Acessibilidade / Reportar erro

Tolerância à dessecação em sementes

Desiccation tolerance on seeds

Resumos

São apresentadas algumas considerações sobre a tolerância das sementes à dessecação, analisando-se os principais trabalhos desenvolvidos com sementes ortodoxas e recalcitrantes. São levantados aspectos considerados importantes no entendimento desta tolerância, como as fases de desenvolvimento e de germinação das sementes, a participação do ácido abscísico, do DNA, de RNAs, de proteínas e de açúcares, as propriedades da água, os radicais livres e particularidades das sementes recalcitrantes. São feitas considerações quanto a perspectivas de ação na área.

recalcitrante; armazenamento; conservação de sementes


Some comments on desiccation tolerance of seeds are presented, with analysis of the main works carried out with orthodox and recalcitrant seeds. It was analysed the aspects that are considered important on this tolerance, as seed developing and germination stages, abscisic acid, DNA, RNAs, proteins, sugars, water properties, free radicals and particularities of recalcitrant seeds. Some action perspectives on this issue are presented.

recalcitrant; storage; seed conservation


Tolerância à dessecação em sementes

Desiccation tolerance on seeds

Cláudio José BarbedoI; Júlio Marcos FilhoII

IInstituto de Botânica, C. Postal 4005, CEP 01061-970, São Paulo, SP

IIESALQ, USP, Av. Pádua Dias 11, C. Postal 9, CEP 13418-900, Piracicaba, SP, Brasil. Bolsista do CNPq

RESUMO

São apresentadas algumas considerações sobre a tolerância das sementes à dessecação, analisando-se os principais trabalhos desenvolvidos com sementes ortodoxas e recalcitrantes. São levantados aspectos considerados importantes no entendimento desta tolerância, como as fases de desenvolvimento e de germinação das sementes, a participação do ácido abscísico, do DNA, de RNAs, de proteínas e de açúcares, as propriedades da água, os radicais livres e particularidades das sementes recalcitrantes. São feitas considerações quanto a perspectivas de ação na área.

Palavras-chave: recalcitrante, armazenamento, conservação de sementes

ABSTRACT

Some comments on desiccation tolerance of seeds are presented, with analysis of the main works carried out with orthodox and recalcitrant seeds. It was analysed the aspects that are considered important on this tolerance, as seed developing and germination stages, abscisic acid, DNA, RNAs, proteins, sugars, water properties, free radicals and particularities of recalcitrant seeds. Some action perspectives on this issue are presented.

Key words: recalcitrant, storage, seed conservation

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Recebido em 17/03/98.

Aceito em 8/06/98

  • Adams, C. A.; Fjerstad, M. C. & Rinne, R. W. 1983. Characteristics of soybean seed maturation: necessity for slow dehydration. Crop Science 23: 265-267.
  • Araújo, E. F.; Silva, R. F. & Araújo, R. F. 1994. Avaliação da qualidade de sementes de açaí armazenadas em diferentes embalagens e ambientes. Revista Brasileira de Sementes 16: 76-79.
  • Araújo, E. F. & Barbosa, J. G. 1992. Influência da embalagem e do ambiente de armazenamento na conservação de sementes de palmeira (Phoenix loureiri Kunth.). Revista Brasileira de Sementes 14: 61-64.
  • Barbedo, C. J. 1997. Armazenamento de sementes de Inga uruguensis Hook. & Arn. Tese de Doutorado. Universidade de São Paulo. Piracicaba.
  • Bartels, D.; Singh. M. & Salamini, F. 1988. Onset of desiccation tolerance during development of the barley embryo. Planta 175: 485-492.
  • Berjak, P. & Pammenter, N. W. 1994. Recalcitrant is not an all-or-nothing situation. Seed Science Research 4: 263-264.
  • Berjak, P.; Dini, M. & Pammenter, N. W. 1984. Possible mechanisms underlying the differing dehydration responses in recalcitrant and orthodox seeds: desiccation-associated subcellular changes in propagules of Avicennia mcirina. Seed Science and Technology 12: 365-384.
  • Berjak, P.; Farrant, J. M.; Mycock, D. J. & Pammenter, N. W. 1990. Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation-sensitivity. Seed Science and Technology 18: 297-310.
  • Berjak, P.; Pammenter, N. W. & Vertucci, C. 1992. Homoiohydrous (recalcitrant) seeds: developmental status, desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186: 249-261.
  • Berjak, P.; Bradford, K. J.; Kovach, D. A. & Pammenter, N. W. 1994. Differential effects of temperature on ultrastructural responses to dehydration in seeds of Zizania palustris. Seed Science Research 4: 111-121.
  • Berry, T. & Bewley, J. D. 1991. Seeds of tomato (Lycopersicon esculentum Mill.) which develop in a fully environment in the fruit switch from a developmental to a germinative mode without a requirement for desiccation. Planta 186: 27-34.
  • Bewley, J. D. & Black, M. 1985. Seeds: physiology of development and germination. Plenum Press. New York.
  • Bewley, J. D.; Kermode, A. R. & Misra, S. 1989. Desiccation and minimal drying treatments of seeds of castor bean and Phaseolus vulgaris which terminate development and promote germination cause changes in protein and messenger RNA synthesis. Annals of Botany 63: 3-17.
  • Bilia, D. A. C. 1997. Tolerância à dessecação e armazenamento de sementes de Inga uruguensis. Hook, et Arn. Universidade de São Paulo. Piracicaba.
  • Blackmail, S. A.; Wettlaufer, S. H.; Obendorf, R. L. & Leopold, A. C. 1991. Maturation proteins associated with desiccation tolerance in soybean. Plant Physiology 96: 868-874.
  • Blackmail, S. A.; Obendorf, R. L. & Leopold, A. C. 1992. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiology 100: 225-230.
  • Bochicchio, A.; Vazzana, C.; Raschi, A.; Bartels, D. & Salamini, F. 1988. Effect of desiccation on isolated embryos of maize. Onset of desiccation tolerance during development. Agronomie 8: 29-36.
  • Bochicchio, A.; Rizzi, E.; Balconi, C.; Vernieri, P. & Vazzana, C. 1994. Sucrose and raffinose contents and acquisition of desiccation tolerance in immature maize embryos. Seed Science Research 4: 123-126.
  • Bradford, K. J. & Chandler, P .M. 1992. Expression of "dehydrin-like" proteins in embryos and seedlings of Zizania palustris and Oryza sativa during dehydration. Plant Physiology 99: 488-494.
  • Bruggink, T. & Toorn, P. van der. 1995. Induction of desiccation tolerance in germinated seeds. Seed Science Research 5: 1-4.
  • Chen, Y. & Burris, J. S. 1990. Role of carbohydrates in desiccation tolerance and membrane behaviour in maturing maize seed. Crop Science 30: 971-975.
  • Chin, H. F.; Hor, Y. L. & Mohd Lassim, M. B. 1984. Identification of recalcitrant seeds. Seed Science and Technology 12: 429-436.
  • Cicero, S. M.; Marcos Filho, J. & Toledo, F. F. 1986. Efeitos do tratamento fungicida e de três ambientes de armazenamento sobre a conservação de sementes de seringueira. Anais da Escola Superior de Agricultura "Luiz de Queiroz" 43: 763-787.
  • Corbineau, F. & Côme, D. 1988. Storage of recalcitrant seeds of four tropical species. Seed Science and Technology 16: 97-103.
  • Cunha, R.; Cardoso, M. A.; Santanna, C. A. F. & Pereira. T. S. 1992. Efeito do dessecamento sobre a viabilidade de sementes de Virola surinamensis (Rol.)Warb. Revista Brasileira de Sementes 14: 69-72.
  • Dasgupta, J. & Bewley, J. D. 1982. Desiccation of axes of Phaseolus vulgaris during development of a switch from a developmental pattern of protein synthesis to a germination pattern. Plant Physiology 70: 1224-1227.
  • Eira, M. T. S.; Salomão, A. N.; Cunha, R.; Carrara, D. K. & Mello, C. M. C. 1994. Efeito do teor de água sobre a germinação de sementes de Araucaria angustifolia (Bert.) O. Ktze. - Araucariaceae. Revista Brasileira de Sementes 16: 71-75.
  • Ellis, R. H.; Hong, T. D. & Roberts, E. H. 1987. The development of desiccation-tolerance and maximum seed quality during seed maturation in six grain legumes. Annals of Botany 59: 23-29.
  • Espindola, L. S.; Noin, M.; Corbineau, F. & Côme, D. 1994. Cellular and metabolic damage induced by desiccation in recalcitrant Araucaria angustifolia embryos. Seed Science Research 4: 193-201.
  • Farrant, J. M.; Pammenter, N. W. & Berjak, P. 1986. The increasing desiccation sensitivity of recalcitrant Avicennia marina seeds with storage time. Physiologia Plantarum 67: 291-298.
  • Farrant, J. M.; Pammenter, N. W. & Berjak, P. 1988. Recalcitrance - a current assesment. Seed Science and Technology 16: 155-166.
  • Farrant, J. M.; Pammenter, N. W. & Berjak, P. 1989. Germination-associated events and the desiccation sensitivity of recalcitrant seeds - a study on three unrelated species. Planta 178: 189-198.
  • Farrant, J. M.; Berjak. P. & Pammenter, N. W. 1992a. Proteins in development and germination of a desiccation sensitive (recalcitrant) seed species. Plant Growth Regulation 11: 257-265.
  • Farrant, J. M.; Pammenter. N. W. & Berjak, P. 1992b. Development of the recalcitrant (homoiohydrous) seeds of Avicennia marina: anatomical, ultrastructural and biochemical events associated with development from histodifferentiation to maturation. Annals of Botany 70: 75-86.
  • Farrant, J. M.; Pammenter. N. W. & Berjak, P. 1993a. Seed development in relation to desiccation tolerance: a comparision between desiccation-sensitive (recalcitrant) seeds of Avicennia marina and desiccation-tolerant types. Seed Science Research 3: 1-13.
  • Farrant, J. M.; Berjak, P.; Cutting, J. G. M. & Pammenter, N. W. 1993b. The role of plant growth regulators in the development and germination of the desiccation-sensitive (recalcitrant) seeds of Avicennia marina. Seed Science Research 3: 55-63.
  • Farrant, J. M.; Pammenter, N. W.; Berjak, P. & Walters, C. 1997. Subcellular organization and metabolic activity during the development of seeds that attain different levels of desiccation tolerance. Seed Science Research 7: 135-144.
  • Ferraz, I. D. K. & Sampaio, P. T. B. 1996. Métodos simples de armazenamento das sementes de andiroba (Carapa guianensis Aubl. e Carapa procera DC. - Meliaceae). Acta Amazônica 26: 137-144.
  • Finch-Savage, W. E. 1992. Embryo water status and survival in the recalcitrant species Quercus robur L.: evidence for a critical moisture content. Journal of Experimental Botany 43: 663-669.
  • Finch-Savage, W. E. & Blake, P. S. 1994. Indeterminated development in desiccation-sensitive seeds of Quercus robur L. Seed Science Research 4: 127-133.
  • Finch-Savage, W. E.; Clay, H. A.; Blake, P. S. & Browning, G. 1992. Seed development in the recalcitrant species Quercus robur L.: water status and endogenous abscisic acid levels. Journal of Experimental Botany 43: 671-679.
  • Fu, J. R.; Jin, J. P.; Peng, Y. F. & Xia, Q. H. 1994. Desiccation tolerance in two species of recalcitrant seeds: Clausena lansium (Lour.) and Litchi cliinensis (Sonn.). Seed Science Research 4: 257-261.
  • Galau, G. A.; Hughes, D. W. & Dure, L. 1986. Abscisic acid induction of cloned cotton late cmbryogenesis-abundant (Lea) RNAs-m. Plant Molecular Biology 7: 155-170.
  • Garcia, A. & Vieira, R. D. 1994. Germinação, armazenamento e tratamento fungicida de sementes de seringueira (Hevea brasiliensis Muell. Arg.). Revista Brasileira de Sementes 16: 128-133.
  • Gee, O. H.; Probert, R. J. & Coombeer, S. A. 1994. 'Dehydrin-like' proteins and desiccation tolerance in seeds. Seed Science Research 4: 135-141.
  • Goldbach, H. 1979. Imbibed storage of Melicoccus bijugatus and Eugenia brasiliensis (E. dombeyi) using abscisic acid as a germination inhibitor. Seed Science and Technology 7: 403-406.
  • Gorecki, R. J.; Piotrowicz-Cieslak, L. B. L. & Obendorf, R. L. 1997a. Soluble carbohydrates in desiccation tolerance of yellow lupin seeds during maturation and germination. Seed Science Research 7: 107-115.
  • Gorecki, R. J.; Piotrowicz-Cieslak, L. B. L. & Obendorf, R. L. 1997b. Soluble sugars and flatulence-producing oligosaccharides in maturing yellow lupin (Lupinus luteus L.) seeds. Seed Science Research 7: 185-193.
  • Gosling, P. G. 1989. The effect of drying Quercus robur acorns to differential moisture contents, followed by storage, either with or without imbibition. Forestry 62: 41-50.
  • Hendry, G. A. F. 1993. Oxygen, free radical processes and seed longevity. Seed Science Research 3: 141-153.
  • Hendry, G. A. F.; Finch-Savage, W. E.; Thorpe, P. C.; Atherton, N. M.; Buckland, S. M.; Nilsson, K. A. & Seel, W. E. 1992. Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus robur L. New Phytologist 122: 273-279.
  • Hoekstra, F. A.; Haigh, A. M.; Tetteroo, F. A. A. & Roekel, T. van. 1994. Changes in soluble sugars in relation to desiccation tolerance in cauliflower seeds. Seed Science Research 4: 143-147.
  • Hong, T. D. & Ellis, R. H. 1990. A comparison of maturation drying, germination, and desiccation tolerance between developing seeds of Acer pseudoplatanus L. and Acer platanoides L. New Phytologist 116: 589-596.
  • Horbowicz, M. & Obendorf, R. L. 1994. Seed desiccation tolerance and storability: dependence on flatulence-producing oligosaccharides and cyclitols - review and survey. Seed Science Research 4: 385-405.
  • Iida, Y.; Watabe, K.; Kamada, H. & Harada, H. 1992. Effects of abscisic acid on the induction of desiccation tolerance in carrot somatic embryos. Journal of Plant Physiology 140: 356-360.
  • Jiang, L. & Kermode, A. R. 1994. Role of desiccation in the termination of expression of genes for storage proteins. Seed Science Research 4: 149-173.
  • Kermode, A. R. 1990. Regulatory mechanisms involved in the transition from seed development to germination. Critical Reviews in Plant Sciences 9: 155-195.
  • Kermode, A. R. 1997. Approaches to elucidate the basis of desiccation-tolerance seeds. Seed Science Research 7: 75-95.
  • Kermode, A. R. & Bewley, J. D. 1985a. The role of maturation drying in the transition from seed development to germination. II. Acquisition of desiccation-tolerance and germinability during development of Ricinus communis L. seeds. Journal of Experimental Botany 36: 1906-1915.
  • Kermode, A. R. & Bewley, J. D. 1985b. The role of maturation drying in the transition from seed development to germination. II. Post-germinative enzyme production and soluble proteins synthetic pattern changes within the endosperm of Ricinus communis L. seeds. Journal of Experimental Botany 36: 1916-1927.
  • Kermode, A. R. & Bewley, J. D. 1986. The role of maturation drying in the transition from seed development to germination. IV. Protein synthesis and enzime acivity changes within the cotyledons of Ricinus communis L. seeds. Journal of Experimental Botany 37: 1887-1898.
  • Kermode, A. R. & Bewley, J. D. 1988. The role of maturation drying in the transition from seed development to germination. Journal of Experimental Botany 39: 487-497.
  • Kermode, A. R.; Gifford, D. J. & Bewley, J. D. 1985. The role of maturation drying in the transition from seed development to germination. III. Insoluble proteins synthetic pattern changes within the endosperm of Ricinus communis L. seeds. Journal of Experimental Botany 36: 1928-1936.
  • Koornneef, M.; Hanhart, C. J.; Hilhorst, H. W. M. & Karssen, C. M. 1989. In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiology 90: 463-469.
  • Koster, K. L. 1991. Glass formation and desiccation tolerance in seeds. Plant Physiology 96: 302-304.
  • Koster, K. L. & Leopold, C. 1988. Sugars and desiccation tolerance in seeds. Plant Physiology 88: 829-832.
  • Kovach, D. A. & Bradford, K. J. 1992. Imbibitional damage and desiccation tolerance of wild rice (Zizania palustris) seeds. Journal of Experimental Botany 43: 747-757.
  • Leprince, O.; Deltour, R.; Thorpe, P. C.; Atherton, N. M. & Hendry, G. A. F. 1990. The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L.). New Phytologist 116: 573-580.
  • Leprince, O.; Werf, A. van der; Deltour, R. & Lambers, H. 1992. Respiratory pathways in germinating maize radicles correlated with desiccation tolerance and soluble sugars. Physiologia Plantarum 85: 581-588.
  • Leprince, O.; Hendry, G. A. F. & McKersie, B. D. 1993. The mecanisms of desiccation tolerance in developing seeds. Seed Science Research 3: 231-246.
  • Motle, N.; Pammenter, N. W.; Berjak, P. & Frederic, J. C. 1997. Response of the recalcitrant seeds of Avicennia marina to hydrated storage: events occuring at the root primordia. Seed Science Research 7: 169-178.
  • Mundy, J. & Chua, N. 1988. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO Journal 7: 2279-2268.
  • Nautiyal, A. R. & Purohit, A .N. 1985a. Seed viabillity in sal. I. Physiological and biochemical aspects of seed development in Shorea robusta. Seed Science and Technology 13: 59-68.
  • Nautiyal, A. R. & Purohit, A. N. 1985b. Seed viabillity in sal. II. Physiological and biochemical aspects of ageing in seeds of Shorea robusta. Seed Science and Technology 13: 69-76.
  • Nautiyal, A. R. & Purohit, A. N. 1985c. Seed viabillity in sal. III. Membrane disruption in ageing seeds of Shorea robusta. Seed Science and Technology 13: 77-82.
  • Nautiyal, A. R.; Thpliyal, A. P. & Purohit, A. N. 1985. Seed viabillity in sal. IV. Protein changes accompanying loss of viability in Shorea robusta. Seed Science and Technology 13: 83-86.
  • Neves, C. S. V. J. 1994. Sementes recalcitrantes. Revisão de literatura. Pesquisa Agropecuária Brasileira 29: 1459-1467.
  • Obendorf, R. L. 1997. Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Science Research 7: 63-74.
  • Ooms, J. J. J.; Léon-Kloosterziel, K. M.; Bartels, D.; Koorneef, M. & Karssen, C. M. 1993. Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. Plant Physiology 102: 1185-1191.
  • Ooms, J. J. J.; Wilmer, J. A. & Karssen, C. M. 1994. Carbohydrates are not the sole factor determining desiccation tolerance in seeds of Arabidopsis thaliana. Physiologia Plantarum 90: 431-436.
  • Osborne, D. J. & Boubriak, I. I. 1994. DNA and desiccation tolerance. Seed Science Research 4: 175-185.
  • Paiva, R. & Oliveira, P. D. 1995. The role of abscisic acid during seed precocious germination. Revista Brasileira de Fisiologia Vegetal 7: 175-179.
  • Pammenter, N. W.; Vertucci, C. W. & Berjak, P. 1991. Homeohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkii. Plant Physiology 96: 1093-1098.
  • Pammenter, N. W.; Berjak, P.; Farrant, J. M.; Smith, M. T. & Ross, G. 1994. Why do stored hydrated recalcitrant seeds die? Seed Science Research 4: 187-191.
  • Pence, V. C. 1996. Germination, desiccation and cryopreservation of seeds of Populus deltoides Bartr. Seed Science and Technology 24: 151-157.
  • Pereira, J. P. 1980. Conservação da viabilidade do poder germinativo da semente de seringueira. Pesquisa Agropecuária Brasileira 15: 237-244.
  • Pritchard, H. W.; Haye, A. J.; Wright, W. J. & Steadman, K. J. 1995. A comparative study of seed viability in Inga species: desiccation tolerance in relation to the physical characteristics and chemical composition of the embryo. Seed Science and Technology 23: 85-100.
  • Probert, R. J. & Brierley, E. R. 1989. Desiccation intolerance in seeds of Zizania palustris is not related to developmental age or the duration of post-harvest storage. Annals of Botany 64: 669-674.
  • Roberts, E. H. 1973. Predicting the storage life of seeds. Seed Science and Technology 1: 499-514.
  • Rosenberg, L. A. & Rinne, R. W. 1986. Moisture loss as a prerequisite for seedling growth in soybean seeds (Glycine max [L.] Merr.). Journal of Experimental Botany 37: 1663-1674.
  • Rosenberg, L. A. & Rinne, R. W. 1988. Protein synthesis during natural and precocious soybean seed (Glycine max [L.] Merr.) maturation. Plant Physiology 87: 474-478.
  • Rosenberg, L. A. & Rinne, R. W. 1989. Protein synthesis during rehydration, germination and seedling growth of naturally and precociously matured soybean seeds (Glycine max). Annals of Botany 64: 77-86.
  • Sacande, M.; Groot, S. P. C.; Hoekstra, F. A.; Castro, R. D. & Bino, R. J. 1997. Cell cycle events in developing neem (Azadirachta indica) seeds: are they related to intermediate storage behaviour? Seed Science Research 7: 161-168.
  • Senaratna, T.; McKersie, B. D. & Stinson, R. H. 1985. Antioxidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance. Plant Physiology 78: 168-171.
  • Steadman, K. J.; Pritchard, H. W. & Dey, P. M. 1996. Tissue-specific soluble sugars in seeds as indicators of storage category. Annals of Botany 77: 667-674.
  • Still, D. W.; Kovach, D. A. & Bradford, K. J. 1994. Development of desiccation tolerance during embryogenesis in rice (Oryza sativa) and wild rice (Zizania palustris). Plant Physiology 104: 431-438.
  • Sun, W. Q.; Irving, C. & Leopold, A. C. 1994. The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiologia Plantarum 90: 621-628,
  • Tarquis, A. M. & Bradford, K. J. 1992. Prehydration and priming treatments that advance germination also increase the rate of deterioration of lettuce seeds. Journal of Experimental Botany 43: 307-317.
  • Tetteroo, F. A. A.; Bomal, C.; Hoekstra, F. A. & Karssen, C. M. 1994. Effect of abscisic acid and slow drying on soluble carbohydrate content in developing embryoids of carrot (Daucus carota L.) and alfalfa (Medicago sativa L.). Seed Science Research 4: 203-210.
  • Vertucci, C. W.; Crane, J.; Porter, R. A. & Oelke, E. A. 1994. Physical properties of water in Zizania embryos in relation to maturity status, water content and temperature. Seed Science Research 4: 211-224.
  • Vertucci, C. W.; Crane, J.; Porter, R. A. & Oelke, E. A. 1995. Survival of Zizania embryos in relation to water content, temperature and maturity status. Seed Science Research 5: 31-40.
  • Vertucci, C.; Crane, J. & Vance, N. C. 1996. Physiological aspects of Taxus breviflora seeds in relation to seed storage characteristics. Physiologia Plantarum 98: 1-12.
  • Wechsberg. G. E.; Bray, C. M. & Probert, R. J. 1994. Expression of 'dehydrin-like' proteins in orthodox seeds of Ranunculus sceleratus during development and water stress. Seed Science Research 4: 241-246.
  • Willians, R. J. & Leopold, A. C. 1989. The glassy state in corn embryos. Plant Physiology 89: 977-981.
  • Xu, N. & Bewley, J. D. 1994. Desiccation and the switch from development to germination. Alfafa embryos can synthesize storage proteins after germination if maturation drying is prevented. Seed Science Research 4: 247-255.
  • Xu, N.; Coulter, K. M. & Bewley, J. D. 1990. Abscisic acid and osmoticum prevent germination of developing alfafa embryos, but only osmoticum maintains the synthesis of developmental proteins. Planta 182: 382-390.

Datas de Publicação

  • Publicação nesta coleção
    06 Jun 2011
  • Data do Fascículo
    Ago 1998

Histórico

  • Aceito
    08 Jun 1998
  • Recebido
    17 Mar 1998
Sociedade Botânica do Brasil SCLN 307 - Bloco B - Sala 218 - Ed. Constrol Center Asa Norte CEP: 70746-520 Brasília/DF. - Alta Floresta - MT - Brazil
E-mail: acta@botanica.org.br