Acessibilidade / Reportar erro

Association of snps of aif-1 gene with susceptibility to oral cancer in chinese population

Abstract

To investigate the association between allograft inflammatory factor-1 (AIF-1) gene polymorphism and susceptibility to oral cancer in Chinese population. A case-control study was conducted to collect 400 cases of newly diagnosed oral cancer patients diagnosed by pathology from January 2015 to June 2019 and 400 cases of physical examination in the same period. Single nucleotide polymorphisms (SNPs) of the AIF-1 gene were detected using TaqMan probe technology. Unconditional logistic regression analysis was used to calculate the odd ratios (OR) and 95% confidence interval (CI) of the association between AIF-1 gene polymorphism and oral cancer susceptibility. GG genotypes reduced the risk of oral cancer in co-dominant models (OR = 0.499, 95% CI: 0.328-0.760, P = 0.001) and recessive models (OR = 0.496, 95% CI: 0.342-0.729, P < 0.001). There was no significant difference between the case group and the control group in the dominant model genotype (OR = 0.836, 95% CI: 0.623~1.121, P = 0.836). Conclusion AIF-1 gene rs2857595 gene SNPs can reduce the risk of oral cancer.

Keywords:
AIF-1 gene; oral cancer; case-control study

1 Introduction

Head and neck cancer can occur in the paranasal sinuses, sinuses, nasopharynx, oropharynx, mouth, pharynx, and throat. Head and neck cancer affects more than 500,000 people worldwide each year, and the incidence of oral cancer is increasing in the young population (Anderson et al., 2019Anderson, C. M., Lee, C. M., Saunders, D. P., Curtis, A., Dunlap, N., Nangia, C., Lee, A. S., Gordon, S. M., Kovoor, P., Arevalo-Araujo, R., Bar-Ad, V., Peddada, A., Colvett, K., Miller, D., Jain, A. K., Wheeler, J., Blakaj, D., Bonomi, M., Agarwala, S. S., Garg, M., Worden, F., Holmlund, J., Brill, J. M., Downs, M., Sonis, S. T., Katz, S., & Buatti, J. M. (2019). Phase IIb, Randomized, Double-Blind Trial of GC4419 Versus Placebo to Reduce Severe Oral Mucositis Due to Concurrent Radiotherapy and Cisplatin For Head and Neck Cancer. Journal of Clinical Oncology, 37(34), 3256-3265. http://dx.doi.org/10.1200/JCO.19.01507. PMid:31618127.
http://dx.doi.org/10.1200/JCO.19.01507...
; Bachok et al., 2018Bachok, N., Biswal, B. M., Abdul Razak, N. H., Wan Zainoon, W. M. N., Mokhtar, K., Abdul Rahman, R., Abdullah, M. F., Mustafa, S. M. N., & Noza, N. (2018). Preliminary Comparative Study of Oral7(R) Versus Salt-Soda Mouthwash on Oral Health Related Problems and Quality of Life among Head and Neck Cancer Patients Undergoing Radiotherapy. The Malaysian Journal of Medical Sciences : MJMS, 25(5), 79-87. http://dx.doi.org/10.21315/mjms2018.25.5.8. PMid:30914865.
http://dx.doi.org/10.21315/mjms2018.25.5...
; Balaguer et al., 2020Balaguer, M., Pommée, T., Farinas, J., Pinquier, J., Woisard, V., & Speyer, R. (2020). Effects of oral and oropharyngeal cancer on speech intelligibility using acoustic analysis: Systematic review. Head & neck, 42(1), 111-130. PMid:31571334.; Funahara et al., 2017Funahara, M., Yanamoto, S., Ueda, M., Suzuki, T., Ota, Y., Nishimaki, F., Kurita, H., Yamakawa, N., Kirita, T., Okura, M., Mekaru, Y., Arakaki, K., & Umeda, M. (2017). Prevention of surgical site infection after oral cancer surgery by topical tetracycline: Results of a multicenter randomized control trial. Medicine, 96(48), e8891. http://dx.doi.org/10.1097/MD.0000000000008891. PMid:29310375.
http://dx.doi.org/10.1097/MD.00000000000...
). The occurrence of head and neck cancer has a serious impact on the quality of life of patients, such as communication, breathing and difficulty swallowing (Matar & Haddad, 2011Matar, N., & Haddad, A. (2011). New trends in the management of head and neck cancers. Le Journal medical libanais. The Lebanese medical journal, 59(4), 220-226. PMid:22746011.; Lin et al., 2012Lin, B. M., Starmer, H. M., & Gourin, C. G. (2012). The relationship between depressive symptoms, quality of life, and swallowing function in head and neck cancer patients 1 year after definitive therapy. The Laryngoscope, 122(7), 1518-1525. http://dx.doi.org/10.1002/lary.23312. PMid:22467530.
http://dx.doi.org/10.1002/lary.23312...
). The treatment of head and neck cancer often causes problems such as pain, diet and communication, which seriously affects the mental health of patients (Devins et al., 2013Devins, G. M., Payne, A. Y., Lebel, S., Mah, K., Lee, R. N., Irish, J., Wong, J., & Rodin, G. M. (2013). The burden of stress in head and neck cancer. Psycho-Oncology, 22(3), 668-676. http://dx.doi.org/10.1002/pon.3050. PMid:22392570.
http://dx.doi.org/10.1002/pon.3050...
; Sreekumar, 2019Sreekumar, V. N. (2019). Global Scenario of Research in Oral Cancer. Journal of Maxillofacial and Oral Surgery, 18(3), 354-359. http://dx.doi.org/10.1007/s12663-018-1166-4. PMid:31371873.
http://dx.doi.org/10.1007/s12663-018-116...
).

Studies (Alkhubaizi et al., 2018Alkhubaizi, Q., Khalaf, M. E., Dashti, H., & Sharma, P. N. (2018). Oral cancer screening among smokers and nonsmokers. Journal of International Society of Preventive & Community Dentistry, 8(6), 553-559. http://dx.doi.org/10.4103/jispcd.JISPCD_197_18. PMid:30596048.
http://dx.doi.org/10.4103/jispcd.JISPCD_...
; Kadashetti et al., 2017Kadashetti, V., Shivakumar, K. M., Chaudhary, M., Patil, S., Gawande, M., & Hande, A. (2017). Influence of risk factors on patients suffering from potentially malignant disorders and oral cancer: A case-control study. Journal of Oral and Maxillofacial Pathology : JOMFP, 21(3), 455-456. http://dx.doi.org/10.4103/jomfp.JOMFP_236_14. PMid:29391728.
http://dx.doi.org/10.4103/jomfp.JOMFP_23...
; Wei et al., 2014Wei, Q., Yu, D., Liu, M., Wang, M., Zhao, M., Liu, M., Jia, W., Ma, H., Fang, J., Xu, W., Chen, K., Xu, Z., Wang, J., Tian, L., Yuan, H., Chang, J., Hu, Z., Wei, L., Huang, Y., Han, Y., Liu, J., Han, D., Shen, H., Yang, S., Zheng, H., Ji, Q., Li, D., Tan, W., Wu, C., & Lin, D. (2014). Genome-wide association study identifies three susceptibility loci for laryngeal squamous cell carcinoma in the Chinese population. Nature Genetics, 46(10), 1110-1114. http://dx.doi.org/10.1038/ng.3090. PMid:25194280.
http://dx.doi.org/10.1038/ng.3090...
) have shown that smoking, drinking and other factors are the main risk factors for oral cancer, and the proportion of patients with oral cancer in non-smokers and non-drinkers is about 15% to 20% (Laco et al., 2011Laco, J., Vosmikova, H., Novakova, V., Celakovsky, P., Dolezalova, H., Tucek, L., Nekvindova, J., Vosmik, M., Cermakova, E., & Ryska, A. (2011). The role of high-risk human papillomavirus infection in oral and oropharyngeal squamous cell carcinoma in non-smoking and non-drinking patients: a clinicopathological and molecular study of 46 cases. Virchows Archiv, 458(2), 179-187. http://dx.doi.org/10.1007/s00428-010-1037-y. PMid:21221634.
http://dx.doi.org/10.1007/s00428-010-103...
). It is suggested that genetic factors may play a non-negligible role in it. The results of a genome-wide association study (GWAS) by Wei et al. (2014)Wei, Q., Yu, D., Liu, M., Wang, M., Zhao, M., Liu, M., Jia, W., Ma, H., Fang, J., Xu, W., Chen, K., Xu, Z., Wang, J., Tian, L., Yuan, H., Chang, J., Hu, Z., Wei, L., Huang, Y., Han, Y., Liu, J., Han, D., Shen, H., Yang, S., Zheng, H., Ji, Q., Li, D., Tan, W., Wu, C., & Lin, D. (2014). Genome-wide association study identifies three susceptibility loci for laryngeal squamous cell carcinoma in the Chinese population. Nature Genetics, 46(10), 1110-1114. http://dx.doi.org/10.1038/ng.3090. PMid:25194280.
http://dx.doi.org/10.1038/ng.3090...
suggest that single nucleotide polymorphisms (SNPs) of the rs2857595 locus of the AIF-1 gene are associated with the susceptibility of laryngeal squamous cell carcinoma (LSCC) in Chinese population. However, the subjects were all male and did not include females.

Obesity is a risk factor for many tumors (Renehan et al., 2008Renehan, A. G., Tyson, M., Egger, M., Heller, R. F., & Zwahlen, M. (2008). Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet, 371(9612), 569-578. http://dx.doi.org/10.1016/S0140-6736(08)60269-X. PMid:18280327.
http://dx.doi.org/10.1016/S0140-6736(08)...
; Barnes et al., 2016Barnes, K. T., McDowell, B. D., Button, A., Smith, B. J., Lynch, C. F., & Gupta, A. (2016). Obesity is associated with increased risk of invasive penile cancer. BMC Urology, 16(1), 42. http://dx.doi.org/10.1186/s12894-016-0161-7. PMid:27411982.
http://dx.doi.org/10.1186/s12894-016-016...
; Zhao et al., 2017Zhao, R., Cheng, G., Wang, B., Qin, C., Liu, Y., Pan, Y., Wang, J., Hua, L., Zhu, W., & Wang, Z. (2017). BMI and serum lipid parameters predict increasing risk and aggressive prostate cancer in Chinese people. Oncotarget, 8(39), 66051-66060. http://dx.doi.org/10.18632/oncotarget.19790. PMid:29029491.
http://dx.doi.org/10.18632/oncotarget.19...
), it have found that obesity can reduce the risk of head and neck cancer (such as oral cancer) (Maasland et al., 2015Maasland, D. H. E., Brandt, P. A., Kremer, B., & Schouten, L. J. (2015). Body mass index and risk of subtypes of head-neck cancer: the Netherlands Cohort Study. Scientific Reports, 5(1), 17744. http://dx.doi.org/10.1038/srep17744. PMid:26634678.
http://dx.doi.org/10.1038/srep17744...
; Radoï et al., 2013Radoï, L., Paget-Bailly, S., Cyr, D., Papadopoulos, A., Guida, F., Tarnaud, C., Menvielle, G., Schmaus, A., Cenee, S., Carton, M., Lapôtre-Ledoux, B., Delafosse, P., Stücker, I., & Luce, D. (2013). Body mass index, body mass change, and risk of oral cavity cancer: results of a large population-based case-control study, the ICARE study. Cancer Causes & Control, 24(7), 1437-1448. http://dx.doi.org/10.1007/s10552-013-0223-z. PMid:23677332.
http://dx.doi.org/10.1007/s10552-013-022...
). AIF-1 gene is associated with body mass index (BMI) (Rouskas et al., 2012Rouskas, K., Kouvatsi, A., Paletas, K., Papazoglou, D., Tsapas, A., Lobbens, S., Vatin, V., Durand, E., Labrune, Y., Delplanque, J., Meyre, D., & Froguel, P. (2012). Common variants in FTO, MC4R, TMEM18, PRL, AIF1, and PCSK1 show evidence of association with adult obesity in the Greek population. Obesity (Silver Spring, Md.), 20(2), 389-395. http://dx.doi.org/10.1038/oby.2011.177. PMid:21720444.
http://dx.doi.org/10.1038/oby.2011.177...
; Thorleifsson et al., 2009Thorleifsson, G., Walters, G. B., Gudbjartsson, D. F., Steinthorsdottir, V., Sulem, P., Helgadottir, A., Styrkarsdottir, U., Gretarsdottir, S., Thorlacius, S., Jonsdottir, I., Jonsdottir, T., Olafsdottir, E. J., Olafsdottir, G. H., Jonsson, T., Jonsson, F., Borch-Johnsen, K., Hansen, T., Andersen, G., Jorgensen, T., Lauritzen, T., Aben, K. K., Verbeek, A. L., Roeleveld, N., Kampman, E., Yanek, L. R., Becker, L. C., Tryggvadottir, L., Rafnar, T., Becker, D. M., Gulcher, J., Kiemeney, L. A., Pedersen, O., Kong, A., Thorsteinsdottir, U., & Stefansson, K. (2009). Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genetics, 41(1), 18-24. http://dx.doi.org/10.1038/ng.274. PMid:19079260.
http://dx.doi.org/10.1038/ng.274...
). Therefore, effective head and neck cancer markers have been found to play a key role in understanding tumor causes, patient outcomes, and in-depth research. This study used a case-control study to explore the association between AIF-1 gene SNPs and susceptibility to oral cancer, and to provide a scientific basis for the development of accurate prevention strategies and measures for oral cancer.

2 Materials and methods

2.1 Methods

A case-control study was conducted to collect 400 cases (case groups) of newly diagnosed oral cancer patients diagnosed by pathology from January 2015 to June 2019 and 400 (control group) of the hospital for the same period. The investigators from the case group and the control group conducted an epidemiological questionnaire survey to collect the general demographic characteristics of the subjects and the exposure history of smoking and drinking. At the same time, 5 mL of peripheral blood of each subject was collected for DNA extraction and genotyping. This study was approved by the our hospital. All participants participated in the written informed consent form.

2.2 DNA extraction

DNA extraction mainly concludes as follows: (1) The whole blood sample was transferred to a 10 mL centrifuge tube, and then the red blood cell lysate was added, and the mixture was inverted and mixed for about 200 minutes, and then allowed to stand for 30 minutes. (2) Centrifuge at 4000 r × 6 min, discard the supernatant, resuspend the pellet by adding 1 mL of phosphate buffered saline (PBS), mix by pipetting and transfer to a 1.5 mL EP tube. (3) Centrifuge again at 5000 r × 6 min, discard the supernatant, add 0.1 mL PBS and 0.7 mL DNAzol, mix by pipetting. (4) Add 0.5 mL of 100% ethanol, mix by inversion, centrifuge at 12000 r × 5 min, and discard the supernatant. (5) Add 1 mL of 75% ethanol, shake well, centrifuge at 12000 r × 2 min, and discard the supernatant. (6) When drying naturally to the micro-dry, add 400 μL of double distilled water. (7) After taking 1 μL of the measured DNA content, four tubes were dispensed and stored in a refrigerator at -20 °C.

2.3 Genotyping

Genotyping assays were performed using TaqMan probe technology. The probe and primer sequences are shown in Table 1. The specific experimental procedures are as follows: (1) Pre-denaturation at 95 °C for 10 min. (2) Following denaturation at 95 °C for 5 s, then annealing at 60 °C for 30 s, this step is carried out for 40 cycles. (3) Finally placed in an environment of 4 °C. The polymerase chain reaction (PCR) total reaction system is 5 μL: 1 μL DNA template, 2 × TaqMan Universal Master Mix 2. 5 μL, upstream and downstream primers each 0. 225 μL, P1/P2 each 0. 095 Μl, ddH2O 0. 86 μL. All assays were performed in 96-well plates with 8 replicates and 8 blanks in each plate and 5% of the samples were randomly selected for repeated determination. The success rate of all the sites was over 99.0%, and the agreement rate was 100%.

Table 1
Probe and primer sequences in PCR.

2.3 Statistical analysis

The chi-square analysis was used for the count data and the t-test was used for the measurement data. Unconditional logistic regression model was used to analyze the association of ANP-1 gene rs2857595 SNPs with oral cancer and the odd ratios (OR) and 95% CI were calculated. All statistical analyses were performed using the Stata 23.0 software package with a test level of α = 0.05. A two-sided test P < 0.05 considered the difference between the case group and the control group to be statistically significant.

3 Results

3.1 General characteristics of the research objects

A total of 400 Chinese patients with oral cancer were enrolled in the study, including 365 patients with squamous cell carcinoma, 35 patients with adenocarcinoma and other pathological types, and an average age of (55.74 ± 12.19) years. There were 400 patients in the control group with an average age of (54.06 ± 13.03) years. In the case group, 216 cases were 56 years old and above, accounting for 54.0%; in the control group, 177 cases were 56 years old and above, accounting for 44.3%. There were 259 males in the case group, accounting for 64.8%; 262 males in the control group, accounting for 65.5%. The case group was full-time 281 cases, accounting for 70.3%; the control group was full-time 316 cases, accounting for 79.0%. The marital status of the case group was 345 cases of marriage, accounting for 86.3%; the marital status of the control group was 352 cases of marriage, accounting for 88.0%. The education level of the case group was 238 cases of primary school and below, accounting for 59.5%; the control group had 68 cases of primary school and below, accounting for 17.0%. The case group lived in 203 cities, accounting for 50.8%; the control group lived in 130 cities, accounting for 32.5%. There were 253 cases of smoking in the case group, accounting for 63.3%; 139 cases of smoking in the control group, accounting for 34.8%. In the case group, 168 cases were alcoholic, accounting for 42.0%; in the control group, 95 cases were drinking, accounting for 23.8%. In the case group, 100 cases of BMI were 24 or above, accounting for 25.0%; in the control group, 194 cases of BMI were 24 or above, accounting for 48.5%. Univariate analysis showed that compared with the control group, the differences in age, occupation, education level, place of residence, smoking, drinking, BMI and other factors were statistically significant (P<0.05). The results of the analysis are shown in Table 2.

Table 2
Comparison of general characteristics between the two groups of respondents.

3.2 Association of rs2857595 with susceptibility to oral cancer

The analysis showed that the distribution of genotype frequencies of rs2857595 was statistically significant between the case group and the control group (chi-square value = 13.24, P = 0.001). Moreover, this locus conforms to the law of genetic balance of hardy-weinberg (H-W) (chi-square value = 2.051, P = 0.152). Logistic regression analysis suggested that GG genotypes can reduce the risk of oral cancer in the codominant model (OR = 0.499, 95% CI: 0.328-0.760, P = 0.001) and the recessive model (OR = 0.496, 95% CI: 0.342-0.729, P < 0.001), and the results are shown in Table 3. There was no significant difference between the case group and the control group in the dominant model genotype (OR = 0.836, 95% CI: 0.623~1.121, P = 0.836).

Table 3
The unconditional Logistic regression of rs2857595 on oral cancer.

4 Discussion

Smoking is considered to be an important risk factor for oral cancer (Alkhubaizi et al., 2018Alkhubaizi, Q., Khalaf, M. E., Dashti, H., & Sharma, P. N. (2018). Oral cancer screening among smokers and nonsmokers. Journal of International Society of Preventive & Community Dentistry, 8(6), 553-559. http://dx.doi.org/10.4103/jispcd.JISPCD_197_18. PMid:30596048.
http://dx.doi.org/10.4103/jispcd.JISPCD_...
; Rogers et al., 2019Rogers, S. N., Swain, A., Carroll, C., Lowe, D. (2019). Incidence, timing, presentation, treatment, and outcomes of second primary head and neck squamous cell carcinoma after oral cancer. The British Journal of Oral & Maxillofacial Surgery, 57(10), 1074-1080. PMID: 31611034.; Yoon et al., 2019Yoon, H. S., Wen, W., Long, J., Zheng, W., Blot, W. J., & Cai, Q. (2019). Association of oral health with lung cancer risk in a low-income population of African Americans and European Americans in the Southeastern United States. Lung Cancer (Amsterdam, Netherlands), 127, 90-95. http://dx.doi.org/10.1016/j.lungcan.2018.11.028. PMid:30642558.
http://dx.doi.org/10.1016/j.lungcan.2018...
). Polycyclic aromatic hydrocarbons, heterocyclic amines and nitrosamines in cigarettes are well-defined chemical carcinogens. At present, most chemical carcinogens are known to require biotransformation activation or detoxification in vivo. The metabolic enzymes involved in this process are divided into two categories, namely, phase I metabolic enzymes and phase II metabolic enzymes. Phase I metabolic enzymes are metabolically activated enzymes, and many procarcinogens are metabolically activated to become the ultimate carcinogen. The phase II metabolic enzyme is a metabolic detoxifying enzyme that converts carcinogens or their toxic metabolites into substances that are harmless to the human body and excreted from the body. Whether a carcinogen causes cancer of a target cell depends to a large extent on the activity of the two enzymes and their equilibrium relationship.

Most of the genes of metabolic enzymes are polymorphic, and the polymorphism of some genes can cause changes in enzyme activity, leading to differences in individual tumor susceptibility. The development of oral cancer is a multi-step process in which many causes and host susceptibility interact. Most environmental carcinogens require carcinogenesis after metabolic activation in the body. Many of the former carcinogens in tobacco also need to be activated and detoxified by in vivo phase I and phase II metabolic enzymes. CYP1A1 is one of the important phase I metabolic enzymes, which can catalyze the phase I oxidation of foreign compounds such as acetaldehyde into the body, and convert the inactive procarcinogen activation into an electrophilic compound (Divya et al., 2018Divya, G. M., Zinia, N., Balagopal, P. G., Bipin, V. T., Elizabeth, I. M., Nebu, G. A., Shaji, T., & Paul, S. (2018). Risk factors for post-operative complications in primary oral cancer surgery-a prospective study. Indian Journal of Surgical Oncology, 9(1), 28-34. http://dx.doi.org/10.1007/s13193-017-0668-8. PMid:29563731.
http://dx.doi.org/10.1007/s13193-017-066...
; Shahid et al., 2019Shahid, N., Iqbal, A., Siddiqui, A. J., Shoaib, M., & Musharraf, S. G. (2019). Plasma metabolite profiling and chemometric analyses of tobacco snuff dippers and patients with oral cancer: Relationship between metabolic signatures. Head & Neck, 41(2), 291-300. PMid:30548891.). The electrophilic compound can attack biological macromolecules in cells and form adducts with DNA or proteins. Eventually it causes changes in oncogenes and tumor suppressor genes, leading to cancer.

Oral cancer is a general term for malignant tumors that occur in the mouth. In recent years, the incidence of oral cancer has been increasing (Hou et al., 2015Hou, J., Gu, Y., Hou, W., Wu, S., Lou, Y., Yang, W., Zhu, L., Hu, Y., Sun, M., & Xue, H. (2015). P53 codon 72 polymorphism, human papillomavirus infection, and their interaction to oral carcinoma susceptibility. BMC Genetics, 16(1), 72. http://dx.doi.org/10.1186/s12863-015-0235-7. PMid:26123760.
http://dx.doi.org/10.1186/s12863-015-023...
). Previous studies have found that AIF-1 gene rs2857595 locus polymorphism can reduce the risk of laryngeal squamous cell carcinoma (Wei et al., 2014Wei, Q., Yu, D., Liu, M., Wang, M., Zhao, M., Liu, M., Jia, W., Ma, H., Fang, J., Xu, W., Chen, K., Xu, Z., Wang, J., Tian, L., Yuan, H., Chang, J., Hu, Z., Wei, L., Huang, Y., Han, Y., Liu, J., Han, D., Shen, H., Yang, S., Zheng, H., Ji, Q., Li, D., Tan, W., Wu, C., & Lin, D. (2014). Genome-wide association study identifies three susceptibility loci for laryngeal squamous cell carcinoma in the Chinese population. Nature Genetics, 46(10), 1110-1114. http://dx.doi.org/10.1038/ng.3090. PMid:25194280.
http://dx.doi.org/10.1038/ng.3090...
), which is basically consistent with the results of this study. AIF-1 is a gene located in the genomic region of human leukocyte antigen class III on chromosome 6. Although the mechanism of rs2857595 gene polymorphism and susceptibility to oral cancer has not been reported, there is a linkage disequilibrium between rs2857595 locus and multiple inflammatory genes (Wei et al., 2014Wei, Q., Yu, D., Liu, M., Wang, M., Zhao, M., Liu, M., Jia, W., Ma, H., Fang, J., Xu, W., Chen, K., Xu, Z., Wang, J., Tian, L., Yuan, H., Chang, J., Hu, Z., Wei, L., Huang, Y., Han, Y., Liu, J., Han, D., Shen, H., Yang, S., Zheng, H., Ji, Q., Li, D., Tan, W., Wu, C., & Lin, D. (2014). Genome-wide association study identifies three susceptibility loci for laryngeal squamous cell carcinoma in the Chinese population. Nature Genetics, 46(10), 1110-1114. http://dx.doi.org/10.1038/ng.3090. PMid:25194280.
http://dx.doi.org/10.1038/ng.3090...
). In addition, a recent animal study found that AIF-1 protein as a biomarker for intestinal mucosal barrier repair can promote intestinal mucosal damage healing by reducing the intestinal mucosal inflammatory response and increasing the differentiation of intestinal mucosal cells (Roman et al., 2017Roman, I. D., Cano-Martinez, D., Lobo, M. V., Fernandez-Moreno, M. D., Hernandez-Breijo, B., Sacristan, S., Sanmartín-Salinas, P., Monserrat, J., Gisbert, J. P., & Guijarro, L. G. (2017). Infliximab therapy reverses the increase of allograft inflammatory factor-1 in serum and colonic mucosa of rats with inflammatory bowel disease. Biomarkers, 22(2), 133-144. http://dx.doi.org/10.1080/1354750X.2016.1252950. PMid:27781498.
http://dx.doi.org/10.1080/1354750X.2016....
). Although this study only explored the relationship between AIF-1 and intestinal mucosal injury repair, the results suggest that the relationship between AIF-1 gene and oral cancer may be related to the healing of oral mucosal injury, but the specific mechanism remains to be further studied.

Obesity is a risk factor for many malignant tumors, which could reduce the risk of head and neck cancer (Maasland et al., 2015Maasland, D. H. E., Brandt, P. A., Kremer, B., & Schouten, L. J. (2015). Body mass index and risk of subtypes of head-neck cancer: the Netherlands Cohort Study. Scientific Reports, 5(1), 17744. http://dx.doi.org/10.1038/srep17744. PMid:26634678.
http://dx.doi.org/10.1038/srep17744...
; Radoï et al., 2013Radoï, L., Paget-Bailly, S., Cyr, D., Papadopoulos, A., Guida, F., Tarnaud, C., Menvielle, G., Schmaus, A., Cenee, S., Carton, M., Lapôtre-Ledoux, B., Delafosse, P., Stücker, I., & Luce, D. (2013). Body mass index, body mass change, and risk of oral cavity cancer: results of a large population-based case-control study, the ICARE study. Cancer Causes & Control, 24(7), 1437-1448. http://dx.doi.org/10.1007/s10552-013-0223-z. PMid:23677332.
http://dx.doi.org/10.1007/s10552-013-022...
). Many carcinogens (such as polycyclic aromatic hydrocarbons) are lipophilic and can accumulate in adipose tissue, so the body fat content may affect the distribution of carcinogens in the human body, which may lead to tumors (Gaudet et al., 2010Gaudet, M. M., Olshan, A. F., Chuang, S.-C., Berthiller, J., Zhang, Z.-F., Lissowska, J., Zaridze, D., Winn, D. M., Wei, Q., Talamini, R., Szeszenia-Dabrowska, N., Sturgis, E. M., Schwartz, S. M., Rudnai, P., Eluf-Neto, J., Muscat, J., Morgenstern, H., Menezes, A., Matos, E., Bucur, A., Levi, F., Lazarus, P., La Vecchia, C., Koifman, S., Kelsey, K., Herrero, R., Hayes, R. B., Franceschi, S., Wunsch-Filho, V., Fernandez, L., Fabianova, E., Daudt, A. W., Dal Maso, L., Paula Curado, M., Chen, C., Castellsague, X., Benhamou, S., Boffetta, P., Brennan, P., & Hashibe, M. (2010). Body mass index and risk of head and neck cancer in a pooled analysis of case-control studies in the International Head and Neck Cancer Epidemiology (INHANCE) Consortium. International Journal of Epidemiology, 39(4), 1091-1102. http://dx.doi.org/10.1093/ije/dyp380. PMid:20123951.
http://dx.doi.org/10.1093/ije/dyp380...
). 8-hydroxydeoxyguanosine (8-OHdG) is a marker of DNA oxidative damage (Mizoue et al., 2006Mizoue, T., Kasai, H., Kubo, T., & Tokunaga, S. (2006). Leanness, smoking, and enhanced oxidative DNA damage. Cancer Epidemiology, Biomarkers & Prevention, 15(3), 582-585. http://dx.doi.org/10.1158/1055-9965.EPI-05-0658. PMid:16537720.
http://dx.doi.org/10.1158/1055-9965.EPI-...
). Previous studies have found a negative correlation between BMI levels and 8-OHdG levels in the body. Low body weight may increase the oxidative damage of DNA by smoking and other factors (Nigam et al., 2019Nigam, K., Yadav, S. K., Samadi, F. M., Bhatt, M. L., Gupta, S., & Sanyal, S. (2019). Risk modulation of oral pre cancer and cancer with polymorphisms in XPD and XPG genes in North Indian population. Asian Pacific Journal of Cancer Prevention, 20(8), 2397-2403. http://dx.doi.org/10.31557/APJCP.2019.20.8.2397. PMid:31450912.
http://dx.doi.org/10.31557/APJCP.2019.20...
; Tang et al., 2018aTang, J. Y., Huang, H. W., Wang, H. R., Chan, Y. C., Haung, J. W., Shu, C. W., Wu, Y. C., & Chang, H. W. (2018a). 4beta-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. Environmental Toxicology, 33(3), 295-304. http://dx.doi.org/10.1002/tox.22516. PMid:29165875.
http://dx.doi.org/10.1002/tox.22516...
, bTang, J. Y., Wu, C. Y., Shu, C. W., Wang, S. C., Chang, M. Y., & Chang, H. W. (2018b). A novel sulfonyl chromen-4-ones (CHW09) preferentially kills oral cancer cells showing apoptosis, oxidative stress, and DNA damage. Environmental Toxicology, 33(11), 1195-1203. http://dx.doi.org/10.1002/tox.22625. PMid:30256521.
http://dx.doi.org/10.1002/tox.22625...
; Chang et al., 2016Chang, H. S., Tang, J. Y., Yen, C. Y., Huang, H. W., Wu, C. Y., Chung, Y. A., Wang, H. R., Chen, I. S., Huang, M. Y., & Chang, H. W. (2016). Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. BMC Complementary and Alternative Medicine, 16(1), 94. http://dx.doi.org/10.1186/s12906-016-1073-5. PMid:26955958.
http://dx.doi.org/10.1186/s12906-016-107...
), thereby promoting tumorigenesis.

Because of the case-control study used in this study, there may be some selection bias and recall bias. However, the investigators in this study have undergone unified training, focusing on quality control, and the selected participants are new cases, which minimizes selection bias and recall bias. Therefore, there is still a need to further expand the sample size of the multicenter study and conduct a prospective cohort study to validate the results of this study.

5 Conclusion

In summary, the AFS-1 gene rs2857595 locus GG genotype can reduce the risk of oral cancer. In the future, the AFS-1 gene rs2857595 locus GG genotype should be considered in the development of precise prevention strategies and measures for oral cancer.

  • Practical Application: In the future, the AFS-1 gene rs2857595 locus GG genotype should be considered in the development of precise prevention strategies and measures for oral cancer.

References

  • Alkhubaizi, Q., Khalaf, M. E., Dashti, H., & Sharma, P. N. (2018). Oral cancer screening among smokers and nonsmokers. Journal of International Society of Preventive & Community Dentistry, 8(6), 553-559. http://dx.doi.org/10.4103/jispcd.JISPCD_197_18 PMid:30596048.
    » http://dx.doi.org/10.4103/jispcd.JISPCD_197_18
  • Anderson, C. M., Lee, C. M., Saunders, D. P., Curtis, A., Dunlap, N., Nangia, C., Lee, A. S., Gordon, S. M., Kovoor, P., Arevalo-Araujo, R., Bar-Ad, V., Peddada, A., Colvett, K., Miller, D., Jain, A. K., Wheeler, J., Blakaj, D., Bonomi, M., Agarwala, S. S., Garg, M., Worden, F., Holmlund, J., Brill, J. M., Downs, M., Sonis, S. T., Katz, S., & Buatti, J. M. (2019). Phase IIb, Randomized, Double-Blind Trial of GC4419 Versus Placebo to Reduce Severe Oral Mucositis Due to Concurrent Radiotherapy and Cisplatin For Head and Neck Cancer. Journal of Clinical Oncology, 37(34), 3256-3265. http://dx.doi.org/10.1200/JCO.19.01507 PMid:31618127.
    » http://dx.doi.org/10.1200/JCO.19.01507
  • Bachok, N., Biswal, B. M., Abdul Razak, N. H., Wan Zainoon, W. M. N., Mokhtar, K., Abdul Rahman, R., Abdullah, M. F., Mustafa, S. M. N., & Noza, N. (2018). Preliminary Comparative Study of Oral7(R) Versus Salt-Soda Mouthwash on Oral Health Related Problems and Quality of Life among Head and Neck Cancer Patients Undergoing Radiotherapy. The Malaysian Journal of Medical Sciences : MJMS, 25(5), 79-87. http://dx.doi.org/10.21315/mjms2018.25.5.8 PMid:30914865.
    » http://dx.doi.org/10.21315/mjms2018.25.5.8
  • Balaguer, M., Pommée, T., Farinas, J., Pinquier, J., Woisard, V., & Speyer, R. (2020). Effects of oral and oropharyngeal cancer on speech intelligibility using acoustic analysis: Systematic review. Head & neck, 42(1), 111-130. PMid:31571334.
  • Barnes, K. T., McDowell, B. D., Button, A., Smith, B. J., Lynch, C. F., & Gupta, A. (2016). Obesity is associated with increased risk of invasive penile cancer. BMC Urology, 16(1), 42. http://dx.doi.org/10.1186/s12894-016-0161-7 PMid:27411982.
    » http://dx.doi.org/10.1186/s12894-016-0161-7
  • Chang, H. S., Tang, J. Y., Yen, C. Y., Huang, H. W., Wu, C. Y., Chung, Y. A., Wang, H. R., Chen, I. S., Huang, M. Y., & Chang, H. W. (2016). Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. BMC Complementary and Alternative Medicine, 16(1), 94. http://dx.doi.org/10.1186/s12906-016-1073-5 PMid:26955958.
    » http://dx.doi.org/10.1186/s12906-016-1073-5
  • Devins, G. M., Payne, A. Y., Lebel, S., Mah, K., Lee, R. N., Irish, J., Wong, J., & Rodin, G. M. (2013). The burden of stress in head and neck cancer. Psycho-Oncology, 22(3), 668-676. http://dx.doi.org/10.1002/pon.3050 PMid:22392570.
    » http://dx.doi.org/10.1002/pon.3050
  • Divya, G. M., Zinia, N., Balagopal, P. G., Bipin, V. T., Elizabeth, I. M., Nebu, G. A., Shaji, T., & Paul, S. (2018). Risk factors for post-operative complications in primary oral cancer surgery-a prospective study. Indian Journal of Surgical Oncology, 9(1), 28-34. http://dx.doi.org/10.1007/s13193-017-0668-8 PMid:29563731.
    » http://dx.doi.org/10.1007/s13193-017-0668-8
  • Funahara, M., Yanamoto, S., Ueda, M., Suzuki, T., Ota, Y., Nishimaki, F., Kurita, H., Yamakawa, N., Kirita, T., Okura, M., Mekaru, Y., Arakaki, K., & Umeda, M. (2017). Prevention of surgical site infection after oral cancer surgery by topical tetracycline: Results of a multicenter randomized control trial. Medicine, 96(48), e8891. http://dx.doi.org/10.1097/MD.0000000000008891 PMid:29310375.
    » http://dx.doi.org/10.1097/MD.0000000000008891
  • Gaudet, M. M., Olshan, A. F., Chuang, S.-C., Berthiller, J., Zhang, Z.-F., Lissowska, J., Zaridze, D., Winn, D. M., Wei, Q., Talamini, R., Szeszenia-Dabrowska, N., Sturgis, E. M., Schwartz, S. M., Rudnai, P., Eluf-Neto, J., Muscat, J., Morgenstern, H., Menezes, A., Matos, E., Bucur, A., Levi, F., Lazarus, P., La Vecchia, C., Koifman, S., Kelsey, K., Herrero, R., Hayes, R. B., Franceschi, S., Wunsch-Filho, V., Fernandez, L., Fabianova, E., Daudt, A. W., Dal Maso, L., Paula Curado, M., Chen, C., Castellsague, X., Benhamou, S., Boffetta, P., Brennan, P., & Hashibe, M. (2010). Body mass index and risk of head and neck cancer in a pooled analysis of case-control studies in the International Head and Neck Cancer Epidemiology (INHANCE) Consortium. International Journal of Epidemiology, 39(4), 1091-1102. http://dx.doi.org/10.1093/ije/dyp380 PMid:20123951.
    » http://dx.doi.org/10.1093/ije/dyp380
  • Hou, J., Gu, Y., Hou, W., Wu, S., Lou, Y., Yang, W., Zhu, L., Hu, Y., Sun, M., & Xue, H. (2015). P53 codon 72 polymorphism, human papillomavirus infection, and their interaction to oral carcinoma susceptibility. BMC Genetics, 16(1), 72. http://dx.doi.org/10.1186/s12863-015-0235-7 PMid:26123760.
    » http://dx.doi.org/10.1186/s12863-015-0235-7
  • Kadashetti, V., Shivakumar, K. M., Chaudhary, M., Patil, S., Gawande, M., & Hande, A. (2017). Influence of risk factors on patients suffering from potentially malignant disorders and oral cancer: A case-control study. Journal of Oral and Maxillofacial Pathology : JOMFP, 21(3), 455-456. http://dx.doi.org/10.4103/jomfp.JOMFP_236_14 PMid:29391728.
    » http://dx.doi.org/10.4103/jomfp.JOMFP_236_14
  • Laco, J., Vosmikova, H., Novakova, V., Celakovsky, P., Dolezalova, H., Tucek, L., Nekvindova, J., Vosmik, M., Cermakova, E., & Ryska, A. (2011). The role of high-risk human papillomavirus infection in oral and oropharyngeal squamous cell carcinoma in non-smoking and non-drinking patients: a clinicopathological and molecular study of 46 cases. Virchows Archiv, 458(2), 179-187. http://dx.doi.org/10.1007/s00428-010-1037-y PMid:21221634.
    » http://dx.doi.org/10.1007/s00428-010-1037-y
  • Lin, B. M., Starmer, H. M., & Gourin, C. G. (2012). The relationship between depressive symptoms, quality of life, and swallowing function in head and neck cancer patients 1 year after definitive therapy. The Laryngoscope, 122(7), 1518-1525. http://dx.doi.org/10.1002/lary.23312 PMid:22467530.
    » http://dx.doi.org/10.1002/lary.23312
  • Maasland, D. H. E., Brandt, P. A., Kremer, B., & Schouten, L. J. (2015). Body mass index and risk of subtypes of head-neck cancer: the Netherlands Cohort Study. Scientific Reports, 5(1), 17744. http://dx.doi.org/10.1038/srep17744 PMid:26634678.
    » http://dx.doi.org/10.1038/srep17744
  • Matar, N., & Haddad, A. (2011). New trends in the management of head and neck cancers. Le Journal medical libanais. The Lebanese medical journal, 59(4), 220-226. PMid:22746011.
  • Mizoue, T., Kasai, H., Kubo, T., & Tokunaga, S. (2006). Leanness, smoking, and enhanced oxidative DNA damage. Cancer Epidemiology, Biomarkers & Prevention, 15(3), 582-585. http://dx.doi.org/10.1158/1055-9965.EPI-05-0658 PMid:16537720.
    » http://dx.doi.org/10.1158/1055-9965.EPI-05-0658
  • Nigam, K., Yadav, S. K., Samadi, F. M., Bhatt, M. L., Gupta, S., & Sanyal, S. (2019). Risk modulation of oral pre cancer and cancer with polymorphisms in XPD and XPG genes in North Indian population. Asian Pacific Journal of Cancer Prevention, 20(8), 2397-2403. http://dx.doi.org/10.31557/APJCP.2019.20.8.2397 PMid:31450912.
    » http://dx.doi.org/10.31557/APJCP.2019.20.8.2397
  • Radoï, L., Paget-Bailly, S., Cyr, D., Papadopoulos, A., Guida, F., Tarnaud, C., Menvielle, G., Schmaus, A., Cenee, S., Carton, M., Lapôtre-Ledoux, B., Delafosse, P., Stücker, I., & Luce, D. (2013). Body mass index, body mass change, and risk of oral cavity cancer: results of a large population-based case-control study, the ICARE study. Cancer Causes & Control, 24(7), 1437-1448. http://dx.doi.org/10.1007/s10552-013-0223-z PMid:23677332.
    » http://dx.doi.org/10.1007/s10552-013-0223-z
  • Renehan, A. G., Tyson, M., Egger, M., Heller, R. F., & Zwahlen, M. (2008). Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet, 371(9612), 569-578. http://dx.doi.org/10.1016/S0140-6736(08)60269-X PMid:18280327.
    » http://dx.doi.org/10.1016/S0140-6736(08)60269-X
  • Rogers, S. N., Swain, A., Carroll, C., Lowe, D. (2019). Incidence, timing, presentation, treatment, and outcomes of second primary head and neck squamous cell carcinoma after oral cancer. The British Journal of Oral & Maxillofacial Surgery, 57(10), 1074-1080. PMID: 31611034.
  • Roman, I. D., Cano-Martinez, D., Lobo, M. V., Fernandez-Moreno, M. D., Hernandez-Breijo, B., Sacristan, S., Sanmartín-Salinas, P., Monserrat, J., Gisbert, J. P., & Guijarro, L. G. (2017). Infliximab therapy reverses the increase of allograft inflammatory factor-1 in serum and colonic mucosa of rats with inflammatory bowel disease. Biomarkers, 22(2), 133-144. http://dx.doi.org/10.1080/1354750X.2016.1252950 PMid:27781498.
    » http://dx.doi.org/10.1080/1354750X.2016.1252950
  • Rouskas, K., Kouvatsi, A., Paletas, K., Papazoglou, D., Tsapas, A., Lobbens, S., Vatin, V., Durand, E., Labrune, Y., Delplanque, J., Meyre, D., & Froguel, P. (2012). Common variants in FTO, MC4R, TMEM18, PRL, AIF1, and PCSK1 show evidence of association with adult obesity in the Greek population. Obesity (Silver Spring, Md.), 20(2), 389-395. http://dx.doi.org/10.1038/oby.2011.177 PMid:21720444.
    » http://dx.doi.org/10.1038/oby.2011.177
  • Shahid, N., Iqbal, A., Siddiqui, A. J., Shoaib, M., & Musharraf, S. G. (2019). Plasma metabolite profiling and chemometric analyses of tobacco snuff dippers and patients with oral cancer: Relationship between metabolic signatures. Head & Neck, 41(2), 291-300. PMid:30548891.
  • Sreekumar, V. N. (2019). Global Scenario of Research in Oral Cancer. Journal of Maxillofacial and Oral Surgery, 18(3), 354-359. http://dx.doi.org/10.1007/s12663-018-1166-4 PMid:31371873.
    » http://dx.doi.org/10.1007/s12663-018-1166-4
  • Tang, J. Y., Huang, H. W., Wang, H. R., Chan, Y. C., Haung, J. W., Shu, C. W., Wu, Y. C., & Chang, H. W. (2018a). 4beta-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. Environmental Toxicology, 33(3), 295-304. http://dx.doi.org/10.1002/tox.22516 PMid:29165875.
    » http://dx.doi.org/10.1002/tox.22516
  • Tang, J. Y., Wu, C. Y., Shu, C. W., Wang, S. C., Chang, M. Y., & Chang, H. W. (2018b). A novel sulfonyl chromen-4-ones (CHW09) preferentially kills oral cancer cells showing apoptosis, oxidative stress, and DNA damage. Environmental Toxicology, 33(11), 1195-1203. http://dx.doi.org/10.1002/tox.22625 PMid:30256521.
    » http://dx.doi.org/10.1002/tox.22625
  • Thorleifsson, G., Walters, G. B., Gudbjartsson, D. F., Steinthorsdottir, V., Sulem, P., Helgadottir, A., Styrkarsdottir, U., Gretarsdottir, S., Thorlacius, S., Jonsdottir, I., Jonsdottir, T., Olafsdottir, E. J., Olafsdottir, G. H., Jonsson, T., Jonsson, F., Borch-Johnsen, K., Hansen, T., Andersen, G., Jorgensen, T., Lauritzen, T., Aben, K. K., Verbeek, A. L., Roeleveld, N., Kampman, E., Yanek, L. R., Becker, L. C., Tryggvadottir, L., Rafnar, T., Becker, D. M., Gulcher, J., Kiemeney, L. A., Pedersen, O., Kong, A., Thorsteinsdottir, U., & Stefansson, K. (2009). Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genetics, 41(1), 18-24. http://dx.doi.org/10.1038/ng.274 PMid:19079260.
    » http://dx.doi.org/10.1038/ng.274
  • Wei, Q., Yu, D., Liu, M., Wang, M., Zhao, M., Liu, M., Jia, W., Ma, H., Fang, J., Xu, W., Chen, K., Xu, Z., Wang, J., Tian, L., Yuan, H., Chang, J., Hu, Z., Wei, L., Huang, Y., Han, Y., Liu, J., Han, D., Shen, H., Yang, S., Zheng, H., Ji, Q., Li, D., Tan, W., Wu, C., & Lin, D. (2014). Genome-wide association study identifies three susceptibility loci for laryngeal squamous cell carcinoma in the Chinese population. Nature Genetics, 46(10), 1110-1114. http://dx.doi.org/10.1038/ng.3090 PMid:25194280.
    » http://dx.doi.org/10.1038/ng.3090
  • Yoon, H. S., Wen, W., Long, J., Zheng, W., Blot, W. J., & Cai, Q. (2019). Association of oral health with lung cancer risk in a low-income population of African Americans and European Americans in the Southeastern United States. Lung Cancer (Amsterdam, Netherlands), 127, 90-95. http://dx.doi.org/10.1016/j.lungcan.2018.11.028 PMid:30642558.
    » http://dx.doi.org/10.1016/j.lungcan.2018.11.028
  • Zhao, R., Cheng, G., Wang, B., Qin, C., Liu, Y., Pan, Y., Wang, J., Hua, L., Zhu, W., & Wang, Z. (2017). BMI and serum lipid parameters predict increasing risk and aggressive prostate cancer in Chinese people. Oncotarget, 8(39), 66051-66060. http://dx.doi.org/10.18632/oncotarget.19790 PMid:29029491.
    » http://dx.doi.org/10.18632/oncotarget.19790

Publication Dates

  • Publication in this collection
    18 Dec 2020
  • Date of issue
    2021

History

  • Received
    13 Aug 2020
  • Accepted
    15 Sept 2020
Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br