Acessibilidade / Reportar erro

Electron energy-loss cross sections for the chemical bond overlap plasmon Of the hydrogen molecule

We examine the possibility of detecting the chemical bond overlap plasmon (CBOP) of the hydrogen molecule by electron inelastic scattering. The CBOP has been predicted to efficiently absorb and scatter electromagnetic radiation above the molecular ionization threshold in the cases of alkali halides. For the hydrogen molecule the quadrupole nature of the CBOP energy-loss cross section leads to cross section values with impacting electron energy dependence and an angular behavior which are totally distinguishable from the usual ionization, inter-band transitions and dissociation processes. Previously established relationships between the CBOP and the polarizability of the overlap region suggest this an a promising theoretical tool for quantifying covalency in the chemical bond.

energy loss; bond overlap plasmon, H2; electron scattering; covalency


Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br