Open-access Utilização de redes neurais artificiais na classificação de níveis de degradação em pastagens

Use of artificial neural networks in the classification of degradation levels of pastures

Resumos

Este trabalho teve por objetivo avaliar a eficiência dos classificadores redes neurais artificiais (RNA) e o de máxima verossimilhança (Maxver) na classificação do uso da terra no município de Viçosa, MG, a partir de imagens do sensor ASTER, com ênfase nos níveis de degradação das pastagens. Neste estudo, foram identificados três níveis de degradação das pastagens (moderado, forte e muito forte) e avaliada uma composição da imagem do sensor ASTER contendo as 3 bandas do visível e infravermelho próximo, com resolução espacial de 15 m. O simulador de redes neurais empregado foi o "Java Neural Network Simulator" e o algoritmo de aprendizado, o backpropagation. Os resultados mostram que a classificação por redes neurais, embora apresente resultado ligeiramente superior, teve desempenho estatisticamente semelhante ao obtido pela classificação pelo Maxver, obtendo um índice Kappa de 0,80, contra 0,79, respectivamente. Nas classificações realizadas a classe que apresentou maior erro de classificação foi a pastagem no nível de degradação forte, enquanto a maior exatidão na classificação foi obtida pelo café, para ambos os classificadores, com 100 e 96%, respectivamente.

aster; sensoriamento remoto; classificação supervisionada


location_on
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Reportar erro