Cassava starch, dolomitic limestone and eucalypt cellulose fibres were used to prepare foam trays that could be used to pack foodstuffs. The influence of the cellulose fibre concentration in the composite formulation was investigated using 5, 10, 15, 20, 30 and 40% of fibres. The results indicated that an increase in cellulose fibre concentration promoted a decrease in density and tensile strength of the foam samples. The tensile strength at break for foam trays containing 5% of cellulose fibres was 3.03MPa, whilst the commercial trays of expanded polystyrene used to pack foods in supermarkets presented a tensile strength of 1.49 MPa. The elongation at break of the foam trays obtained in this work varied slightly with increase in cellulose fibre concentration, the values being about 20% lower than the elongation at break observed for commercial foam trays of expanded polystyrene. Thus, the materials developed in this work represented a possible alternative to the use of EPS foam trays for packing dry foods. The trays' properties need to be improved for their use with moist foods.
biodegradable trays; cassava starch; eucalypt cellulose fibres; limestone; guar gum; thermoprocessing