Acessibilidade / Reportar erro

Glycerol/hypophosphorous acid and PhSeSePh: an efficient and selective system for reactions in the carbon-carbon double bond of (E)-chalcones

Abstracts

We describe herein our results for the reaction of benzeneselenol, generated in situ by reaction of diphenyl diselenide with H3PO2, with various (E)-chalcones using glycerol as solvent. Using our optimized reaction conditions, a range of chemoselective 1,4-reduction products could be obtained in good yields. The glycerol/H3PO2 system can be easily recovered and reused in chemoselective 1,4-reductions for successive cycles without loss of efficiency. Additionally, under 1,4-reducing reaction conditions, the natural product zingerone can be synthesized in good yield.

chalcones; selenium; glycerol; reduction; zingerone


Este trabalho descreve nossos resultados para a reação entre benzenosselenol, gerado in situ pela reação entre disseleneto de difenila com H3PO2, com uma série de (E)-chalconas utilizando glicerol como solvente. Utilizando as condições de reação otimizadas, uma variedade de produtos de redução 1,4-quimiosseletivas podem ser obtidos em bons rendimentos. A mistura glicerol/H3PO2 pode ser facilmente recuperada e reutilizada em condições de reação de redução 1,4-quimiosseletivas por ciclos sucessivos sem perda de eficiência. Adicionalmente, sob condições de reação de redução 1,4-quimiosseletivas, o produto natural zingerona pode ser sintetizada em bom rendimento.


ARTICLE

Glycerol/hypophosphorous acid and PhSeSePh: an efficient and selective system for reactions in the carbon-carbon double bond of (E)-chalcones

Katiúcia D. Mesquita; Bianca Waskow; Ricardo F. Schumacher; Gelson Perin; Raquel G. Jacob* * e-mail: raquel.jacob@ufpel.edu.br, diego.alves@ufpel.edu.br ; Diego Alves* * e-mail: raquel.jacob@ufpel.edu.br, diego.alves@ufpel.edu.br

Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CP 354, 96010-900 Pelotas-RS, Brazil

ABSTRACT

We describe herein our results for the reaction of benzeneselenol, generated in situ by reaction of diphenyl diselenide with H3PO2, with various (E)-chalcones using glycerol as solvent. Using our optimized reaction conditions, a range of chemoselective 1,4-reduction products could be obtained in good yields. The glycerol/H3PO2 system can be easily recovered and reused in chemoselective 1,4-reductions for successive cycles without loss of efficiency. Additionally, under 1,4-reducing reaction conditions, the natural product zingerone can be synthesized in good yield.

Keywords: chalcones, selenium, glycerol, reduction, zingerone

RESUMO

Este trabalho descreve nossos resultados para a reação entre benzenosselenol, gerado in situ pela reação entre disseleneto de difenila com H3PO2, com uma série de (E)-chalconas utilizando glicerol como solvente. Utilizando as condições de reação otimizadas, uma variedade de produtos de redução 1,4-quimiosseletivas podem ser obtidos em bons rendimentos. A mistura glicerol/H3PO2 pode ser facilmente recuperada e reutilizada em condições de reação de redução 1,4-quimiosseletivas por ciclos sucessivos sem perda de eficiência. Adicionalmente, sob condições de reação de redução 1,4-quimiosseletivas, o produto natural zingerona pode ser sintetizada em bom rendimento.

Introduction

Conjugate addition reactions of sulfur and selenium nucleophiles to electron-deficient olefins are a very useful method for new carbon-chalcogenium bond formation in organic synthesis. Several methods for the formation of C-S bond via thia-Michael addition were described using the readily available organylthiols.1 However, the synthesis of β-selanylcarbonyl compounds was not extensively studied, since the generation and use of selenol analogs is not trivial.2-13 Organoselenium compounds are attractive molecules due their selective reactions14 and the interest in the synthesis of these compounds has increased in the last years because of their use in materials area,15 as ionic liquids16 in asymmetric catalysis,17 and because of their interesting biological activities.18

β-Selanylcarbonyl compounds are particularly interesting synthons, because they can be used as intermediates in the synthesis of dihydromevinolin,19 idesolide20 and taxol.21 Traditional methods for the synthesis of β-selanylcarbonyl compounds via Michael addition commonly make use of the already available benzeneselenol and some catalysts can be used.3-5 Nevertheless, the use of air-sensitive, highly volatile, and unpleasant smelling benzeneselenol leads to serious ecological and safety problems. To overcome this problem, β-selanylcarbonyl compounds could be synthesized when the benzeneselenol was generated in situ.6-11 Alternatively, Santi and co-workers described the synthesis of β-selanylcarbonyl compounds using PhSeZnCl in reactions of addition to unsaturated ketones.12 Besides being scarce, in most cases these methods are limited to a few functional groups and long reaction times are necessary. Furthermore, there is still an attention in developing simple, efficient and catalyst-free methodologies to synthesize β-selanylcarbonyl compounds.

In this context, the development of methodologies employing green solvents (recyclable and environmentally friendly) has recently gained much attention, because of the extensive use of solvents in almost all chemical and pharmaceutical industries, and of the predicted disappearance of fossil oil.22 Biodegradability, high availability, no flammability, being obtained from renewable sources are among the desirable characteristics for a green solvent.23 Thus, the use of glycerol24 and their eutetics25 as a sustainable green solvent was recently reported and a great number of organic reactions were performed using this solvent.

More recently, glycerol proved to be an efficient and recyclable solvent for the synthesis of a range of organochalcogenium compounds.26 For example, our research group described a methodology to synthesize 2-organylselanyl pyridines by reactions of 2-chloropyridines with organylselenols, generated in situ by reaction of diorganyl diselenides, using glycerol as solvent and hypophosphorous acid (H3PO2).27 Using this methodology the products were obtained in high yields and the glycerol/H3PO2 system can be easily recovered and reused for five times without loss of efficiency.

In view of the explained above, we decided to examine the synthesis of β-selanylcarbonyl compounds via reaction of benzeneselenol, generated in situ by reaction of diphenyl diselenide with H3PO2, with (E)-chalcones using glycerol as solvent (Scheme 1).


Results and Discussion

Initially, we chose (E)-1,3-diphenyl-prop-2-en-1-one 1a and diphenyl diselenide 2 as model substrates to establish the best conditions for the reaction using glycerol and H3PO2 as the solvent-reducing agent system and some experiments were performed to synthesize compound 3a (Scheme 2). Thus, a mixture of diphenyl diselenide 2 and 0.1 mL of H3PO2 (50 wt.% in H2O) in glycerol (1.0 mL) was stirred at 90 ºC for 30 min under N2 atmosphere to afford in situ benzeneselenol. After this time, (E)-chalcone 1a (0.5 mmol) was added in the reaction vessel and the reaction remained at 90 ºC for additional 24 h.


Unfortunately, under these reaction conditions, only traces of the product 3a were formed and to our surprise, the 1,4-reduction product, 1,3-diphenyl-1-propanone 4a was obtained in 42% yield (Table 1, entry 1). The chemoselective 1,4-reduction of α-β-unsaturated carbonyl compounds is an attractive and important tactic in organic synthesis.28 A range of significant advances have been made toward the development of efficient protocols for the chemoselective 1,4-reduction of α-β-unsaturated carbonyl compounds, specially methodologies based on the use of transition metal catalysts.29 For example, Kosal and Ashfeld described that a titanocene complex can be used as an efficient catalyst for the conjugate reduction of α-β-unsaturated carbonyl derivatives. A series of α-β-unsaturated aldehydes, ketones, esters, unsubstituted amides and ynones, underwent chemoselective conjugate reduction by utilizing a catalytic quantity of titanocene complex.30 Additionally, selective reducing agents based on chalcogen atoms (Se and Te) were used for the 1,4-reduction of α-β-unsaturated carbonyl compounds.31

In view of this surprising result of 1,4-reduction reaction, we decided to explore these reaction conditions, firstly increasing the quantity of H3PO2 in the reaction (Table 1). Thus, when the reactions were performed increasing the quantity of H3PO2 from 0.2 to 0.5 mL, a mild increase in the yield of product 4a was observed and only traces of product 3a were observed (Table 1, entries 2 and 3).

In view of these moderate results, we decided to explore these reaction conditions to obtain reduced products of (E)-chalcones increasing the amount of PhSeSePh 2. To our delight, when the reaction was carried out in the presence of 0.5 mmol of diphenyl diselenide 2 and 0.2 mL of H3PO2 the reduction product 4a was obtained in 89% yield after 2 hours at 90 ºC under nitrogen atmosphere (Table 1, entry 4). Under these reaction conditions, only traces of the β-phenylselanyl adduct 3a was observed and we recovered, after chromatographic column, PhSeSePh 2 in 78%. Using larger amounts of diphenyl diselenide 2, the reactions gave the reduction product 4a in lower yields comparable to reactions using 0.5 mmol of diphenyl diselenide 2 (Table 1, entries 5 and 6). Besides, when the reaction was carried out without H3PO2 or PhSeSePh 2 no reaction product 4a was formed even after 24 h (Table 1, entries 7 and 8). Finally, when the reaction was performed without the preliminary 30 min of diphenyl diselenide cleavage, just stirring a mixture of (E)-chalcone 1a (0.5 mmol), diphenyl diselenide 2 (0.5 mmol) and 0.2 mL of H3PO2 (50 wt.% in H2O) in glycerol (1.0 mL) at 90 ºC under nitrogen atmosphere, the corresponding product 4a was obtained in good yield (Table 1, entry 9).

Thus, in an optimized reaction, (E)-chalcone 1a (0.5 mmol), diphenyl diselenide 2 (0.5 mmol) and H3PO2 (0.2 mL) were dissolved in glycerol (1.0 mL). The heterogeneous reaction mixture was stirred for 2 hours at 90 ºC under nitrogen atmosphere affording 1,3-diphenyl-1-propanone 4a in 89% yield (Table 1, entry 9).

After the reduction reaction optimization, a study regarding the recovery and reuse of glycerol was performed. Subsequent to the formation of product 4a, the reaction mixture was diluted and extracted with a mixture of hexane/ethyl acetate 95:5 (3 × 5 mL). The upper phase was dried and the solvent evaporated. The inferior, glycerol phase, was dried under vacuum and directly reused in a new reaction with (E)-chalcone 1a and diphenyl diselenide 2 at 90 ºC without the addition of more H3PO2. To our satisfaction, after 2 h at this temperature the corresponding product 4a was obtained in 86% yield. After this successful experiment, we speculate the possible reuse of the glycerol/H3PO2 system for additional cycles (Figure 1). It was observed that a good level of efficiency was maintained even after four reactions. These results showed that the 1,3-diphenyl-1-propanone 4a was obtained in 89, 86, 82, 77 and 74% yields after successive cycles (Figure 1). It is important to note that in all reactions performed, PhSeSePh 2 was recovered after chromatographic column in a range of 64-78% yield.


After that, the versatility of our reduction methodology was evaluated, by reacting other (E)-chalcones 1b-k with diphenyl diselenide 2 under the optimized reduction reaction conditions (Table 2). The obtained results reveal that the reaction worked well with a range of (E)-chalcones tested, affording good yields of the products 3b-k (Table 2, entries 2-11). According to these results, the reactions are not sensitive to electronic effects in the aromatic ring of the chalcone. Therefore, (E)-chalcones containing either electron-donating (OMe, Me) or electron-withdrawing groups (Br, Cl) in different parts of the molecules gave good yields of the desired reduction products (Table 2, entries 2-11). The position of the substituted groups did not considerably affect reactivity.

Additionally, this reducing reaction condition was utilized in the synthesis of zingerone, a natural product. Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] is a vanillinoid compound and one of the pungent components of ginger (rizhome of Zingiber officinale Roscoe),32 and this compound is a likely active constituent responsible for the antidiarrheal activity of ginger.33 To synthesize the desired natural product, 2-methoxy-4-(3-oxo-1-butenyl)phenol 1l (0.5 mmol) was reacted with PhSeSePh 2 (0.5 mmol) and H3PO2 (0.2 mL) in glycerol (1.0 mL) at 90 ºC under N2 atmosphere for 30 minutes (Scheme 3). Under these reaction conditions, the desired zingerone 4l was obtained in 68% and unfortunately, 2-methoxy-4-(3-hydroxybutyl)phenol 5 was formed as by-product in 19% yield. The formation of this side product 5 proves that the chemoselectivity in the reduction reactions seems to be strongly correlated to the presence of both aromatic substituents in the α-β-unsaturated carbonyl compounds, and when an aliphatic moiety is present, the reduction of the keto group could occur.


Experimental

General remarks

The reactions were monitored by thin layer chromatography (TLC) carried out on Merck silica gel (60 F254) by using UV light as visualizing agent and 5% vanillin in 10% H2SO4 and heat as developing agents. Baker silica gel (particle size 0.040-0.063 mm) was used for flash chromatography. Proton nuclear magnetic resonance (1H NMR) spectra were obtained at 300 MHz on a Varian Gemini NMR and at 400 MHz on Bruker DPX 400 spectrometers. Spectra were recorded in CDCl3 solutions. Chemical shifts (δ) are reported in ppm, referenced to tetramethylsilane (TMS) as the external reference. Coupling constants (J) are reported in Hz. Carbon-13 nuclear magnetic resonance (13C NMR) spectra were obtained at 75 MHz on a Varian Gemini NMR and at 100 MHz on Bruker DPX 400 spectrometers. Chemical shifts are reported in ppm, referenced to the solvent peak of CDCl3. Low-resolution mass spectra were obtained with a Shimadzu GC-MS-QP2010 mass spectrometer.

Procedure for the reduction of α-β-unsaturated ketones using PhSeSePh/glycerol/H3PO2

Glycerol (1.0 mL) was added to a 5 mL round-bottomed flask containing α-β-unsaturated ketones 1a-l (0.5 mmol), diphenyl diselenide 2 (0.5 mmol) and H3PO2 (0.2 mL). The reaction mixture was stirred at 90 ºC under nitrogen atmosphere for the time indicated in Table 2. After that, the reaction mixture was received in water (20 mL), extracted with ethyl acetate (3 × 5 mL), dried over MgSO4, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using ethyl acetate/hexane as the eluent.

1,3-Diphenyl-1-propanone (4a):34 Yield: 0.093 g (89%); white solid; m.p.: 73-75 ºC; MS: m/z (rel. int.) 210 (31), 105 (100), 91 (12), 77 (48); 1H NMR (CDCl3, 300 MHz) δ 7.96-7.91 (m, 2H, Ph-H), 7.55-7.49 (m, 1H, Ph-H), 7.44-7.39 (m, 2H, Ph-H), 7.31-7.15 (m, 5H, Ph-H), 3.27 (t, 2H, J 8.0 Hz, CH2), 3.05 (t, 2H, J 8.0 Hz, CH2); 13C NMR (CDCl3, 75 MHz) δ 199.0, 141.2, 136.7, 132.9, 128.5, 128.4, 128.3, 127.9, 126.1, 40.3, 30.0.

1-(4-Methoxyphenyl)-3-phenylpropan-1-one (4b):34 Yield: 0.086 g (72%); white solid; m.p.: 96-98 ºC; MS: m/z (rel. int.) 240 (18), 136 (9), 135 (100), 107 (11), 92 (12), 77 (25), 64 (6), 51 (2); 1H NMR (CDCl3, 300 MHz) δ 7.93 (d, 2H, J 8.9 Hz, Ar-H), 7.32-7.19 (m, 5H, Ph-H), 6.92 (d, 2H, J 8.9 Hz, Ar-H), 3.85 (s, 3H, OCH3), 3.27-3.21 (m, 2H, CH2), 3.05 (t, 2H, J 8.0 Hz, CH2); 13C NMR (CDCl3, 75 MHz) δ 197.8, 163.4, 141.4, 130.3, 129.9, 128.5, 128.4, 126.0, 113.7, 55.4, 40.1, 30.3.

3-Phenyl-1-(p-tolyl)propan-1-one (4c):34 Yield: 0.090 g (80%); colorless liquid; MS: m/z (rel. int.) 224 (15), 209 (27), 120 (9), 119 (100), 105 (6), 91 (46), 77 (6), 65 (19), 51 (4); 1H NMR (CDCl3, 400 MHz) δ 7.84 (d, 2H, J 8.1 Hz, Ar-H), 7.30-7.18 (m, 7H, Ph-H and Ar-H), 3.25 (t, 2H, J 8.0 Hz, CH2), 3.05 (t, 2H, J 8.0 Hz, CH2), 2.38 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 198.8, 143.7, 141.4, 134.4, 129.2, 128.5, 128.4, 128.1, 126.0, 40.3, 30.2, 21.5.

1-(4-Bromophenyl)-3-phenylpropan-1-one (4d):34 Yield: 0.107 g (74%); white solid; m.p.: 98-100 ºC; MS: m/z (rel. int.) 288 (24), 209 (31), 185 (94), 183 (100), 157 (20), 155 (21), 105 (37), 91 (29), 77 (17), 65 (10), 51 (9); 1H NMR (CDCl3, 300 MHz) δ 7.80 (d, 2H, J 8.7 Hz, Ar-H), 7.57 (d, 2H, J 8.7 Hz, Ar-H), 7.32-7.17 (m, 5H, Ph-H), 3.28-3.22 (m, 2H, CH2), 3.05 (t, 2H, J 8.0 Hz, CH2); 13C NMR (CDCl3, 75 MHz) δ 198.1, 141.0, 135.5, 131.9, 129.5, 128.5, 128.4, 128.2, 126.2, 40.3, 30.0.

1-Phenyl-3-(p-tolyl)propan-1-one (4e):34 Yield: 0.097 g (87%); colorless liquid; MS: m/z (rel. int.) 225 (5), 224 (30), 209 (7), 119 (16), 105 (100), 91 (8), 77 (37), 51 (7); 1H NMR (CDCl3, 400 MHz) δ 7.95-7.93 (m, 2H, Ph-H), 7.53 (t, 1H, J 7.2 Hz, Ph-H), 7.45-7.41 (m, 2H, Ph-H), 7.13 (d, 2H, J 8.0 Hz, Ar-H), 7.09 (d, 2H, J 8.0 Hz, Ar-H), 3.26 (t, 2H, J 8.0 Hz, CH2), 3.02 (t, 2H, J 8.0 Hz, CH2), 2.31 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 199.3, 138.2, 136.9, 135.6, 132.9, 129.2, 128.5, 128.2, 128.0, 40.5, 29.7, 20.9.

1-Phenyl-3-(o-tolyl)propan-1-one (4f):34 Yield: 0.087 g (78%); colorless liquid; MS: m/z (rel. int.) 224 (9), 206 (30), 119 (11), 105 (100), 104 (24), 91 (10), 77 (38), 51 (7); 1H NMR (CDCl3, 300 MHz) δ 7.97-7.94 (m, 2H, Ph-H), 7.57-7.51 (m, 1H, Ph-H), 7.46-7.41 (m, 2H, Ar-H), 7.20-7.12 (m, 4H, Ph-H and Ar-H), 3.26-3.21 (m, 2H, CH2), 3.07-3.02 (m, 2H, CH2), 2.34 (s, 3H, CH3); 13C NMR (CDCl3, 75 MHz) δ 199.3, 139.3, 136.8, 135.9, 133.0, 130.3, 128.7, 128.5, 128.0, 126.3, 126.1, 39.0, 27.4, 19.3.

3-(4-Methoxyphenyl)-1-phenylpropan-1-one (4g):34 Yield: 0.090 g (75%); pale yellow solid; m.p.: 65-67 ºC; MS: m/z (rel. int.) 240 (31), 135 (12), 121 (100), 108 (21), 105 (47), 91 (11), 77 (45), 65 (5), 51 (10); 1H NMR (CDCl3, 400 MHz) δ 7.93 (d, 2H, J 7.6 Hz, Ph-H), 7.53 (t, 1H, J 7.1 Hz, Ph-H), 7.42 (t, 2H, J 7.5 Hz, Ph-H), 7.15 (d, 2H, J 8.2 Hz, Ar-H), 6.83 (d, 2H, J 8.2 Hz, Ar-H), 3.76 (s, 3H, OCH3), 3.24 (t, 2H, J 7.8 Hz, CH2), 3.00 (t, 2H, J 7.8 Hz, CH2); 13C NMR (CDCl3, 100 MHz) δ 199.3, 158.0, 136.9, 133.3, 132.9, 129.3, 128.5, 128.0, 113.9, 55.2, 40.6, 29.3.

3-(4-Chlorophenyl)-1-phenylpropan-1-one (4h):34 Yield: 0.085 g (70%); pale yellow solid; m.p.: 55-57 ºC; MS: m/z (rel. int.) 244 (18), 125 (8), 105 (100), 77 (47), 51 (12); 1H NMR (CDCl3, 300 MHz) δ 7.95-7.92 (m, 2H, Ph-H), 7.57-7.52 (m, 1H, Ph-H), 7.46-7.41 (m, 2H, Ph-H), 7.23 (d, 2H, J 8.6 Hz, Ar-H), 7.16 (d, 2H, J 8.6 Hz, Ar-H), 3.29-3.23 (m, 2H, CH2), 3.05-3.00 (m, 2H, CH2); 13C NMR (CDCl3, 75 MHz) δ 198.7, 139.7, 136.7, 133.1, 131.8, 129.8, 128.6, 128.5, 127.9, 40.2, 29.3.

3-(2-Chlorophenyl)-1-phenylpropan-1-one (4i):34 Yield: 0.090 g (74%); colorless liquid; MS: m/z (rel. int.) 243 (1), 210 (13), 209 (79), 105 (100), 103 (7), 77 (54), 51 (12); 1H NMR (CDCl3, 300 MHz) δ 7.97-7.94 (m, 2H, Ph-H), 7.57-7.51 (m, 1H, Ph-H), 7.46-7.41 (m, 2H, Ph-H), 7.36-7.28 (m, 2H, Ar-H); 7.21-7.12 (m, 2H, Ar-H), 3.33-3.27 (m, 2H, CH2), 3.20-3.14 (m, 2H, CH2); 13C NMR (CDCl3, 75 MHz) δ 198.9, 138.8, 136.7, 133.9, 133.1, 130.7, 129.5, 128.5, 128.0, 127.7, 126.9, 38.4, 28.3.

1,3-Bis(4-methoxyphenyl)propan-1-one (4j):34 Yield: 0.108 g (80%); colorless liquid; MS: m/z (rel. int.) 270 (29), 135 (100), 134 (13), 121 (54), 108 (9), 107 (9), 91 (6), 77 (20); 1H NMR (CDCl3, 300 MHz) δ 7.91 (d, 2H, J 8.9 Hz, Ar-H), 7.15 (d, 2H, J 8.7 Hz, Ar-H), 6.90 (d, 2H, J 8.9 Hz, Ar-H), 6.83 (d, 2H, J 8.7 Hz, Ar-H), 3.82 (s, 3H, CH3), 3.75 (s, 3H, CH3), 3.22-3.16 (m, 2H, CH2), 3.00-2.95 (m, 2H, CH2); 13C NMR (CDCl3, 75 MHz) δ 197.8, 163.3, 157.8, 133.3, 130.1, 129.8, 129.2, 113.8, 113.6, 55.3, 55.1, 40.2, 29.3.

3-(4-Chlorophenyl)-1-(4-methoxyphenyl)propan-1-one (4k):35 Yield: 0.119 g (87%); white solid; m.p.: 69-71 ºC; MS: m/z (rel. int.) 274 (11), 135 (100), 107 (11), 92 (11), 77 (20); 1H NMR (CDCl3, 300 MHz) δ 7.92 (d, 2H, J 8.9 Hz, Ar-H), 7.24 (d, 2H, J 8.5 Hz, Ar-H), 7.16 (d, 2H, J 8.5 Hz, Ar-H), 6.91 (d, 2H, J 8.9 Hz, Ar-H), 3.84 (s, 3H, CH3), 3.21 (t, 2H, J 7.7 Hz, CH2), 3.01 (t, 2H, J 7.7 Hz, CH2); 13C NMR (CDCl3, 75 MHz) δ 197.3, 163.4, 139.8, 131.7, 130.2, 129.7 (2C), 128.4, 113.7, 55.6, 39.6, 29.4.

General procedure for the synthesis of zingerone using PhSeSePh/glycerol/H3PO2

Glycerol (1.0 mL) was added to a 5 mL round-bottomed flask containing 2-methoxy-4-(3-oxo-1-butenyl)phenol 1l (0.5 mmol), diphenyl diselenide 2 (0.5 mmol) and H3PO2 (0.2 mL). The reaction mixture was stirred at 90 ºC under nitrogen atmosphere for 30 min. After that, the reaction mixture was received in water (20 mL), extracted with ethyl acetate (3 × 5 mL), dried over MgSO4, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using ethyl acetate/hexane (10:90) as the eluent.

4-(4-Hydroxy-3-methoxyphenyl)-2-butanone (4l):36 Yield: 0.066 g (68%); colorless needles; m.p.: 36-37 ºC; MS: m/z (rel. int.) 194 (M+, 43), 151 (12), 137 (100), 119 (24), 91 (23), 77 (10), 43 (27); 1H NMR (CDCl3, 300 MHz) δ 6.81 (d, 1H, J 8.0 Hz, Ar-H), 6.70-6.64 (m, 2H, Ar-H), 5.73 (br, 1H, Ar-OH), 3.85 (s, 3H, OCH3), 2.85-2.80 (m, 2H, CH2), 2.75-2.70 (m, 2H, CH2), 2.13 (s, 3H, CH3); 13C NMR (CDCl3, 75 MHz) δ 208.3, 146.3, 143.8, 132.7, 120.6, 114.3, 111.0, 55.7, 45.4, 30.0, 29.3.

Conclusion

In summary, we described here our results for the reaction of benzeneselenol, generated in situ by reaction of diphenyl diselenide with H3PO2, with various (E)-chalcones using glycerol as solvent at 90 ºC under nitrogen atmosphere. Using our optimized reaction conditions, a range of chemoselective 1,4-reduction products were obtained in good yields and a range of chalcones containing electron-donating or electron-withdrawing groups were employed as substrates. In addition, the glycerol/H3PO2 system can be easily recovered and reused in chemoselective 1,4-reductions for successive cycles without loss of efficiency. Under 1,4-reducing reaction conditions, zingerone was synthesized in good yield.

Supplementary Information

Supplementary data are available free of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgments

We are grateful to CAPES, CNPq, FINEP and FAPERGS (PRONEM 11/2026-4) for the financial support.

References

1. Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H.; Bolourtchian, M.; Green Chem. Lett. Rev. 2009,2,43; Peng, A.; Rosenblatt, R.; Nolin, K.; Tetrahedron Lett. 2012,53,2712; Srivastava, N.; Banik, B. K.; J. Org. Chem. 2003,68,2109; Chu, C.-M.; Gao, S.; Sastry, M. N. V.; Yao, C.-F.; Tetrahedron Lett. 2005,46,4971; Chu, C.-M.; Huang, W.-J.; Lu, C.; Wu, P.; Liu, J.-T.; Yao, C.-F.; Tetrahedron Lett. 2006,47,7375; Sharma, G.; Kumar, R.; Chakraborti, A. K.; Tetrahedron Lett. 2008,49,4272; Khatik, G. L.; Sharma, G.; Kumar, R.; Chakraborti, A. K.; Tetrahedron 2007,63,1200; Lenardão, E. J.; Ferreira, P. C.; Jacob, R. G.; Perin, G.; Leite, F. P. L.; Tetrahedron Lett. 2007,48,6763; Lenardão, E. J.; Trecha, D. O.; Ferreira, P. C.; Jacob, R. G.; Perin, G.; J. Braz. Chem. Soc. 2009,20,93; Gaggero, N.; Albanese, D. C. M.; Celentano, G.; Banfi, S.; Aresi, A.; Tetrahedron: Asymmetry 2011,22,1231.

2. Perin, G.; Borges, E. L.; Rosa, P. C.; Nobre, P. C.; Lenardão, E. J.; Tetrahedron Lett. 2013,54,1718.

3. Chu, C.-M.; Gao, S.; Sastry, M. N. V.; Kuo, C.-W.; Lu, C.; Liu, J.-T.; Yao, C.-F.; Tetrahedron 2007,63,1863.

4. Fleming, F. F.; Pak, J. J.; J. Org. Chem. 1995,60,4299.

5. Srinivas, B.; Kumar, V. P.; Sridhar, R.; Reddy, V. P.; Nageswar, Y. V. D.; Rao, K. R.; Helv. Chim. Acta 2009,92,1080.

6. Ogawa, A.; Nishiyama, Y.; Kambe, N.; Murai, S.; Sonoda, N.; Tetrahedron Lett. 1987,28,3271.

7. Wang, L.; Zhang, Y.; Heteroat. Chem. 1999,10,203.

8. Comasseto, J. V.; Gariani, R. A.; Princival, J. L.; Dos Santos, A. A.; Zinn, F. K.; J. Organomet. Chem. 2008,693,2929.

9. Miyashita, M.; Yoshikoshi, A.; Synthesis 1980,664.

10. Movassagh, B.; Ameneh, T.; Synlett 2007,1954.

11. Ranu, B. C.; Das, A.; Adv. Synth. Catal. 2005,347,712.

12. Battistelli, B.; Lorenzo, T.; Tiecco, M.; Santi, C.; Eur. J. Org. Chem. 2011,1848.

13. Gilman, H.; Cason, L. F.; J. Am. Chem. Soc. 1951,73,1074.

14. Alberto, E. E.; Braga, A. L. In Selenium and Tellurium Chemistry - From Small Molecules to Biomolecules and Materials; Derek, W. J.; Risto, L. , eds.; Springer-Verlag: Berlin, 2011, ch. 11; Wirth, T. In Organoselenium Chemistry: Synthesis and Reactions; Wirth, T., ed.; Wiley-VCH: Weinheim, 2011, ch. 1-9; Menezes, P. H.; Zeni, G. In Patai's Chemistry of Functional Groups; Rappoport, Z., ed.; John Wiley & Sons: Oxford, 2011, ch. 1-5; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Panatieri, R. B.; Chem. Rev. 2009,109,1277; Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T.; Angew. Chem., Int. Ed. 2009,48,8409; Santi, C.; Santoro, S.; Battistelli, B.; Curr. Org. Chem. 2010,14,2442; Freudendahl, D. M; Shahzad, S. A.; Wirth, T.; Eur. J. Org. Chem. 2009,1649.

15. Rampon, D. S.; Rodembusch, F. S.; Schneider, J. M. F. M.; Bechtold, I. H.; Gonçalves, P. F. B.; Merlo, A.; Schneider, P. H.; J. Mater. Chem. 2010,20,715; Samb, I.; Bell, J.; Toullec, P. Y.; Michelet, V.; Leray, I.; Org. Lett. 2011,13,1182; Goswami, S.; Hazra, A.; Chakrabarty, R.; Fun, H.-K.; Org. Lett. 2009,11,4350; Tang, B.; Xing, Y.; Li, P.; Zhang, N.; Yu, F.; Yang, G.; J. Am. Chem. Soc. 2007,129,11666.

16. Kim, H. S.; Kim, Y. J.; Lee, H.; Park, K. Y.; Lee, C.; Chin, C. S.; Angew. Chem., Int. Ed. 2002,41,4300; Lenardão, E. J.; Feijó, J. O.; Thurow, S.; Perin, G.; Jacob, R. G.; Silveira, C. C.; Tetrahedron Lett. 2009,50,5215; Lenardão, E. J.; Borges, E. L.; Mendes, S. R.; Perin, G.; Jacob, R. G.; Tetrahedron Lett. 2008,49,1919; Lenardão, E. J.; Mendes, S. R.; Ferreira, P. C.; Perin, G.; Silveira, C. C.; Jacob, R. G.; Tetrahedron Lett. 2006,47,7439; Thurow, S.; Pereira, V. A.; Martinez, D. M.; Alves, D.; Perin, G.; Jacob, R. G.; Lenardão, E. J.; Tetrahedron Lett. 2011,52,640; Alberto, E. E.; Rossato, L. L.; Alves, S. H.; Alves, D.; Braga, A. L.; Org. Biomol. Chem. 2011,9,1001.

17. Braga, A. L.; Vargas, F.; Sehnem, J. A.; Braga, R. C.; J. Org. Chem. 2005,70,9021; Braga, A. L.; Paixão, M. W.; Lüdtke, D. S.; Silveira, C. C.; Rodrigues, O. E. D.; Org. Lett. 2003,5,2635; Nishibayashi, Y.; Segawa, K.; Singh, J. D.; Fukuzawa, S.; Ohe, K.; Uemura, S.; Organometallics 1996,15,370; Zhao, L.; Li, Z.; Wirth, T.; Eur. J. Org. Chem. 2011,176; Marini, F.; Silvia, S.; Del Verme, F.; Testaferri, L.; Tiecco, M.; Adv. Synth. Catal. 2009,351,103; Tiecco, M.; Carlone, A.; Sternativo, S.; Marini, F.; Bartoli, G.; Melchiorre, P.; Angew. Chem., Int. Ed. 2007,46,6882; Wojaczyska, E.; Skazewski, J.; Tetrahedron: Asymmetry 2008,19,593.

18. Parnham, M. J.; Graf, E.; Prog. Drug. Res. 1991,36,9; Mugesh, G.; du Mont, W. W.; Sies, H.; Chem. Rev. 2001,101,2125; Nogueira, C. W.; Zeni, G.; Rocha, J. B. T.; Chem. Rev. 200,104,6255; Alberto, E. E.; Nascimento, V.; Braga, A. L.; J. Braz. Chem. Soc. 2010,21,2032; Nogueira, C. W.; Rocha, J. B. T.; J. Braz. Chem. Soc. 2010,21,2055; Nogueira, C. W.; Rocha, J. B. T.; Arch. Toxicol. 2011,85,1313.

19. Hanessian, S.; Roy, P. J.; Petrini, M.; Hodges, P. J.; Fabio, R. D.; Carganico, G.; J. Org. Chem. 1990,55,5766.

20. Nagasawa, T.; Shimada, N.; Torihata, M.; Kuwahara, S.; Tetrahedron 2010,66,4965.

21. Kreilein, M. M.; Hofferberth, J. E.; Hart, A. C.; Paquette, L. A.; J. Org. Chem. 2006,71,7329.

22. Handy, S. T.; Chem. - Eur. J. 2003,9,2938; Leitner, W.; Green Chem. 2007,9,923; Horváth, I. T.; Green Chem. 2008,10,1024; Giovanni, I.; Silke, H.; Dieter, L.; Burkhard, K.; Green Chem. 2006,8,1051; Clark, J. H.; Green Chem. 1999,1,1.

23. Nelson, W. M.; Green Solvents for Chemistry: Perspectives and Practice; Oxford University Press: Oxford, 2003.

24. Gu, Y.; Jèrôme, F.; Green Chem. 2010,12,1127; Bakhrou, N.; Lamaty, F.; Martinez, J.; Colacino, E.; Tetrahedron Lett. 2010,51,3935; Li, M.; Chen, C.; He, F.; Gu, Y.; Adv. Synth. Catal. 2010,352,519; Francos, J.; Cadierno, V.; Green Chem. 2010,12,1552; Silveira, C. C.; Mendes, S. R.; Líbero, F. M.; Lenardão, E. J.; Perin, G.; Tetrahedron Lett. 2009,50,6060; Radatz, C. S.; Silva, R. B.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Alves, D.; Tetrahedron Lett. 2011,52,4132; Wolfson, A.; Dlugy, C.; Chem. Pap. 2007,61,228; Wolfson, A.; Litvak, G.; Shotland, C.; Dlugy, Y.; Tavor, D.; Ind. Crops Prod. 2009,30,78; Wolfson, A.; Dlugy, C.; Shotland, Y.; Environ. Chem. Lett. 2007,5,67.

25. Abbott, A. P.; Harris, R. C.; Ryder, K. S.; D'Agostino, C.; Gladden, L. F.; Mantle, M. D.; Green Chem. 2011,13,82.

26. Ricordi, V. G.; Freitas, C. S.; Perin, G.; Lenardão E. J.; Jacob, R. G.; Savegnago, L.; Alves, D.; Green Chem. 2012,14,1030; Freitas, C. S.; Barcellos, A. M.; Ricordi, V. G.; Pena, J. M.; Perin, G.; Jacob, R. G.; Lenardão E. J.; Alves, D.; Green Chem. 2011,13,2931; Cabrera, D. M. L.; Líbero, F. M.; Alves, D.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Green Chem. Lett. Rev. 2012,5,329; Alves, D.; Sachini, M.; Jacob, R. G.; Lenardão, E. J.; Contreira, M. E.; Savegnago, L.; Perin, G.; Tetrahedron Lett. 2011,52,133; Gonçalves, L. C. C.; Lima, D. B.; Borba, P. M. Y.; Perin, G.; Alves, D.; Jacob, R. G.; Lenardão, E. J.; Tetrahedron Lett. 2013,54,3475.

27. Thurow, S.; Webber, R.; Perin, G.; Lenardão, E. J.; Alves, D.; Tetrahedron Lett. 2013,54,3215.

28. Haskel, A.; Keinan, E. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I.; de Meijere, A., eds.; Wiley: New York, 2002, ch. 7.

29. Kotani, S.; Osakama, K.; Sugiura, M.; Nakajima, M.; Org. Lett. 2011,13,3968; Li, X.; Li, L.; Tang, Y.; Zhong, L.; Cun, L.; Zhu, J.; Liao, J.; Deng, J.; J. Org. Chem. 2010,75,2981; Bagal, D. B.; Qureshi, Z. S.; Dhake, K. P.; Khan, S. R.; Bhanage, B. M.; Green Chem. 2011,13,1490; Pelss, A.; Kumpulainen, E. T. T.; Koskinen, A. M. P.; J. Org. Chem. 2009,74,7598; Llamas, T.; Arrayás, R. G.; Carretero, J. C.; Angew. Chem. 2007,119,3393; Shang, J.-Y.; Li, F.; Bai, X.-F.; Jiang, J.-X.; Yang, J.-F.; Lai, G.-Q.; Xu, L.-W.; Eur. J. Org. Chem. 2012,2809.

30. Kosal, A. D.; Ashfeld, B. L.; Org. Lett. 2010,12,44.

31. Akiba, M.; Cava, M. P.; Synth. Commun. 1984,14,1119; Nishiyama, Y.; Yoshida, M.; Ohkawa, S.; Hamanaka, S.; J. Org. Chem. 1991,56,6720; Perkma, M. J.; Smith, B. V.; Turner, E. S.; J. Chem. Soc., Chem. Commun. 1980,977; Masawaki, T.; Uchida, Y.; Ogawa, A.; Kambe, N.; Miyoehi, N.; Sonoda, N.; J. Phys. Org. Chem. 1988,1,115; Nishiyama, Y.; Makino, Y.; Hamanaka, S.; Ogawa, A.; Sonoda, N.; Bull. Chem. Soc. Jpn. 1989,62,1682.

32. Langner, E.; Greifenberg, S.; Gruenwald, J.; Adv. Ther. 1998,15,25.

33. Iwami, M.; Shiina, T.; Hirayama, H.; Shima, T.; Takewaki, T.; Shimizu, Y.; J. Nat. Med. 2011,65,89; Langmead, L.; Rampton, D. S.; Aliment. Pharmacol. Ther. 2001,15,1239; Ghayur, M. N.; Gilani, A. H.; Dig. Dis. Sci. 2005,50,1889.

34. Ding, B.; Zhang, Z.; Liu, Y.; Sugiya, M.; Imamoto, T.; Zhang, W.; Org. Lett. 2013,15,3690.

35. Buu-Hoï, N. P.; Hoán, N.; Xuong, N. D.; J. Chem. Soc. 1951,3499.

36. Sanderst, W. J.; Seidel, J. L.; J. Agric. Food. Chem. 1992,40,263.

Submitted: February 3, 2014

Published online: May 16, 2014

Supplementary Information

The supplementary material is available in pdf: [Supplementary material]

  • 1. Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H.; Bolourtchian, M.; Green Chem. Lett. Rev. 2009,2,43;
  • Peng, A.; Rosenblatt, R.; Nolin, K.; Tetrahedron Lett. 2012,53,2712;
  • Srivastava, N.; Banik, B. K.; J. Org. Chem. 2003,68,2109;
  • Chu, C.-M.; Gao, S.; Sastry, M. N. V.; Yao, C.-F.; Tetrahedron Lett. 2005,46,4971;
  • Chu, C.-M.; Huang, W.-J.; Lu, C.; Wu, P.; Liu, J.-T.; Yao, C.-F.; Tetrahedron Lett. 2006,47,7375;
  • Sharma, G.; Kumar, R.; Chakraborti, A. K.; Tetrahedron Lett. 2008,49,4272;
  • Khatik, G. L.; Sharma, G.; Kumar, R.; Chakraborti, A. K.; Tetrahedron 2007,63,1200;
  • Lenardão, E. J.; Ferreira, P. C.; Jacob, R. G.; Perin, G.; Leite, F. P. L.; Tetrahedron Lett. 2007,48,6763;
  • Lenardão, E. J.; Trecha, D. O.; Ferreira, P. C.; Jacob, R. G.; Perin, G.; J. Braz. Chem. Soc. 2009,20,93;
  • Gaggero, N.; Albanese, D. C. M.; Celentano, G.; Banfi, S.; Aresi, A.; Tetrahedron: Asymmetry 2011,22,1231.
  • 2. Perin, G.; Borges, E. L.; Rosa, P. C.; Nobre, P. C.; Lenardão, E. J.; Tetrahedron Lett. 2013,54,1718.
  • 3. Chu, C.-M.; Gao, S.; Sastry, M. N. V.; Kuo, C.-W.; Lu, C.; Liu, J.-T.; Yao, C.-F.; Tetrahedron 2007,63,1863.
  • 4. Fleming, F. F.; Pak, J. J.; J. Org. Chem. 1995,60,4299.
  • 5. Srinivas, B.; Kumar, V. P.; Sridhar, R.; Reddy, V. P.; Nageswar, Y. V. D.; Rao, K. R.; Helv. Chim. Acta 2009,92,1080.
  • 6. Ogawa, A.; Nishiyama, Y.; Kambe, N.; Murai, S.; Sonoda, N.; Tetrahedron Lett. 1987,28,3271.
  • 7. Wang, L.; Zhang, Y.; Heteroat. Chem. 1999,10,203.
  • 8. Comasseto, J. V.; Gariani, R. A.; Princival, J. L.; Dos Santos, A. A.; Zinn, F. K.; J. Organomet. Chem. 2008,693,2929.
  • 9. Miyashita, M.; Yoshikoshi, A.; Synthesis 1980,664.
  • 10. Movassagh, B.; Ameneh, T.; Synlett 2007,1954.
  • 11. Ranu, B. C.; Das, A.; Adv. Synth. Catal. 2005,347,712.
  • 12. Battistelli, B.; Lorenzo, T.; Tiecco, M.; Santi, C.; Eur. J. Org. Chem. 2011,1848.
  • 13. Gilman, H.; Cason, L. F.; J. Am. Chem. Soc. 1951,73,1074.
  • 14. Alberto, E. E.; Braga, A. L. In Selenium and Tellurium Chemistry - From Small Molecules to Biomolecules and Materials; Derek, W. J.; Risto, L. , eds.; Springer-Verlag: Berlin, 2011, ch. 11;
  • Wirth, T. In Organoselenium Chemistry: Synthesis and Reactions; Wirth, T., ed.; Wiley-VCH: Weinheim, 2011, ch. 1-9;
  • Menezes, P. H.; Zeni, G. In Patai's Chemistry of Functional Groups; Rappoport, Z., ed.; John Wiley & Sons: Oxford, 2011, ch. 1-5;
  • Perin, G.; Lenardão, E. J.; Jacob, R. G.; Panatieri, R. B.; Chem. Rev. 2009,109,1277;
  • Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T.; Angew. Chem., Int. Ed. 2009,48,8409;
  • Santi, C.; Santoro, S.; Battistelli, B.; Curr. Org. Chem. 2010,14,2442;
  • Freudendahl, D. M; Shahzad, S. A.; Wirth, T.; Eur. J. Org. Chem. 2009,1649.
  • 15. Rampon, D. S.; Rodembusch, F. S.; Schneider, J. M. F. M.; Bechtold, I. H.; Gonçalves, P. F. B.; Merlo, A.; Schneider, P. H.; J. Mater. Chem. 2010,20,715;
  • Samb, I.; Bell, J.; Toullec, P. Y.; Michelet, V.; Leray, I.; Org. Lett. 2011,13,1182;
  • Goswami, S.; Hazra, A.; Chakrabarty, R.; Fun, H.-K.; Org. Lett. 2009,11,4350;
  • Tang, B.; Xing, Y.; Li, P.; Zhang, N.; Yu, F.; Yang, G.; J. Am. Chem. Soc. 2007,129,11666.
  • 16. Kim, H. S.; Kim, Y. J.; Lee, H.; Park, K. Y.; Lee, C.; Chin, C. S.; Angew. Chem., Int. Ed. 2002,41,4300;
  • Lenardão, E. J.; Feijó, J. O.; Thurow, S.; Perin, G.; Jacob, R. G.; Silveira, C. C.; Tetrahedron Lett. 2009,50,5215;
  • Lenardão, E. J.; Borges, E. L.; Mendes, S. R.; Perin, G.; Jacob, R. G.; Tetrahedron Lett. 2008,49,1919;
  • Lenardão, E. J.; Mendes, S. R.; Ferreira, P. C.; Perin, G.; Silveira, C. C.; Jacob, R. G.; Tetrahedron Lett. 2006,47,7439;
  • Thurow, S.; Pereira, V. A.; Martinez, D. M.; Alves, D.; Perin, G.; Jacob, R. G.; Lenardão, E. J.; Tetrahedron Lett. 2011,52,640;
  • Alberto, E. E.; Rossato, L. L.; Alves, S. H.; Alves, D.; Braga, A. L.; Org. Biomol. Chem. 2011,9,1001.
  • 17. Braga, A. L.; Vargas, F.; Sehnem, J. A.; Braga, R. C.; J. Org. Chem. 2005,70,9021;
  • Braga, A. L.; Paixão, M. W.; Lüdtke, D. S.; Silveira, C. C.; Rodrigues, O. E. D.; Org. Lett. 2003,5,2635;
  • Nishibayashi, Y.; Segawa, K.; Singh, J. D.; Fukuzawa, S.; Ohe, K.; Uemura, S.; Organometallics 1996,15,370;
  • Zhao, L.; Li, Z.; Wirth, T.; Eur. J. Org. Chem. 2011,176;
  • Marini, F.; Silvia, S.; Del Verme, F.; Testaferri, L.; Tiecco, M.; Adv. Synth. Catal. 2009,351,103;
  • Tiecco, M.; Carlone, A.; Sternativo, S.; Marini, F.; Bartoli, G.; Melchiorre, P.; Angew. Chem., Int. Ed. 2007,46,6882;
  • Wojaczyska, E.; Skazewski, J.; Tetrahedron: Asymmetry 2008,19,593.
  • 18. Parnham, M. J.; Graf, E.; Prog. Drug. Res 1991,36,9;
  • Mugesh, G.; du Mont, W. W.; Sies, H.; Chem. Rev. 2001,101,2125;
  • Nogueira, C. W.; Zeni, G.; Rocha, J. B. T.; Chem. Rev. 200,104,6255;
  • Alberto, E. E.; Nascimento, V.; Braga, A. L.; J. Braz. Chem. Soc. 2010,21,2032;
  • Nogueira, C. W.; Rocha, J. B. T.; J. Braz. Chem. Soc. 2010,21,2055;
  • Nogueira, C. W.; Rocha, J. B. T.; Arch. Toxicol. 2011,85,1313.
  • 19. Hanessian, S.; Roy, P. J.; Petrini, M.; Hodges, P. J.; Fabio, R. D.; Carganico, G.; J. Org. Chem. 1990,55,5766.
  • 20. Nagasawa, T.; Shimada, N.; Torihata, M.; Kuwahara, S.; Tetrahedron 2010,66,4965.
  • 21. Kreilein, M. M.; Hofferberth, J. E.; Hart, A. C.; Paquette, L. A.; J. Org. Chem. 2006,71,7329.
  • 22. Handy, S. T.; Chem. - Eur. J. 2003,9,2938;
  • Leitner, W.; Green Chem. 2007,9,923;
  • Horváth, I. T.; Green Chem. 2008,10,1024;
  • Giovanni, I.; Silke, H.; Dieter, L.; Burkhard, K.; Green Chem. 2006,8,1051;
  • Clark, J. H.; Green Chem. 1999,1,1.
  • 23. Nelson, W. M.; Green Solvents for Chemistry: Perspectives and Practice; Oxford University Press: Oxford, 2003.
  • 24. Gu, Y.; Jèrôme, F.; Green Chem. 2010,12,1127;
  • Bakhrou, N.; Lamaty, F.; Martinez, J.; Colacino, E.; Tetrahedron Lett. 2010,51,3935;
  • Li, M.; Chen, C.; He, F.; Gu, Y.; Adv. Synth. Catal. 2010,352,519;
  • Francos, J.; Cadierno, V.; Green Chem. 2010,12,1552;
  • Silveira, C. C.; Mendes, S. R.; Líbero, F. M.; Lenardão, E. J.; Perin, G.; Tetrahedron Lett. 2009,50,6060;
  • Radatz, C. S.; Silva, R. B.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Alves, D.; Tetrahedron Lett. 2011,52,4132;
  • Wolfson, A.; Dlugy, C.; Chem. Pap. 2007,61,228;
  • Wolfson, A.; Litvak, G.; Shotland, C.; Dlugy, Y.; Tavor, D.; Ind. Crops Prod. 2009,30,78;
  • Wolfson, A.; Dlugy, C.; Shotland, Y.; Environ. Chem. Lett. 2007,5,67.
  • 25. Abbott, A. P.; Harris, R. C.; Ryder, K. S.; D'Agostino, C.; Gladden, L. F.; Mantle, M. D.; Green Chem. 2011,13,82.
  • 26. Ricordi, V. G.; Freitas, C. S.; Perin, G.; Lenardão E. J.; Jacob, R. G.; Savegnago, L.; Alves, D.; Green Chem 2012,14,1030;
  • Freitas, C. S.; Barcellos, A. M.; Ricordi, V. G.; Pena, J. M.; Perin, G.; Jacob, R. G.; Lenardão E. J.; Alves, D.; Green Chem 2011,13,2931;
  • Cabrera, D. M. L.; Líbero, F. M.; Alves, D.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Green Chem. Lett. Rev. 2012,5,329;
  • Alves, D.; Sachini, M.; Jacob, R. G.; Lenardão, E. J.; Contreira, M. E.; Savegnago, L.; Perin, G.; Tetrahedron Lett 2011,52,133;
  • Gonçalves, L. C. C.; Lima, D. B.; Borba, P. M. Y.; Perin, G.; Alves, D.; Jacob, R. G.; Lenardão, E. J.; Tetrahedron Lett. 2013,54,3475.
  • 27. Thurow, S.; Webber, R.; Perin, G.; Lenardão, E. J.; Alves, D.; Tetrahedron Lett. 2013,54,3215.
  • 28. Haskel, A.; Keinan, E. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I.; de Meijere, A., eds.; Wiley: New York, 2002, ch. 7.
  • 29. Kotani, S.; Osakama, K.; Sugiura, M.; Nakajima, M.; Org. Lett. 2011,13,3968;
  • Li, X.; Li, L.; Tang, Y.; Zhong, L.; Cun, L.; Zhu, J.; Liao, J.; Deng, J.; J. Org. Chem. 2010,75,2981;
  • Bagal, D. B.; Qureshi, Z. S.; Dhake, K. P.; Khan, S. R.; Bhanage, B. M.; Green Chem. 2011,13,1490;
  • Pelss, A.; Kumpulainen, E. T. T.; Koskinen, A. M. P.; J. Org. Chem. 2009,74,7598;
  • Llamas, T.; Arrayás, R. G.; Carretero, J. C.; Angew. Chem. 2007,119,3393;
  • Shang, J.-Y.; Li, F.; Bai, X.-F.; Jiang, J.-X.; Yang, J.-F.; Lai, G.-Q.; Xu, L.-W.; Eur. J. Org. Chem. 2012,2809.
  • 30. Kosal, A. D.; Ashfeld, B. L.; Org. Lett. 2010,12,44.
  • 31. Akiba, M.; Cava, M. P.; Synth. Commun. 1984,14,1119;
  • Nishiyama, Y.; Yoshida, M.; Ohkawa, S.; Hamanaka, S.; J. Org. Chem. 1991,56,6720;
  • Perkma, M. J.; Smith, B. V.; Turner, E. S.; J. Chem. Soc., Chem. Commun. 1980,977;
  • Masawaki, T.; Uchida, Y.; Ogawa, A.; Kambe, N.; Miyoehi, N.; Sonoda, N.; J. Phys. Org. Chem. 1988,1,115;
  • Nishiyama, Y.; Makino, Y.; Hamanaka, S.; Ogawa, A.; Sonoda, N.; Bull. Chem. Soc. Jpn. 1989,62,1682.
  • 32. Langner, E.; Greifenberg, S.; Gruenwald, J.; Adv. Ther. 1998,15,25.
  • 33. Iwami, M.; Shiina, T.; Hirayama, H.; Shima, T.; Takewaki, T.; Shimizu, Y.; J. Nat. Med. 2011,65,89;
  • Langmead, L.; Rampton, D. S.; Aliment. Pharmacol. Ther. 2001,15,1239;
  • Ghayur, M. N.; Gilani, A. H.; Dig. Dis. Sci. 2005,50,1889.
  • 34. Ding, B.; Zhang, Z.; Liu, Y.; Sugiya, M.; Imamoto, T.; Zhang, W.; Org. Lett. 2013,15,3690.
  • 35. Buu-Hoï, N. P.; Hoán, N.; Xuong, N. D.; J. Chem. Soc. 1951,3499.
  • 36. Sanderst, W. J.; Seidel, J. L.; J. Agric. Food. Chem. 1992,40,263.
  • *
    e-mail:
  • Publication Dates

    • Publication in this collection
      17 July 2014
    • Date of issue
      July 2014

    History

    • Received
      03 Feb 2014
    • Accepted
      16 May 2014
    Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
    E-mail: office@jbcs.sbq.org.br