Acessibilidade / Reportar erro

Teste de um modelo de monitoramento de água no solo para uma cultura de sorgo submetida a diferentes tratamentos de irrigação

Test of a soil water assessment model for a sorghum crop under different irrigation treatments

Resumos

Um modelo de balanço hídrico diário utilizando informações de estação meteorológica automática, fenologia e informações edáficas foi ajustado e testado para uma cultura de sorgo usando experimentos de campo com diferentes tratamentos de irrigação durante o verão de 1990 e 1991, em Mead, Estado de Nebraska-EUA. Estimativas do total de água no solo a partir do balanço hídrico compararam-se bem com as leituras de sonda de nêutrons tomadas nos diferentes tratamentos. O desempenho do modelo, por camadas de solo, indicou pequena subestimativa da umidade nas camadas superiores, pequena superestimativa nas inferiores e boa estimativa nas intermediárias. A eliminação desses erros resultaria em melhor desempenho do modelo nas diferentes camadas. Boas estimativas do total de água no solo podem ser obtidas através deste balanço hídrico edafoclimático modificado com base em informações fenológicas, edáficas e de dados obtidos de estações meteorológicas automáticas.

balanço hídrico; sorgo; Sorghum bicolor L.; evaporação; transpiração; umidade do solo


A model to monitor the soil water status using automated weather station data, crop phenology, and soil information was adjusted and tested for a sorghum crop using field experiments with eight different water treatments in a randomized split factorial block irrigation design during the 1990 and 1991 growing seasons at Mead, Nebraska-USA. Estimates of the total soil water content from the soil water balance model matched well with neutron-probe readings in the sorghum crop. Model performance by soil layer indicates slight underestimates of soil water content in the upper layers of soil, slight overestimates of soil water content in the lower soil layers, and close agreement between simulated and observed soil water contents in the middle soil layers. Elimination of these small offseting errors from the model would result in an improved performance within layers. One possible means of eliminating the error is to adjust the root soil water extraction slightly away from the upper levels and toward the lowest levels. Based on the fact that model estimates of total soil water were in good agreement with observations, it is concluded that it is reasonable to estimate soil water conditions on a routine basis using near-real time automated weather station data.

soil water balance; Sorghum bicolor L.; evaporation; transpiration; soil moisture


IX. IRRIGATION

Test of a soil water assessment model for a sorghum crop under different irrigation treatments

Teste de um modelo de monitoramento de água no solo para uma cultura de sorgo submetida a diferentes tratamentos de irrigação

Marcelo Bento Paes de CamargoI; Kenneth G. HubbardII; Francisco Flores-MendozaIII

ISeção de Climatologia Agrícola, Instituto Agronômico (IAC), Campinas (SP), Brazil 13001-970. Bolsista do CNPq

IIDep. Agric. Meteorol., Chase Hall, Univ. of Nebraska, Lincoln, NE, USA 68583

IIICentro de Investigaciones Agrícolas del Norte Centro, Calera de V.R., Zacatecas, México 98500

ABSTRACT

A model to monitor the soil water status using automated weather station data, crop phenology, and soil information was adjusted and tested for a sorghum crop using field experiments with eight different water treatments in a randomized split factorial block irrigation design during the 1990 and 1991 growing seasons at Mead, Nebraska-USA. Estimates of the total soil water content from the soil water balance model matched well with neutron-probe readings in the sorghum crop. Model performance by soil layer indicates slight underestimates of soil water content in the upper layers of soil, slight overestimates of soil water content in the lower soil layers, and close agreement between simulated and observed soil water contents in the middle soil layers. Elimination of these small offseting errors from the model would result in an improved performance within layers. One possible means of eliminating the error is to adjust the root soil water extraction slightly away from the upper levels and toward the lowest levels. Based on the fact that model estimates of total soil water were in good agreement with observations, it is concluded that it is reasonable to estimate soil water conditions on a routine basis using near-real time automated weather station data.

Index terms: soil water balance, Sorghum bicolor L., evaporation, transpiration, soil moisture.

RESUMO

Um modelo de balanço hídrico diário utilizando informações de estação meteorológica automática, fenologia e informações edáficas foi ajustado e testado para uma cultura de sorgo usando experimentos de campo com diferentes tratamentos de irrigação durante o verão de 1990 e 1991, em Mead, Estado de Nebraska-EUA. Estimativas do total de água no solo a partir do balanço hídrico compararam-se bem com as leituras de sonda de nêutrons tomadas nos diferentes tratamentos. O desempenho do modelo, por camadas de solo, indicou pequena subestimativa da umidade nas camadas superiores, pequena superestimativa nas inferiores e boa estimativa nas intermediárias. A eliminação desses erros resultaria em melhor desempenho do modelo nas diferentes camadas. Boas estimativas do total de água no solo podem ser obtidas através deste balanço hídrico edafoclimático modificado com base em informações fenológicas, edáficas e de dados obtidos de estações meteorológicas automáticas.

Termos de indexação: balanço hídrico, sorgo, Sorghum bicolor L., evaporação, transpiração, umidade do solo.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Received for publication in December 29, 1993 and revised in February 6, 1994.

  • CAMPBELL, G.S. Soil physics with basic: transport models for soil-plant systems. Amsterdan, Elsevier Science Publisher, 1985. 150p. (Developments in Soil Science, 14)
  • CAMPBELL, G.S. & DIAZ, R. Simplified soil-water balance models to predict crop transpirations. In: B1D1NGER, F.R. & JOHANSEN, C, eds. Drought research priorities for the dryland tropics. Patancheru, ICRISAT, 1988. p. 15-26.
  • DYER, J.A. & BAIER, W. An inddex for soil moisture drying patterns. Canadian Agricultural Engineering, Ottawa, 21:117-118, 1979.
  • EASTIN, J.D. Efficiency of grain dry matter acumulation in grain sorghum. In: ANNUAL CORN AND SORGHUM RESEARCH CONFERENCE, 27., Washington, D.C., 1972, edited by J.I. Sutherland and R.J. Falasca. Proceedings. Washington, D.C., American Seed Trade Association, 1972. p.7-17.
  • FOX, D.G. Judging air quality model performance: a summary fo the AMS workshop on dispersion model performance. Bulletin American Meteorological Society, Lancaster, 62:599-609, 1981.
  • GARAY, A. Physical characteristics of soils of the Agricultural Meteorology Field Laboratory at mead, Nebraska: results of some measurements. Lincoln, University of Nebraska - Department of Agricultural Meteorology, 1981. 26p.
  • HANKS, R.J. Model for predicting plant yield as influenced by water use. Agronomy Journal, Madison, 66:660-664, 1974.
  • HANKS, R.J. Soil evaporation and transpiration. In: HANKS, J. & RITCHIE, J.T. (ed.). Modeling plant and soil systems. Madison, American Society of Agronomy, 1991. p.246-271. (Agronomy, 31)
  • HANSEN, S. & JENSEN, H.E. Spatial variability of soil water and evapotranspiration. Nordic Hydrology, Copenhagen, 17:261-268, 1986.
  • HAWLEY, M.E.; JACKSON, T.J. & MCCUEN, R.H. Surface soil moisture variation on small agricultural watersheds. Journal of Hydrology, Amsterdan, 62:179-200, 1983.
  • HINKLE, S.E.; GILLEY, J.R. & WATTS, D.G. Improved crop coefficients for irrigation scheduling: final report projectic n° 58 - 9AH2-9-454. USDA - Agricultural Research Service; Lincoln, University of Nebraska - Biological Systems Engineering, 1984. 38p.
  • HUBBARD, K.G. Climate centers-bridging the gap between research and service. In: CLIMATE & AGRICULTURE SYSTEMS APPROACHES TO DECISION MAKING, Charleston, 1989, edited by Albert Weiss. Proceedings. Charleston, American Meteorological Society, 1989. p.53-61.
  • HUBBARD, K.G. & HANKS, R.J. Climate model for winter wheat yield simulation. Journal of Climate and Applied Meteorology, Boston, 22:698-703, 1983.
  • JENSEN, M.E. Water consumption by agricultural plants. In: KOZLOWSKI, T.T. (ed.). Water deficits and plant growth. New York, Academic Press, 1968. v.2, p.1-22.
  • KINCAID, D.C. & HEERMANN, D.F. Scheduling irrigations using a programmable calculator. USDA, Agricultural Research Service, 1974. 55p. (ARS-NC, 12)
  • NORMAN, J.M. & NIELSEN, D.C. AWDN and the use of models to predict water use by corn. In: ROSENBERG, N.J. (ed.). A demonstration and evaluation of the use of climate information to support irrigation scheduling and other agricultural operations. Lincoln, University of Nebraska - Department of Agriculture Meteorology, 1983. p.55-57. (Progress report, 83-1)
  • ROBINSON, J.M. Modeling crop water use and soil water in the high Plains. Lincoln, University of Nebraska - High Plains Climate Center, 1989. 124p. (CAMaC progress report, 89-2)
  • ROBINSON, J.M. & HUBBARD, K.G. Soil water assessment model for several crops in the High Plains. Agronomy Journal, Madison, 82:1141-1148, 1990.
  • SAGAR, R.M. & HUBBARD, K.G. Estimation of corn canopy temperature and water bridget using automated weather station data. Lincoln University of Nebraska - High Plains Regional Climate Center, 1988. 135p. (CAMaC progress report, 88-4)
  • SWEETEN, J.M. & JORDAN, W.R. Irrigation water management for the tecas High Plains: a research sumary. College Station, Texas A&M University -Water Resource Institute, 1987. 23p. (Technical report, 139)
  • VANDERLIP, R.L. How a sorghum plant develops. Manhattan, Kansas State University, 1972. 19p. (Bullettin, C-447)
  • WILLMOTT, C.J. On the validation of models. Physical Geography, 2:184-194, 1981.
  • WILLMOTT, C.J.; ACKLESON, S.G.; DAVIS, R.E.; FEDDEMA, J.J.; KLINK, K.M.; LEGATES, D.R.; DONNELL, J.O. & ROWE, CM. Statistics for the evaluation and comparison of models. Journal of Geophysical Research, Washington, D.C, 90(C5): 8995-9005, 1985.

Datas de Publicação

  • Publicação nesta coleção
    16 Out 2007
  • Data do Fascículo
    1994

Histórico

  • Recebido
    29 Dez 1993
  • Aceito
    06 Fev 1994
Instituto Agronômico de Campinas Avenida Barão de Itapura, 1481, 13020-902, Tel.: +55 19 2137-0653, Fax: +55 19 2137-0666 - Campinas - SP - Brazil
E-mail: bragantia@iac.sp.gov.br