Acessibilidade / Reportar erro

Climate change adaptation and the agricultural sector in South American countries: Risk, vulnerabilities and opportunities

ABSTRACT

South America covers a vast area with diverse climates and landscapes, with high participation in the global production of food and fibers. It is crucial to understand the risks, vulnerabilities, and opportunities that climate change brings to this region. We analyzed the increasing tension between agribusiness models and smallholder models, the risks, opportunities, and main adaptation measures that can be adopted in the agricultural sector of the South American countries facing climate change. This study is a review of adaptation actions in the agricultural sector for the different regions of South America. Vulnerability exists, firstly, because rural populations are exposed in many of the countries, often with high rates of poverty and low rates of socioeconomic development. Concerning the adaptation measures already taken, there are numerous cases of interventions by national, provincial, and municipal states for planned measures. Farmers are very active in adopting autonomous measures. Many adaptation measures show co-benefits with climate change mitigation or the prevention of land degradation and desertification, but other adaptation measures do not go in this direction. In the forthcoming times, the region’s rich natural resources are going to be subjected to strong market pressures and climate change threats. It is key to generate strategies for the care of these resources for their permanence for future generations.

food production systems; risk areas; poverty rates; autonomous measures; government measures

INTRODUCTION

South American countries present remarkable heterogeneity regarding the climate threats facing the agricultural sector. This heterogeneity can be classified into three axes or sectors: a) the risks of exposure to damage or deterioration due to climate change; b) vulnerabilities that affect populations and ecosystems; and c) the opportunities that climate change can provide (Figure 1). Latin America also presents important differences in its social development indicators and the rural sector, with nearly 130 million people inhabiting rural areas, outside urban centers (FAOSTAT, 2019). Although the largest rural populations are found in Brazil, eight other countries exhibit strong rurality, defined as more than 30 % of the population living in rural areas, while less than 10 % of the population in both Uruguay and Argentina are rural.

Figure 1
Conceptual framework that describes the risks, opportunities, vulnerabilities, and main adaptation measures that can be adopted in the agricultural sector in the context of climate change for South American countries. Adapted from Taboada et al. (2020)Taboada MA, Busto M, Costantini AO, Maggio A, Perin A, Pimentel MS, Alfaro Valenzuela MA, Pons Gandini D, Monterroso Rivas AI, Loboguerrero AM. Sector agropecuario. In: Moreno JM, Laguna-Defior C, Barros V, Calvo Buendía E, Marengo JA, Oswald Spring U, editors. Adaptación frente a los riesgos del cambio climático en los países RIOCC. Madrid: McGraw Hill; 2020. (Informe RIOCCADAPT)..

Due to South America’s importance as a global food producer, it is crucial to understand the risks, vulnerabilities, and opportunities that climate change is bringing to this region, therefore, it is the main objective of this study. Based on a literature review, this research also aims to contribute to the definition and exemplification of potential climate adaptation strategies. As shown in the following, this research presents an update of adaptation actions in the agricultural sector since the last general studies were carried out by Magrin et al. (2014)Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S. Central and South America. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 1499-566. within the framework of the 5th IPCC Climate Change Report (IPCC WGIIAR5, Chapter 27).

MATERIALS AND METHODS

The bibliographic search was carried out through the Scopus databases, (http://www.scopus.com), Science Direct (http://www.sciencedirect.com), Scimago (http://www.scimagojr.com). In addition, searches were carried out using the Google Scholar search engine (https://scholar.google.com). Bibliography that was not found in the databases above was consulted in the libraries of the Faculty of Agronomy of the University of Buenos Aires and the Natural Resources Research Center (CIRN) of INTA. Firstly, a general framework of the problem was given, and then bibliographic material available for the problems of various countries in the area addressed by this study was searched.

DISCUSSION

Relationship of the sector or system with climate and with climate change. Types of agriculture and conflicts in the region

South America is experiencing increasing tension between agribusiness models and smallholder models. Agribusiness-production models are exportation oriented and with fixed products (e.g., coffee, soybeans, cocoa, beef, etc.), and whose commercialization responds to market forces. Smallholder models defend another type of rurality: sometimes subsistence, sometimes with greater product diversification; based more on family production units, agroecology, and peasant movements; in which women play an important role in farm management (Kay, 2006Kay C. Rural poverty and development strategies in Latin America. J Agrar Change. 2006;6:455-508. https://doi.org/10.1111/j.1471-0366.2006.00132.x
https://doi.org/10.1111/j.1471-0366.2006...
; Segrelles Serrano, 2007Segrelles Serrano JA. Una reflexión sobre la reciente reorganización de los usos agropecuarios en América Latina. Anales de Geografía de la Universidad Complutense. 2007;27:125-47.; Schejtman, 2008Schejtman A. Alcances sobre la agricultura familiar en América Latina. Santiago de Chile: Latin American Center for Rural Development (Rimisp); 2008. (Documento de Trabajo, No 21).; Grau and Aide, 2008Grau HR, Aide M. Globalization and land-use transitions in Latin America. Ecol Soc. 2008;13:16.; Altieri and Nicholls, 2017Altieri MA, Nicholls CI. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change. 2017;140:33-45. https://doi.org/10.1007/s10584-013-0909-y
https://doi.org/10.1007/s10584-013-0909-...
). These tensions underly increasingly strong social and political controversies regarding development models, ethnicity, social exclusion, urban-rural conflicts, rural work, etc. In particular, peasant-type agriculture defends values like land tenure security and food sovereignty based on knowledge of local and traditional origins (Mastrangelo et al., 2014Mastrangelo ME, Gavin MC, Laterra P, Linklater WL, Milfont TL. Psycho-social factors influencing forest conservation intentions on the agricultural frontier. Conserv Lett. 2014;7:103-10. https://doi.org/10.1111/conl.12033
https://doi.org/10.1111/conl.12033...
).

It should not be thought that agribusiness production models are less susceptible to climate change injuries: they cover a wide range of climates and cause changes in the climate, per se. Smallholder farmers are usually more vulnerable because they have fewer tools to cope with the negative impacts of climate change. However, it is still not clear whether climate change will affect this different kind of productive system.

Components of risk concerning the sector or system

Threats

As stated in the regional chapters of the 5th IPCC Climate Change Report, increases in temperature, especially daily minimums and the lack of nocturnal cooling, will be generalized across most countries in the region. Changes in agricultural productivity associated with climate change are expected to exhibit great spatial variability. A large part of the plains in the region will see their productivity increase toward the middle of the century due to greater rains. In contrast, decreased rainfall can negatively affect crop production in most northeast Brazil and the Pacific coast (Magrin et al., 2014Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S. Central and South America. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 1499-566.; Magrin, 2015Magrin GO. Adaptación al cambio climático en América Latina y el Caribe. Santiago de Chile: CEPAL; 2015.).

Thus, food production faces a variety of risks: as described in figure 2, the main threats arise from the occurrence of thermal and water stress for crops and domestic livestock, while erosive processes, drought, floods, as well as the increased spread of pests and diseases will lead to crop and farm losses. However, some regions face opportunities provided by increased rains, changes in seasonality, and the possibility of cultivating megathermic or tropical species.

Figure 2
Frequency of the different types of measures observed among the actions reviewed for the period 2013-2018. Adapted from Taboada et al. (2020)Taboada MA, Busto M, Costantini AO, Maggio A, Perin A, Pimentel MS, Alfaro Valenzuela MA, Pons Gandini D, Monterroso Rivas AI, Loboguerrero AM. Sector agropecuario. In: Moreno JM, Laguna-Defior C, Barros V, Calvo Buendía E, Marengo JA, Oswald Spring U, editors. Adaptación frente a los riesgos del cambio climático en los países RIOCC. Madrid: McGraw Hill; 2020. (Informe RIOCCADAPT)..

Exposure

The level of exposure to threats is highly variable, mainly depending on the socioeconomic level of the affected population (Cardona, 2004Cardona OD. The need for rethinking the concepts of vulnerability and risk from a holistic perspective: a necessary review and criticism for effective risk management. In: Bankoff G, Frerks G, Hilhorst D, editors. Mapping vulnerability: disasters, development and people. London: Routledge; 2004. p. 37-51.; Lavell et al., 2012Lavell A, Oppenheimer M, Diop C, Hess J, Lempert R, Li J, Muir-Wood R, Myeong S, Moser S, Takeuchi K, Cardona OD. Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: IPCC, editor. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2012. p. 25-64.; Bonatti et al., 2016Bonatti M, Sieber S, Schlindwein SL, Lana MA, Vasconcelos A, Gentile C, Malheiros TF. Climate vulnerability and contrasting climate perceptions as an element for the development of community adaptation strategies: Case studies in Southern Brazil. Land Use Policy. 2016;58:114-22. https://doi.org/10.1016/j.landusepol.2016.06.033
https://doi.org/10.1016/j.landusepol.201...
), the relative rigidity or flexibility with which their production systems may vary or adopt technology, and the possibility of assistance or availability of technology including, for example, climate forecasts, early response systems, or access to new varieties resistant to pests or stresses. In less developed countries, the strength of technical assistance and extension systems is also crucial.

Vulnerability

Vulnerability is the inability to resist a threatening phenomenon or the inability to recover after a disaster has occurred (Cardona, 2004Cardona OD. The need for rethinking the concepts of vulnerability and risk from a holistic perspective: a necessary review and criticism for effective risk management. In: Bankoff G, Frerks G, Hilhorst D, editors. Mapping vulnerability: disasters, development and people. London: Routledge; 2004. p. 37-51.). Vulnerability is also defined as the degree to which a system is susceptible and unable to cope with the adverse effects of climate change, including climate variability and extremes (IPCC, 2014Intergovernmental Panel on Climate Change - IPCC. Cambio climático 2014. Impactos, adaptación y vulnerabilidad - Resumen para responsables de políticas. Contribución del Grupo de trabajo II al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Genebra: IPCC; 2014.). Taking into account the above, in South American countries, the vulnerabilities of agricultural production is determined by where the production is based and the ability to move it to other places (e.g., searching cooler temperatures at higher altitudes); access to technological resources that allow anticipating responses or responding to extreme events, such as access to irrigation or climate forecast systems; and, finally, the economic capacity to make investments. Poor rural populations are more susceptible to the impacts of climate change either because they are in risky places (e.g., mountain slopes, waterlogged environments, etc.) or because they have less capacity to respond to extreme weather events (i.e., heavy storms, droughts, fires, floods, hurricanes, etc.).

Adaptation strategies

Adaptation options

There is high heterogeneity in the public policies across South American countries, concentrated in sectors like water, biodiversity, forests, agriculture, infrastructure, and human settlements (Sánchez and Reyes, 2015Sánchez L, Reyes O. Medidas de adaptación y mitigación frente al cambio climático en América Latina y el Caribe: Una revisión general. Naciones Unidas, Santiago de Chile: CEPAL; 2015.). Following the criteria established by the IPCC WGIIAR5, Chapter 14 (Noble et al., 2014Noble IR, Huq S, Anokhin YA, Carmin J, Goudou D, Lansigan FP, Osman-Elasha B, Villamizar A. Adaptation needs and options. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 833-68.), actions for adaptation to climate change based on agriculture are presented in table 1. As it is sometimes difficult to separate those actions based specifically on agriculture from those based on ecosystem management, in this case, reference is only made to the actions of managed ecosystems. Adaptation actions can be classified into three categories: a) structural physical; b) social; and c) institutional.

Table 1
Categories and options of actions for adaptation to climate change based on agriculture. Adapted from Noble et al. (2014)Noble IR, Huq S, Anokhin YA, Carmin J, Goudou D, Lansigan FP, Osman-Elasha B, Villamizar A. Adaptation needs and options. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 833-68.

Physical structures

Three options are identified: a) those that require the use of engineering and changes in the physical environment, such as the construction of irrigation systems, pumping water, or the construction of water tanks for animal watering or irrigation; b) ecosystem management, which refers to the increase or conservation of biological corridors, migration of endangered species, afforestation, management of protected lands, among others. In general, most of these options are oriented or planned; and c) technological options are usually autonomous; although they may also be planned, they correspond to the adaptive response generated by the farmers themselves. These include the adoption of new varieties and types of crops and animals, incorporation of genetic improvements, the displacement of growing areas, changes in planting dates, adoption of adapted germplasms, better use of local knowledge, new farming systems to improve water conservation, nitrogen capture from the atmosphere, waste recycling, integrated productions (silvo-pastoral systems, integrated crop-livestock), agroecological systems, improvement of the efficiency of water use, reuse of drainage and fertigation water, as well as management of grazing and stocking rates, among others.

Institutional

Here three types of planned options are presented: a) the merely economic, such as payment for ecosystem services, or the non-payment or discount of fees and taxes; b) laws and regulations at the regional, national or municipal level, in matters such as land use, property rights, and tenure; and c) government practices and policies that regulate or protect the use of soil, water, and vegetation resources.

Planned action differs in its execution times. For example, most of the structural or physical measures require the execution of long-term works, while other measures are of a “flexible” type, typically those of a technological nature, requiring planning over a shorter time, such as establishing plantations of forest species with a shorter cut time (Galindo et al., 2013Galindo LM, Samaniego JL, Alatorre JE, Ferrer JA. Cambio climático y adaptación en América Latina. Santiago de Chile: División de Desarrollo Sostenible y Asentamientos Humanos, CEPAL, Unidad de Cambio Climático; 2013.).

From a policy implementation perspective, a key action is education, providing all farmers with information that helps them adapt to climate change using appropriate agricultural practices and technologies. In Chile, a study by Roco et al. (2015)Roco L, Engler A, Bravo-Ureta BE, Jarra-Rojas R. Farmers’ perception of climate change in mediterranean Chile. Reg Environ Change. 2015;15:867-79. https://doi.org/10.1007/s10113-014-0669-x
https://doi.org/10.1007/s10113-014-0669-...
shows the importance of education and access to meteorological information for the perception of climate change: younger producers, those with more academic training, and those who own their lands tend to have a clearer perception of climate change than older, poorly educated farmers, or tenants.

In Uruguay, one of the goals for 2030 in the “National Environmental Plan, is the “Agricultural production based on the elements of Agroecology”, which is led by the Ministry of Housing, Territorial Planning, and Environment. This includes lines of action and specific indicators for this goal (Ministry of Housing, Territorial Planning, and Environment, 2018).

Adaptation actions in the agricultural sector

Since the general studies carried out by Magrin et al. (2014)Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S. Central and South America. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 1499-566., within the framework of the 5th IPCC Climate Change Report (IPCC WGIIAR5, Chapter 27), an update of adaptation actions in the agricultural sector was carried out by this study, presented in table 2. It lists and classifies the studies reviewed in the literature from 2013 to 2020. More than 30 studies were surveyed from peer-reviewed articles, technical reports, National Communications to the UNFCCC of the countries, as well as the so-called “grey literature”. Most of these actions are framed within the institutional type options. Many of the Physical Structural actions are also planned, while most of the technology types are unplanned, “bottoms-up”, or mixed. In other words, in response to a demand for the production environment, a technical or regulatory response emerged from the States or companies in the sector.

Table 2
Review of publications with examples of adaptation practices in the South America region between 2013 and 2018. Adapted from Taboada et al. (2020)Taboada MA, Busto M, Costantini AO, Maggio A, Perin A, Pimentel MS, Alfaro Valenzuela MA, Pons Gandini D, Monterroso Rivas AI, Loboguerrero AM. Sector agropecuario. In: Moreno JM, Laguna-Defior C, Barros V, Calvo Buendía E, Marengo JA, Oswald Spring U, editors. Adaptación frente a los riesgos del cambio climático en los países RIOCC. Madrid: McGraw Hill; 2020. (Informe RIOCCADAPT).

Planned adaptation activities

Technological actions are based on improvements to climate information and warning systems for use by farmers (Bouroncle et al., 2015Bouroncle C, Imbach P, Läderach P, Rodríguez B, Medellín C, Fung E, Martínez-Rodríguez MR, Donatti CI. La agricultura de Costa Rica y el cambio climático: ¿Dónde están las prioridades para la adaptación? Copenhague, Dinamarca: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); 2015.) as well as on various actions that seek to increase diversification and biodiversity, as a way of improving the resilience to climate stresses (Alencastro, 2014Alencastro L. Gasto público y adaptación al cambio climático: Análisis de Colombia, el Ecuador, Nicaragua y el Uruguay. Naciones Unidas, Santiago de Chile: CEPAL - Euroclima, Comisión Europea; 2014.; Bouroncle et al., 2015Bouroncle C, Imbach P, Läderach P, Rodríguez B, Medellín C, Fung E, Martínez-Rodríguez MR, Donatti CI. La agricultura de Costa Rica y el cambio climático: ¿Dónde están las prioridades para la adaptación? Copenhague, Dinamarca: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); 2015.; Altieri and Nicholls, 2017Altieri MA, Nicholls CI. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change. 2017;140:33-45. https://doi.org/10.1007/s10584-013-0909-y
https://doi.org/10.1007/s10584-013-0909-...
). In several countries in the region (e.g., Brazil, Colombia, Ecuador, Peru, etc.), the so-called “Climate Smart Agriculture” (CSA) is being implemented (FAO, 2017Food and Agriculture Organization of the United Nations - FAO. La agricultura climáticamente inteligente. Rome: FAO; 2017 [cited 2021 Jan 7]. Avalilable from: http://www.fao.org/climate-smart-agriculture/es/
http://www.fao.org/climate-smart-agricul...
). Climate Smart Agriculture is based on three fundamental pillars: (i) sustainable increase of agricultural productivity and income; (ii) adapt and develop resilience to climate change; and (iii) reduce and/or eliminate greenhouse gas emissions where possible.

The South American continent has one of the two main forest reserves on the planet: the Amazon, which has been suffering with intense deforestation since the beginning of this century. As the country that owns most of this reserve, Brazil passed laws controlling deforestation that were successful (Barretto et al., 2013Barretto AGOP, Berndes G, Sparovek G, Wirsenius S. Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975–2006 period. Glob Change Biol. 2013;19:1804-15. https://doi.org/10.1111/gcb.12174
https://doi.org/10.1111/gcb.12174...
; Lapola et al., 2013Lapola DM, Martinelli LA, Peres CA, Ometto JPHB, Ferreira ME, Nobre CA, Aguiar APD, Bustamante MMC, Cardoso MF, Costa MH, Joly CA, Leite CC, Moutinho P, Sampaio G, Strassburg BBN, Vieira ICG. Pervasive transition of the Brazilian land-use system. Nat Clim Change. 2013;4:27-35. https://doi.org/10.1038/nclimate2056
https://doi.org/10.1038/nclimate2056...
).

As management alternatives, integrated management with forest or agriculture is promoted by governments (Lemaire et al., 2014Lemaire G, Franzluebbers A, Faccio PCC, Dedieu B. Integrated crop-livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agr Ecosyst Environ. 2014;190:4-8. https://doi.org/10.1016/j.agee.2013.08.009
https://doi.org/10.1016/j.agee.2013.08.0...
; Salton et al., 2014Salton JC, Mercante FM, Tomazi M, Zanatta JA, Concenco G, Silva WM, Retore M. Integrated crop-livestock systems in Tropical Brazil: Toward a sustainable production system. Agr Ecosyst Environ. 2014;190:70-9. https://doi.org/10.1016/j.agee.2013.09.023
https://doi.org/10.1016/j.agee.2013.09.0...
), with greater diversification of crops and forage resources (Franchini et al., 2007Franchini JC, Crispino CC, Souza RA, Torres E, Hungría M. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Till Res. 2007;92:18-29. https://doi.org/10.1016/j.still.2005.12.010
https://doi.org/10.1016/j.still.2005.12....
; Barros Soares et al., 2009b; Lapola et al., 2013Lapola DM, Martinelli LA, Peres CA, Ometto JPHB, Ferreira ME, Nobre CA, Aguiar APD, Bustamante MMC, Cardoso MF, Costa MH, Joly CA, Leite CC, Moutinho P, Sampaio G, Strassburg BBN, Vieira ICG. Pervasive transition of the Brazilian land-use system. Nat Clim Change. 2013;4:27-35. https://doi.org/10.1038/nclimate2056
https://doi.org/10.1038/nclimate2056...
). This diversification is also promoted by countries like Colombia, with several projects of sustainable intensification in the tropics based on improved forages (Murgueitio et al., 2013Murgueitio E, Chará JD, Solarte AJ, Uribe F, Zapata C, Rivera JE. Agroforestería pecuaria y sistemas silvopastoriles intensivos (SSPi) para la adaptación ganadera al cambio climático con sostenibilidad. Rev Colomb Cienc Pec. 2013;26:313-6.), integrating climate adaptation, and peacebuilding components (Castro-Nunez, 2018Castro-Nunez A. Responding to climate change in tropical countries emerging from armed conflicts: harnessing climate finance, peacebuilding, and sustainable food. Forests. 2018;9:621. https://doi.org/10.3390/f9100621
https://doi.org/10.3390/f9100621...
), or in Argentina, where the National Plan for Forest Management with Integrated Livestock (MBGI) promotes integration between production, conservation, and the people who inhabit forest areas (Borrás et al., 2017Borrás M, Manghi E, Miñarro F, Monaco M, Navall M, Peri P, Periago ME, Preliasco P. Acercando el manejo de bosques con ganadería integrada al monte chaqueño. Una herramienta para lograr una producción compatible con la conservación del bosque. Buenas prácticas para una ganadería sustentable. Kit de extensión para el Gran Chaco. Buenos Aires: Fundación Vida Silvestre Argentina; 2017.).

Climate early warning systems are among the most common planned measures, as a way of generating precautionary actions against extreme weather events, such as hail, early or late frost, heat waves, or prolonged droughts. As an example, in Colombia, unions like Fedearroz (National Federation of Rice Growers) and Fenalce (National Federation of Cereal and Leguminous Growers) have agrometeorological teams and generate agroclimatic information for their producers with the support of the Colombian meteorological service (IDEAM) and CIAT (International Center of Tropical Agriculture) scientists.

The Pro-Alcohol Program of Brazil promotes the use of sugarcane biomass to produce ethanol (Boddey et al., 2008Boddey RM, Soares LB, Alves BJ, Urquiaga S. Bio-ethanol production in Brazil. In: Pimentel D, editor. Biofuels, solar and wind as renewable energy systems. Dordrecht: Springer; 2008. p. 321-56. https://doi.org/10.1007/978-1-4020-8654-0_13
https://doi.org/10.1007/978-1-4020-8654-...
; Barros Soares et al., 2009a; Nasar and Moreira, 2013Nasar AN, Moreira M. Evidences on sugarcane expansion and agricultural land use changes in Brazil. São Paulo: Report Institute for International Trade Negotiations; 2013 [cited 2021 Jun 18]. Available from: https://www.sugarcane.org/wp-content/uploads/2020/12/evidences_on_sugarcane_expansion_and_agricultural_land_use_changes_in_brazil_1206.pdf.
https://www.sugarcane.org/wp-content/upl...
). It is not so much an action to adapt to climate change, but rather mitigation by reducing the burning of fossil energy sources. However, its impact on biodiversity is not without controversy due to the risk of generating waste while cultivating sugarcane to produce alcohol and contamination by the destination of toxic effluents, like vinasse, from the industry. These threats are minimized or dismissed by Boddey et al. (2008)Boddey RM, Soares LB, Alves BJ, Urquiaga S. Bio-ethanol production in Brazil. In: Pimentel D, editor. Biofuels, solar and wind as renewable energy systems. Dordrecht: Springer; 2008. p. 321-56. https://doi.org/10.1007/978-1-4020-8654-0_13
https://doi.org/10.1007/978-1-4020-8654-...
.

Measures of the planned type are typically “top-down.” The options for adaptation to climate change involve a set of actors from different orbits (eg., government, companies, NGOs, farmers, etc.) that can be differentiated by their type of implementation. Uruguay, in 2017, approved its National Climate Change Policy (PNCC) and the First Nationally Determined Contribution (CDN), with the CDN being the instrument of implementation of the PNCC. The PNCC of Uruguay is a strategic and programmatic instrument with a 2050 horizon that seeks to incorporate climate change in all areas and sectors of the economy and society, promoting sustainable development for the country that is more resilient and low in carbon. In the productive dimension related to this policy, there are lines of action aimed at promoting agricultural production systems with greater capacity for adaptation and resilience to climate change and variability, to improve productivity and the competitiveness of value chains, contemplating ecosystem services, social equity, and food security (Ministry of Housing, Territorial Planning and Environment of Uruguay, 2018).

Also, in Uruguay, the GEF Project, “Intelligent climate livestock and restoration in Uruguayan grasslands,” is being implemented to mitigate climate change and restore degraded lands by promoting climate-smart practices in the livestock sector, with an emphasis on familiar agriculture. This project involves the development and validation of a livestock strategy that does not just generate less net greenhouse gas emissions than the existing strategy, but is also more resilient and efficient while promoting small and medium-sized livestock establishments based on natural grasslands (Ministry of Housing, Territorial Planning and Environment of Uruguay, 2018; Ministry of Livestock, Agriculture and Fisheries of Uruguay, 2018Ministry of Livestock, Agriculture and Fisheries of Uruguay. Plan nacional de adaptación al cambio y la variabilidad climática para el sector agropecuario (PNA-Agro). Uruguay: Ministerio de Ganadería, Agricultura y Pesca, SNRCC Uruguay; 2018 [cited 2020 Jul 29]. Available from: http://www.mgap.gub.uy/unidad-organizativa/oficina-de-programacion-y-politicas-agropecuarias/sostenibilidad-y-cambio-climatico/plan-nacional.
http://www.mgap.gub.uy/unidad-organizati...
).

In Argentina, a planned response to face the threat of deforestation is to implement the planned arrangement of the territory proposed by Law 26,331 on Minimum Budgets for Environmental Protection of Native Forests, the so-called “Forest Law,” sanctioned in 2007 and implemented in February 2009 after claims by more than 70 social organizations were made (García et al., 2013García MAC, Panizza A, Paruelo JM. Ordenamiento territorial de bosques nativos: Resultados de la zonificación realizada por provincias del norte argentino. Ecología Austral. 2013;23:97-107. https://doi.org/10.25260/EA.13.23.2.0.1165
https://doi.org/10.25260/EA.13.23.2.0.11...
; Lapola et al., 2013Lapola DM, Martinelli LA, Peres CA, Ometto JPHB, Ferreira ME, Nobre CA, Aguiar APD, Bustamante MMC, Cardoso MF, Costa MH, Joly CA, Leite CC, Moutinho P, Sampaio G, Strassburg BBN, Vieira ICG. Pervasive transition of the Brazilian land-use system. Nat Clim Change. 2013;4:27-35. https://doi.org/10.1038/nclimate2056
https://doi.org/10.1038/nclimate2056...
; Graesser et al., 2015Graesser J, Mitchell TA, Ricardo HG, Ramankutty N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ Res Lett. 2015;10:034017. https://doi.org/10.1088/1748-9326/10/3/034017
https://doi.org/10.1088/1748-9326/10/3/0...
). The Forest Law establishes that the provinces must carry out the territorial ordering of their native forests (OTBN) through a participatory process, which categorizes the possible uses for forested lands: from conservation to the possibility of transformation into agriculture, switching to the sustainable use of the forest.

Autonomous adaptation activities

This kind of adaptation strategy differs markedly from planned strategies, typically not requiring state involvement or planning at different levels. These are varied in nature, but technological adaptation measures predominate, taken not only individually but also at the community level. Frequent examples include changes in planting areas, adoption of varieties resistant to pests or drought, germplasm or types of native animals, water harvesting, or irrigation systems. Figure 2 shows the frequency of measurements carried out within the actions reviewed for the 2013-2018 period, indicating those of the planned type and those of the autonomous/mixed type.

Andean agriculture is fundamentally threatened by reduced water availability as a consequence of less rain and glacial retreat and the tropicalization and migration of crops. This is due to the increase and variability of temperature, which changes crop behavior and requires new fieldwork. The main adaptive responses are based on strengthening governance, resilience mechanisms (Huggel et al., 2015Huggel C, Scheel M, Albrecht F, Andres N, Calanca P, Jurt C, Khabarov N, Mira-Salama D, Rohrer M, Salzmann N, Silva Y, Silvestre E, Vicuña E, Zappa M. A framework for the science contribution in climate adaptation: Experiences from science-policy processes in the Andes. Environ Sci Policy. 2015;47:80-94. https://doi.org/10.1016/j.envsci.2014.11.007
https://doi.org/10.1016/j.envsci.2014.11...
), and improving water governance, either through social or institutional actions (Delgado et al., 2015Delgado LE, Torres-Gomez M, Tironi-Silva M, Marín VH. Estrategia de adaptación local al cambio climático para el acceso equitativo al agua en zonas rurales de Chile. América Latina Hoy. 2015;69:113-37. https://doi.org/10.14201/alh201569113137
https://doi.org/10.14201/alh201569113137...
; Torres Guevara, 2015Torres Guevara J. Experiencias de adaptación al cambio climático, los conocimientos ancestrales, los conocimientos contemporáneos y los escenarios cualitativos en los Andes. Alcances y límites (Perú). Apuntes de Investigación. 2015;3.). Andean agriculture diversification is based on planting at different altitudes of the landscape, such as in the Bolivian altiplano (Boillat and Berkes, 2013Boillat S, Berkes F. Perception and interpretation of climate change among Quechua farmers of Bolivia: indigenous knowledge as a resource for adaptive capacity. Ecol Soc. 2013;18:21.). Actions that promote the use of traditional or ancestral knowledge are strongly present in this type of agriculture (Boillat and Berkes, 2013Boillat S, Berkes F. Perception and interpretation of climate change among Quechua farmers of Bolivia: indigenous knowledge as a resource for adaptive capacity. Ecol Soc. 2013;18:21.; Torres Guevara, 2015Torres Guevara J. Experiencias de adaptación al cambio climático, los conocimientos ancestrales, los conocimientos contemporáneos y los escenarios cualitativos en los Andes. Alcances y límites (Perú). Apuntes de Investigación. 2015;3.).

As already mentioned, business agriculture based on market forces generates countless autonomous adaptive responses. An eloquent example is the advances in the agricultural frontier operated in Brazil and Argentina, although for different reasons. The adoption of no-tillage soil management technology contributed to economically profitable work with the ability to plant crops like corn and soybeans in less fertile soils or in more climate-vulnerable areas (Álvarez et al., 2009Álvarez CR, Taboada MA, Boem FHG, Bono A, Fernández PL, Prystupa P. Topsoil properties as affected by tillage systems in the Rolling Pampa region of Argentina. Soil Sci Soc Am J. 2009;73:1242-50. https://doi.org/10.2136/sssaj2008.0246
https://doi.org/10.2136/sssaj2008.0246...
). This results in a greater resilience of productions to climate variability, although it does not necessarily contribute to effective mitigation of greenhouse gas emissions (Powlson et al., 2014Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG. Limited potential of no-till agriculture for climate change mitigation. Nat Clim Change. 2014;4:678-83. https://doi.org/10.1038/nclimate2292
https://doi.org/10.1038/nclimate2292...
; Moraes Sá et al., 2017Moraes Sá J, Lal R, Cerri CC, Lorenz K, Hungria M, Faccio Carvalho PC. Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ Int. 2017;98:102-12. https://doi.org/10.1016/j.envint.2016.10.020
https://doi.org/10.1016/j.envint.2016.10...
).

Business agriculture often generates unintended consequences, such as a lack of crop rotations and shifting of livestock to marginal areas, which generates little resilience to climate variability, biological imbalances, generation of new pests and diseases, and/or resistance thereof, as well as significant hydrological imbalances (Giménez et al., 2016Giménez R, Mercau J, Nosetto M, Páez R, Jobbágy E. The ecohydrological imprint of deforestation in the semiarid Chaco: insights from the last forest remnants of a highly cultivated landscape. Hydrol Processes. 2016;30:2603-16. https://doi.org/10.1002/hyp.10901
https://doi.org/10.1002/hyp.10901...
; Salazar et al., 2016Salazar A, Katzfey J, Thatcher M, Syktus J, Wong K, McAlpine C. Deforestation changes land–atmosphere interactions across South American biomes. Glob Planet Change. 2016;139:97-108. https://doi.org/10.1016/j.gloplacha.2016.01.004
https://doi.org/10.1016/j.gloplacha.2016...
; Houspanossian et al., 2017Houspanossian J, Giménez R, Jobbágy E, Nosetto M. Surface albedo raise in the South American Chaco: Combined effects of deforestation and agricultural changes. Agric For Meteorol. 2017;232:118-27. https://doi.org/10.1016/j.agrformet.2016.08.015
https://doi.org/10.1016/j.agrformet.2016...
). Undesirable autonomous responses were manifested, such as the unplanned construction of drainage channels, unsuitable irrigation methods in different areas, as well as the unplanned use of irrigation water (Taboada and Damiano, 2017Taboada MA, Damiano F. Inundación y manejo de suelos en la Argentina. In: Waldman S, coordenador. Inundaciones y manejo de cuencas: Clima, suelo, prácticas agrícolas, medio ambiente. Caba, Argentina: Centro Argentino de Ingenieros Agrónomos; 2017. p. 145-69.). Another unintended consequence was the contamination of watercourses by the indiscriminate use of agrochemicals (Grau et al., 2005Grau HR, Aide M, Gasparri NI. Globalization and soybean expansion into semiarid ecosystems of Argentina. Ambio. 2005;34:267-8. https://doi.org/10.1579/0044-7447-34.3.265
https://doi.org/10.1579/0044-7447-34.3.2...
; Bolliger et al., 2006Bolliger A, Magid J, Carneiro Amado TJ, Skora Neto F, Santos Ribeiro MF, Calegari A, Ralisch R, Neergaard A. Taking stock of the Brazilian ‘‘zero-till revolution’’: a review of landmark research and farmers’ practice. Adv Agron. 2006;91:47-110. https://doi.org/10.1016/S0065-2113(06)91002-5
https://doi.org/10.1016/S0065-2113(06)91...
; Derpsch et al., 2010Derpsch R, Friedrich T, Kassam A, Hongwen L. Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng. 2010;3:1-25. https://doi.org/10.3965/j.issn.1934-6344.2010.01.0-0
https://doi.org/10.3965/j.issn.1934-6344...
; Andrade, 2017Andrade FH. Los desafíos de la agricultura argentina: satisfacer las futuras demandas y reducir el impacto. Ciudad Autónoma de Buenos Aires: Ediciones INTA; 2017.).

Although so-called peasant agriculture is far from being homogeneous, it is subject to greater climatic risk and requires greater attention by the states at different levels due to the characteristics of the socioeconomic level of the affected populations. This includes Andean or mountain agriculture in environments ranging from tropical to desert climates (i.e., Puna), transhumant farmers and rangers based on slash and burning practices in rainforests areas, as well as periurban agriculture around the main populated centers of the region. A great difference with respect to other types of agricultural production models is that the adopters are rural people prone to apply actions based on ancestral practices. In the case of Brazil, for almost 20 years, there were differentiated policies for family farming, focused on access to land, rural credit, and support for production and marketing. In this way, it also sought to respond to the challenges posed by hunger and food insecurity through social and territorial policies (Sabourin, 2015Sabourin E. Políticas públicas y agriculturas familiares en América Latina y el Caribe: nuevas perspectivas. San José, Costa Rica: IICA; 2015 [cited 2021 Jun 18]. Available from: http://www.iica.int/sites/default/files/publications/files/2016/B3875e.pdf.
http://www.iica.int/sites/default/files/...
).

Diversification is the most important strategy that farmers use to manage production risk in family farming systems. In most cases, farmers maintain diversity as insurance when facing environmental change or future social and economic needs (Altieri and Nicholls, 2009Altieri MA, Nicholls CI. Cambio climático y agricultura campesina: impactos y respuestas adaptativas. LEISA Revista de Agroecología. 2009;14:5-8., 2017Altieri MA, Nicholls CI. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change. 2017;140:33-45. https://doi.org/10.1007/s10584-013-0909-y
https://doi.org/10.1007/s10584-013-0909-...
). There are four principles sets of strategies that seek to increase diversity: a) Multiple or polyculture cropping systems, which have greater stability and less decline in productivity during a drought than in the case of monocultures; b) Use of local genetic diversity, which exploits intraspecific diversity through the simultaneous sowing and in the same field of diverse local varieties that, in general, are more resistant to drought; c) Collection of wild plants as subsistence through collection around crops; and d) Agroforestry and mulching systems that use tree cover to protect crops against extreme fluctuations in microclimate and soil moisture (Altieri and Nicholls, 2009Altieri MA, Nicholls CI. Cambio climático y agricultura campesina: impactos y respuestas adaptativas. LEISA Revista de Agroecología. 2009;14:5-8., 2017Altieri MA, Nicholls CI. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change. 2017;140:33-45. https://doi.org/10.1007/s10584-013-0909-y
https://doi.org/10.1007/s10584-013-0909-...
).

In the case of the Andean culture, ancestral techniques that inspire several important adaptations are preserved. For example, terrace farming is used, as embodied in the Andenes de Coctaca (Dpto. Humahuaca, Jujuy), a structure of Inca terraces of great cultural value (Ventura et al., 2010Ventura B, Delcourt P, Ortiz G, Methfessel L, Greco C, Buitrago W, Paredes F. El registro arqueológico de las antiguas poblaciones de los valles orientales de la Provincia Arce, Tarija, Bolivia. Intersecciones Antro. 2010;11:59-72.), and the Choquequirao platform in Peru (Ancajima Ojeda, 2013Ancajima Ojeda R. Tecnologías ancestrales - Sistemas hidráulicos Pre Incas e Incas: In: Conferencia Magistral Día Nacional de la Diversidad Biológica. Perú: Ministerio del Ambiente; 2013 [cited 2020 Oct 7]. Available from: https://www.minam.gob.pe/diadiversidad/wp-content/uploads/sites/63/2015/01/resumen1.pdf.
https://www.minam.gob.pe/diadiversidad/w...
; Guzmán García, 2013Guzmán García CE. Llactas Incas: concepción del planeamiento e interacción con el medio natural [dissertation]. Lima: Universidad Nacional de Ingeniería; 2013. Available from: http://cybertesis.uni.edu.pe/handle/uni/3392.
http://cybertesis.uni.edu.pe/handle/uni/...
). Terrace farming does not depend on large investments in infrastructure or technology and is particularly beneficial for peasant farmers who operate without either substantial resources or state support (Bocco and Napoletano, 2017Bocco G, Napoletano BM. The prospects of terrace agriculture as an adaptation to climate change in Latin America. Geography Compass. 2017;11:e12330. https://doi.org/10.1111/gec3.12330
https://doi.org/10.1111/gec3.12330...
). Another important cultural adaptation to environmental contrasts is systems based on local crops, animals, and agro-pastoral technologies that provide an adequate diet with local resources while avoiding soil erosion (Altieri and Nicholls, 2009Altieri MA, Nicholls CI. Cambio climático y agricultura campesina: impactos y respuestas adaptativas. LEISA Revista de Agroecología. 2009;14:5-8.).

Among the programs aimed at conserving native resources and agricultural heritage, it is worth mentioning the “Important Systems of World Agricultural Heritage (GIAHS)”. This program was created within the Rio + 10 Conference framework and inspired by the FAO to identify land-use systems of remarkable landscapes that are rich in biodiversity. Out of the 30 existing GIAHS systems, two are in Latin America: one in Chiloé (Chile) and the other is the Cusco-Puno corridor system, which integrates the Huaru Huaru systems, including the entire system typical of the Andean region. Among the relevant systems pre-identified in a first phase are the Moxo system, in the Bolivian Amazon, which is a system of ridges in the area that is flooded, close to the river bed, and that is used for crops, and the Sukakollos systems, which occupy around 50,000 hectares around Lake Titicaca, which are also a ridge system similar to that of the Moxo, under the same technological principle (Rodríguez and Mesa, 2016).

Some farmers already apply various strategies to help reduce weather and climate risks as well as other uncertainties, including multi-location agriculture, crop and variety diversification, finding alternative sources of income, and purchasing crop insurance. Such efforts often help farmers maintain a more stable income while protecting and preserving the productivity of the land. However, not all farmers have implemented basic risk management strategies despite their clear benefits.

Barriers, opportunities and interactions

Mitigation

There are obvious co-benefits of climate-smart agriculture (CFS) that promote coordinated actions toward greater climate resilience, prioritizing interventions that can improve productivity and incomes, help farmers adapt to current risk, and decrease greenhouse gas emissions in the present and future (Shirsath et al., 2017Shirsath PB, Aggarwal PK, Thornton PK, Dunnett A. Prioritizing climate-smart agricultural land use options at a regional scale. Agric Syst. 2017;151:174-83. https://doi.org/10.1016/j.agsy.2016.09.018
https://doi.org/10.1016/j.agsy.2016.09.0...
). On the other hand, no-till agriculture (direct sowing) is also recommended as an adaptation practice that contributes to soil conservation and resilience to extreme climatic events (Merante et al., 2017Merante P, Dibari C, Ferrise R, Sánchez B, Iglesias A, Lesschen JP, Kuikman P, Yeluripati J, Smith P, Bindi M. Adopting soil organic carbon management practices in soils of varying quality: Implications and perspectives in Europe. Soil Till Res. 2017;165:95-106. https://doi.org/10.1016/j.still.2016.08.001
https://doi.org/10.1016/j.still.2016.08....
). Policies promoting the use of biofuels generally pursue the goal of reducing the use of fossil fuels. However, not only do these have significant adverse effects when they promote changes in land use and GHG emissions in other sectors, but they also threaten food security (Howden et al., 2007Howden SM, Soussana JF, Tubiello FN, Chhetri FN, Dunlop M, Meinke H. Adapting agriculture to climate change. PNAS. 2007;104:19691-6. https://doi.org/10.1073/pnas.0701890104
https://doi.org/10.1073/pnas.0701890104...
; Miyake et al., 2012Miyake S, Renouf M, Peterson A, McAlpine C, Smith C. Land-use and environmental pressures resulting from current and future bioenergy crop expansion: A review. J Rural Studies. 2012;28:650-8. https://doi.org/10.1016/j.jrurstud.2012.09.002
https://doi.org/10.1016/j.jrurstud.2012....
).

Prevention of land degradation

A study of the state of the world’s soils shows that global erosion is the main process of degradation, followed by nutrient imbalance (deficits and excesses), loss of carbon stocks, and salinization (FAO and IPTS, 2015). Adaptation measures related to changes in planting or planting zones or the displacement of productions may represent a risk of a vulnerable land invasion. For example, in central Argentina, aided by increases in rainfall and no-till agriculture, soy-based agriculture advanced to the west and north of the country, replacing the forests and pastures of these regions of the country, causing widespread increases in groundwater, floods, and salinization (Andrade, 2017Andrade FH. Los desafíos de la agricultura argentina: satisfacer las futuras demandas y reducir el impacto. Ciudad Autónoma de Buenos Aires: Ediciones INTA; 2017.).

Actions related to the adoption of new varieties or planting dates, the control of erosion or wind storms, as well as the incorporation of organic matter into the soil in its different forms, show clear benefits to prevent desertification. Effective conservation practices can reduce the risks of soil erosion, improve soil quality and water quality, increase the carbon balance of the soil and the ecosystem, while also adapting to and mitigating abrupt climate change (Lal, 2015Lal R. Sequestering carbon and increasing productivity by conservation agriculture. J Soil Water Conserv. 2015;70:55A-62A. https://doi.org/10.2489/jswc.70.3.55A
https://doi.org/10.2489/jswc.70.3.55A...
). However, some adverse effects may also appear, for example, when lands vulnerable to erosion are put into cultivation by public policy decisions, or when freshwater sources decrease in volume and quality because of the excessive use of water (Elliott et al., 2014Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y, Best N, Eisner S, Fekete BM, Folberth C, Foster I, Gosling SN, Haddeland I, Khabarov N, Ludwig F, Masaki Y, Olin S, Rosenzweig C, Ruane AC, Satoh Y, Schmid E, Stacke T, Tang Q, Wisser D. Constraints and potentials of future irrigation water availability on agricultural production under climate change. PNAS. 2014;111:3239-44. https://doi.org/10.1073/pnas.1222474110
https://doi.org/10.1073/pnas.1222474110...
).

Food security

The impacts of climate change on food security will be greater in countries that already suffer from high levels of hunger and will worsen over time (Wheeler and von Braun, 2013Wheeler T, von Braun J. Climate change impacts on global food security. Science. 2013;341:508-13. https://doi.org/10.1126/science.1239402
https://doi.org/10.1126/science.1239402...
). Adaptation actions seeking more resilience of agricultural systems show clear benefits for food security. Some examples are climate-smart agriculture, the combination of agricultural conservation practices, and integrated productions based on agroecology (The World Bank et al., 2014a,b). However, all of this might not be enough because the entire food system must adjust to climate change, paying particular attention to trade, stocks, nutrition, and social policy options (Wheeler and von Braun, 2013Wheeler T, von Braun J. Climate change impacts on global food security. Science. 2013;341:508-13. https://doi.org/10.1126/science.1239402
https://doi.org/10.1126/science.1239402...
; Lipper et al., 2014Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Caron P, Cattaneo A, Garrity D, Henry K, Hottle R, Jackson L, Jarvis A, Kossam F, Mann W, McCarthy N, Meybeck A, Neufeldt A, Remington T, Thi Sen P, Sessa1 R, Shula R, Tibu A, Torquebiau EEF. Climate-smart agriculture for food security. Nat Clim Change. 2014;4:1068-72. https://doi.org/10.1038/nclimate2437
https://doi.org/10.1038/nclimate2437...
).

Poverty reduction

In general, agriculture-based adaptation measures aim to either increase production or minimize disaster risks, so their impact on poverty reduction is neutral to positive. However, in cases where these adaptation measures involve migration of people between rural areas, something very common in cases of economies based on agriculture, this can generate greater poverty in the short term, unless there are local institutions that help and accommodate human mobility (Tacoli, 2009Tacoli C. Crisis or adaptation? Migration and climate change in a context of high mobility. Environ Urban. 2009;21:513-25. https://doi.org/10.1177/0956247809342182
https://doi.org/10.1177/0956247809342182...
).

Water supply

Many adaptation measures in the agricultural sector positively affect water, especially those that imply better conservation and use of the resource or preserve the role of ecosystems in the hydrological cycle. However, other measures - especially structural ones that tend to ensure greater accessibility to sources of water available for irrigation - may conflict in the future, given the limitations of fresh water in some highly irrigated regions that may require moving much farmland back from irrigation to rainfed management (Elliott et al., 2014Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y, Best N, Eisner S, Fekete BM, Folberth C, Foster I, Gosling SN, Haddeland I, Khabarov N, Ludwig F, Masaki Y, Olin S, Rosenzweig C, Ruane AC, Satoh Y, Schmid E, Stacke T, Tang Q, Wisser D. Constraints and potentials of future irrigation water availability on agricultural production under climate change. PNAS. 2014;111:3239-44. https://doi.org/10.1073/pnas.1222474110
https://doi.org/10.1073/pnas.1222474110...
). An integrated approach is required between all components of the water, energy, food, and agriculture system. The water, energy, and food nexus, as well as adaptation responses, are interrelated in numerous ways.

Measures or indicators of adaptation effectiveness

In contrast to mitigation, where the effectiveness of policy action can be measured through the metric “tons of reduced CO2 equivalent,” there is no universally accepted metric to assess the effectiveness of adaptation. Without such a metric, adaptation financial mechanisms, like the Adaptation Fund or the Green Climate Fund, face challenges when comparing the adaptation effect of projects to achieve an efficient allocation of their funds (Stadelmann et al., 2015Stadelmann M, Michaelowa A, Butzengeiger-Geyer A, Köhler M. Universal metrics to compare the effectiveness of climate change adaptation projects. In: Leal Filho W, editor. Handbook of Climate Change Adaptation. Berlin: Springer; 2015. p. 17-20.). Indicators of behavior adaptation by farmers, focusing on gender, social media, and institutions, are still underrepresented (Davidson, 2016Davidson D. Gaps in agricultural climate adaptation research. Nature Clim Change. 2016;6:433-5. https://doi.org/10.1038/nclimate3007
https://doi.org/10.1038/nclimate3007...
).

CONCLUSIONS

South America is a continent with enormous environmental and human diversity. This diversity must be taken into account when analyzing the possible effectiveness of adaptation measures to climate change.

Among the identified climate threats, increases in average and minimum daily temperatures are the main concern, along with extreme weather events (e.g., heat waves, intense storms, hail, droughts, floods, decreased days with frosts, etc.). This climate change is already taking place and is expected to intensify in the coming decades, increasing the urgent need to adapt to these changes.

Vulnerability exists, first, because rural populations are exposed in many of the countries, often with high rates of poverty and low rates of socioeconomic development. Secondly, many of these settlers inhabit risk areas, such as mountain slopes or flood plains, and/or have limited possibilities to access strategic resources, such as irrigation water in quantity and quality, or land to move to.

Concerning the adaptation measures already taken, there are numerous interventions by national, provincial, and municipal states for planned actions, like irrigation systems, dams, and climate forecast systems. Farmers are very active in adopting autonomous measures, like changing planting dates and areas, providing shade for plantations and domestic livestock, installing animal troughs, or adopting native germplasm from local crops and livestock. There are also many experiences of associativism, often autonomous, but also with some degree of state intervention.

Many adaptation measures show clear co-benefits with climate change mitigation or the prevention of land degradation and desertification. Other adaptation measures do not go in this direction and generate significant adverse effects, such as changes in land use, as an example.

In the forthcoming times, regions with rich natural resources are being subjected to strong market pressures and climate change threats. It is a key to generate strategies to care for these resources for their permanence for future generations.

REFERENCES

  • Alencastro L. Gasto público y adaptación al cambio climático: Análisis de Colombia, el Ecuador, Nicaragua y el Uruguay. Naciones Unidas, Santiago de Chile: CEPAL - Euroclima, Comisión Europea; 2014.
  • Altieri MA, Nicholls CI. Cambio climático y agricultura campesina: impactos y respuestas adaptativas. LEISA Revista de Agroecología. 2009;14:5-8.
  • Altieri MA, Nicholls CI. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change. 2017;140:33-45. https://doi.org/10.1007/s10584-013-0909-y
    » https://doi.org/10.1007/s10584-013-0909-y
  • Álvarez CR, Taboada MA, Boem FHG, Bono A, Fernández PL, Prystupa P. Topsoil properties as affected by tillage systems in the Rolling Pampa region of Argentina. Soil Sci Soc Am J. 2009;73:1242-50. https://doi.org/10.2136/sssaj2008.0246
    » https://doi.org/10.2136/sssaj2008.0246
  • Ancajima Ojeda R. Tecnologías ancestrales - Sistemas hidráulicos Pre Incas e Incas: In: Conferencia Magistral Día Nacional de la Diversidad Biológica. Perú: Ministerio del Ambiente; 2013 [cited 2020 Oct 7]. Available from: https://www.minam.gob.pe/diadiversidad/wp-content/uploads/sites/63/2015/01/resumen1.pdf
    » https://www.minam.gob.pe/diadiversidad/wp-content/uploads/sites/63/2015/01/resumen1.pdf
  • Andersen LE, Jemio Mollinedo LC, Valencia H. La economía del cambio climático en Bolivia: Impactos en el sector agropecuario. Washington, DC: CEPAL, Banco Interamericano de Desarrollo; 2014.
  • Andrade FH. Los desafíos de la agricultura argentina: satisfacer las futuras demandas y reducir el impacto. Ciudad Autónoma de Buenos Aires: Ediciones INTA; 2017.
  • Arvor D, Dubreuil V, Ronchail J, Simoes M, Funatsu BM. Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int J Climatol. 2014;34:2622-33. https://doi.org/10.1002/joc.3863
    » https://doi.org/10.1002/joc.3863
  • Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L, Bornemann G, Läderach P, Anzueto F, Hruska AJ, Morales C. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Sec. 2015;7:303-21. https://doi.org/10.1007/s12571-015-0446-9
    » https://doi.org/10.1007/s12571-015-0446-9
  • Banco Mundial, Centro de Investigación Agrícola Tropical - CIAT, Centro Agronómico Tropical de Investigación y Enseñanza - CATIE. Agricultura climáticamente inteligente en el Perú. Serie de Perfiles nacionales de agricultura climáticamente inteligente para América Latina. 2nd. ed. Washington, DC: Grupo del Banco Mundial; 2015.
  • Barretto AGOP, Berndes G, Sparovek G, Wirsenius S. Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975–2006 period. Glob Change Biol. 2013;19:1804-15. https://doi.org/10.1111/gcb.12174
    » https://doi.org/10.1111/gcb.12174
  • Barros Soares LH, Alves BJR, Urquiaga S, Boddey RM. Mitigação das emissões de gases efeito estufa pelo uso de etanol da cana de açúcar produzido no Brasil. Seropédica, RJ: Embrapa; 2009a. (Circular técnica, 27).
  • Barros Soares LH, Martha Bueno GB, Vilela L, Oliveira Machado PL, Madari BE, Alves BJR, Boddey RM, Urquiaga S. Avaliação da sustentabilidade energética de culturas em safrinha na região do Cerrado Brasileiro. Seropédica, RJ: Embrapa Agrobiologia; 2009b. (Boletim da Pesquisa e Desenvolvimento).
  • Beekman G, Cruz SM, Espinoza N, García HB, Herrera CT, Medina DH, Williams D, García-Winder M. Agua, alimento para la tierra. San José: Instituto Interamericano de Cooperación para la Agricultura; 2014 [cited 2020 aug 7]. Avalilable from: http://iica.int.at
    » http://iica.int.at
  • Bocco G, Napoletano BM. The prospects of terrace agriculture as an adaptation to climate change in Latin America. Geography Compass. 2017;11:e12330. https://doi.org/10.1111/gec3.12330
    » https://doi.org/10.1111/gec3.12330
  • Boddey RM, Soares LB, Alves BJ, Urquiaga S. Bio-ethanol production in Brazil. In: Pimentel D, editor. Biofuels, solar and wind as renewable energy systems. Dordrecht: Springer; 2008. p. 321-56. https://doi.org/10.1007/978-1-4020-8654-0_13
    » https://doi.org/10.1007/978-1-4020-8654-0_13
  • Boillat S, Berkes F. Perception and interpretation of climate change among Quechua farmers of Bolivia: indigenous knowledge as a resource for adaptive capacity. Ecol Soc. 2013;18:21.
  • Bolliger A, Magid J, Carneiro Amado TJ, Skora Neto F, Santos Ribeiro MF, Calegari A, Ralisch R, Neergaard A. Taking stock of the Brazilian ‘‘zero-till revolution’’: a review of landmark research and farmers’ practice. Adv Agron. 2006;91:47-110. https://doi.org/10.1016/S0065-2113(06)91002-5
    » https://doi.org/10.1016/S0065-2113(06)91002-5
  • Bonatti M, Sieber S, Schlindwein SL, Lana MA, Vasconcelos A, Gentile C, Malheiros TF. Climate vulnerability and contrasting climate perceptions as an element for the development of community adaptation strategies: Case studies in Southern Brazil. Land Use Policy. 2016;58:114-22. https://doi.org/10.1016/j.landusepol.2016.06.033
    » https://doi.org/10.1016/j.landusepol.2016.06.033
  • Borrás M, Manghi E, Miñarro F, Monaco M, Navall M, Peri P, Periago ME, Preliasco P. Acercando el manejo de bosques con ganadería integrada al monte chaqueño. Una herramienta para lograr una producción compatible con la conservación del bosque. Buenas prácticas para una ganadería sustentable. Kit de extensión para el Gran Chaco. Buenos Aires: Fundación Vida Silvestre Argentina; 2017.
  • Bouroncle C, Imbach P, Läderach P, Rodríguez B, Medellín C, Fung E, Martínez-Rodríguez MR, Donatti CI. La agricultura de Costa Rica y el cambio climático: ¿Dónde están las prioridades para la adaptación? Copenhague, Dinamarca: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); 2015.
  • Cáceres DM, Rodríguez-Bilella P. Access and appropriation of water in poor rural communities in central Argentina. Transformations and conflicts. Econ Soc Territ. 2014;45:359-95.
  • Cardona OD. The need for rethinking the concepts of vulnerability and risk from a holistic perspective: a necessary review and criticism for effective risk management. In: Bankoff G, Frerks G, Hilhorst D, editors. Mapping vulnerability: disasters, development and people. London: Routledge; 2004. p. 37-51.
  • Castro-Nunez A. Responding to climate change in tropical countries emerging from armed conflicts: harnessing climate finance, peacebuilding, and sustainable food. Forests. 2018;9:621. https://doi.org/10.3390/f9100621
    » https://doi.org/10.3390/f9100621
  • Davidson D. Gaps in agricultural climate adaptation research. Nature Clim Change. 2016;6:433-5. https://doi.org/10.1038/nclimate3007
    » https://doi.org/10.1038/nclimate3007
  • Delgado LE, Torres-Gomez M, Tironi-Silva M, Marín VH. Estrategia de adaptación local al cambio climático para el acceso equitativo al agua en zonas rurales de Chile. América Latina Hoy. 2015;69:113-37. https://doi.org/10.14201/alh201569113137
    » https://doi.org/10.14201/alh201569113137
  • Derpsch R, Friedrich T, Kassam A, Hongwen L. Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng. 2010;3:1-25. https://doi.org/10.3965/j.issn.1934-6344.2010.01.0-0
    » https://doi.org/10.3965/j.issn.1934-6344.2010.01.0-0
  • Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y, Best N, Eisner S, Fekete BM, Folberth C, Foster I, Gosling SN, Haddeland I, Khabarov N, Ludwig F, Masaki Y, Olin S, Rosenzweig C, Ruane AC, Satoh Y, Schmid E, Stacke T, Tang Q, Wisser D. Constraints and potentials of future irrigation water availability on agricultural production under climate change. PNAS. 2014;111:3239-44. https://doi.org/10.1073/pnas.1222474110
    » https://doi.org/10.1073/pnas.1222474110
  • Ermini JL, Pantuso FS, Tenaglia G, Pratta GR. Marcadores de AFLP en el cultivo de banana: selección de combinaciones de cebadores y caracterización de la biodiversidad. Rev Fac Cien Exac Quim Nat Univ Morón. 2013;11:83-110.
  • Ermini JL, Pantuso FS, Tenaglia G, Pratta GR. Genetic diversity, ancestry relationships and consensus among phenotype and genotype in banana (Musa acuminata) clones from Formosa (Argentina) farmers. Plant Cell Biotechnology and Molecular Biology. 2016;17:267-78.
  • Food and Agriculture Organization of the United Nations - FAO. La agricultura climáticamente inteligente. Rome: FAO; 2017 [cited 2021 Jan 7]. Avalilable from: http://www.fao.org/climate-smart-agriculture/es/
    » http://www.fao.org/climate-smart-agriculture/es/
  • Food and Agriculture Organization of the United Nations - FAO, ITPS. Status of the world’s soil resources (SWSR) – Technical summary. Rome: FAO Technical Panel on Soils; 2015.
  • Food and Agriculture Organization of the United Nations - FAO. FAOSTAT: Crops. Rome: FAO; 2018 [cited 2021 Jan 14]. Available from: http://www.fao.org/faostat/en/#data
    » http://www.fao.org/faostat/en/#data
  • Franchini JC, Crispino CC, Souza RA, Torres E, Hungría M. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Till Res. 2007;92:18-29. https://doi.org/10.1016/j.still.2005.12.010
    » https://doi.org/10.1016/j.still.2005.12.010
  • Galindo LM, Samaniego JL, Alatorre JE, Ferrer JA. Cambio climático y adaptación en América Latina. Santiago de Chile: División de Desarrollo Sostenible y Asentamientos Humanos, CEPAL, Unidad de Cambio Climático; 2013.
  • Galindo AM, Pérez JM, Rojano RA. Medidas de adaptación al cambio climático en una comunidad indígena del norte de Colombia. Rev UDCA Act Div Cient. 2017;20:187-97.
  • García MAC, Panizza A, Paruelo JM. Ordenamiento territorial de bosques nativos: Resultados de la zonificación realizada por provincias del norte argentino. Ecología Austral. 2013;23:97-107. https://doi.org/10.25260/EA.13.23.2.0.1165
    » https://doi.org/10.25260/EA.13.23.2.0.1165
  • Giménez R, Mercau J, Nosetto M, Páez R, Jobbágy E. The ecohydrological imprint of deforestation in the semiarid Chaco: insights from the last forest remnants of a highly cultivated landscape. Hydrol Processes. 2016;30:2603-16. https://doi.org/10.1002/hyp.10901
    » https://doi.org/10.1002/hyp.10901
  • Graesser J, Mitchell TA, Ricardo HG, Ramankutty N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ Res Lett. 2015;10:034017. https://doi.org/10.1088/1748-9326/10/3/034017
    » https://doi.org/10.1088/1748-9326/10/3/034017
  • Grau HR, Aide M. Globalization and land-use transitions in Latin America. Ecol Soc. 2008;13:16.
  • Grau HR, Aide M, Gasparri NI. Globalization and soybean expansion into semiarid ecosystems of Argentina. Ambio. 2005;34:267-8. https://doi.org/10.1579/0044-7447-34.3.265
    » https://doi.org/10.1579/0044-7447-34.3.265
  • Guzmán García CE. Llactas Incas: concepción del planeamiento e interacción con el medio natural [dissertation]. Lima: Universidad Nacional de Ingeniería; 2013. Available from: http://cybertesis.uni.edu.pe/handle/uni/3392
    » http://cybertesis.uni.edu.pe/handle/uni/3392
  • Houspanossian J, Giménez R, Jobbágy E, Nosetto M. Surface albedo raise in the South American Chaco: Combined effects of deforestation and agricultural changes. Agric For Meteorol. 2017;232:118-27. https://doi.org/10.1016/j.agrformet.2016.08.015
    » https://doi.org/10.1016/j.agrformet.2016.08.015
  • Howden SM, Soussana JF, Tubiello FN, Chhetri FN, Dunlop M, Meinke H. Adapting agriculture to climate change. PNAS. 2007;104:19691-6. https://doi.org/10.1073/pnas.0701890104
    » https://doi.org/10.1073/pnas.0701890104
  • Huggel C, Scheel M, Albrecht F, Andres N, Calanca P, Jurt C, Khabarov N, Mira-Salama D, Rohrer M, Salzmann N, Silva Y, Silvestre E, Vicuña E, Zappa M. A framework for the science contribution in climate adaptation: Experiences from science-policy processes in the Andes. Environ Sci Policy. 2015;47:80-94. https://doi.org/10.1016/j.envsci.2014.11.007
    » https://doi.org/10.1016/j.envsci.2014.11.007
  • Intergovernmental Panel on Climate Change - IPCC. Cambio climático 2014. Impactos, adaptación y vulnerabilidad - Resumen para responsables de políticas. Contribución del Grupo de trabajo II al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Genebra: IPCC; 2014.
  • Kay C. Rural poverty and development strategies in Latin America. J Agrar Change. 2006;6:455-508. https://doi.org/10.1111/j.1471-0366.2006.00132.x
    » https://doi.org/10.1111/j.1471-0366.2006.00132.x
  • Lal R. Sequestering carbon and increasing productivity by conservation agriculture. J Soil Water Conserv. 2015;70:55A-62A. https://doi.org/10.2489/jswc.70.3.55A
    » https://doi.org/10.2489/jswc.70.3.55A
  • Lanari MR, Domingo E, Pérez MJC, Gallo L. Efecto de la trashumancia en el flujo génico entre subpoblaciones de la Cabra Criolla Neuquina. In: Simposio de Recursos Genéticos para América latina y el Caribe. November 2003. Mar del Plata, Argentina. Mar del Plata: Universidad de Buenos Aires. Universidad Nacional de Mar del Plata. Fundación ArgenINTA; 2003a.
  • Lapola DM, Martinelli LA, Peres CA, Ometto JPHB, Ferreira ME, Nobre CA, Aguiar APD, Bustamante MMC, Cardoso MF, Costa MH, Joly CA, Leite CC, Moutinho P, Sampaio G, Strassburg BBN, Vieira ICG. Pervasive transition of the Brazilian land-use system. Nat Clim Change. 2013;4:27-35. https://doi.org/10.1038/nclimate2056
    » https://doi.org/10.1038/nclimate2056
  • Lavell A, Oppenheimer M, Diop C, Hess J, Lempert R, Li J, Muir-Wood R, Myeong S, Moser S, Takeuchi K, Cardona OD. Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: IPCC, editor. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2012. p. 25-64.
  • Lemaire G, Franzluebbers A, Faccio PCC, Dedieu B. Integrated crop-livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agr Ecosyst Environ. 2014;190:4-8. https://doi.org/10.1016/j.agee.2013.08.009
    » https://doi.org/10.1016/j.agee.2013.08.009
  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Caron P, Cattaneo A, Garrity D, Henry K, Hottle R, Jackson L, Jarvis A, Kossam F, Mann W, McCarthy N, Meybeck A, Neufeldt A, Remington T, Thi Sen P, Sessa1 R, Shula R, Tibu A, Torquebiau EEF. Climate-smart agriculture for food security. Nat Clim Change. 2014;4:1068-72. https://doi.org/10.1038/nclimate2437
    » https://doi.org/10.1038/nclimate2437
  • Ludeña CE, Ryfisch D. Chile: Mitigación y adaptación al cambio climático. Chile: Banco Interamericano de Desarrollo Marzo; 2015. (Nota técnica del BID, 859). Avalilable from https://publications.iadb.org/publications/spanish/document/Chile-Mitigaci%C3%B3n-y-adaptaci%C3%B3n-al-cambio-clim%C3%A1tico.pdf
    » https://publications.iadb.org/publications/spanish/document/Chile-Mitigaci%C3%B3n-y-adaptaci%C3%B3n-al-cambio-clim%C3%A1tico.pdf
  • Magrin GO. Adaptación al cambio climático en América Latina y el Caribe. Santiago de Chile: CEPAL; 2015.
  • Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S. Central and South America. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 1499-566.
  • Marengo JA, Torres RR, Alves LM. Drought in Northeast Brazil - past, present, and future. Theor Appl Climatol. 2017;129:1189-200. https://doi.org/10.1007/s00704-016-1840-8
    » https://doi.org/10.1007/s00704-016-1840-8
  • Mastrangelo ME, Gavin MC, Laterra P, Linklater WL, Milfont TL. Psycho-social factors influencing forest conservation intentions on the agricultural frontier. Conserv Lett. 2014;7:103-10. https://doi.org/10.1111/conl.12033
    » https://doi.org/10.1111/conl.12033
  • Merante P, Dibari C, Ferrise R, Sánchez B, Iglesias A, Lesschen JP, Kuikman P, Yeluripati J, Smith P, Bindi M. Adopting soil organic carbon management practices in soils of varying quality: Implications and perspectives in Europe. Soil Till Res. 2017;165:95-106. https://doi.org/10.1016/j.still.2016.08.001
    » https://doi.org/10.1016/j.still.2016.08.001
  • Ministry of Livestock, Agriculture and Fisheries of Uruguay. Plan nacional de adaptación al cambio y la variabilidad climática para el sector agropecuario (PNA-Agro). Uruguay: Ministerio de Ganadería, Agricultura y Pesca, SNRCC Uruguay; 2018 [cited 2020 Jul 29]. Available from: http://www.mgap.gub.uy/unidad-organizativa/oficina-de-programacion-y-politicas-agropecuarias/sostenibilidad-y-cambio-climatico/plan-nacional
    » http://www.mgap.gub.uy/unidad-organizativa/oficina-de-programacion-y-politicas-agropecuarias/sostenibilidad-y-cambio-climatico/plan-nacional
  • Ministry of Housing, Territorial Planning, and Environment. Plan Ambiental Nacional para el Desarrollo Sostenible Documento síntesis para la Consulta Pública. Uruguay: Sistema Nacional Ambiental; 2018 [cited 2020 Jul 29]. Available from: http://www.mvotma.gub.uy/component/k2/item/10011400-plan-ambiental-nacional-2018-documento-sintesis
    » http://www.mvotma.gub.uy/component/k2/item/10011400-plan-ambiental-nacional-2018-documento-sintesis
  • Miyake S, Renouf M, Peterson A, McAlpine C, Smith C. Land-use and environmental pressures resulting from current and future bioenergy crop expansion: A review. J Rural Studies. 2012;28:650-8. https://doi.org/10.1016/j.jrurstud.2012.09.002
    » https://doi.org/10.1016/j.jrurstud.2012.09.002
  • Moraes Sá J, Lal R, Cerri CC, Lorenz K, Hungria M, Faccio Carvalho PC. Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ Int. 2017;98:102-12. https://doi.org/10.1016/j.envint.2016.10.020
    » https://doi.org/10.1016/j.envint.2016.10.020
  • Murgueitio E, Chará JD, Solarte AJ, Uribe F, Zapata C, Rivera JE. Agroforestería pecuaria y sistemas silvopastoriles intensivos (SSPi) para la adaptación ganadera al cambio climático con sostenibilidad. Rev Colomb Cienc Pec. 2013;26:313-6.
  • Nasar AN, Moreira M. Evidences on sugarcane expansion and agricultural land use changes in Brazil. São Paulo: Report Institute for International Trade Negotiations; 2013 [cited 2021 Jun 18]. Available from: https://www.sugarcane.org/wp-content/uploads/2020/12/evidences_on_sugarcane_expansion_and_agricultural_land_use_changes_in_brazil_1206.pdf
    » https://www.sugarcane.org/wp-content/uploads/2020/12/evidences_on_sugarcane_expansion_and_agricultural_land_use_changes_in_brazil_1206.pdf
  • Noble IR, Huq S, Anokhin YA, Carmin J, Goudou D, Lansigan FP, Osman-Elasha B, Villamizar A. Adaptation needs and options. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL, editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 833-68.
  • Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG. Limited potential of no-till agriculture for climate change mitigation. Nat Clim Change. 2014;4:678-83. https://doi.org/10.1038/nclimate2292
    » https://doi.org/10.1038/nclimate2292
  • Roco L, Engler A, Bravo-Ureta BE, Jarra-Rojas R. Farmers’ perception of climate change in mediterranean Chile. Reg Environ Change. 2015;15:867-79. https://doi.org/10.1007/s10113-014-0669-x
    » https://doi.org/10.1007/s10113-014-0669-x
  • Rodríguez AG, Meza LE. Agrobiodiversidad, agricultura familiar y cambio climático. Reporte del Seminario regional Agricultura y Cambio Climático: Agrobiodiversidad, Agricultura Familiar y Cambio Climático. Santiago, Chile: Comisión Económica para América Latina y el Caribe Naciones Unidas (CEPAL); 2016.
  • Sabourin E. Políticas públicas y agriculturas familiares en América Latina y el Caribe: nuevas perspectivas. San José, Costa Rica: IICA; 2015 [cited 2021 Jun 18]. Available from: http://www.iica.int/sites/default/files/publications/files/2016/B3875e.pdf
    » http://www.iica.int/sites/default/files/publications/files/2016/B3875e.pdf
  • Salazar A, Katzfey J, Thatcher M, Syktus J, Wong K, McAlpine C. Deforestation changes land–atmosphere interactions across South American biomes. Glob Planet Change. 2016;139:97-108. https://doi.org/10.1016/j.gloplacha.2016.01.004
    » https://doi.org/10.1016/j.gloplacha.2016.01.004
  • Salton JC, Mercante FM, Tomazi M, Zanatta JA, Concenco G, Silva WM, Retore M. Integrated crop-livestock systems in Tropical Brazil: Toward a sustainable production system. Agr Ecosyst Environ. 2014;190:70-9. https://doi.org/10.1016/j.agee.2013.09.023
    » https://doi.org/10.1016/j.agee.2013.09.023
  • Sánchez L, Reyes O. Medidas de adaptación y mitigación frente al cambio climático en América Latina y el Caribe: Una revisión general. Naciones Unidas, Santiago de Chile: CEPAL; 2015.
  • Schejtman A. Alcances sobre la agricultura familiar en América Latina. Santiago de Chile: Latin American Center for Rural Development (Rimisp); 2008. (Documento de Trabajo, No 21).
  • Segrelles Serrano JA. Una reflexión sobre la reciente reorganización de los usos agropecuarios en América Latina. Anales de Geografía de la Universidad Complutense. 2007;27:125-47.
  • Serna L, Escobar D, Tapasco J, Arango J, Chirinda N, Chacon M, Segura J, Villanueva C. Retos y oportunidades para el desarrollo de la NAMA ganadería en Colombia y Costa Rica. Copenhagen, Denmark: CCAFS Info Note. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); 2017.
  • Shirsath PB, Aggarwal PK, Thornton PK, Dunnett A. Prioritizing climate-smart agricultural land use options at a regional scale. Agric Syst. 2017;151:174-83. https://doi.org/10.1016/j.agsy.2016.09.018
    » https://doi.org/10.1016/j.agsy.2016.09.018
  • Stadelmann M, Michaelowa A, Butzengeiger-Geyer A, Köhler M. Universal metrics to compare the effectiveness of climate change adaptation projects. In: Leal Filho W, editor. Handbook of Climate Change Adaptation. Berlin: Springer; 2015. p. 17-20.
  • Taboada MA, Damiano F. Inundación y manejo de suelos en la Argentina. In: Waldman S, coordenador. Inundaciones y manejo de cuencas: Clima, suelo, prácticas agrícolas, medio ambiente. Caba, Argentina: Centro Argentino de Ingenieros Agrónomos; 2017. p. 145-69.
  • Taboada MA, Busto M, Costantini AO, Maggio A, Perin A, Pimentel MS, Alfaro Valenzuela MA, Pons Gandini D, Monterroso Rivas AI, Loboguerrero AM. Sector agropecuario. In: Moreno JM, Laguna-Defior C, Barros V, Calvo Buendía E, Marengo JA, Oswald Spring U, editors. Adaptación frente a los riesgos del cambio climático en los países RIOCC. Madrid: McGraw Hill; 2020. (Informe RIOCCADAPT).
  • Tacoli C. Crisis or adaptation? Migration and climate change in a context of high mobility. Environ Urban. 2009;21:513-25. https://doi.org/10.1177/0956247809342182
    » https://doi.org/10.1177/0956247809342182
  • Tafur M, Gumucio T, Twyman J, Martinez D. Guía para la integración del enfoque de género en políticas agropecuarias y de cambio climático en América Latina. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); 2015a.
  • Tafur M, Gumucio T, Twyman J, Martinez D. Género y Agricultura en el Perú: Inclusión de intereses y necesidades de hombres y mujeres en la formulación de políticas públicas. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); 2015b.
  • The World Bank, Centro de Investigación Agrícola Tropical - CIAT, Centro Agronómico Tropical de Investigación y Enseñanza - CATIE. Climate-smart agriculture in Costa Rica. CSA Country Profiles for Latin America Series. Washington, DC: The World Bank Group; 2014a.
  • The World Bank, Centro de Investigación Agrícola Tropical - CIAT, Centro Agronómico Tropical de Investigación y Enseñanza - CATIE. Supplemental material for climate-smart agriculture in Mexico. CSA Country Profiles for Latin America Series. Washington, DC: The World Bank Group. 2014b.
  • Torres Guevara J. Experiencias de adaptación al cambio climático, los conocimientos ancestrales, los conocimientos contemporáneos y los escenarios cualitativos en los Andes. Alcances y límites (Perú). Apuntes de Investigación. 2015;3.
  • Turbay S, Nates B, Jaramillo F, Vélez J, Ocampo O. Adaptación a la variabilidad climática entre los caficultores de las cuencas de los ríos Porce y Chinchiná, Colombia. Investigaciones Geográficas. Boletín del Instituto de Geografía. 2014;85:95-112. https://doi.org/10.14350/rig.42298
    » https://doi.org/10.14350/rig.42298
  • Ventura B, Delcourt P, Ortiz G, Methfessel L, Greco C, Buitrago W, Paredes F. El registro arqueológico de las antiguas poblaciones de los valles orientales de la Provincia Arce, Tarija, Bolivia. Intersecciones Antro. 2010;11:59-72.
  • Viglizzo EF, Jobbágy E. Expansión de la frontera agropecuaria en Argentina y su impacto ecológico-ambiental. Buenos Aires: Ediciones INTA; 2010.
  • Wheeler T, von Braun J. Climate change impacts on global food security. Science. 2013;341:508-13. https://doi.org/10.1126/science.1239402
    » https://doi.org/10.1126/science.1239402

Edited by

Editors: José Miguel Reichert and João Tavares Filho.

Publication Dates

  • Publication in this collection
    22 Nov 2021
  • Date of issue
    2021

History

  • Received
    23 June 2021
  • Accepted
    10 Aug 2021
Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br