Acessibilidade / Reportar erro

Association of bone morphogenetic protein 15 and growth differentiation factor 9 with litter size in livestock: a review study

ABSTRACT.

Litter size is one of the crucial factors in livestock production and is of high economic value, which is affected by ovulation rate, hormones, and growth factors. Growth factors play a multifaceted role in reproductive physiology. This review aims to investigate the association of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) with litter size in livestock. The transforming growth factor β (TGF- β) superfamily includes more than 34 members; GDF9 and BMP15 are among the most significant factors for regulating fertility and litter size in most livestock species. Ovarian follicles release BMP15 and GDF9 that are involved in the maturation of primary follicles into the basal form, proliferation of granulosa and theca cells, steroidogenesis, ovulation, and formation of the corpus luteum. Besides, these factors are highly expressed in oocytes and are necessary for female fertility and multiple ovulation in several livestock species. Animals with two inactive copies of these factors are sterile, while those with one inactive copy are fertile. Thus, the present review provides valuable information on the association of BMP15 and GDF9 with litter size in livestock that can be used as biological markers of multiple ovulation or for improving fertility in livestock.

Keywords:
birth type; domestic animals; ovarian follicle; reproductive performance; TGF-β

Introduction

As demand increases for livestock production, a need arose for livestock with larger litter size (Al-Thuwaini, 2021Al-Thuwaini, T. M. (2021a). The relationship of hematological parameters with adaptation and reproduction in sheep: a review study. Iraqi Journal of Veterinary Sciences, 35(3), 575-580.‏ DOI: https://doi.org/10.33899/ijvs.2020.127253.1490
https://doi.org/https://doi.org/10.33899...
a; Al-Thuwaini & Kareem, 2022Al-Thuwaini, T. M., & Kareem, Z. A. (2022). Novel missense variant L46Q of fatty acid synthase gene and fatty acids content in Awassi sheep. Acta Scientiarum. Animal Sciences, 44.‏ DOI: 10.4025/actascianimsci.v44i1.56273
https://doi.org/10.4025/actascianimsci.v...
). Litter size is one of the most significant features of fertility in livestock (Al-Thuwaini, & Al-Hadi, 2022Al-Thuwaini, T. M., & Al-Hadi, A. B. A. (2022). Association of lamb sex with body measurements in single and twin on the Awassi ewes. Advances in Animal and Veterinary Sciences, 10(8), 1849-1853.‏ DOI: https://dx.doi.org/10.17582/journal.aavs/2022/10.8.1849.1853
https://doi.org/https://dx.doi.org/10.17...
; Kadhem & Al-Thuwaini, 2022Kadhem, A. F., & Al-Thuwaini, T. M. (2022). Influence of litter size on the hematologic profile of Awassi ewes during gestation and lactation. Veterinary Integrative Sciences, 20(3), 625-633.‏ DOI: https://doi.org/10.12982/VIS. 2022.047
https://doi.org/https://doi.org/10.12982...
), which is affected by ovulation rate, hormones, and growth factors (Tesema et al., 2020‏Tesema, Z., Deribe, B., Kefale, A., Lakew, M., Tilahun, M., Shibesh, M., … Yizengaw, L. (2020). Survival analysis and reproductive performance of Dorper x Tumele sheep. Heliyon, 6(4), e03840.‏ DOI: https://doi.org/10.1016/j.heliyon.2020.e03840
https://doi.org/https://doi.org/10.1016/...
; Al-Thuwaini, 2021bAl-Thuwaini, T. M. (2021b). Novel single nucleotide polymorphism in the prolactin gene of Awassi ewes and its role in the reproductive traits. Iraqi Journal of Veterinary Sciences, 35(3), 429-435. DOI: https://doi.org/10.33899/ijvs.2020.126973.1423
https://doi.org/https://doi.org/10.33899...
; Al-Thuwaini, 2022AL-Thuwaini, T. M. (2022). Adiponectin and Its Physiological Function in Ruminant Livestock. Reviews in Agricultural Science, 10, 115-122. DOI: https://doi.org/10.7831/ras.10.0_115 ‏
https://doi.org/https://doi.org/10.7831/...
). Ovulation rate and the number of oocytes released during ovulation have an impact on litter size (Chu, Xu, Yang, & Sun, 2018Chu, Y. L., Xu, Y. R., Yang, W. X., & Sun, Y. (2018). The role of FSH and TGF-β superfamily in follicle atresia. Aging, 10(3), 305.‏ DOI: https://doi.org/10.18632/aging.101391
https://doi.org/https://doi.org/10.18632...
). Besides, a high level of reproductive hormones strongly affects the development and maturation of ovarian follicles, which increases litter size (Mohammed, Al-Thuwaini, & Al-Shuhaib, 2021Mohammed, M. H., Al-Thuwaini, T. M., & Al-Shuhaib, M. B. S. (2021). The association of the single-and twin-bearing with the lipid profile on the status of the reproductive hormones in iraqi awassi ewes. Advances in Animal and Veterinary Sciences, 9(9), 1456-1459. DOI: https://doi.org/10.17582/journal.aavs/2021/9.9.1456.1459 ‏
https://doi.org/https://doi.org/10.17582...
).

On the other hand, growth factors play a multifaceted role in reproductive physiology (Muñoz-García et al., 2020Muñoz-García, C., Torres-Hernández, G., Gallegos-Sánchez, J., Cuca-García, J. M., Salazar-Ortiz, J., & Cortez-Romero, C. (2020). Role of fecundity genes in ovulation rate and litter size in sheep. Agro Productividad, 13(6). DOI: https://doi.org/10.32854/agrop.v13i6.1630
https://doi.org/https://doi.org/10.32854...
). They include members of the transforming growth factor β (TGF- β) superfamily that are vital intra-ovarian growth factors (Table 1) (Santibanez & Kocic, 2012Santibanez, J. F., & Kocic, J. (2012). Transforming growth factor-β superfamily, implications in development and differentiation of stem cells. Biomolecular Concepts, 3(5), 429-445.‏ DOI: https://doi.org/10.1515/bmc-2012-0015
https://doi.org/https://doi.org/10.1515/...
). This superfamily comprises over 34 family members, the most important ones that are associated with litter size are bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) (Abdurahman et al., 2019Abdurahman, A., Du, X., Yao, Y., Sulaiman, Y., Aniwashi, J., & Li, Q. (2019). Smad4 feedback enhances BMPR1B transcription in ovine granulosa cells. International Journal of Molecular Sciences, 20(11), 2732.‏ DOI: https://doi.org/10.3390/ijms20112732
https://doi.org/https://doi.org/10.3390/...
; Imran, Al-Thuwaini, Al-Shuhaib, & Lepretre, 2021Imran, F. S., Al-Thuwaini, T. M., Al-Shuhaib, M. B. S., & Lepretre, F. (2021). A Novel Missense Single Nucleotide Polymorphism in the GREM1 Gene is Highly Associated with Higher Reproductive Traits in Awassi Sheep. Biochemical Genetics, 59(2), 422-436.‏ DOI: https://doi.org/10.1007/s10528-020-10006-x
https://doi.org/https://doi.org/10.1007/...
; Ali, Kadhim, & Al-Thuwaini, 2022Ali, M. A., Kadhim, A. H., & Al-Thuwaini, T. M. (2022). Genetic variants of the bone morphogenetic protein gene and its association with estrogen and progesterone levels with litter size in Awassi ewes. Iraqi Journal of Veterinary Sciences, 36(4), 1017-1022.‏).

Table 1
Members of the TGF- β superfamily.

BMP15 and GDF9 are released by ovarian follicles, leading to the transformation of primary follicles to the basal form (Castro, Cruz, & Leal, 2016Castro, F. C., Cruz, M. H. C., & Leal, C. L. V. (2016). Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility - a review. Asian-Australasian Journal of Animal Sciences, 29(8), 1065.‏ DOI: https://doi.org/10.5713/ajas.15.0797
https://doi.org/https://doi.org/10.5713/...
; Ajafar, Kadhim, & AL-Thuwaini, 2022Ajafar, M. H., Kadhim, A. H., & AL-Thuwaini, T. M. (2022). The Reproductive Traits of Sheep and Their Influencing Factors. Reviews in Agricultural Science, 10, 82-89. DOI: https://doi.org/10.7831/ras.10.0_82 ‏
https://doi.org/https://doi.org/10.7831/...
), and involved in follicular and oocyte maturation, proliferation/atresia of granulosa and theca cells, steroidogenesis, ovulation, and corpus luteum formation (Chu et al., 2018Chu, Y. L., Xu, Y. R., Yang, W. X., & Sun, Y. (2018). The role of FSH and TGF-β superfamily in follicle atresia. Aging, 10(3), 305.‏ DOI: https://doi.org/10.18632/aging.101391
https://doi.org/https://doi.org/10.18632...
). Moreover, genetic modifications in BMP15 and GDF9 play a vital role in ovarian function (Sanfins, Rodrigues, & Albertini, 2018Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4
https://doi.org/https://doi.org/10.1007/...
). Mutations in BMP15 and GDF9 genes are associated with a higher ovulation rate and litter size in most livestock species (Wang et al., 2018Wang, W., La, Y., Zhou, X., Zhang, X., Li, F., & Liu, B. (2018). The genetic polymorphisms of TGFβ superfamily genes are associated with litter size in a Chinese indigenous sheep breed (Hu sheep). Animal Reproduction Science, 189, 19-29. DOI: https://doi.org/10.1016/j.anireprosci.2017.12.003 ‏
https://doi.org/https://doi.org/10.1016/...
; Muñoz-García et al., 2020Muñoz-García, C., Torres-Hernández, G., Gallegos-Sánchez, J., Cuca-García, J. M., Salazar-Ortiz, J., & Cortez-Romero, C. (2020). Role of fecundity genes in ovulation rate and litter size in sheep. Agro Productividad, 13(6). DOI: https://doi.org/10.32854/agrop.v13i6.1630
https://doi.org/https://doi.org/10.32854...
). Although some researchers have studied the growth factors that affect the reproductive traits of sheep and cattle, their role in litter size remains unclear. Therefore, this review aims to investigate the association of BMP15 and GDF9 with the litter size in livestock.

Bone morphogenetic proteins and ovarian function in farm animals

Bone morphogenetic proteins (BMPs) are a group of multi-functional growth factors within the TGF-β superfamily (Tong, Guo, Glen, Morrell, & Li, 2019Tong, Z., Guo, J., Glen, R. C., Morrell, N. W., & Li, W. (2019). A Bone Morphogenetic Protein (BMP)-derived Peptide Based on the Type I Receptor-binding Site Modifies Cell-type Dependent BMP Signalling. Scientific Reports, 9(1), 1-9.‏ DOI: https://doi.org/10.1038/s41598-019-49758-x
https://doi.org/https://doi.org/10.1038/...
) that regulates animal reproductive processes (Lochab & Extavour, 2017Lochab, A. K., & Extavour, C. G. (2017). Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Developmental Biology, 427(2), 258-269. DOI: https://doi.org/10.1016/j.ydbio.2017.03.002
https://doi.org/https://doi.org/10.1016/...
). The BMPs system in the ovary plays a vital role in regulating granulosa cell proliferation, differentiation, and their responsiveness to follicle stimulating hormone (FSH) (Chu et al., 2018Chu, Y. L., Xu, Y. R., Yang, W. X., & Sun, Y. (2018). The role of FSH and TGF-β superfamily in follicle atresia. Aging, 10(3), 305.‏ DOI: https://doi.org/10.18632/aging.101391
https://doi.org/https://doi.org/10.18632...
; Sanfins et al., 2018Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4
https://doi.org/https://doi.org/10.1007/...
). BMPs in sheep and cattle control granulosa cells proliferation by suppressing the FSH receptors expression (Zhang, Klausen, Zhu, Chang, & Leung, 2015Zhang, H., Klausen, C., Zhu, H., Chang, H. M., & Leung, P. C. (2015). BMP4 and BMP7 suppress StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 in human granulosa-lutein cells. Endocrinology, 156(11), 4269-4280.‏ DOI: https://doi.org/10.1210/en.2015-1494
https://doi.org/https://doi.org/10.1210/...
; Haas et al., 2019Haas, C. S., Rovani, M. T., Ilha, G. F., Bertolin, K., Ferst, J. G., Bridi, A., … Gasperin, B. G. (2019). Transforming growth factor-beta family members are regulated during induced luteolysis in cattle. Animal Reproduction, 16, 829-837.‏ DOI: https://doi.org/10.21451/1984-3143-ar2018-0146
https://doi.org/https://doi.org/10.21451...
). During follicle and oocyte maturation in farm animals, BMPs signaling affects animal fertility by regulating sex hormone secretion, gene expression of gonadotropin receptors, and oocyte quality (Figure 1) (Zhang et al., 2015Zhang, H., Klausen, C., Zhu, H., Chang, H. M., & Leung, P. C. (2015). BMP4 and BMP7 suppress StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 in human granulosa-lutein cells. Endocrinology, 156(11), 4269-4280.‏ DOI: https://doi.org/10.1210/en.2015-1494
https://doi.org/https://doi.org/10.1210/...
; Sanfins et al., 2018Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4
https://doi.org/https://doi.org/10.1007/...
). BMPs signaling is also related to ovulation rate and estrus cycle (Lochab & Extavour, 2017Lochab, A. K., & Extavour, C. G. (2017). Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Developmental Biology, 427(2), 258-269. DOI: https://doi.org/10.1016/j.ydbio.2017.03.002
https://doi.org/https://doi.org/10.1016/...
).

Figure 1.
The main bone morphogenetic proteins (BMPs) members and the functional roles in regulating ovarian physiology.

Among the most important members of the BMPs is BMP15, which has a vital role in the female fertility of livestock (Hernández-Montiel et al., 2020Hernández-Montiel, W., Martínez-Núñez, M. A., Ramón-Ugalde, J. P., Román-Ponce, S. I., Calderón-Chagoya, R., & Zamora-Bustillos, R. (2020). Genome-wide association study reveals candidate genes for litter size traits in pelibuey sheep. Animals, 10(3), 434.‏ DOI: https://doi.org/10.3390/ani10030434
https://doi.org/https://doi.org/10.3390/...
). The physiological action of the BMP15 is more effective in sheep in the first stages of follicle growth (Rossi et al., 2015Rossi, R. O. D. S., Portela, A. M. L. R., Passos, J. R. S., Cunha, E. V., Silva, A. W. B., Costa, J. J. N., … Silva, J. R. V. (2015). Effects of BMP-4 and FSH on growth, morphology and mRNA expression of oocyte-secreted factors in cultured bovine secondary follicles. Animal Reproduction, 12(4), 910-919.‏), and expressed at the initial stage of follicular development in many livestock species (Sanfins et al., 2018Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4
https://doi.org/https://doi.org/10.1007/...
). During the development of ovarian follicles, the expression of oocyte-secreted factors BMP15 contributes to follicular growth through a paracrine signaling pathway (Rossi et al., 2015Rossi, R. O. D. S., Portela, A. M. L. R., Passos, J. R. S., Cunha, E. V., Silva, A. W. B., Costa, J. J. N., … Silva, J. R. V. (2015). Effects of BMP-4 and FSH on growth, morphology and mRNA expression of oocyte-secreted factors in cultured bovine secondary follicles. Animal Reproduction, 12(4), 910-919.‏). Furthermore, it is involved in the development of primordial follicles into the primary follicle, and in preventing premature luteinization (Sanfins et al., 2018Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4
https://doi.org/https://doi.org/10.1007/...
). BMP15 inhibits premature follicular luteinization by downregulating the steroidogenic acute regulatory protein (StAR) and suppressing the LH receptor. These effects on follicular cell functions could finally lead to the absence of a dominant follicle (Dalbies-Tran et al., 2020Dalbies-Tran, R., Cadoret, V., Desmarchais, A., Elis, S., Maillard, V., Monget, P., … Uzbekova, S. (2020). A comparative analysis of oocyte development in mammals. Cells, 9(4), 1002.‏ DOI: https://doi.org/10.3390/cells9041002
https://doi.org/https://doi.org/10.3390/...
). After ovulation, the rapid decrease of these oocyte factors in the corpus luteum led to elevate StAR expression and consequent control of follicular maturation by modulating FSH's differentiating effects (Sanfins et al., 2018Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4
https://doi.org/https://doi.org/10.1007/...
). In addition, BMP15 plays a vital role in regulating ovulation rate and oocyte health along with the initiation of pregnancy (Ghoreishi, Fathi-Yosefabad, Shayegh, & Barzegari, 2019Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570. DOI: https://doi.org/10.5194/aab-62-565-2019
https://doi.org/https://doi.org/10.5194/...
).

Several mechanisms by which BMP15 influences the ovulation rate in livestock. BMP15 participates in ovarian folliculogenesis as it regulates its action by the binding protein follistatin, which by binding to BMP15 inhibits its effect on the expression of FSH receptors in granulosa cells (Chu et al., 2018Chu, Y. L., Xu, Y. R., Yang, W. X., & Sun, Y. (2018). The role of FSH and TGF-β superfamily in follicle atresia. Aging, 10(3), 305.‏ DOI: https://doi.org/10.18632/aging.101391
https://doi.org/https://doi.org/10.18632...
; Nagdy et al., 2018Nagdy, H., Mahmoud, K. G. M., Kandiel, M. M., Helmy, N. A., Ibrahim, S. S., Nawito, M. F., & Othman, O. E. (2018). PCR-RFLP of bone morphogenetic protein 15 (BMP15/ FecX) gene as a candidate for prolificacy in sheep. International Journal of Veterinary Science and Medicine, 6(sup1), S68-S72. DOI: https://doi.org/10.1016/j.ijvsm. 2018.01.001
https://doi.org/https://doi.org/10.1016/...
). Because more follicles can synthesize LH receptors, even when FSH levels drop, the development of more follicles continues during the preovulation period, leading to the female releasing more eggs during the anestrus period (Wang et al., 2021Wang, F., Chu, M., Pan, L., Wang, X., He, X., Zhang, R., … Di, R. (2021). Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovis aries). Animals, 11(2), 571. DOI: https://doi.org/10.3390/ani11020571
https://doi.org/https://doi.org/10.3390/...
). In parallel, mutations in the BMP15 gene in farm animals showed higher ovulation rates and a higher rate of twins in heterozygous animals, while homozygous animals are sterile (Nagdy et al. 2018Nagdy, H., Mahmoud, K. G. M., Kandiel, M. M., Helmy, N. A., Ibrahim, S. S., Nawito, M. F., & Othman, O. E. (2018). PCR-RFLP of bone morphogenetic protein 15 (BMP15/ FecX) gene as a candidate for prolificacy in sheep. International Journal of Veterinary Science and Medicine, 6(sup1), S68-S72. DOI: https://doi.org/10.1016/j.ijvsm. 2018.01.001
https://doi.org/https://doi.org/10.1016/...
). This mutation leads to an increase in the density of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in granulosa cells, which can reduce apoptosis of the granulosa cells and increase the ovulation rate (Abdurahman et al., 2019Abdurahman, A., Du, X., Yao, Y., Sulaiman, Y., Aniwashi, J., & Li, Q. (2019). Smad4 feedback enhances BMPR1B transcription in ovine granulosa cells. International Journal of Molecular Sciences, 20(11), 2732.‏ DOI: https://doi.org/10.3390/ijms20112732
https://doi.org/https://doi.org/10.3390/...
; Wang et al., 2021Wang, F., Chu, M., Pan, L., Wang, X., He, X., Zhang, R., … Di, R. (2021). Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovis aries). Animals, 11(2), 571. DOI: https://doi.org/10.3390/ani11020571
https://doi.org/https://doi.org/10.3390/...
). The low BMP15 signaling is believed to contribute to the sensitization of granulosa cells to FSH, and thus to the selection and maintenance of follicles during the follicular phase, resulting in enhanced ovulation in these mutant ewes (Estienne et al., 2017Estienne, A., Lahoz, B., Jarrier-Gaillard, P., Bodin, L., Folch, J., Alabart, J. L., … Monniaux, D. (2017). BMP15 regulates the inhibin/activin system independently of ovulation rate control in sheep. Reproduction, 153(4), 395-404.‏ DOI: https://doi.org/10.1530/REP-16-0507
https://doi.org/https://doi.org/10.1530/...
). In contrast, ewes homozygous for BMP15 mutations exhibit early inhibition of follicle growth and reduce the sensitivity of granulosa cells to FSH by inhibiting expression of the FSH receptor (Wang et al., 2021Wang, F., Chu, M., Pan, L., Wang, X., He, X., Zhang, R., … Di, R. (2021). Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovis aries). Animals, 11(2), 571. DOI: https://doi.org/10.3390/ani11020571
https://doi.org/https://doi.org/10.3390/...
). Additionally, ewes with mutations of BMP15 show a diminished expression of anti-Müllerian hormone receptors (AMHR2 or AMH) in the granulosa cells of their antral follicles. These mutant ewes have low levels of BMP15 and AMH signaling, which improves granulosa cell sensitization to FSH, thereby enhancing the rate of ovulation (Estienne et al., 2017Estienne, A., Lahoz, B., Jarrier-Gaillard, P., Bodin, L., Folch, J., Alabart, J. L., … Monniaux, D. (2017). BMP15 regulates the inhibin/activin system independently of ovulation rate control in sheep. Reproduction, 153(4), 395-404.‏ DOI: https://doi.org/10.1530/REP-16-0507
https://doi.org/https://doi.org/10.1530/...
).

The role of BMPs/GDF9 system in ovarian follicle growth and differentiation

A combination of autocrine/paracrine factors is involved in ovarian follicle growth and differentiation (Kawashima & Kawamura, 2018Kawashima, I., & Kawamura, K. (2018). Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Systems Biology in Reproductive Medicine, 64(1), 3-11.‏ DOI: https://doi.org/10.1080/19396368.2017.1411990
https://doi.org/https://doi.org/10.1080/...
). In livestock ovaries, the expression pattern of BMPs ligands and receptors indicates that the BMPs system and GDF9 form a vital part of this intra-follicular network (Rossi et al., 2015Rossi, R. O. D. S., Portela, A. M. L. R., Passos, J. R. S., Cunha, E. V., Silva, A. W. B., Costa, J. J. N., … Silva, J. R. V. (2015). Effects of BMP-4 and FSH on growth, morphology and mRNA expression of oocyte-secreted factors in cultured bovine secondary follicles. Animal Reproduction, 12(4), 910-919.‏). The BMPs system and GDF9 regulate granulosa cell proliferation, differentiation, and apoptosis during follicle formation through autocrine/ paracrine action in the ovary (Shimasaki, Moore, Otsuka, & Erickson, 2004Shimasaki, S., Moore, R. K., Otsuka, F., & Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocrine Reviews, 25(1), 72-101.‏ DOI: https://doi.org/10.1210/er.2003-0007
https://doi.org/https://doi.org/10.1210/...
) (Figure 2). The oocytes express BMP6, BMP15, and GDF9 (Belli & Shimasaki, 2018Belli, M., & Shimasaki, S. (2018). Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function. Vitamins and Hormones, 107, 317-348.‏ DOI: https://doi.org/10.1016/bs.vh.2017.12.003
https://doi.org/https://doi.org/10.1016/...
), granulosa cells express BMPR-II and ALK3 and ALK6 receptors, and theca cells express the ALK3, and ALK6 receptors (Liu, Qin, Qu, Wang, & Yan, 2020Liu, T., Qin, Q. Y., Qu, J. X., Wang, H. Y., & Yan, J. (2020). Where are the theca cells from: the mechanism of theca cells derivation and differentiation. Chinese Medical Journal, 133(14), 1711. DOI: https://doi.org/10.1097/CM9.0000000000000850
https://doi.org/https://doi.org/10.1097/...
). Whereas theca cells, granulosa cells, and oocytes express BMP3b, BMP4, and BMP7 (Juengel, Smith, Quirke, French, & Edwards, 2018Juengel, J. L., Smith, P. R., Quirke, L. D., French, M. C., & Edwards, S. J. (2018). The local regulation of folliculogenesis by members of the transforming growth factor superfamily and its relevance for advanced breeding programmes. Animal Reproduction, 15(3), 180.‏ DOI: https://doi.org/10.21451/1984-3143-AR2018-0055
https://doi.org/https://doi.org/10.21451...
).

Oocyte derived growth factors, GDF9 and BMP15 are expressed selectively by oocytes from the primordial stage in ruminants and interact during follicular development, thereby affecting litter size (Heath, Pitman, & McNatty, 2017Heath, D. A., Pitman, J. L., & McNatty, K. P. (2017). Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors. Reproduction, 154(4), 521-534.‏ DOI: https://doi.org/10.1530/REP-17-0188
https://doi.org/https://doi.org/10.1530/...
). These oocyte growth factors are essential in the early stages of follicle development and then in late follicular development (Sanfins et al., 2018Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4
https://doi.org/https://doi.org/10.1007/...
). Furthermore, it plays a fundamental role in the differentiation of the different granulosa cell types (Alam & Miyano, 2020Alam, M. H., & Miyano, T. (2020). Interaction between growing oocytes and granulosa cells in vitro. Reproductive Medicine and Biology, 19(1), 13-23. DOI: https://doi.org/10.1002/rmb2.12292‏
https://doi.org/https://doi.org/10.1002/...
) and regulates the basic functions of granulosa cells (Sanfins et al., 2018). Therefore, these factors control the differentiation and function of granulosa cells and the patterns of gene expression in somatic follicular cells (Alam & Miyano, 2020). BMP15 and GDF9 have been implicated in stimulating the expansion of cumulus cells by stimulating the expression of hyaluronan synthase 2, which is crucial in the matrix formation needed for cumulus expansion (Sanfins et al., 2018Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4
https://doi.org/https://doi.org/10.1007/...
). In addition, to regulate ovulation rate both GDF9 and BMP15 may strongly contribute to oocyte health and pregnancy establishment (Ghoreishi et al., 2019Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570. DOI: https://doi.org/10.5194/aab-62-565-2019
https://doi.org/https://doi.org/10.5194/...
).

While BMP15 is responsible for granulosa cells proliferation, differentiation, and follicle development, GDF9 plays a critical role in regulating ovarian function and enhancing oocyte developmental competence (Wang et al., 2021Wang, F., Chu, M., Pan, L., Wang, X., He, X., Zhang, R., … Di, R. (2021). Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovis aries). Animals, 11(2), 571. DOI: https://doi.org/10.3390/ani11020571
https://doi.org/https://doi.org/10.3390/...
). This suggests that BMP15 and GDF9 work synergistically to promote ovulation, oocyte health, and pregnancy establishment (Alam & Miyano, 2020Alam, M. H., & Miyano, T. (2020). Interaction between growing oocytes and granulosa cells in vitro. Reproductive Medicine and Biology, 19(1), 13-23. DOI: https://doi.org/10.1002/rmb2.12292‏
https://doi.org/https://doi.org/10.1002/...
).

Figure 2
The role of growth factors in the ovarian follicle.

Furthermore, there is evidence of the combination of BMP15 and GDF9 mutations, as evidenced with ewes who have mutations in both BMP15 and GDF9 ovulate more frequently than heterozygotes with mutations in one of them alone (Ghoreishi et al., 2019Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570. DOI: https://doi.org/10.5194/aab-62-565-2019
https://doi.org/https://doi.org/10.5194/...
). Thus, it is crucial to consider BMP15 and GDF9 interactions in follicular development that further affect livestock litter size.

The oocyte-specific growth factors and litter size

The oocytes secrete many essential growth factors into granulosa cells to regulate the growth and development of follicles through paracrine regulation (Figure 3) (Piotrowska et al., 2013Piotrowska, H., Kempisty, B., Sosinska, P., Ciesiolka, S., Bukowska, D., Antosik, P., … Zabel, M. (2013). The role of TGF superfamily gene expression in the regulation of folliculogenesis and oogenesis in mammals: a review. Veterinarni Medicina, 58(10), 505-515.‏ DOI: https://doi.org/10.17221/7082-VETMED
https://doi.org/https://doi.org/10.17221...
; Castro et al., 2016Castro, F. C., Cruz, M. H. C., & Leal, C. L. V. (2016). Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility - a review. Asian-Australasian Journal of Animal Sciences, 29(8), 1065.‏ DOI: https://doi.org/10.5713/ajas.15.0797
https://doi.org/https://doi.org/10.5713/...
). BMP15 is specialized cell-expressed in the ovaries of livestock and plays major roles in regulating follicle formation, ovulation, and luteal functions (Rossi et al., 2015Rossi, R. O. D. S., Portela, A. M. L. R., Passos, J. R. S., Cunha, E. V., Silva, A. W. B., Costa, J. J. N., … Silva, J. R. V. (2015). Effects of BMP-4 and FSH on growth, morphology and mRNA expression of oocyte-secreted factors in cultured bovine secondary follicles. Animal Reproduction, 12(4), 910-919.‏). Besides, GDF9 promotes the proliferation of theca cells and reduces steroid formation, thus it may prevent theca cells from early differentiation during follicle formation (Souza, McNeilly, Benavides, Melo, & Moraes, 2014Souza, C. J. H., McNeilly, A. S., Benavides, M. V., Melo, E. O., & Moraes, J. C. F. (2014). Mutation in the protease cleavage site of GDF 9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Animal Genetics, 45(5), 732-739. DOI: https://doi.org/10.1111/age.12190
https://doi.org/https://doi.org/10.1111/...
).

Figure 3
Oocyte growth factors and follicular growth.

Paracrine oocyte growth factors BMP15 and GDF9 are essential components of intra-follicular communication (Andrade, Collado, Meirelles, Silveira, & Perecin, 2019Andrade, G. M., Collado, M. D., Meirelles, F. V., Silveira, J. C. D., & Perecin, F. (2019). Intrafollicular barriers and cellular interactions during ovarian follicle development. Animal Reproduction, 16(3), 485-496. DOI: https://doi.org/10.21451/1984-3143-AR2019-0051
https://doi.org/https://doi.org/10.21451...
). Oocytes express GDF9 in developing ovarian follicles, which is essential for early ovarian follicle growth and differentiation (Ghoreishi et al., 2019Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570. DOI: https://doi.org/10.5194/aab-62-565-2019
https://doi.org/https://doi.org/10.5194/...
). Then, BMP15 plays a vital role in female fertility in livestock through its role in regulating granulosa cell proliferation and differentiation by suppressing the expression of FSH receptors and enhancing ligand expression (Qin et al., 2019Qin, Y., Tang, T., Li, W., Liu, Z., Yang, X., Shi, X., … He, Z. (2019). Bone morphogenetic protein 15 knockdown inhibits porcine ovarian follicular development and ovulation. Frontiers in Cell and Developmental Biology, 286.‏ DOI: https://doi.org/10.3389/fcell.2019.00286
https://doi.org/https://doi.org/10.3389/...
). This paracrine interaction between the oocyte and the surrounding follicular cells promotes the growth and development of both the oocyte and follicle (Andrade et al., 2019Andrade, G. M., Collado, M. D., Meirelles, F. V., Silveira, J. C. D., & Perecin, F. (2019). Intrafollicular barriers and cellular interactions during ovarian follicle development. Animal Reproduction, 16(3), 485-496. DOI: https://doi.org/10.21451/1984-3143-AR2019-0051
https://doi.org/https://doi.org/10.21451...
). In addition, BMP15 and GDF9 act as paracrine/autocrine agent to stimulate follicle growth and has a great role in regulating ovulation rate and litter size (Ghoreishi et al., 2019Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570. DOI: https://doi.org/10.5194/aab-62-565-2019
https://doi.org/https://doi.org/10.5194/...
). They are highly expressed in oocytes and are necessary for female fertility and multiple ovulation in several species of livestock (Hernández-Montiel et al., 2020Hernández-Montiel, W., Martínez-Núñez, M. A., Ramón-Ugalde, J. P., Román-Ponce, S. I., Calderón-Chagoya, R., & Zamora-Bustillos, R. (2020). Genome-wide association study reveals candidate genes for litter size traits in pelibuey sheep. Animals, 10(3), 434.‏ DOI: https://doi.org/10.3390/ani10030434
https://doi.org/https://doi.org/10.3390/...
).

Moreover, these factors allow more follicles to synthesize LH receptors even when FSH levels drop this enables a developing female to release more eggs during its anestrus phase (Figure 4). Variant BMP15 and GDF9 expressions affect the paracrine actions of these oocyte-secreted factors and altered follicle development that blocks the biological actions of BMP15 or GDF9, suggesting potential as contraceptives or sterilizing agents (Niu et al., 2021Niu, Z. G., Qin, J., Jiang, Y., Ding, X. D., Ding, Y. G., Tang, S., & Shi, H. C. (2021). The identification of mutation in BMP15 gene associated with litter size in Xinjiang cele black sheep. Animals, 11(3), 668.‏ DOI: https://doi.org/10.3390/ani11030668
https://doi.org/https://doi.org/10.3390/...
).

Figure 4
The association of BMP15 and GDF9 with litter size.

Conclusion

The present review provides valuable information on the association of BMP15 and GDF9 with litter size in livestock that can be used as biological markers of multiple ovulation or for improving fertility in livestock. Mutations in the BMP15 and GDF9 genes provide valuable genetic resources for livestock production. These mutations affect growth factor profiles, affecting litter size. The effects of BMP15 and GDF9 interactions on follicular development on livestock litter size require further consideration. Breeders need to pay attention to the importance of BMP15 and GDF9 as fertility markers since abnormalities in their expression may result in animal infertility.

References

  • Abdurahman, A., Du, X., Yao, Y., Sulaiman, Y., Aniwashi, J., & Li, Q. (2019). Smad4 feedback enhances BMPR1B transcription in ovine granulosa cells. International Journal of Molecular Sciences, 20(11), 2732.‏ DOI: https://doi.org/10.3390/ijms20112732
    » https://doi.org/https://doi.org/10.3390/ijms20112732
  • Alam, M. H., & Miyano, T. (2020). Interaction between growing oocytes and granulosa cells in vitro. Reproductive Medicine and Biology, 19(1), 13-23. DOI: https://doi.org/10.1002/rmb2.12292‏
    » https://doi.org/https://doi.org/10.1002/rmb2.12292‏
  • Ajafar, M. H., Kadhim, A. H., & AL-Thuwaini, T. M. (2022). The Reproductive Traits of Sheep and Their Influencing Factors. Reviews in Agricultural Science, 10, 82-89. DOI: https://doi.org/10.7831/ras.10.0_82 ‏
    » https://doi.org/https://doi.org/10.7831/ras.10.0_82 ‏
  • Ali, M. A., Kadhim, A. H., & Al-Thuwaini, T. M. (2022). Genetic variants of the bone morphogenetic protein gene and its association with estrogen and progesterone levels with litter size in Awassi ewes. Iraqi Journal of Veterinary Sciences, 36(4), 1017-1022.‏
  • Al-Thuwaini, T. M. (2021a). The relationship of hematological parameters with adaptation and reproduction in sheep: a review study. Iraqi Journal of Veterinary Sciences, 35(3), 575-580.‏ DOI: https://doi.org/10.33899/ijvs.2020.127253.1490
    » https://doi.org/https://doi.org/10.33899/ijvs.2020.127253.1490
  • Al-Thuwaini, T. M. (2021b). Novel single nucleotide polymorphism in the prolactin gene of Awassi ewes and its role in the reproductive traits. Iraqi Journal of Veterinary Sciences, 35(3), 429-435. DOI: https://doi.org/10.33899/ijvs.2020.126973.1423
    » https://doi.org/https://doi.org/10.33899/ijvs.2020.126973.1423
  • AL-Thuwaini, T. M. (2022). Adiponectin and Its Physiological Function in Ruminant Livestock. Reviews in Agricultural Science, 10, 115-122. DOI: https://doi.org/10.7831/ras.10.0_115 ‏
    » https://doi.org/https://doi.org/10.7831/ras.10.0_115 ‏
  • Al-Thuwaini, T. M., & Al-Hadi, A. B. A. (2022). Association of lamb sex with body measurements in single and twin on the Awassi ewes. Advances in Animal and Veterinary Sciences, 10(8), 1849-1853.‏ DOI: https://dx.doi.org/10.17582/journal.aavs/2022/10.8.1849.1853
    » https://doi.org/https://dx.doi.org/10.17582/journal.aavs/2022/10.8.1849.1853
  • Al-Thuwaini, T. M., & Kareem, Z. A. (2022). Novel missense variant L46Q of fatty acid synthase gene and fatty acids content in Awassi sheep. Acta Scientiarum. Animal Sciences, 44‏ DOI: 10.4025/actascianimsci.v44i1.56273
    » https://doi.org/10.4025/actascianimsci.v44i1.56273
  • Andrade, G. M., Collado, M. D., Meirelles, F. V., Silveira, J. C. D., & Perecin, F. (2019). Intrafollicular barriers and cellular interactions during ovarian follicle development. Animal Reproduction, 16(3), 485-496. DOI: https://doi.org/10.21451/1984-3143-AR2019-0051
    » https://doi.org/https://doi.org/10.21451/1984-3143-AR2019-0051
  • Belli, M., & Shimasaki, S. (2018). Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function. Vitamins and Hormones, 107, 317-348.‏ DOI: https://doi.org/10.1016/bs.vh.2017.12.003
    » https://doi.org/https://doi.org/10.1016/bs.vh.2017.12.003
  • Castro, F. C., Cruz, M. H. C., & Leal, C. L. V. (2016). Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility - a review. Asian-Australasian Journal of Animal Sciences, 29(8), 1065.‏ DOI: https://doi.org/10.5713/ajas.15.0797
    » https://doi.org/https://doi.org/10.5713/ajas.15.0797
  • Chu, Y. L., Xu, Y. R., Yang, W. X., & Sun, Y. (2018). The role of FSH and TGF-β superfamily in follicle atresia. Aging, 10(3), 305.‏ DOI: https://doi.org/10.18632/aging.101391
    » https://doi.org/https://doi.org/10.18632/aging.101391
  • Dalbies-Tran, R., Cadoret, V., Desmarchais, A., Elis, S., Maillard, V., Monget, P., … Uzbekova, S. (2020). A comparative analysis of oocyte development in mammals. Cells, 9(4), 1002.‏ DOI: https://doi.org/10.3390/cells9041002
    » https://doi.org/https://doi.org/10.3390/cells9041002
  • Estienne, A., Lahoz, B., Jarrier-Gaillard, P., Bodin, L., Folch, J., Alabart, J. L., … Monniaux, D. (2017). BMP15 regulates the inhibin/activin system independently of ovulation rate control in sheep. Reproduction, 153(4), 395-404.‏ DOI: https://doi.org/10.1530/REP-16-0507
    » https://doi.org/https://doi.org/10.1530/REP-16-0507
  • Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570. DOI: https://doi.org/10.5194/aab-62-565-2019
    » https://doi.org/https://doi.org/10.5194/aab-62-565-2019
  • Haas, C. S., Rovani, M. T., Ilha, G. F., Bertolin, K., Ferst, J. G., Bridi, A., … Gasperin, B. G. (2019). Transforming growth factor-beta family members are regulated during induced luteolysis in cattle. Animal Reproduction, 16, 829-837.‏ DOI: https://doi.org/10.21451/1984-3143-ar2018-0146
    » https://doi.org/https://doi.org/10.21451/1984-3143-ar2018-0146
  • Heath, D. A., Pitman, J. L., & McNatty, K. P. (2017). Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors. Reproduction, 154(4), 521-534.‏ DOI: https://doi.org/10.1530/REP-17-0188
    » https://doi.org/https://doi.org/10.1530/REP-17-0188
  • Hernández-Montiel, W., Martínez-Núñez, M. A., Ramón-Ugalde, J. P., Román-Ponce, S. I., Calderón-Chagoya, R., & Zamora-Bustillos, R. (2020). Genome-wide association study reveals candidate genes for litter size traits in pelibuey sheep. Animals, 10(3), 434.‏ DOI: https://doi.org/10.3390/ani10030434
    » https://doi.org/https://doi.org/10.3390/ani10030434
  • Imran, F. S., Al-Thuwaini, T. M., Al-Shuhaib, M. B. S., & Lepretre, F. (2021). A Novel Missense Single Nucleotide Polymorphism in the GREM1 Gene is Highly Associated with Higher Reproductive Traits in Awassi Sheep. Biochemical Genetics, 59(2), 422-436.‏ DOI: https://doi.org/10.1007/s10528-020-10006-x
    » https://doi.org/https://doi.org/10.1007/s10528-020-10006-x
  • Juengel, J. L., Smith, P. R., Quirke, L. D., French, M. C., & Edwards, S. J. (2018). The local regulation of folliculogenesis by members of the transforming growth factor superfamily and its relevance for advanced breeding programmes. Animal Reproduction, 15(3), 180.‏ DOI: https://doi.org/10.21451/1984-3143-AR2018-0055
    » https://doi.org/https://doi.org/10.21451/1984-3143-AR2018-0055
  • Kadhem, A. F., & Al-Thuwaini, T. M. (2022). Influence of litter size on the hematologic profile of Awassi ewes during gestation and lactation. Veterinary Integrative Sciences, 20(3), 625-633.‏ DOI: https://doi.org/10.12982/VIS. 2022.047
    » https://doi.org/https://doi.org/10.12982/VIS. 2022.047
  • Kawashima, I., & Kawamura, K. (2018). Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Systems Biology in Reproductive Medicine, 64(1), 3-11.‏ DOI: https://doi.org/10.1080/19396368.2017.1411990
    » https://doi.org/https://doi.org/10.1080/19396368.2017.1411990
  • Liu, T., Qin, Q. Y., Qu, J. X., Wang, H. Y., & Yan, J. (2020). Where are the theca cells from: the mechanism of theca cells derivation and differentiation. Chinese Medical Journal, 133(14), 1711. DOI: https://doi.org/10.1097/CM9.0000000000000850
    » https://doi.org/https://doi.org/10.1097/CM9.0000000000000850
  • Lochab, A. K., & Extavour, C. G. (2017). Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Developmental Biology, 427(2), 258-269. DOI: https://doi.org/10.1016/j.ydbio.2017.03.002
    » https://doi.org/https://doi.org/10.1016/j.ydbio.2017.03.002
  • Mohammed, M. H., Al-Thuwaini, T. M., & Al-Shuhaib, M. B. S. (2021). The association of the single-and twin-bearing with the lipid profile on the status of the reproductive hormones in iraqi awassi ewes. Advances in Animal and Veterinary Sciences, 9(9), 1456-1459. DOI: https://doi.org/10.17582/journal.aavs/2021/9.9.1456.1459 ‏
    » https://doi.org/https://doi.org/10.17582/journal.aavs/2021/9.9.1456.1459 ‏
  • Muñoz-García, C., Torres-Hernández, G., Gallegos-Sánchez, J., Cuca-García, J. M., Salazar-Ortiz, J., & Cortez-Romero, C. (2020). Role of fecundity genes in ovulation rate and litter size in sheep. Agro Productividad, 13(6). DOI: https://doi.org/10.32854/agrop.v13i6.1630
    » https://doi.org/https://doi.org/10.32854/agrop.v13i6.1630
  • Nagdy, H., Mahmoud, K. G. M., Kandiel, M. M., Helmy, N. A., Ibrahim, S. S., Nawito, M. F., & Othman, O. E. (2018). PCR-RFLP of bone morphogenetic protein 15 (BMP15/ FecX) gene as a candidate for prolificacy in sheep. International Journal of Veterinary Science and Medicine, 6(sup1), S68-S72. DOI: https://doi.org/10.1016/j.ijvsm. 2018.01.001
    » https://doi.org/https://doi.org/10.1016/j.ijvsm. 2018.01.001
  • Niu, Z. G., Qin, J., Jiang, Y., Ding, X. D., Ding, Y. G., Tang, S., & Shi, H. C. (2021). The identification of mutation in BMP15 gene associated with litter size in Xinjiang cele black sheep. Animals, 11(3), 668.‏ DOI: https://doi.org/10.3390/ani11030668
    » https://doi.org/https://doi.org/10.3390/ani11030668
  • Piotrowska, H., Kempisty, B., Sosinska, P., Ciesiolka, S., Bukowska, D., Antosik, P., … Zabel, M. (2013). The role of TGF superfamily gene expression in the regulation of folliculogenesis and oogenesis in mammals: a review. Veterinarni Medicina, 58(10), 505-515.‏ DOI: https://doi.org/10.17221/7082-VETMED
    » https://doi.org/https://doi.org/10.17221/7082-VETMED
  • Qin, Y., Tang, T., Li, W., Liu, Z., Yang, X., Shi, X., … He, Z. (2019). Bone morphogenetic protein 15 knockdown inhibits porcine ovarian follicular development and ovulation. Frontiers in Cell and Developmental Biology, 286.‏ DOI: https://doi.org/10.3389/fcell.2019.00286
    » https://doi.org/https://doi.org/10.3389/fcell.2019.00286
  • Rossi, R. O. D. S., Portela, A. M. L. R., Passos, J. R. S., Cunha, E. V., Silva, A. W. B., Costa, J. J. N., … Silva, J. R. V. (2015). Effects of BMP-4 and FSH on growth, morphology and mRNA expression of oocyte-secreted factors in cultured bovine secondary follicles. Animal Reproduction, 12(4), 910-919.‏
  • Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4
    » https://doi.org/https://doi.org/10.1007/s10815-018-1268-4
  • Santibanez, J. F., & Kocic, J. (2012). Transforming growth factor-β superfamily, implications in development and differentiation of stem cells. Biomolecular Concepts, 3(5), 429-445.‏ DOI: https://doi.org/10.1515/bmc-2012-0015
    » https://doi.org/https://doi.org/10.1515/bmc-2012-0015
  • Shimasaki, S., Moore, R. K., Otsuka, F., & Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocrine Reviews, 25(1), 72-101.‏ DOI: https://doi.org/10.1210/er.2003-0007
    » https://doi.org/https://doi.org/10.1210/er.2003-0007
  • Souza, C. J. H., McNeilly, A. S., Benavides, M. V., Melo, E. O., & Moraes, J. C. F. (2014). Mutation in the protease cleavage site of GDF 9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Animal Genetics, 45(5), 732-739. DOI: https://doi.org/10.1111/age.12190
    » https://doi.org/https://doi.org/10.1111/age.12190
  • ‏Tesema, Z., Deribe, B., Kefale, A., Lakew, M., Tilahun, M., Shibesh, M., … Yizengaw, L. (2020). Survival analysis and reproductive performance of Dorper x Tumele sheep. Heliyon, 6(4), e03840.‏ DOI: https://doi.org/10.1016/j.heliyon.2020.e03840
    » https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e03840
  • Tong, Z., Guo, J., Glen, R. C., Morrell, N. W., & Li, W. (2019). A Bone Morphogenetic Protein (BMP)-derived Peptide Based on the Type I Receptor-binding Site Modifies Cell-type Dependent BMP Signalling. Scientific Reports, 9(1), 1-9.‏ DOI: https://doi.org/10.1038/s41598-019-49758-x
    » https://doi.org/https://doi.org/10.1038/s41598-019-49758-x
  • Wang, F., Chu, M., Pan, L., Wang, X., He, X., Zhang, R., … Di, R. (2021). Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovis aries). Animals, 11(2), 571. DOI: https://doi.org/10.3390/ani11020571
    » https://doi.org/https://doi.org/10.3390/ani11020571
  • Wang, W., La, Y., Zhou, X., Zhang, X., Li, F., & Liu, B. (2018). The genetic polymorphisms of TGFβ superfamily genes are associated with litter size in a Chinese indigenous sheep breed (Hu sheep). Animal Reproduction Science, 189, 19-29. DOI: https://doi.org/10.1016/j.anireprosci.2017.12.003 ‏
    » https://doi.org/https://doi.org/10.1016/j.anireprosci.2017.12.003 ‏
  • Zhang, H., Klausen, C., Zhu, H., Chang, H. M., & Leung, P. C. (2015). BMP4 and BMP7 suppress StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 in human granulosa-lutein cells. Endocrinology, 156(11), 4269-4280.‏ DOI: https://doi.org/10.1210/en.2015-1494
    » https://doi.org/https://doi.org/10.1210/en.2015-1494

Publication Dates

  • Publication in this collection
    20 Mar 2023
  • Date of issue
    2023

History

  • Received
    24 Feb 2021
  • Accepted
    03 Mar 2022
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, CEP 87020-900 , Tel. (55 44) 3011-4253, Fax (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaanim@uem.br