Acessibilidade / Reportar erro

Asaia (Rhodospirillales: Acetobacteraceae) and Serratia (Enterobacterales: Yersiniaceae) associated with Nyssorhynchus braziliensis and Nyssorhynchus darlingi (Diptera: Culicidae)

Abstract

Midgut transgenic bacteria can be used to express and deliver anti-parasite molecules in malaria vector mosquitoes to reduce transmission. Hence, it is necessary to know the symbiotic bacteria of the microbiota of the midgut to identify those that can be used to interfering in the vector competence of a target mosquito population. The bacterial communities associated with the abdomen of Nyssorhynchus braziliensis (Chagas) (Diptera: Culicidae) and Nyssorhynchus darlingi (Root) (Diptera: Culicidae) were identified using Illumina NGS sequencing of the V4 region of the 16S rRNA gene. Wild females were collected in rural and periurban communities in the Brazilian Amazon. Proteobacteria was the most abundant group identified in both species. Asaia (Rhodospirillales: Acetobacteraceae) and Serratia (Enterobacterales: Yersiniaceae) were detected in Ny. braziliensis for the first time and its presence was confirmed in Ny. darlingi.

Keywords:
Vectors; Malaria; Amazon

Although the malaria burden has decreased worldwide, the disease still imposes enormous suffering for human populations in the majority of endemic countries. Also, the disease continuously threatens the public health, and have a negative impact on the socioeconomic growth of poor communities (Gallup and Sachs, 2001Gallup, J. L., Sachs, J. D., 2001. The economic burden of malaria. Am. J. Trop. Med. Hyg. 64 (1-2, Suppl.), 85-96.; Shretta et al., 2017Shretta, R., Zelman, B., Birger, M. L., Haakenstad, A., Singh, L., Liu, Y., Dieleman, J., 2017. Tracking development assistance and government health expenditures for 35 malaria-eliminating countries: 1990-2017. Malar. J. 16 (1), 251.). In addition, a recent study by Haakenstad et al. (2019)Haakenstad, A., Harle, A. C., Tsakalos, G., Micah, A. E., Tao, T., Anjomshoa, M., Cohen, J., Fullman, N., Hay, S. I., Mestrovic, T., Mohammed, S., Mousavi, S. M., Nixon, M. R., Pigott, D., Tran, K., Murray, C. J. L., Dieleman, J. L., 2019. Tracking spending on malaria by source in 106 countries, 2000-16: an economic modelling study. Lancet Infect. Dis. 19 (7), 703-716. PMid:31036511. demonstrated that in 2016, US$ 4.3 billion was spent on malaria worldwide, and that will reach US$ 6.6 billion annually in 2020. Although the intensive worldwide controlling effort, sustaining achievement in malaria control will require an enormous effort from endemic countries, and international funding support for the programs (Shretta et al., 2017Shretta, R., Zelman, B., Birger, M. L., Haakenstad, A., Singh, L., Liu, Y., Dieleman, J., 2017. Tracking development assistance and government health expenditures for 35 malaria-eliminating countries: 1990-2017. Malar. J. 16 (1), 251.; Haakenstad et al., 2019Haakenstad, A., Harle, A. C., Tsakalos, G., Micah, A. E., Tao, T., Anjomshoa, M., Cohen, J., Fullman, N., Hay, S. I., Mestrovic, T., Mohammed, S., Mousavi, S. M., Nixon, M. R., Pigott, D., Tran, K., Murray, C. J. L., Dieleman, J. L., 2019. Tracking spending on malaria by source in 106 countries, 2000-16: an economic modelling study. Lancet Infect. Dis. 19 (7), 703-716. PMid:31036511.).

Currently, the main pillars for malaria control rely on the commodities targeting anopheline vector species, and the detection and treatment of Plasmodium spp. human infection (Baird, 2017Baird, J. K., 2017. Malaria control by commodities without practical malariology. BMC Public Health 17 (1), 590.; Shretta et al., 2017Shretta, R., Zelman, B., Birger, M. L., Haakenstad, A., Singh, L., Liu, Y., Dieleman, J., 2017. Tracking development assistance and government health expenditures for 35 malaria-eliminating countries: 1990-2017. Malar. J. 16 (1), 251.). However, increasing resistance to artemisinin combination therapies (ACTs) threatens Plasmodium falciparum Welch malaria control (Menard and Dondorp, 2017Menard, D., Dondorp, A., 2017. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb. Perspect. Med. 7 (7), a025619.). Controlling strategies targeting Anophelinae vector species are primarily focused on decreasing human exposure to mosquito bites by the use of insecticide-treated bed nets, and insecticide indoor residual spraying (Baird, 2017Baird, J. K., 2017. Malaria control by commodities without practical malariology. BMC Public Health 17 (1), 590.; Shretta et al., 2017Shretta, R., Zelman, B., Birger, M. L., Haakenstad, A., Singh, L., Liu, Y., Dieleman, J., 2017. Tracking development assistance and government health expenditures for 35 malaria-eliminating countries: 1990-2017. Malar. J. 16 (1), 251.; WHO, 2018World Health Organization – WHO, 2018. World Malaria Report. WHO, Geneva. Available in: http://www.who.int/malaria/publications/world-malaria-report-2018/report/en/ (accessed 27 Jan 2019).
http://www.who.int/malaria/publications/...
). The effectivity of vector control technologies is threatened by the emergence of mosquito resistance to insecticides (Baird, 2017Baird, J. K., 2017. Malaria control by commodities without practical malariology. BMC Public Health 17 (1), 590.).

New technological commodities, such as the genetic manipulation of organisms (Bilgo et al., 2018Bilgo, E., Vantaux, A., Sanon, A., Ilboudo, S., Dabiré, R. K., Jacobs-Lorena, M., Diabate, A., 2018. Field assessment of potential sugar feeding stations for disseminating bacteria in a paratransgenic approach to control malaria. Malar. J. 17 (1), 367.), are being developed for controlling vector-borne diseases. The employment of transgenic bacteria from the adult mosquito midgut is a potential tool to be employed for decreasing vector competence and vectorial capacity of vector species involved in a pathogen transmission (Villegas and Pimenta, 2014Villegas, L. M., Pimenta, P. F. P., 2014. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem. Inst. Oswaldo Cruz 109 (5), 672-684.; Kotnis and Kuri, 2016Kotnis, B., Kuri, J., 2016. Evaluating the usefulness of paratransgenesis for malaria control. Math. Biosci. 277, 117-125.). The symbiotic bacteria (Damiani et al., 2010Damiani, C., Ricci, I., Crotti, E., Rossi, P., Rizzi, A., Scuppa, P., Capone, A., Ulissi, U., Epis, S., Genchi, M., Sagnon, N., Faye, I., Kang, A., Chouaia, B., Whitehorn, C., Moussa, G. W., Mandrioli, M., Esposito, F., Sacchi, L., Bandi, C., Daffonchio, D., Favia, G., 2010. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb. Ecol. 60 (3), 644-654.), viruses (Ren et al., 2008Ren, X., Hoiczyk, E., Rasgon, J. L., 2008. Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoS Pathog. 4 (8), e1000135. PMid:18725926.), and fungi (Fang et al., 2011Fang, W., Vega-Rodríguez, J., Ghosh, A. K., Jacobs-Lorena, M., Kang, A., St. Leger, R. J., 2011. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331 (6020), 1074-1077.), which are present in a large array of mosquito species, are potential tools for blocking a pathogen dispersion into a mosquito. In this context, the paratransgenesis of microbial organisms by genetically manipulating the insect endosymbiotic bacteria is a promising approach (Durvasula et al., 1997Durvasula, R. V., Gumbs, A., Panackal, A., Kruglov, O., Aksoy, S., Merrifield, R. B., Richards, F. F., Beard, C. B., 1997. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc. Natl. Acad. Sci. USA 94 (7), 3274-3278.; Wang and Jacobs-Lorena, 2013Wang, S., Jacobs-Lorena, M., 2013. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 31 (3), 185-193.; Bilgo et al., 2018Bilgo, E., Vantaux, A., Sanon, A., Ilboudo, S., Dabiré, R. K., Jacobs-Lorena, M., Diabate, A., 2018. Field assessment of potential sugar feeding stations for disseminating bacteria in a paratransgenic approach to control malaria. Malar. J. 17 (1), 367.). Among the symbiotic bacteria found in anopheline vector species, the Asaia (Rhodospirillales: Acetobacteraceae), Pantoea (Enterobacterales: Erwiniaceae), Serratia (Enterobacterales: Yersiniaceae), Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Thorsellia (Enterobacterales: Thorselliaceae) bacteria are candidates for paratransgenesis (Villegas and Pimenta, 2014Villegas, L. M., Pimenta, P. F. P., 2014. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem. Inst. Oswaldo Cruz 109 (5), 672-684.; Mancini et al., 2016Mancini, M. V., Spaccapelo, R., Damiani, C., Accoti, A., Tallarita, M., Petraglia, E., Rossi, P., Cappelli, A., Capone, A., Peruzzi, G., Valzano, M., Picciolini, M., Diabaté, A., Facchinelli, L., Ricci, I., Favia, G., 2016. Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasit. Vectors 9, 140.; Raharimalala et al., 2016Raharimalala, F. N., Boukraa, S., Bawin, T., Boyer, S., Francis, F., 2016. Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates. Parasitol. Res. 115 (4), 1391-1399.).

Asaia bacteria was found in field-collected specimens of Anopheles stephensi Liston, Anopheles gambiae Giles, Anopheles funestus Giles, Anopheles coustani Laveran, Anopheles maculipennis Meigen, Anopheles superpictus Grassi, Anopheles fluviatilis James, Anopheles dthali Patton, Aedes albopictus (Skuse), Aedes aegypti (Linnaeus), species of the Culex pipiens complex (Favia et al., 2007Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi, A., Urso, R., Brusetti, L., Borin, S., Mora, D., Scuppa, P., Pasqualini, L., Clementi, E., Genchi, M., Corona, S., Negri, I., Grandi, G., Alma, A., Kramer, L., Esposito, F., Bandi, C., Sacchi, L., Daffonchio, D., 2007. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl. Acad. Sci. USA 104 (21), 9047-9051. PMid:17502606.; Crotti et al., 2009Crotti, E., Damiani, C., Pajoro, M., Gonella, E., Rizzi, A., Ricci, I., Negri, I., Scuppa, P., Rossi, P., Ballarini, P., Raddadi, N., Marzorati, M., Sacchi, L., Clementi, E., Genchi, M., Mandrioli, M., Bandi, C., Favia, G., Alma, A., Daffonchio, D., 2009. Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ. Microbiol. 11 (12), 3252-3264. PMid:19735280.; Manguin et al., 2013Manguin, S., Ngo, C. T., Tainchum, K., Juntarajumnong, W., Chareonviriyaphap, T., Michon, A. L., Jumas-Bilak, E., 2013. Bacterial biodiversity in midguts of Anopheles mosquitoes, malaria vectors in Southeast Asia In: Manguin S, editor. Anopheles Mosquitoes: New Insights Into Malaria Vectors. InTech Open Access, Croatia, pp. 549-576.; Rami et al., 2018Rami, A., Raz, A., Zakeri, S., Djadid, N. D., 2018. Isolation and identification of Asaia sp. in Anopheles spp. mosquitoes collected from Iranian malaria settings: steps toward applying paratransgenic tools against malaria. Parasit. Vectors 11 (1), 367.), and recently in Nyssorhynchus darlingi (Root) (Alonso et al., 2019Alonso, D. P., Mancini, M. V., Damiani, C., Cappelli, A., Ricci, I., Alvarez, M. V. N., Bandi, C., Ribolla, P. E. M., Favia, G., 2019. Genome reduction in the mosquito symbiont Asaia. Genome Biol. Evol. 11 (1), 1-10.). Species of the Asaia can colonize mosquito salivary gland, midgut, and male and female reproductive apparatus (Favia et al., 2007Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi, A., Urso, R., Brusetti, L., Borin, S., Mora, D., Scuppa, P., Pasqualini, L., Clementi, E., Genchi, M., Corona, S., Negri, I., Grandi, G., Alma, A., Kramer, L., Esposito, F., Bandi, C., Sacchi, L., Daffonchio, D., 2007. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl. Acad. Sci. USA 104 (21), 9047-9051. PMid:17502606.). Bacteria of the genus Serratia can be employed for malaria control (Koosha et al., 2018Koosha, M., Vatandoost, H., Karimian, F., Choubdar, N., Oshaghi, M. A., 2018. Delivery of a genetically marked Serratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strategies. Microb. Ecol. 78 (1), 185-194.). The genetically modified AS1 isolate of the Serratia was able to inhibit the development of P. falciparum in An. gambiae through the secretion of anti-Plasmodium protein molecules. Currently, the Serratia was found in Anopheles albimanus Wiedemann (Gonzalez-Ceron et al., 2003Gonzalez-Ceron, L., Santillan, F., Rodriguez, M. H., Mendez, D., Hernandez-Avila, J. E., 2003. Bacterial in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J. Med. Entomol. 40 (3), 371-374.), Anopheles stephensi (Rani et al., 2009Rani, A., Sharma, A., Rajagopal, R., Adak, T., Bhatnagar, R. K., 2009. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi: an Asian malarial vector. BMC Microbiol. 9, 96. PMid:19450290.), and Ny. darlingi (Arruda et al., 2017Arruda, A., Ferreira, G. S., Lima, N. C. D., Santos Júnior, A. D., Custódio, M. G. F., Benevides-Matos, N., Ozaki, L. S., Stabeli, R. G., Silva, A. A. A., 2017. A simple methodology to collect culturable bacteria from feces of Anopheles darlingi (Diptera: culicidae). J. Microbiol. Methods 141, 115-117.).

Recent findings clearly show the importance of mosquito microbiota and the potential of the organisms to reduce the vector competence of a mosquito population by interfering in the sexual life cycle of P. falciparum and Plasmodium vivax Grassi and Feletti (Gonzalez-Ceron et al., 2003Gonzalez-Ceron, L., Santillan, F., Rodriguez, M. H., Mendez, D., Hernandez-Avila, J. E., 2003. Bacterial in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J. Med. Entomol. 40 (3), 371-374.; Cirimotich et al., 2011Cirimotich, C. M., Dong, Y., Clayton, A. M., Sandiford, S. L., Souza-Neto, J. A., Mulenga, M., Dimopoulos, G., 2011. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332 (6031), 855-858. PMid:21566196.). However, the bacterial diversity of the microbiota of a few species has been investigated. Additional studies can provide important information regarding microbiota of primary and secondary Anophelinae species, including those of the Neotropical Region (Terenius et al., 2008Terenius, O., Oliveira, C. D., Pinheiro, W. D., Tadei, W. P., James, A. A., Marinotti, O., 2008. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes). Mosquitoes.J. Med. Entomol. 45 (1), 172-175.; Arruda et al., 2017Arruda, A., Ferreira, G. S., Lima, N. C. D., Santos Júnior, A. D., Custódio, M. G. F., Benevides-Matos, N., Ozaki, L. S., Stabeli, R. G., Silva, A. A. A., 2017. A simple methodology to collect culturable bacteria from feces of Anopheles darlingi (Diptera: culicidae). J. Microbiol. Methods 141, 115-117.; Bascuñán et al., 2018Bascuñán, P., Niño-Garcia, J. P., Galeano-Castañeda, Y., Serre, D., Correa, M. M., 2018. Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors. Microbiome 6 (1), 148.; Alonso et al., 2019Alonso, D. P., Mancini, M. V., Damiani, C., Cappelli, A., Ricci, I., Alvarez, M. V. N., Bandi, C., Ribolla, P. E. M., Favia, G., 2019. Genome reduction in the mosquito symbiont Asaia. Genome Biol. Evol. 11 (1), 1-10.). This study aims to provide further information about the bacteria associated with the abdomen of field-collected females of Nyssorhynchus darlingi, the primary vector, and Ny. braziliensis (Chagas), the secondary vector species involved in the malaria transmission cycle in the Amazon river basin.

Mosquito female of Ny. braziliensis was collected in the municipality of Humaitá (-63.285549, -7.887513; Amazonas State) in July of 2016, and Ny. darlingi was collected in Cruzeiro do Sul (-72.688722, -7.631889; Acre State) in April of 2015. Mosquitoes were killed with ethyl acetate (C4H8O2) and immediately preserved in silica gel until species identification by morphological characteristics. After identification, females were preserved at -80 °C. Females were bisected in the head/thorax and abdomen. DNA extractions were performed at different times. Genomic DNA of the abdomen of the female of Ny. braziliensis was extracted employing Laporta et al. (2015)Laporta, G. Z., Burattini, M. N., Levy, D., Fukuya, L. A., Oliveira, T. M. P., Maselli, L. M. F., Conn, J. E., Massad, E., Bydlowski, S. P., Sallum, M. A. M., 2015. Plasmodium falciparum in the southeastern Atlantic forest: a challenge to the bromeliad-malaria paradigm? Malar. J. 14, 181. protocol. The PowerSoil DNA kit (MO BIO Laboratories, Carlsbad, CA, USA) was employed for DNA extraction of Ny. darlingi abdomen, following the manufacturer’s instructions.

The V4 hypervariable region of the 16S rRNA gene was amplified according to Caporaso et al. (2011)Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108 (Suppl.1), 4516-4522.. Sequencing was performed on the MiSeq platform (Illumina, San Diego, CA, EUA) with MiSeq Reagent Kit v2 (300 cycles), according to the manufacturer’s instructions. The PANDAseq v.2.9 software (Masella et al., 2012Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G., Neufeld, J. D., 2012. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13, 31.) was used to assemble the forward and reverse reads using default parameters. The UCHIME algorithm (Edgar et al., 2011Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 (16), 2194-2200.) was employed to detect and remove any recombinant sequences from the Illumina sequence data. A minimum of 97% cutoff of sequence similarity identity was used to define the taxonomic classification of each read. The EzBioCloud (Yoon et al., 2017Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., Chun, J., 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67 (5), 1613-1617.), with the Mothur algorithm, was used to calculate the diversity indices of bacterial communities, whereas the Shannon diversity index was employed to characterize species diversity in the Illumina sequence data set.

The abdomen of forty-seven anopheline females were sequenced to obtain information of the V4 region of the 16S rRNA gene (unpublished data). In the current study, the microbiota associated with the abdomen of two females is reported. After quality filtering, 56,467 reads were clustered into OTUs at 97% similarity threshold. The results from the rarefaction curve analysis showed that the sequencing depth adopted was adequate to detect all bacteria OTUs in both female specimens. Fifty-nine genera of eight phyla were identified in Ny. braziliensis and 83 genera of six phyla were detected in Ny.darlingi. Proteobacteria was the phylum dominant in all samples (Table 1). At the genus level, Escherichia (Enterobacterales: Enterobacteriaceae) was the dominant group in the abdomen of Ny. braziliensis and Ny. darlingi (Fig. 1). Escherichia and Enterobacteriaceae_uc (Enterobacterales: Enterobacteriaceae) were the most abundant genera detected in Ny. braziliensis. The value of the Shannon diversity index was 3.14 for Ny. braziliensis and 3.96 for Ny. darlingi.

Table 1
Number of reads of each phylum in Nyssorhynchus braziliensis and Nyssorhynchus darlingi.
Figure 1
Composition of bacteria from the abdomen of Nyssorhynchus braziliensis and Nyssorhynchus darlingi. Only genera that had a relative abundance of 1% or greater are presented.

Our results revealed a low relative abundance of the genera Asaia (0.03%) and Serratia (0.09%) in Ny. braziliensis, whereas in Ny. darlingi both genera were found in higher abundance (Asaia - 3.35%, Serratia - 1.02%). The presence of Asaia and Serratia has been previously reported in Ny. darlingi (Arruda et al., 2017Arruda, A., Ferreira, G. S., Lima, N. C. D., Santos Júnior, A. D., Custódio, M. G. F., Benevides-Matos, N., Ozaki, L. S., Stabeli, R. G., Silva, A. A. A., 2017. A simple methodology to collect culturable bacteria from feces of Anopheles darlingi (Diptera: culicidae). J. Microbiol. Methods 141, 115-117.; Alonso et al., 2019Alonso, D. P., Mancini, M. V., Damiani, C., Cappelli, A., Ricci, I., Alvarez, M. V. N., Bandi, C., Ribolla, P. E. M., Favia, G., 2019. Genome reduction in the mosquito symbiont Asaia. Genome Biol. Evol. 11 (1), 1-10.), whereas they were identified in Ny. braziliensis for the first time. The presence of bacteria in other Anopheline species (Gonzalez-Ceron et al., 2003Gonzalez-Ceron, L., Santillan, F., Rodriguez, M. H., Mendez, D., Hernandez-Avila, J. E., 2003. Bacterial in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J. Med. Entomol. 40 (3), 371-374.; Lindh et al., 2005Lindh, J. M., Terenius, O., Faye, I., 2005. 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiaesensulato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl. Environ. Microbiol. 71 (11), 7217-7223.; Favia et al., 2007Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi, A., Urso, R., Brusetti, L., Borin, S., Mora, D., Scuppa, P., Pasqualini, L., Clementi, E., Genchi, M., Corona, S., Negri, I., Grandi, G., Alma, A., Kramer, L., Esposito, F., Bandi, C., Sacchi, L., Daffonchio, D., 2007. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl. Acad. Sci. USA 104 (21), 9047-9051. PMid:17502606.; Rani et al., 2009Rani, A., Sharma, A., Rajagopal, R., Adak, T., Bhatnagar, R. K., 2009. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi: an Asian malarial vector. BMC Microbiol. 9, 96. PMid:19450290.; Manguin et al., 2013Manguin, S., Ngo, C. T., Tainchum, K., Juntarajumnong, W., Chareonviriyaphap, T., Michon, A. L., Jumas-Bilak, E., 2013. Bacterial biodiversity in midguts of Anopheles mosquitoes, malaria vectors in Southeast Asia In: Manguin S, editor. Anopheles Mosquitoes: New Insights Into Malaria Vectors. InTech Open Access, Croatia, pp. 549-576.; Arruda et al., 2017Arruda, A., Ferreira, G. S., Lima, N. C. D., Santos Júnior, A. D., Custódio, M. G. F., Benevides-Matos, N., Ozaki, L. S., Stabeli, R. G., Silva, A. A. A., 2017. A simple methodology to collect culturable bacteria from feces of Anopheles darlingi (Diptera: culicidae). J. Microbiol. Methods 141, 115-117.; Rami et al., 2018Rami, A., Raz, A., Zakeri, S., Djadid, N. D., 2018. Isolation and identification of Asaia sp. in Anopheles spp. mosquitoes collected from Iranian malaria settings: steps toward applying paratransgenic tools against malaria. Parasit. Vectors 11 (1), 367.) show that they are capable of colonizing a wide range of mosquito because they share stable symbiotic relationship with these vector species. However, further investigations will be necessary to fill gaps in knowledge of the relationships between mosquito species and their associated symbiotic bacteria before these organisms can be employed for a paratransgenic approach to control vector-borne diseases. Genetically manipulated bacteria can be employed for a distinct approach, i.e., to interfere with mosquito reproduction, and oogenesis and embryogenesis processes. In addition, they can be manipulated to express effector molecules to reduce vector competence or cause pathogenic effect in a mosquito population as discussed by Wilke and Marrelli (2015)Wilke, A. B. B., Marrelli, M. T., 2015. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit. Vectors 8, 342., including Neotropical vector species.

Acknowledgments

Financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grant no. 2014/26229-7 to MAMS; Conselho Nacional de Pesquisa—CNPq no. 301877/2016-5 to MAMS.

  • Data Statement Sequencing data generated for this study have been deposited in the European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/) (Project: PRJEB32570, Access numbers: ERS3411567 and ERS3411575).

References

  • Alonso, D. P., Mancini, M. V., Damiani, C., Cappelli, A., Ricci, I., Alvarez, M. V. N., Bandi, C., Ribolla, P. E. M., Favia, G., 2019. Genome reduction in the mosquito symbiont Asaia. Genome Biol. Evol. 11 (1), 1-10.
  • Arruda, A., Ferreira, G. S., Lima, N. C. D., Santos Júnior, A. D., Custódio, M. G. F., Benevides-Matos, N., Ozaki, L. S., Stabeli, R. G., Silva, A. A. A., 2017. A simple methodology to collect culturable bacteria from feces of Anopheles darlingi (Diptera: culicidae). J. Microbiol. Methods 141, 115-117.
  • Baird, J. K., 2017. Malaria control by commodities without practical malariology. BMC Public Health 17 (1), 590.
  • Bascuñán, P., Niño-Garcia, J. P., Galeano-Castañeda, Y., Serre, D., Correa, M. M., 2018. Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors. Microbiome 6 (1), 148.
  • Bilgo, E., Vantaux, A., Sanon, A., Ilboudo, S., Dabiré, R. K., Jacobs-Lorena, M., Diabate, A., 2018. Field assessment of potential sugar feeding stations for disseminating bacteria in a paratransgenic approach to control malaria. Malar. J. 17 (1), 367.
  • Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108 (Suppl.1), 4516-4522.
  • Cirimotich, C. M., Dong, Y., Clayton, A. M., Sandiford, S. L., Souza-Neto, J. A., Mulenga, M., Dimopoulos, G., 2011. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332 (6031), 855-858. PMid:21566196.
  • Crotti, E., Damiani, C., Pajoro, M., Gonella, E., Rizzi, A., Ricci, I., Negri, I., Scuppa, P., Rossi, P., Ballarini, P., Raddadi, N., Marzorati, M., Sacchi, L., Clementi, E., Genchi, M., Mandrioli, M., Bandi, C., Favia, G., Alma, A., Daffonchio, D., 2009. Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ. Microbiol. 11 (12), 3252-3264. PMid:19735280.
  • Damiani, C., Ricci, I., Crotti, E., Rossi, P., Rizzi, A., Scuppa, P., Capone, A., Ulissi, U., Epis, S., Genchi, M., Sagnon, N., Faye, I., Kang, A., Chouaia, B., Whitehorn, C., Moussa, G. W., Mandrioli, M., Esposito, F., Sacchi, L., Bandi, C., Daffonchio, D., Favia, G., 2010. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb. Ecol. 60 (3), 644-654.
  • Durvasula, R. V., Gumbs, A., Panackal, A., Kruglov, O., Aksoy, S., Merrifield, R. B., Richards, F. F., Beard, C. B., 1997. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc. Natl. Acad. Sci. USA 94 (7), 3274-3278.
  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 (16), 2194-2200.
  • Fang, W., Vega-Rodríguez, J., Ghosh, A. K., Jacobs-Lorena, M., Kang, A., St. Leger, R. J., 2011. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331 (6020), 1074-1077.
  • Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi, A., Urso, R., Brusetti, L., Borin, S., Mora, D., Scuppa, P., Pasqualini, L., Clementi, E., Genchi, M., Corona, S., Negri, I., Grandi, G., Alma, A., Kramer, L., Esposito, F., Bandi, C., Sacchi, L., Daffonchio, D., 2007. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl. Acad. Sci. USA 104 (21), 9047-9051. PMid:17502606.
  • Gallup, J. L., Sachs, J. D., 2001. The economic burden of malaria. Am. J. Trop. Med. Hyg. 64 (1-2, Suppl.), 85-96.
  • Gonzalez-Ceron, L., Santillan, F., Rodriguez, M. H., Mendez, D., Hernandez-Avila, J. E., 2003. Bacterial in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J. Med. Entomol. 40 (3), 371-374.
  • Haakenstad, A., Harle, A. C., Tsakalos, G., Micah, A. E., Tao, T., Anjomshoa, M., Cohen, J., Fullman, N., Hay, S. I., Mestrovic, T., Mohammed, S., Mousavi, S. M., Nixon, M. R., Pigott, D., Tran, K., Murray, C. J. L., Dieleman, J. L., 2019. Tracking spending on malaria by source in 106 countries, 2000-16: an economic modelling study. Lancet Infect. Dis. 19 (7), 703-716. PMid:31036511.
  • Koosha, M., Vatandoost, H., Karimian, F., Choubdar, N., Oshaghi, M. A., 2018. Delivery of a genetically marked Serratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strategies. Microb. Ecol. 78 (1), 185-194.
  • Kotnis, B., Kuri, J., 2016. Evaluating the usefulness of paratransgenesis for malaria control. Math. Biosci. 277, 117-125.
  • Laporta, G. Z., Burattini, M. N., Levy, D., Fukuya, L. A., Oliveira, T. M. P., Maselli, L. M. F., Conn, J. E., Massad, E., Bydlowski, S. P., Sallum, M. A. M., 2015. Plasmodium falciparum in the southeastern Atlantic forest: a challenge to the bromeliad-malaria paradigm? Malar. J. 14, 181.
  • Lindh, J. M., Terenius, O., Faye, I., 2005. 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiaesensulato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl. Environ. Microbiol. 71 (11), 7217-7223.
  • Mancini, M. V., Spaccapelo, R., Damiani, C., Accoti, A., Tallarita, M., Petraglia, E., Rossi, P., Cappelli, A., Capone, A., Peruzzi, G., Valzano, M., Picciolini, M., Diabaté, A., Facchinelli, L., Ricci, I., Favia, G., 2016. Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasit. Vectors 9, 140.
  • Manguin, S., Ngo, C. T., Tainchum, K., Juntarajumnong, W., Chareonviriyaphap, T., Michon, A. L., Jumas-Bilak, E., 2013. Bacterial biodiversity in midguts of Anopheles mosquitoes, malaria vectors in Southeast Asia In: Manguin S, editor. Anopheles Mosquitoes: New Insights Into Malaria Vectors. InTech Open Access, Croatia, pp. 549-576.
  • Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G., Neufeld, J. D., 2012. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13, 31.
  • Menard, D., Dondorp, A., 2017. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb. Perspect. Med. 7 (7), a025619.
  • Raharimalala, F. N., Boukraa, S., Bawin, T., Boyer, S., Francis, F., 2016. Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates. Parasitol. Res. 115 (4), 1391-1399.
  • Rami, A., Raz, A., Zakeri, S., Djadid, N. D., 2018. Isolation and identification of Asaia sp. in Anopheles spp. mosquitoes collected from Iranian malaria settings: steps toward applying paratransgenic tools against malaria. Parasit. Vectors 11 (1), 367.
  • Rani, A., Sharma, A., Rajagopal, R., Adak, T., Bhatnagar, R. K., 2009. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi: an Asian malarial vector. BMC Microbiol. 9, 96. PMid:19450290.
  • Ren, X., Hoiczyk, E., Rasgon, J. L., 2008. Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoS Pathog. 4 (8), e1000135. PMid:18725926.
  • Shretta, R., Zelman, B., Birger, M. L., Haakenstad, A., Singh, L., Liu, Y., Dieleman, J., 2017. Tracking development assistance and government health expenditures for 35 malaria-eliminating countries: 1990-2017. Malar. J. 16 (1), 251.
  • Terenius, O., Oliveira, C. D., Pinheiro, W. D., Tadei, W. P., James, A. A., Marinotti, O., 2008. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes). Mosquitoes.J. Med. Entomol. 45 (1), 172-175.
  • Villegas, L. M., Pimenta, P. F. P., 2014. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem. Inst. Oswaldo Cruz 109 (5), 672-684.
  • Wang, S., Jacobs-Lorena, M., 2013. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 31 (3), 185-193.
  • Wilke, A. B. B., Marrelli, M. T., 2015. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit. Vectors 8, 342.
  • World Health Organization – WHO, 2018. World Malaria Report. WHO, Geneva. Available in: http://www.who.int/malaria/publications/world-malaria-report-2018/report/en/ (accessed 27 Jan 2019).
    » http://www.who.int/malaria/publications/world-malaria-report-2018/report/en/
  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., Chun, J., 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67 (5), 1613-1617.

Edited by

Associate Editor: Mário Navarro-Silva

Publication Dates

  • Publication in this collection
    08 June 2020
  • Date of issue
    2020

History

  • Received
    24 Oct 2019
  • Accepted
    23 Apr 2020
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br