOZO RH, CANDEIRO CRA, BERGQVIST LP. 2020a. The Path of Giants: A New Occurrence of Rebbachisauridae (Dinosauria, Diplodocoidea) in the Açu Formation, NE Brazil, and its Paleobiogeographic Implications. J South Am Earth Sci 3:102515.
  • PEREIRA PVLGC, RIBEIRO TB, BRUSATTE SL, CANDEIRO CRA, MARINHO TS & BERGQVIST LP. 2020b. Theropod (Dinosauria) diversity from the Açu Formation (mid-Cretaceous), Potiguar Basin, Northeast Brazil. Cretac Res 114: 104517. https://doi.org/10.1016/j.cretres.2020.104517.
  • PERSONS IVWS & CURRIE PJ. 2011. Dinosaur speed demon: The caudal musculature of Carnotaurus sastrei and implications for the evolution of South American abelisaurids. PLoS One 6: e25763. https://doi.org/10.1371/journal.pone.0025763.
  • PIERINI C, MIZUSAKI AM, PIMENTEL FACCINI UF & SCHERER CMS. 2010. Paleoweathering features in the Sergi Formation (Jurassic-Cretaceous), northeastern Brazil, and implications for hydrocarbon exploration. J South Am Earth Sci 29: 412-426. https://doi.org/10.1016/j.jsames.2009.04.002.
  • PINHEIRO AEP, PEREIRA PVGC, SOUZA LG, BRUM AS, LOPES RT, MACHADO AS, BERGQVIST LP & SIMBRAS FM. 2018. Reassessment of the enigmatic crocodyliform “Goniopholis” paulistanus Roxo, 1936: Historical approach, systematic, and description by new materials. PLoS ONE 13(8): e0199984.
  • RAUHUT OWM. 1999. A dinosaur fauna from the Late Cretaceous (Cenomanian) of northern Sudan. Palaeontol Afr 35: 61-84.
  • RAUHUT OWM. 2011. Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Spec Pap Palaeontol: 195-239.
  • RAUHUT OWM, HÜBNER TR & LANSER K-PL. 2016. A new megalosaurid theropod dinosaur from the late Middle Jurassic (Callovian) of north-western Germany: Implications for theropod evolution and faunal turnover in the Jurassic. Palaeontol Electronica 19: 1-65.
  • RICARDI-BRANCO F. 2004. Jazigos Paleobotânicos do Brasil. In: Carvalho IS (Ed), Paleontologia, vol 2. Editora Interciência, RJ, p. 85-96.
  • ROCHA DEGA. 2011. Caracterização do intervalo carbonático aptiano da Bacia do Jatobá, NE do Brasil. Tese de Doutorado em Geociências - Centro de Tecnologia e Geociências, UFPE, 124 p.
  • ROCHA DEGA, AMARAL CA & MEDEIROS VC. 2008. Bacias Sedimentares e Magmatismo Juro-Cretáceo. In Medeiros VC (Ed), Geologia e Recursos Minerais da Folha Souza, SB. 34-Z-A. Estados da Paraíba, Rio Grande do Norte e Ceará. CPRM - Serviço Geológico do Brasil: 49-74.
  • SALEM AM, MORAD S, MATO LF & AL-AASM IS. 2000. Diagenesis and Reservoir-Quality Evolution of Fluvial Sandstones During Progressive Burial and Uplift: Evidence from the Upper Jurassic Boipeba Member, Recôncavo Basin, Northeastern Brazil. AAPG Bulletin 84(7): 1015-1040.
  • SAKAMOTO M. 2010. Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proc R Soc B Biol Sci 277: 3327-3333. https://doi.org/10.1098/rspb.2010.0794.
  • SANTOS CF, CUPERTINO JA & BRAGA JAE. 1990. Síntese sobre a geologia das bacias do Recôncavo, Tucano e Jatobá. In: Raja GP & Milani EJ (Eds), Origem e Evolução de Bacias Sedimentares. Rio de Janeiro: Petrobras, p. 235-266.
  • SANTOS MECM & CARVALHO MSS. 2004. Paleontologia das Bacias do Parnaíba, Grajaú e São Luís: Reconstituições Paleobiológicas. CPRM, Serviço Geológico do Brasil, 211 p.
  • SCHERER CMS. 2000. Eolian dunes of the Botucatu Formation (Cretaceous) in Southernmost Brazil: morphology and origin. Sediment Geol 137: 63-84.
  • SCHERER CMS & LAVINA ELC. 2005. Sedimentary cycles and facies architecture of aeolian-fluvial strata of the Upper Jurassic Guará Formation, southern Brazil. Sedimentol 52: 1323-1341.
  • SCHERER CMS & LAVINA ELC. 2006. Stratigraphic evolution of a fluvial - eolian succession: The example of the Upper Jurassic — Lower Cretaceous Guará and Botucatu formations, Paraná Basin, Southernmost Brazil. Gondwana Res 9: 475-484.
  • SCHERER CMS, LAVINA ELC, DIAS FILHO DC, OLIVEIRA FM, BONGIOLO DE & AGUIAR ES. 2007. Stratigraphy and facies architecture of the fluvial - aeolian - lacustrine Sergi Formation (Upper Jurassic), Recôncavo Basin, Brazil. Sediment Geol 194: 169-193.
  • SCHNEIDER CA, RASBAND WS & ELICEIRI KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. https://doi.org/10.1038/nmeth.2089.
  • SCHOBBENHAUS C, CAMPOS DA, DERZE GR & ASMUS HE. 1984. Geologia do Brasil. Departamento Nacional de Produção Mineral, 500 p.
  • SERENO PC, DUTHEIL DB, LAROCHENE M, LARSSON HCE, LYON GH, MAGWENE PM, SIDOR CA, VARRICCHIO DJ & WILSON JA. 1996. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272: 986-991. https://doi.org/10.1126/science.272.5264.986.
  • SERENO PC, MARTINEZ RN, WILSON JA, VARRICCHIO DJ, ALCOBER AO & LARSON HCE. 2008. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. Plos ONE 3(9): e3303.
  • SILVA AJP, LOPES RC, VASCONCELOS AM & BAHIA RBC. 2003. Bacias Sedimentares Paleozóicas e Meso-Cenozóicas Interiores. In: Bizzi LA, Schobbenhaus C, Vidotti RM & Gonçalves JH (Eds), Geologia, Tectônica e Recursos Minerais do Brasil, CPRM - Serviço Geológico do Brasil: 55-85. https://doi.org/10.1371/journal.pone.0003303
    » https://doi.org/10.1371/journal.pone.0003303
  • SILVA MC, CARVALHO MSS, BARRETO AMF & CARVALHO ISC. 2011. Paleoictiofauna da Formação Aliança (Jurássico Superior), Bacia de Jatobá, Nordeste do Brasil. In: Carvalho IS, Srivasta NK, Strohschoen O & Lana CC (Eds), Paleontologia: cenários de vida, vol. 4, Rio de Janeiro: Interciência, p. 595-608.
  • SOUZA RG. 2018. Comments on the Serial Homology and Homologues of Vertebral Lateral Projections in Crocodylia (Eusuchia). Anat. Rec 301(7): 1203-1215.
  • STOVALL JW & LANGSTON W. 1950. Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma. Am Midl Nat 1950(43): 696.
  • VAZ PT, WANDERLEY FILHO JR & BUENO GV. 2007. A Bacia do Tacutu. Boletim de Geociências da Petrobras, Rio de Janeiro, 15(2): 289-297.
  • VIANA CF, GAMA JR EG, SIMÕES JA, MOURA JA, FONSECA JR & ALVES RJ. 1971. Revisão estratigráfica da Bacia Recôncavo/Tucano. Bol Téc Petrobras, Rio de Janeiro, 14(3/4): 157-192.
  • VILAS BÔAS I, CARVALHO IS, MEDEIROS MA & PONTES H. 1999. Dentes de Carcharodontosaurus (Dinosauria, Tyrannosauridae) do Cenomaniano, Bacia de São Luíz (norte do Brasil). An Acad Bras Cienc 71: 846-847.
  • VILAS BOAS DBR, SOUZA PAVD & HOLZ M. 2018. Correlação Sismoestratigráfica entre as bacias do Recôncavo e de Camamu. Geociências 37(3): 467-481.
  • VITA LPM & CUPERTINO JA. 1988. A new approach to the geological configuration of the Lower Cretaceous Tucano and Jatobá basins, northeastern Brazil. Rev Bras Geoci 18(2): 220-230.
  • WELLES SP. 1952. A review of the North American Cretaceous elasmosaurs. Univ Calif Publ Geol Sci 29: 47-144.
  • WELLES SP. 1984. Dilophosaurus wetherilli (Dinosauria, Theropoda). Osteology and comparisons. Palaeontographica Abt A 185: 85-180.
  • WIENS JJ. 2003a. Incomplete taxa, incomplete characters, and phylogenetic accuracy: Is there a missing data problem? J Vertebr Paleontol 23: 297-310. https://doi.org/10.1671/0272-4634(2003)023[0297:ITICAP]2.0.CO;2.
  • WIENS JJ. 2003b. Missing Data, Incomplete Taxa, and Phylogenetic Accuracy. Syst Biol 52(4): 528-538. https://doi.org/10.1080/10635150390218330.
  • WILSON JA. 2006. Anatomical nomenclature of fossil vertebrates: standardized terms or ‘lingua franca’? J Vertebr Paleontol 26: 511-518. https://doi.org/10.1671/0272-4634(2006)26.
  • ZANNO LE & MAKOVICKY PJ, 2013. Neovenatorid theropods are apex predators in the Late Cretaceous of North America. Nature Communications, 4.

Publication Dates

  • Publication in this collection
    02 Aug 2021
  • Date of issue
    2021

History

  • Received
    1 Oct 2020
  • Accepted
    24 Apr 2021
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br