Acessibilidade / Reportar erro

Seasonality and distribution of Coleoptera families (Arthropoda, Insecta) in the Cerrado of Central Brazil

ABSTRACT

Coleoptera order in Brazil presents 105 families with approximately 28,000 species. The life cycle and diversity of Coleoptera are strongly influenced by climate and vegetation. The objective of this study was to evaluate the seasonality and distribution of Coleoptera families in an area of the Cerrado in the Federal District (DF) of Brazil. The insects were collected monthly, between June 2015 and May 2016, using a light trap activated only in nights with a new moon, in an area of cerrado sensu stricto in Planaltina/DF, Brazil. The data were correlated with climatic variables. A total of 21,100 Coleoptera specimens belonging to 34 families were collected, with Melolonthidae (n = 11,075), Carabidae (n = 2,522), Scarabaeidae (n = 2,506), Bostrichidae (n = 1,196), and Chrysomelidae (n = 1,086) being the most abundant. Coleoptera were significantly more abundant in the first half of the rainy season. There was a significant and positive correlation between the abundance of Coleoptera and the climatic variables temperature and precipitation. The data presented in this study are related to an atypical year under the strong influence of the El Niño phenomenon, which may influence the abundance of Coleoptera. Circular analysis revealed that Coleoptera, and the most abundant families, presented seasonality throughout the year with a grouped distribution at the beginning of the rainy season (October to December). This study demonstrates that the richness and abundance of the Coleoptera order, in the Cerrado, is strongly influenced by the characteristic climatic seasons of the biome.

Keywords:
Coleopterans; Light trap; Temporal variation; Cerrado sensu stricto

Introduction

Climate is one of the main factors responsible for regulating insect populations, directly influencing the biology and behavior of species. Environmental conditions (i.e., temperature, relative humidity, and precipitation) act together to determine the occurrence, model the distribution, and influence the biological cycles of insects (Wellington, 1957Wellington, W. G., 1957. Individual differences as a factor in population dynamics: the development of a problem. Can. J. Zool. 35, 293-323.; Messenger, 1959Messenger, P. S., 1959. Bioclimatic Studies with Insects. Annu. Rev. Entomol. 4, 183-206. https://doi.org/10.1146/annurev.en.04.010159.001151.
https://doi.org/10.1146/annurev.en.04.01...
; Cammell and Knight, 1992Cammell, M. E., Knight, J. D., 1992. Effects of climatic change on the population dynamics of crop pests. Adv. Ecol. Res. Adv. Ecol. Res. 22, 117-162. https://doi.org/10.1016/S0065-2504(08)60135-X.
https://doi.org/10.1016/S0065-2504(08)60...
; Peacock et al., 2006Peacock, L., Worner, S., Sedcole, R., 2006. Climate variables and their role in site discrimination of invasive insect species distributions. Environ. Entomol. 35, 958-963. https://doi.org/10.1603/0046-225X-35.4.958.
https://doi.org/10.1603/0046-225X-35.4.9...
; Sable and Rana, 2016Sable, M. G., Rana, D. K., 2016. Impact of global warming on insect behavior -A review. Agric. Rev. (Karnal) 37, 81-84.; Kellermann and van Heerwaarden, 2019Kellermann, V., van Heerwaarden, B., 2019. Terrestrial insects and climate change: adaptive responses in key traits. Physiol. Entomol. 44, 99-115. https://doi.org/10.1111/phen.12282.
https://doi.org/10.1111/phen.12282...
).

In tropical regions, factors such as irregular rainfall distribution can decisively influence the development and biology of many species (Wolda, 1988Wolda, H., 1988. Insect seasonality: why? Annu. Rev. Ecol. Syst. 19, 1-18. https://doi.org/10.1146/annurev.es.19.110188.000245.
https://doi.org/10.1146/annurev.es.19.11...
; Pinheiro et al., 2002Pinheiro, F., Diniz, I. R., Coelho, D., Bandeira, M. P. S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x.
https://doi.org/10.1046/j.1442-9993.2002...
; Silva et al., 2011Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013.
https://doi.org/10.1590/S0085-5626201100...
; Oliveira and Frizzas, 2013Oliveira, C. M., Frizzas, M. R., 2013. Field biology of the beetle Aegopsis bolboceridus in Brazil, with a list of host plants. J. Insect Sci. 13, 48. https://doi.org/10.1673/031.013.4801.
https://doi.org/10.1673/031.013.4801...
, 2019Oliveira, C. M., Frizzas, M. R., 2019. How climate influences the biology and behaviour of Phyllophaga capillata (Coleoptera: Melolonthidae) in the Brazilian Cerrado. Austral Entomol. 58, 336-345. https://doi.org/10.1111/aen.12309.
https://doi.org/10.1111/aen.12309...
) and can affect the seasonality patterns of insects. However, ecologically and taxonomically different groups cannot be expected to respond in the same way to changes in climate variables (Wolda and Fisk, 1981Wolda, H., Fisk, F. W., 1981. Seasonality of tropical insects. II. Blattaria in Panama. J. Anim. Ecol. 50, 827-838. https://doi.org/10.2307/4140.
https://doi.org/10.2307/4140...
).

The Cerrado, the second largest Brazilian biome, is one of the most distinctive in terms of climatic characteristics, with a bimodal distribution of rainfall; there is a rainy period (October-March), during which approximately 87% of annual precipitation falls, and a well-defined dry season (April-September) (Silva et al., 2008Silva, F. A. M., Assad, E. D., Evangelista, B. A., 2008. Caracterização climática do bioma Cerrado. In: Sano, S.M., Almeida, S.P., Ribeiro, F.E. (Eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília/DF, pp. 69–88.). This variable has been identified as determining the seasonality observed in insect populations in this biome. The first rains occur in September and October of each year, seeming to be the trigger for most species to resume their activity (Oliveira and Frizzas, 2008Oliveira, C. M., Frizzas, M. R., 2008. Insetos de Cerrado: distribuição estacional e abundância. Embrapa Cerrados, Planaltina/DF. (Boletim de Pesquisa e Desenvolvimento, 216)., 2013Oliveira, C. M., Frizzas, M. R., 2013. Field biology of the beetle Aegopsis bolboceridus in Brazil, with a list of host plants. J. Insect Sci. 13, 48. https://doi.org/10.1673/031.013.4801.
https://doi.org/10.1673/031.013.4801...
, 2019Oliveira, C. M., Frizzas, M. R., 2019. How climate influences the biology and behaviour of Phyllophaga capillata (Coleoptera: Melolonthidae) in the Brazilian Cerrado. Austral Entomol. 58, 336-345. https://doi.org/10.1111/aen.12309.
https://doi.org/10.1111/aen.12309...
; Evangelista Neto et al., 2018Evangelista Neto, J., Oliveira, C. M., Vaz-de-Mello, F. Z., Frizzas, M. R., 2018. Diversity of Cetoniidae (Insecta: Coleoptera) in the Cerrado of Central Brazil. Entomol. Sci. 21, 84-92. https://doi.org/10.1111/ens.12284.
https://doi.org/10.1111/ens.12284...
; Frizzas et al., 2020Frizzas, M. R., Batista, J. L. F. L., Rocha, M. V. C., Oliveira, C. M., 2020. Diversity of Scarabaeinae (Coleoptera: Scarabaeidae) in an urban fragment of Cerrado in central Brazil. Eur. J. Entomol. 117, 273-281. https://doi.org/10.14411/eje.2020.031.
https://doi.org/10.14411/eje.2020.031...
).

Coleoptera is the most diverse order in the animal kingdom, whose species are associated with different trophic environments and niches, forming guilds (Marinoni and Dutra, 1997Marinoni, R. C., Dutra, R. R. C., 1997. Famílias de Coleoptera capturadas com armadilha malaise em oito localidades do Estado do Paraná, Brasil: diversidades alfa e beta. Rev. Bras. Zool. 14, 751-770. https://doi.org/10.1590/S0101-81751997000300021.
https://doi.org/10.1590/S0101-8175199700...
; Casari and Ide, 2012Casari, S. A., Ide, S., 2012. Coleoptera Linnaeus, 1758. In: Rafael, J.A., Melo, G.A.R., Carvalho, C.J.B., Casari, S.A., Cosntantino, R. (Eds.), Insetos Do Brasil - Diversidade e Taxonomia. Holos Editora, Ribeirão Preto/SP, pp. 453–535.). In addition to their great diversity, these organisms are remarkable for the great abundance of individuals generated each year (Oliveira, 2019Oliveira, C. M., 2019. Recomendações para manejo de corós no Cerrado. Embrapa Cerrados, Planaltina, 12 pp. (Circular Técnica, 40).; Oliveira and Frizzas, 2019Oliveira, C. M., Frizzas, M. R., 2019. How climate influences the biology and behaviour of Phyllophaga capillata (Coleoptera: Melolonthidae) in the Brazilian Cerrado. Austral Entomol. 58, 336-345. https://doi.org/10.1111/aen.12309.
https://doi.org/10.1111/aen.12309...
). In Brazil, 105 families and 28,000 Coleoptera species are registered (Casari and Ide, 2012Casari, S. A., Ide, S., 2012. Coleoptera Linnaeus, 1758. In: Rafael, J.A., Melo, G.A.R., Carvalho, C.J.B., Casari, S.A., Cosntantino, R. (Eds.), Insetos Do Brasil - Diversidade e Taxonomia. Holos Editora, Ribeirão Preto/SP, pp. 453–535.).

Studies have shown that representatives of Coleoptera are more abundant at the beginning of the rainy season (Holtz et al., 2001Holtz, A. M., Zanuncio, T. V., Zanuncio, J. C., Pratissoli, D., 2001. Coleópteros coletados em plantio de Eucalyptus urophylla na região de Três Marias, Minas Gerais. Rev. Floresta 31, 1-10.; Pinheiro et al., 2002Pinheiro, F., Diniz, I. R., Coelho, D., Bandeira, M. P. S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x.
https://doi.org/10.1046/j.1442-9993.2002...
; Oliveira and Frizzas, 2008Oliveira, C. M., Frizzas, M. R., 2008. Insetos de Cerrado: distribuição estacional e abundância. Embrapa Cerrados, Planaltina/DF. (Boletim de Pesquisa e Desenvolvimento, 216).; Silva et al., 2011Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013.
https://doi.org/10.1590/S0085-5626201100...
). However, few studies have evaluated the emergence and behavior of Coleoptera populations in relation to the climatic characteristics of the Cerrado. Studies focusing on an order or a single group within the order may not reflect the behavior of different families, since Coleoptera is a megadiverse order (Grimaldi and Engel, 2005Grimaldi, D., Engel, M. S., 2005. Evolution of the Insects. University Press, Cambridge.) and there may be groups that adopt different survival strategies in relation to the climatic characteristics of the Cerrado.

Coleoptera studies have used different sampling methods, for example light trap, pheromone, fermented bait, malaise trap, flight interception traps and pitfalls (Ganho and Marinoni, 2003Ganho, N. G., Marinoni, R. C., 2003. Fauna de Coleoptera no Parque Estadual de Vila Velha, Ponta Grossa, Paraná, Brasil: abundância e riqueza das famílias capturadas através de armadilhas malaise. Rev. Bras. Zool. 20, 727-736. https://doi.org/10.1590/S0101-81752003000400028.
https://doi.org/10.1590/S0101-8175200300...
; Silva et al., 2017aSilva, W. D., Zou, Y., Bento, J. M. S., Hanks, L. M., Millar, J. G., 2017a. Aggregation-sex pheromones and likely pheromones of 11 South american cerambycid beetles, and partitioning of pheromone channels. Front. Ecol. Evol. 5, https://doi.org/10.3389/fevo.2017.00101.
https://doi.org/10.3389/fevo.2017.00101...
; Gonçalves et al., 2020Gonçalves, J. A., Grossi, P. C., Togni, P. H. B., Oliveira, C. M., Frizzas, M. R., 2020. The genus Cyclocephala Dejean (Coleoptera: Scarabaeidae: Dynastinae) in Brazil: diversity and spatio-temporal distribution. J. Insect Conserv. 24, 547-559. https://doi.org/10.1007/s10841-020-00230-6.
https://doi.org/10.1007/s10841-020-00230...
; Puker et al., 2020Puker, A., Silva, K. K. G., Santos, D. C., Correa, C. M. A., Vaz-de-Mello, F. Z., 2020. Dung beetles collected using flight intercept traps in an Amazon rainforest fragment and adjacent agroecosystems. Int. J. Trop. Insect Sci. 40, 1085-1092. https://doi.org/10.1007/s42690-020-00132-9.
https://doi.org/10.1007/s42690-020-00132...
; Evangelista et al., 2021Evangelista, J., Rocha, M. V. C., Monné, M. L., Monné, M. A., Frizzas, M. R., 2021. Diversity of Cerambycidae (Insecta: Coleoptera) in the Cerrado of central Brazil using a new type of bait. Biota Neotrop. 21, 1-9. https://doi.org/10.1590/1676-0611-BN-2020-1103.
https://doi.org/10.1590/1676-0611-BN-202...
; Oliveira et al., 2021Oliveira, Y. F., Oliveira, C. M., Frizzas, M. R., 2021. Changes in land use affect dung beetle communities but do not affect ecosystem services in the Cerrado of Central Brazil. Ecol. Entomol. 46, 973–987. https://doi.org/10.1111/een.13034.
https://doi.org/10.1111/een.13034...
), and more than one method is often used in a complementary way. However, since many Coleoptera are phototropic, light traps have been one of the main collection methods for studies aimed at evaluating adult diversity (Miyazaki and Dutra, 1995Miyazaki, R. D., Dutra, R. R. C., 1995. Famílias de Coleoptera capturadas com armadilha luminosa em oito localidades do Paraná, Brasil. Rev. Bras. Zool. 12, 321-332. https://doi.org/10.1590/S0101-81751995000200010.
https://doi.org/10.1590/S0101-8175199500...
; Freitas et al., 2002Freitas, F. A., Zanuncio, T. V., Lacerda, M. C., Zanuncio, J. C., 2002. Fauna de Coleoptera coletada com armadilhas luminosas em plantio de Eucalyptus grandis em Santa Bárbara, Minas Gerais. Rev. Árvore 26, 505-511. https://doi.org/10.1590/S0100-67622002000400014.
https://doi.org/10.1590/S0100-6762200200...
; Jocque et al., 2016Jocque, M., Teofilova, T. M., Kodzhabashev, N. D., 2016. Light trapping as a valuable rapid assessment method for ground beetles (Carabidae) in a Bulgarian wetland. Acta Zool. Bulg. 68, 529-539.; Gonçalves et al., 2020Gonçalves, J. A., Grossi, P. C., Togni, P. H. B., Oliveira, C. M., Frizzas, M. R., 2020. The genus Cyclocephala Dejean (Coleoptera: Scarabaeidae: Dynastinae) in Brazil: diversity and spatio-temporal distribution. J. Insect Conserv. 24, 547-559. https://doi.org/10.1007/s10841-020-00230-6.
https://doi.org/10.1007/s10841-020-00230...
). Thus, the objective of this study was to evaluate the seasonality and distribution of Coleoptera families in an area of the Cerrado biome in the Federal District (DF) of Brazil, using light trap.

Material and methods

Study area

The study was conducted in an area (≈700 ha) of cerrado sensu stricto located in Embrapa Cerrados (Planaltina/DF, Brazil) (15°36´24.52″ S; 47°44´42.45″ W; 1,169 m a.s.l.) (Fig. 1). The vegetation is characterized by low trees, tortuous trunks, and irregular and twisted branches (Ribeiro and Walter, 2008Ribeiro, J. F., Walter, B. M. T., 2008. As principais fitofisionomias do bioma Cerrado. In: Sano, S.M., Almeida, S.P., Ribeiro, J.F. (Eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília, Brazil, pp. 151–212.). The climate of the region is classified as tropical with dry winter (Aw), with altitudes between 600 and 1200 m, average annual temperatures ranging between 20 and 24°C, and an average annual rainfall of between 1300 and 1900 mm (Alvares et al., 2013Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. (Berl.) 22, 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
https://doi.org/10.1127/0941-2948/2013/0...
), with a bimodal distribution of rainfall; dry period (April-September) and rainy period (October-March) (Silva et al., 2008Silva, F. A. M., Assad, E. D., Evangelista, B. A., 2008. Caracterização climática do bioma Cerrado. In: Sano, S.M., Almeida, S.P., Ribeiro, F.E. (Eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília/DF, pp. 69–88.).

Figure 1
Map of Brazil showing the collection point in the Federal District and the light trap used for Coleoptera sampling.

Collection and sorting

The collections were made using a Pennsylvania model light trap attached to a 96% alcohol-containing collection container (Fig. 1). Only one light trap was used and it was always installed at the same collection point. Sampling was done monthly between June 2015 and May 2016. The trap was activated in the field for five consecutive nights, during the novilunium period (nights with a new moon) of each month, remaining on for 12 hours (18:00 to 6:00). The sample effort was 60 h/month, totaling 720 h of collection. Most Coleoptera (adult) representatives are phototropic and can be captured by light traps (Miyazaki and Dutra, 1995Miyazaki, R. D., Dutra, R. R. C., 1995. Famílias de Coleoptera capturadas com armadilha luminosa em oito localidades do Paraná, Brasil. Rev. Bras. Zool. 12, 321-332. https://doi.org/10.1590/S0101-81751995000200010.
https://doi.org/10.1590/S0101-8175199500...
). In this context, simultaneous studies using light (Miyazaki and Dutra, 1995Miyazaki, R. D., Dutra, R. R. C., 1995. Famílias de Coleoptera capturadas com armadilha luminosa em oito localidades do Paraná, Brasil. Rev. Bras. Zool. 12, 321-332. https://doi.org/10.1590/S0101-81751995000200010.
https://doi.org/10.1590/S0101-8175199500...
) and Malaise (Marinoni and Dutra, 1997Marinoni, R. C., Dutra, R. R. C., 1997. Famílias de Coleoptera capturadas com armadilha malaise em oito localidades do Estado do Paraná, Brasil: diversidades alfa e beta. Rev. Bras. Zool. 14, 751-770. https://doi.org/10.1590/S0101-81751997000300021.
https://doi.org/10.1590/S0101-8175199700...
) traps demonstrated that the light trap captured a greater number of families and specimens.

The insects were transported to the Coleoptera Biology and Ecology Laboratory of the University of Brasília (UnB) (Brasília/DF, Brazil) and sorted under a stereoscopic microscope at 60x magnification (Stemi SV6, Zeiss, Jena, Germany). The Coleoptera were identified at the family level based on an identification key (Casari and Ide, 2012Casari, S. A., Ide, S., 2012. Coleoptera Linnaeus, 1758. In: Rafael, J.A., Melo, G.A.R., Carvalho, C.J.B., Casari, S.A., Cosntantino, R. (Eds.), Insetos Do Brasil - Diversidade e Taxonomia. Holos Editora, Ribeirão Preto/SP, pp. 453–535.). The specimens were mounted, labeled, and deposited in the Entomological Collection of the Department of Zoology of the University of Brasilia (DZUB).

Climatic variables

Climatic variables (average monthly temperature, average monthly relative air humidity, and monthly accumulated precipitation) were recorded during the entire study period through the Embrapa Cerrados weather station.

Data analysis

All statistical analyses were performed using R version 3.2.3 (R Core Team, 2016R Core Team, 2016. R: A language and environment for statistical computing (Computer software), R Foundation for Statistical Computing, Vienna, Austria.). The data on the abundance of Coleoptera, at order or family level, did not meet the assumptions of normality related to residues and homogeneity of variance (Shapiro-Wilk test and Bartlett test, p < 0.01). Comparisons between dry and rainy seasons based on mean abundances for Coleoptera and families, and based on the mean number of families, were performed using the Wilcoxon-Mann Whitney U test using the 'PMCMRplus' package (Pohlert, 2014Pohlert, T., 2014. The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR), R Foundation for Statistical Computing, Vienna, Áustria.).

To verify the relationship between Coleoptera abundance (monthly total of specimens) and climatic variables (monthly average temperature, monthly average relative humidity, and monthly accumulated precipitation), a Spearman correlation analysis was performed.

Since the abundance of insects over time does not show a linear increment, constituting rather a periodic process (Pinheiro et al., 2002Pinheiro, F., Diniz, I. R., Coelho, D., Bandeira, M. P. S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x.
https://doi.org/10.1046/j.1442-9993.2002...
), the existence of seasonality in the abundance of the Coleoptera order and the most abundant families were verified using a circular analysis (Zar, 1999Zar, J. H., 1999. Biostatistical analysis, 4th ed. Prentice Hall, New Jersey.), which allows for the determination of the occurrence of population peaks. The concentration measure (r) was calculated, whose value varied from 0 (maximum data dispersion) to 1 (maximum data concentration in the same direction) (Zar, 1999Zar, J. H., 1999. Biostatistical analysis, 4th ed. Prentice Hall, New Jersey.) using the Oriana 4 program (Kovach, 2011Kovach, W. L., 2011. Oriana - circular statistics for windows, ver. 4, Kovach Computing Services, Pentraeth, Wales, UK.).

Results

A total of 21,100 Coleoptera specimens belonging to 34 families were collected. The most abundant families were Melolonthidae (n = 11,075), Carabidae (n = 2,522), Scarabaeidae (n = 2,506), Bostrichidae (n = 1,196), and Chrysomelidae (n = 1,086), which together represented 87.1% of the total specimens collected (Table 1). In this study, we adopted the classification proposed by Endrödi (1966)Endrödi, S., 1966. Monographie der Dynastinae:(Coleoptera, Lamellicornia) I. Teil. Entomol. Abh. Mus. Tierkd. 33, 1-457. and Cherman and Morón (2014)Cherman, M. A., Morón, M. A., 2014. Validación de la familia Melolonthidae Leach, 1819 (Coleoptera: scarabaeoidea). Acta Zool. Mex. 30, 201-220. https://doi.org/10.21829/azm.2014.301139.
https://doi.org/10.21829/azm.2014.301139...
who considered Melolonthidae and Scarabaeidae as separate taxa.

Table 1
Total number of Coleoptera per family collected monthly using a light trap in an area of cerrado sensu stricto in Planaltina/DF between June 2015 and May 2016. The columns in green represent the dry period and those in blue represent the rainy period.

Regarding the distribution of families throughout the year, it was observed that Melyridae was not recorded in the rainy period and Cantharidae, Erotylidae, Geotrupidae, Histeridae, Mordellidae, Phengodidae, Rhysodidae, and Trogidae were not recorded during the dry period (Table 1). Melolonthidae was the most abundant family in the rainy period (55.3% of Coleoptera collected during the rainy period) and Scarabaeidae was the most abundant in the dry period (28.6% of Coleoptera collected during the dry period). The average number of families collected was significantly higher during the rainy period (W = 30.5; p = 0.054) (Fig. 2).

Figure 2
Average number of Coleoptera specimens and families collected using a light trap in an area of cerrado sensu stricto in Planaltina/DF in the dry period (April to September) and in the rainy period (October to March) between the years 2015 and 2016. Bars followed by different letters, for the number of species (capital letters) and for the number of families (lowercase letters), differ significantly by Wilcoxon-Mann Whitney U test (p < 0.01).

Coleoptera abundance was significantly higher (W = 456; p < 0.0001) in the rainy season, when 93.4% of the specimens were collected (Table 1; Fig. 2). The highest abundances were recorded between October and December, with a population peak in December (40.1%), and the lowest abundances were found between June and September, with no Coleoptera collected in July (Table 1).

The total precipitation in the study period was 855.2 mm, and the average temperature was 22.4°C, with the highest temperature (25.3°C) recorded in October. From November to March, the highest values of relative humidity were registered, and from October to January, the highest values of precipitation. The peaks of relative humidity (86.6%) and precipitation (354.5 mm) occurred in January (Fig. 3). The entire sampling period was characterized by a strong effect of the El Niño phenomenon, whose Oceanic Nino Index (ONI) varied from 1.2 (June 2015) to 2.6 (December 2015), returning to 1.0 in May 2016 [ONI values above 0.5 are considered El Niño, between 0.5 and -0.5 are considered neutral, and below -0.5 are considered La Niña (NOAA, 2020National Oceanic and Atmospheric Administration – NOAA, 2020. Recent Evolution, Current Status and Predictions. Available in: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf (accessed 23 January 2012).
https://www.cpc.ncep.noaa.gov/products/a...
)].

Figure 3
Monthly average temperature and relative air humidity, monthly accumulated precipitation from June 2015 to May 2016, and climatological normal values for the period 1974-2013 (monthly accumulated precipitation) in Planaltina/DF, Brazil.

Positive and significant correlations were observed between the number of Coleoptera specimens and temperature (R2 = 0.6643; S = 96.00; p = 0.0185) and precipitation (R2 = 0.8386; S = 46.16; p < 0.0001), but there was no correlation with the relative humidity (R2 = 0.3187; S = 194.84; p = 0.3126).

There was temporal variation in the abundance of Coleoptera, with representatives of this order presenting seasonality throughout the year, and with distribution clustered in the rainy period. This behavior was also verified for the most abundant families: Melolonthidae, Carabidae, Scarabaeidae, Bostrichidae, and Chrysomelidae. The highest concentration of specimens occurred between October and December (Table 2; Fig. 4).

Table 2
Measurements of the concentration (r), Rayleigh Test, distribution, and season of the year with the greatest total abundance of Coleoptera and the main families captured using a light trap in an area of cerrado sensu stricto in Planaltina/DF between June 2015 and May 2016.
Figure 4
Circular graph of abundance of Coleoptera and the main families (Melolonthidae, Carabidae, Scarabaeidae, Bostrichidae, and Chrysomelidae) captured using a light trap in an area of cerrado sensu stricto in Planaltina/DF, Brazil, from June 2015 to May 2016. The areas in blue represent the rainy season (October to March) and the areas in green represent the dry season (April to September).

Discussion

Our results showed that in the Cerrado, the greatest abundance and number of Coleoptera families occurs in the first half of the rainy season. Similar results have also been observed in most studies of Coleoptera in this biome (Freitas et al., 2002Freitas, F. A., Zanuncio, T. V., Lacerda, M. C., Zanuncio, J. C., 2002. Fauna de Coleoptera coletada com armadilhas luminosas em plantio de Eucalyptus grandis em Santa Bárbara, Minas Gerais. Rev. Árvore 26, 505-511. https://doi.org/10.1590/S0100-67622002000400014.
https://doi.org/10.1590/S0100-6762200200...
; Pinheiro et al., 2002Pinheiro, F., Diniz, I. R., Coelho, D., Bandeira, M. P. S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x.
https://doi.org/10.1046/j.1442-9993.2002...
; Borges and Santos, 2004Borges, L. O., Santos, B. B., 2004. Abundância e riqueza das famílias de Coleoptera (Insecta) capturadas através de armadilha Malaise no Parque Zoológico de Goiânia, Goiás, Brasil. Rev. Biol. Neotrop. 1, 23-32.; Oliveira and Frizzas, 2008Oliveira, C. M., Frizzas, M. R., 2008. Insetos de Cerrado: distribuição estacional e abundância. Embrapa Cerrados, Planaltina/DF. (Boletim de Pesquisa e Desenvolvimento, 216).; Silva et al., 2011Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013.
https://doi.org/10.1590/S0085-5626201100...
; Oliveira et al., 2012Oliveira, H. G., Zanuncio, T. V., Zanuncio, J. C., Santos, G. P., 2012. Coleópteros associados à eucaliptocultura na região de Nova Era, Minas Gerais, Brasil. Floresta Ambient. 8, 52-60.). This behavior is probably related to the fact that the beginning of the rainy season in the Cerrado marks an increase in the availability of food provided by plants that resume their development (Morais and Diniz, 2004Morais, H. C., Diniz, I. R., 2004. Herbívoros e herbivoria no Cerrado: lagartas como exemplo. In: Aguiar, L.M.S., Camargo, A.J.A. (Eds.), Cerrado: Ecologia e Caracterização. Embrapa Cerrados, Embrapa Informação Tecnológica, Brasília, Brazil, pp. 159–176.; Oliveira, 2008Oliveira, P. E. A. M., 2008. Fenologia e biologia reprodutiva das espécies de Cerrado. In: Aguiar, L.M.S., Camargo, A.J.A. (Eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília, Brazil, pp. 273–290.).

In the different ecosystems, the occupation of niches is associated with the food and reproductive needs of species. This implies that each species searches for spaces that not only supply these needs, but also provide protection (Marinoni, 2001Marinoni, R. C., 2001. Os grupos tróficos em Coleoptera. Rev. Bras. Zool. 18, 205-224. https://doi.org/10.1590/s0101-81752001000100024.
https://doi.org/10.1590/s0101-8175200100...
). Coleoptera can be classified in five trophic groups (guilds) - herbivores, algivores, fungivores, detritivores and carnivores (Marinoni, 2001Marinoni, R. C., 2001. Os grupos tróficos em Coleoptera. Rev. Bras. Zool. 18, 205-224. https://doi.org/10.1590/s0101-81752001000100024.
https://doi.org/10.1590/s0101-8175200100...
) - that occupy different niches within ecosystems. Since guilds refer to groups of organisms that use the same food resources (Wilson, 1999Wilson, J. B., 1999. Guilds, functional types and ecological groups. Oikos 86, 507-522. https://doi.org/10.2307/3546655.
https://doi.org/10.2307/3546655...
; Marinoni, 2001Marinoni, R. C., 2001. Os grupos tróficos em Coleoptera. Rev. Bras. Zool. 18, 205-224. https://doi.org/10.1590/s0101-81752001000100024.
https://doi.org/10.1590/s0101-8175200100...
), the distribution and seasonality of food resources seem to influence the occurrence and abundance of the different trophic guilds. For example, sites that provided greater heterogeneity of trees and hollow microhabitats determined higher saproxylic guild diversity (Quinto et al., 2014Quinto, J., Micó, E., Martínez-Falcón, A. P., Galante, E., Marcos-García, M. Á., 2014. Influence of tree hollow characteristics on the diversity of saproxylic insect guilds in Iberian Mediterranean woodlands. J. Insect Conserv. 18, 981-992. https://doi.org/10.1007/s10841-014-9705-x.
https://doi.org/10.1007/s10841-014-9705-...
). Rhizophagous (herbivorous) species of Melolonthidae, such as Phyllophaga capillata (Blanchard), P. nitididorsis Frey and Aegopsis bolboceridus (Thomson), concentrate their peak population soon after the first rains in the Cerrado, synchronizing the swarming and mating periods with the sowing of soybean and maize, crops whose roots serve as food for larvae (Oliveira and Frizzas, 2013Oliveira, C. M., Frizzas, M. R., 2013. Field biology of the beetle Aegopsis bolboceridus in Brazil, with a list of host plants. J. Insect Sci. 13, 48. https://doi.org/10.1673/031.013.4801.
https://doi.org/10.1673/031.013.4801...
, 2019Oliveira, C. M., Frizzas, M. R., 2019. How climate influences the biology and behaviour of Phyllophaga capillata (Coleoptera: Melolonthidae) in the Brazilian Cerrado. Austral Entomol. 58, 336-345. https://doi.org/10.1111/aen.12309.
https://doi.org/10.1111/aen.12309...
; Oliveira et al., 2019Oliveira, C. M., Frizzas, M. R., Morón, M. A., 2019. Phyllophaga nitididorsis (Coleoptera: Melolonthidae), the first biennial melolonthid recorded in the Brazilian Cerrado. Austral Entomol. 58, 569-577. https://doi.org/10.1111/aen.12362.
https://doi.org/10.1111/aen.12362...
).

The Cerrado presents several types of phytophysiognomies, with a vegetation gradient that includes a herbaceous stratum, grasses, shrubs, and forests (Ribeiro and Walter, 2008Ribeiro, J. F., Walter, B. M. T., 2008. As principais fitofisionomias do bioma Cerrado. In: Sano, S.M., Almeida, S.P., Ribeiro, J.F. (Eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília, Brazil, pp. 151–212.), which provide different microclimates and wide variation in the availability of food resources. Therefore, these differences in vegetation are expected to affect the occurrence and distribution of the guilds in this biome. Although the different guilds present specific ecological requirements (Wilson, 1999Wilson, J. B., 1999. Guilds, functional types and ecological groups. Oikos 86, 507-522. https://doi.org/10.2307/3546655.
https://doi.org/10.2307/3546655...
), the pattern of abundance of the guilds observed in this study was similar to that recorded for the order Coleoptera, and its main families, with higher abundance in the first half of the rainy season.

In the Cerrado, adult populations of Coleoptera (phytophagous and saprophagous) seem to synchronize their activity during the rainy season, when plants resume their vegetative development, ensuring that their offspring find the available food resources, which is essential to face and survive the shortage of these resources in the dry period of the year (Silva et al., 2011Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013.
https://doi.org/10.1590/S0085-5626201100...
). Consequently, the greater abundance of insect species in the rainy season, especially phytophagous and saprophagous species, can also lead to an increased abundance of predatory beetle species. We observed that Carabidae, a family containing a large number of predatory species (Lövei and Sunderland, 1996Lövei, G. L., Sunderland, K. D., 1996. Ecology and behavior of ground beetles (Coleoptera: carabidae). Annu. Rev. Entomol. 41, 231-256. https://doi.org/10.1146/annurev.en.41.010196.001311.
https://doi.org/10.1146/annurev.en.41.01...
), were recorded at their highest abundance in the first half of the rainy season.

The development of the ability of flight in many Carabidae species depends on environmental and hormonal stimuli (Lövei and Sunderland, 1996Lövei, G. L., Sunderland, K. D., 1996. Ecology and behavior of ground beetles (Coleoptera: carabidae). Annu. Rev. Entomol. 41, 231-256. https://doi.org/10.1146/annurev.en.41.010196.001311.
https://doi.org/10.1146/annurev.en.41.01...
; Desender, 2000Desender, K., 2000. Flight muscle development and dispersal in the life cycle of carabid beetles: patterns and processes. Entomologie 70, 13-31.; Venn, 2016Venn, S., 2016. To fly or not to fly: factors influencing the flight capacity of carabid beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 587-600. https://doi.org/10.14411/eje.2016.079.
https://doi.org/10.14411/eje.2016.079...
), and many species have distinct seasonal patterns of flight muscle functionality, including the reproductive state of females with an “oogenesis-flight syndrome”. The flight muscle development in each species depends on biotic and abiotic factors (Desender, 2000Desender, K., 2000. Flight muscle development and dispersal in the life cycle of carabid beetles: patterns and processes. Entomologie 70, 13-31.). We collected about 95% of the Carabidae between October and December (Table 1; Fig. 4), demonstrating that in the Cerrado, as elsewhere in the World, there is a seasonality of flight in the representatives of this family (Boiteau et al., 2000Boiteau, G., Bousquet, Y., Osborn, W., 2000. Vertical and temporal distribution of Carabidae and Elateridae in flight above an agricultural landscape. Environ. Entomol. 29, 1157-1163. https://doi.org/10.1603/0046-225X-29.6.1157.
https://doi.org/10.1603/0046-225X-29.6.1...
; Desender, 2000Desender, K., 2000. Flight muscle development and dispersal in the life cycle of carabid beetles: patterns and processes. Entomologie 70, 13-31.). Thus, the ability of the Carabidae to fly at the beginning of the rainy season may be associated with the opportunity these representatives have to feed on prey, during flight, as there are a large number of insects that are swarming at that time of year, such as social insects (termites and ants).

Despite the limitations of the use of light traps in the collection of Carabidae, especially because collection depends on flight, some studies have demonstrated the importance of their use, especially in relation to seasonality and even diversity studies (Kádár and Lövei, 1992Kádár, F., Lövei, G. L., 1992. Light trapping of carabids (Coleoptera: Carabidae) in an apple orchard in Hungary. Acta Phytopathol. Entomol. Hung. 27, 343-348.; Liu et al., 2007Liu, Y., Axmacher, J. C., Li, L., Wang, C., Yu, Z., 2007. Ground beetle (Coleoptera: Carabidae) inventories: a comparison of light and pitfall trapping. Bull. Entomol. Res. 97, 577-583. https://doi.org/10.1017/S0007485307005299.
https://doi.org/10.1017/S000748530700529...
; Jocque et al., 2016Jocque, M., Teofilova, T. M., Kodzhabashev, N. D., 2016. Light trapping as a valuable rapid assessment method for ground beetles (Carabidae) in a Bulgarian wetland. Acta Zool. Bulg. 68, 529-539.). However, the abundance of Carabidae recorded in this study may be only a fraction of the real population abundance of these organisms, since in other periods of the year many species may be unable to fly.

The eight families recorded only during the rainy season (Cantharidae, Erotylidae, Rhysodidae, Geotrupidae, Mordellidae, Trogidae, Histeridae, and Phengodidae) are characterized by representatives that feed on nectar and pollen (Cantharidae), fungi (Erotylidae and Rhysodidae), decomposing organic matter (Geotrupidae, Mordellidae, Trogidae), or are predators (Histeridae, Phengodidae). Most of these resources are associated with the rainy season, and other studies have also pointed out that some of these families are more abundant during this period (Zaragoza–Caballero, 2004Zaragoza–Caballero, S., 2004. Cantharidae (Coleoptera), in: García Aldrete, A., Ayala–Barajas, R. (Eds.), Artrópodos de Chamela. Instituto de Biología, Universidad Nacional Autónoma de Mexico, Mexico, DF, pp. 127–137.; Correa et al., 2013Correa, C. M. A., Puker, A., Korasaki, V., Ferreira, K. R., 2013. Omorgus suberosus and Polynoncus bifurcatus (Coleoptera: Scarabaeoidea: Trogidae) in exotic and native environments of Brazil. Zool. 30, 238-241. https://doi.org/10.1590/S1984-46702013000200015.
https://doi.org/10.1590/S1984-4670201300...
; Rodrigues and Puker, 2013Rodrigues, S. R., Puker, A., 2013. Species of Geotrupidae (Coleoptera: Scarabaeoidea) in Aquidauana, Mato Grosso do Sul, Brazil. Biota Neotrop. 13, 349-352. https://doi.org/10.1590/S1676-06032013000100034.
https://doi.org/10.1590/S1676-0603201300...
).

On the other hand, among the most abundant families, Scarabaeidae (28.6%) and Bostrichidae (16.6%) were those that comparatively occurred more frequently during the dry period. Species of Scarabaeidae have coprophagous, necrophagous, or generalized habits (Hanski and Cambefort, 1991Hanski, I., Cambefort, Y., 1991. Dung beetle ecology. Princeton University Press, New Jersey.). These species do not depend directly on vegetation to feed themselves, but rather they depend on resources such as feces and animal carcasses that are scarcer and more ephemeral. We believe that some species of Scarabaeidae may have greater adult activity during the dry season as a strategy to reduce competition for food resources within the group. Another important fact is that during the dry season in the Cerrado, the presence of natural enemies (predators, parasitoids, and microorganisms), mainly fungi, is reduced (Ramos and Diniz, 1993Ramos, F. A., Diniz, I. R., 1993. Seasonal cycles, survivorship and growth of colonies of Polistes versicolor (Hymenoptera: Vespidae) in the urban area of Brasília, Brazil. Entomologist 112, 191-200.; Morais and Diniz, 1999Morais, H. C., Diniz, I. R., 1999. Caterpillar seasonality in a central Brazilian Cerrado. Rev. Biol. Trop. 47, 1025-1033.), which can favor the presence of some Coleoptera species during this season, as has been observed for Lepidoptera and Hemiptera (Morais and Diniz, 1999Morais, H. C., Diniz, I. R., 1999. Caterpillar seasonality in a central Brazilian Cerrado. Rev. Biol. Trop. 47, 1025-1033., 2004Morais, H. C., Diniz, I. R., 2004. Herbívoros e herbivoria no Cerrado: lagartas como exemplo. In: Aguiar, L.M.S., Camargo, A.J.A. (Eds.), Cerrado: Ecologia e Caracterização. Embrapa Cerrados, Embrapa Informação Tecnológica, Brasília, Brazil, pp. 159–176.; Oliveira and Frizzas, 2015Oliveira, C. M., Frizzas, M. R., 2015. Bio-ecology of Poekilloptera phalaenoides (Hemiptera: Flatidae) under the influence of climatic factors in the brazilian cerrado. Ann. Entomol. Soc. Am. 108, 263-271. https://doi.org/10.1093/aesa/sav004.
https://doi.org/10.1093/aesa/sav004...
). As Bostrichidae are xylophagous, many species may be able to develop during the dry season, as these food resources are available throughout the year. Other studies with Bostrichidae have reported this family as more abundant during the dry season in the Cerrado (Rocha, 2010Rocha, J. R. M., 2010. Ocorrência e dinâmica populacional de Scolytidae, Bostrichidae e Platypodidae em povoamentos de eucaliptos e fragmento de Cerrado, no município de Cuiabá - MT. Master of Science Thesis, Universidade Federal de Mato Grosso.; Rocha et al., 2011Rocha, J. R. M., Dorval, A., Peres Filho, O., 2011. Coleópteros (Bostrichidae, Platypodidae e Scolytidae) em um fragmento de cerrado da baixada Cuiabana. Ambiência 7, 89-101.).

It was observed that 100% of Melyridae, 85.7% of Cleridae, and 77.2% of Elmidae were collected during the dry period. Adults of Melyridae are polyphagous and feed on pollen, nectar, and other insects (Mayor, 2002Mayor, A. J., 2002. Melyridae, Leach 1815. In: Arnett, R.H., Thomas, M.C., Skelley, P.E., Frank, J.H. (Eds.), American Beetles, Vol. 2, Polyphaga: Scarabaeoidea through Curculionoidea. CRC, New York, pp. 281–304.), which can be found throughout the year. The presence of this family in the dry season may be a strategy to reduce competition with other groups of insects that are more abundant in the rainy season. Studies conducted in the state of Minas Gerais also registered a greater abundance of Melyridae representatives early in the dry period (Matioli and Figueira, 1988Matioli, J. C., Figueira, A. R., 1988. Dinâmica populacional e efeitos da temperatura ambiental e precipitação pluviométrica sobre Astylus variegatus (Germar, 1824) e A. sexmaculatus (Perty, 1830) (Coleoptera; Dasytidae). An. Esc. Super. Agric. Luiz de Queiroz 45, 125-142. https://doi.org/10.1590/S0071-12761988000100009.
https://doi.org/10.1590/S0071-1276198800...
). Adults of Cleridae are, in their majority, predators of larvae of wood borer beetles (Casari and Ide, 2012Casari, S. A., Ide, S., 2012. Coleoptera Linnaeus, 1758. In: Rafael, J.A., Melo, G.A.R., Carvalho, C.J.B., Casari, S.A., Cosntantino, R. (Eds.), Insetos Do Brasil - Diversidade e Taxonomia. Holos Editora, Ribeirão Preto/SP, pp. 453–535.), a food resource available throughout the year, which may have allowed the collection of these insects during the dry period. It is also possible that the volatiles of its hosts (affected by its prey, basically stem borers) are more notable in this climatic period, as has already been observed with semiochemicals mediating the prey (Scolytinae) - predator (Cleridae) interaction (Herms et al., 1991Herms, D. A., Haack, R. A., Ayres, B. D., 1991. Variation in semiochemical-mediated prey-predator interaction: Ips pini (Scolytidae) and Thanasimus dubius (Cleridae). J. Chem. Ecol. 17, 1705-1714. https://doi.org/10.1007/BF00984698.
https://doi.org/10.1007/BF00984698...
). Adults of Elmidae, although aquatic or semi-aquatic, with a diet based mostly on periphyton (Fernandes and Hamada, 2012Fernandes, A. S., Hamada, N., 2012. Description and notes on the bionomics of a new species of Potamophilops Grouvelle, 1896 (Coleoptera: Elmidae: Larainae), from the Cerrado biome in Brazil. J. Nat. Hist. 46, 717-727. https://doi.org/10.1080/00222933.2011.651643.
https://doi.org/10.1080/00222933.2011.65...
), are attracted by light. Sporadically, its adult forms leave the water to disperse through rapid flights (Passos et al., 2007Passos, M. I. S., Nessimian, J. L., Ferreira, N., 2007. Identification keys to genera of Elmidae (Coleoptera) from Rio de Janeiro state, Brazil. Rev. Bras. Entomol. 51, 42-53. https://doi.org/10.1590/s0085-56262007000100008.
https://doi.org/10.1590/s0085-5626200700...
), which may have favored the collection of these individuals by the light trap. This family was also more abundant during the dry season in São Paulo state (Kikuchi and Uieda, 2005Kikuchi, R. M., Uieda, V. S., 2005. Composição e distribuição dos macroinvertebrados em diferentes substratos de fundo de um riacho no município de Itatinga, São Paulo, Brasil. Entomol. Vectores 12, 193-231.).

The analysis of the distribution pattern of Coleoptera, and of the most abundant families, by means of circular analysis, confirmed the seasonal and grouped patterns in the rainy period for these organisms, although some less abundant families presented grouped distribution in the dry period. The same analysis was used in studies conducted in the state of Goiás and in other locations within the Federal District, with similar results for this order (Pinheiro et al., 2002Pinheiro, F., Diniz, I. R., Coelho, D., Bandeira, M. P. S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x.
https://doi.org/10.1046/j.1442-9993.2002...
; Silva et al., 2011Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013.
https://doi.org/10.1590/S0085-5626201100...
).

In our study, the families Melolonthidae, Carabidae, Scarabaeidae, Bostrichidae, and Chrysomelidae were the most abundant. Other studies with light traps also recorded Carabidae, Scarabaeidae, and Chrysomelidae among the most abundant families (Miyazaki and Dutra, 1995Miyazaki, R. D., Dutra, R. R. C., 1995. Famílias de Coleoptera capturadas com armadilha luminosa em oito localidades do Paraná, Brasil. Rev. Bras. Zool. 12, 321-332. https://doi.org/10.1590/S0101-81751995000200010.
https://doi.org/10.1590/S0101-8175199500...
; Freitas et al., 2002Freitas, F. A., Zanuncio, T. V., Lacerda, M. C., Zanuncio, J. C., 2002. Fauna de Coleoptera coletada com armadilhas luminosas em plantio de Eucalyptus grandis em Santa Bárbara, Minas Gerais. Rev. Árvore 26, 505-511. https://doi.org/10.1590/S0100-67622002000400014.
https://doi.org/10.1590/S0100-6762200200...
). However, in studies conducted in Brazil with other trap types, the most abundant families varied. Coccinellidae, Chrysomelidae, Mordellidae, and Curculionidae were the most abundant in Goiás (Borges and Santos, 2004Borges, L. O., Santos, B. B., 2004. Abundância e riqueza das famílias de Coleoptera (Insecta) capturadas através de armadilha Malaise no Parque Zoológico de Goiânia, Goiás, Brasil. Rev. Biol. Neotrop. 1, 23-32.), Chrysomelidae, Curculionidae, Cerambycidae, Elateridae, and Staphylinidae in the state of Paraná (Ganho and Marinoni, 2003Ganho, N. G., Marinoni, R. C., 2003. Fauna de Coleoptera no Parque Estadual de Vila Velha, Ponta Grossa, Paraná, Brasil: abundância e riqueza das famílias capturadas através de armadilhas malaise. Rev. Bras. Zool. 20, 727-736. https://doi.org/10.1590/S0101-81752003000400028.
https://doi.org/10.1590/S0101-8175200300...
), and Nitidulidae, Curculionidae, Scarabaeidae, and Staphylinidae in the state of Rio de Janeiro (Teixeira et al., 2009Teixeira, C. C. L., Hoffmann, M., Silva-Filho, G., 2009. Comunidade de Coleoptera de solo em remanescente de Mata Atlântica no Estado do Rio de Janeiro, Brasil. Biota Neotrop. 9, 91-95. https://doi.org/10.1590/S1676-06032009000400010.
https://doi.org/10.1590/S1676-0603200900...
). The type and structure of vegetation, as well as the microclimatic conditions, strongly influence the local fauna of Coleoptera (Hutcheson, 1990Hutcheson, J., 1990. Characterization of terrestrial insect communities using quantified, Malaise-trapped Coleoptera. Ecol. Entomol. 15, 143-151. https://doi.org/10.1111/j.1365-2311.1990.tb00795.x.
https://doi.org/10.1111/j.1365-2311.1990...
; Hanski and Cambefort, 1991Hanski, I., Cambefort, Y., 1991. Dung beetle ecology. Princeton University Press, New Jersey.; Macedo et al., 2020Macedo, R., Audino, L. D., Korasaki, V., Louzada, J., 2020. Conversion of Cerrado savannas into exotic pastures: the relative importance of vegetation and food resources for dung beetle assemblages. Agric. Ecosyst. Environ. 288, 106709. https://doi.org/10.1016/j.agee.2019.106709.
https://doi.org/10.1016/j.agee.2019.1067...
). Thus, the differences in Coleoptera diversity among studies conducted in Brazil may be related to factors such as differences in vegetation and climate, as well as the type of trap used. Another important fact is that some families are highly diverse, such as Chrysomelidae with 4,362 species in Brazil, Scarabaeidae with 1,777 species, and Carabidae with 1,132 species (Casari and Ide, 2012Casari, S. A., Ide, S., 2012. Coleoptera Linnaeus, 1758. In: Rafael, J.A., Melo, G.A.R., Carvalho, C.J.B., Casari, S.A., Cosntantino, R. (Eds.), Insetos Do Brasil - Diversidade e Taxonomia. Holos Editora, Ribeirão Preto/SP, pp. 453–535.) and families that have a larger number of species may have a greater chance of being collected.

Climatic factors (temperature, precipitation, and relative humidity) influence the distribution and development of most insects (Messenger, 1959Messenger, P. S., 1959. Bioclimatic Studies with Insects. Annu. Rev. Entomol. 4, 183-206. https://doi.org/10.1146/annurev.en.04.010159.001151.
https://doi.org/10.1146/annurev.en.04.01...
; Silva et al., 2011Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013.
https://doi.org/10.1590/S0085-5626201100...
; Sable and Rana, 2016Sable, M. G., Rana, D. K., 2016. Impact of global warming on insect behavior -A review. Agric. Rev. (Karnal) 37, 81-84.). We observed that temperature and precipitation were positively correlated with Coleoptera abundance. In fact, there was an increase in temperature and precipitation in the transition months between the dry and rainy periods (September/October) (Fig. 3), which coincides with the increase in Coleoptera collection. Studies conducted in the Cerrado have shown that the increase in temperature and water availability in the soil, provided by precipitation, are the main triggers for the resumption of the activity of several orders of insects, including Coleoptera (Oliveira and Frizzas, 2008Oliveira, C. M., Frizzas, M. R., 2008. Insetos de Cerrado: distribuição estacional e abundância. Embrapa Cerrados, Planaltina/DF. (Boletim de Pesquisa e Desenvolvimento, 216).; Pinheiro et al., 2002Pinheiro, F., Diniz, I. R., Coelho, D., Bandeira, M. P. S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x.
https://doi.org/10.1046/j.1442-9993.2002...
; Silva et al., 2011Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013.
https://doi.org/10.1590/S0085-5626201100...
). However, no direct relationship has been found between this relative humidity and insect abundance in the Cerrado (Pinheiro et al., 2002Pinheiro, F., Diniz, I. R., Coelho, D., Bandeira, M. P. S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x.
https://doi.org/10.1046/j.1442-9993.2002...
; Silva et al., 2011Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013.
https://doi.org/10.1590/S0085-5626201100...
).

The data presented in this study are related to an atypical year under the strong influence of the El Niño phenomenon (NOAA, 2020National Oceanic and Atmospheric Administration – NOAA, 2020. Recent Evolution, Current Status and Predictions. Available in: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf (accessed 23 January 2012).
https://www.cpc.ncep.noaa.gov/products/a...
) where the annual precipitation (855.2 mm) was much lower than the expected average based on the climatological normal (1,345.8 mm) (Silva et al., 2017bSilva, F. A. M., Evangelista, B. A., Malaquias, J. V., Oliveira, A. D., Muller, A. G., 2017b. Análise temporal de variáveis climáticas monitoradas entre 1974 e 2013 na estação principal da Embrapa Cerrados. Embrapa Cerrados, Planaltina/DF, Embrapa Cerrados, Planaltina, (Boletim de Pesquisa e Desenvolvimento, 340).), as well as the accumulated precipitation at the beginning of the rainy season (Fig. 3). Studies conducted in 2013 in the same area (Embrapa Cerrados) revealed that, in November, a large number of Lepidoptera (Santos et al., 2017Santos, S. R., Specht, A., Carneiro, E., Paula-Moraes, S. V., Casagrande, M. M., 2017. Interseasonal variation of Chrysodeixis includens (Walker, [1858]) (Lepidoptera: Noctuidae) populations in the Brazilian Savanna. Rev. Bras. Entomol. 61, 294-299. https://doi.org/10.1016/j.rbe.2017.06.006.
https://doi.org/10.1016/j.rbe.2017.06.00...
; Piovesan et al., 2018Piovesan, M., Specht, A., Carneiro, E., Paula-Moraes, S. V., Casagrande, M. M., 2018. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna. Int. J. Biometeorol. 62, 413-422. https://doi.org/10.1007/s00484-017-1450-x.
https://doi.org/10.1007/s00484-017-1450-...
; Fonseca-Medrano et al., 2019Fonseca-Medrano, M., Specht, A., Silva, F. A. M., Otanásio, P. N., Malaquias, J. V., 2019. The population dynamics of three polyphagous owlet moths (Lepidoptera: Noctuidae) and the influence of meteorological factors and ENSO on them. Rev. Bras. Entomol. 63, 308-315. https://doi.org/10.1016/j.rbe.2019.07.004.
https://doi.org/10.1016/j.rbe.2019.07.00...
) and other insects, including Coleoptera, were collected and associated with high precipitation. This suggests that there may be annual variation in Coleoptera abundance as a function of climatic inter-annual variation. Thus, besides the seasonality of Coleoptera families in relation to the rainy and dry seasons, it is also possible to have changes in the peaks of abundance. between years and months due to variations in monthly and annual meteorological factors (Silva et al., 2017bSilva, F. A. M., Evangelista, B. A., Malaquias, J. V., Oliveira, A. D., Muller, A. G., 2017b. Análise temporal de variáveis climáticas monitoradas entre 1974 e 2013 na estação principal da Embrapa Cerrados. Embrapa Cerrados, Planaltina/DF, Embrapa Cerrados, Planaltina, (Boletim de Pesquisa e Desenvolvimento, 340).).

Although the seasonal pattern and the clustered distribution of Coleoptera in the Cerrado have been verified in other studies conducted in this order (Pinheiro et al., 2002Pinheiro, F., Diniz, I. R., Coelho, D., Bandeira, M. P. S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x.
https://doi.org/10.1046/j.1442-9993.2002...
; Silva et al., 2011Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013.
https://doi.org/10.1590/S0085-5626201100...
; Evangelista Neto et al., 2018Evangelista Neto, J., Oliveira, C. M., Vaz-de-Mello, F. Z., Frizzas, M. R., 2018. Diversity of Cetoniidae (Insecta: Coleoptera) in the Cerrado of Central Brazil. Entomol. Sci. 21, 84-92. https://doi.org/10.1111/ens.12284.
https://doi.org/10.1111/ens.12284...
), the number of families and the relative abundance of these families seem to receive strong influence from factors such as climate, on a micro-and macro-scale, and are affected heavily by the occurrence of local vegetation. Thus, as the Brazilian Cerrado is a vast mosaic with 11 types of phytophysiognomies and three vegetational formations (Ribeiro and Walter, 2008Ribeiro, J. F., Walter, B. M. T., 2008. As principais fitofisionomias do bioma Cerrado. In: Sano, S.M., Almeida, S.P., Ribeiro, J.F. (Eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília, Brazil, pp. 151–212.), it is important to conduct studies in other environments to better understand the behavior of representatives of this order in different environments. Our studies were conducted to evaluate superior taxa (order and family), and studies at a more specific level may reveal patterns different from those found by us.

In the Cerrado biome, several studies have focused on specific Coleoptera families, for example, Bostrichidae and Curculionidae (Rocha et al., 2011Rocha, J. R. M., Dorval, A., Peres Filho, O., 2011. Coleópteros (Bostrichidae, Platypodidae e Scolytidae) em um fragmento de cerrado da baixada Cuiabana. Ambiência 7, 89-101.), Cerambycidae (Evangelista et al., 2021Evangelista, J., Rocha, M. V. C., Monné, M. L., Monné, M. A., Frizzas, M. R., 2021. Diversity of Cerambycidae (Insecta: Coleoptera) in the Cerrado of central Brazil using a new type of bait. Biota Neotrop. 21, 1-9. https://doi.org/10.1590/1676-0611-BN-2020-1103.
https://doi.org/10.1590/1676-0611-BN-202...
), Cetoniidae (Evangelista Neto et al., 2018Evangelista Neto, J., Oliveira, C. M., Vaz-de-Mello, F. Z., Frizzas, M. R., 2018. Diversity of Cetoniidae (Insecta: Coleoptera) in the Cerrado of Central Brazil. Entomol. Sci. 21, 84-92. https://doi.org/10.1111/ens.12284.
https://doi.org/10.1111/ens.12284...
), Geotrupidae (Rodrigues and Puker, 2013Rodrigues, S. R., Puker, A., 2013. Species of Geotrupidae (Coleoptera: Scarabaeoidea) in Aquidauana, Mato Grosso do Sul, Brazil. Biota Neotrop. 13, 349-352. https://doi.org/10.1590/S1676-06032013000100034.
https://doi.org/10.1590/S1676-0603201300...
), and Scarabaeidae (Almeida and Louzada, 2009Almeida, S., Louzada, J., 2009. Community structure of Scarabaeinae (Scarabaeidae: Coleoptera) in Brazilian savannah phytophysiognomies and its importance for conservation. Neotrop. Entomol. 38, 32-43. https://doi.org/10.1590/S1519-566X2009000100003.
https://doi.org/10.1590/S1519-566X200900...
; Nunes et al., 2012Nunes, R. V., Frizzas, M. R., Vaz-de-Mello, F. Z., 2012. Scarabaeinae (Coleoptera: Scarabaeidae) de um campo rupestre na Área de Proteção Ambiental de Cafuringa, Distrito Federal, Brasil: Lista comentada de espécies e distribuição geográfica. Biota Neotrop. 12, 125-129. https://doi.org/10.1590/S1676-06032012000400013.
https://doi.org/10.1590/S1676-0603201200...
; Silva et al., 2020Silva, J. L., Silva, R. J., Fernandes, I. M., Sousa, W. O., Vaz-de-Mello, F. Z., 2020. Species composition and community structure of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) compared among savanna and forest formations in the southwestern Brazilian Cerrado. Zoologia 37, 1-12. https://doi.org/10.3897/zoologia.37.e58960.
https://doi.org/10.3897/zoologia.37.e589...
). Most of these studies have evaluated how anthropic impacts, such as urbanization (Correa et al., 2019aCorrea, C. M. A., Puker, A., Lara, M. A., Rosa, C. S., Korasaki, V., 2019a. Importance of urban parks in conserving biodiversity of flower chafer beetles (Coleoptera: Scarabaeoidea: Cetoniinae) in Brazilian Cerrado. Environ. Entomol. 48, 97-104. https://doi.org/10.1093/ee/nvy176.
https://doi.org/10.1093/ee/nvy176...
, 2021Correa, C. M. A., Ferreira, K. R., Puker, A., Audino, L. D., Korasaki, V., 2021. Greenspace sites conserve taxonomic and functional diversity of dung beetles in an urbanized landscape in the Brazilian Cerrado. Urban Ecosyst. https://doi.org/10.1007/s11252-021-01093-8.
https://doi.org/10.1007/s11252-021-01093...
; Frizzas et al., 2020Frizzas, M. R., Batista, J. L. F. L., Rocha, M. V. C., Oliveira, C. M., 2020. Diversity of Scarabaeinae (Coleoptera: Scarabaeidae) in an urban fragment of Cerrado in central Brazil. Eur. J. Entomol. 117, 273-281. https://doi.org/10.14411/eje.2020.031.
https://doi.org/10.14411/eje.2020.031...
), habitat fragmentation (Pimenta and De Marco, 2015Pimenta, M., De Marco, P., 2015. Leaf beetle (Chrysomelidae: Coleoptera) assemblages in a mosaic of natural and altered areas in the brazilian Cerrado. Neotrop. Entomol. 44, 242-255. https://doi.org/10.1007/s13744-015-0280-y.
https://doi.org/10.1007/s13744-015-0280-...
; Silva et al., 2020Silva, J. L., Silva, R. J., Fernandes, I. M., Sousa, W. O., Vaz-de-Mello, F. Z., 2020. Species composition and community structure of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) compared among savanna and forest formations in the southwestern Brazilian Cerrado. Zoologia 37, 1-12. https://doi.org/10.3897/zoologia.37.e58960.
https://doi.org/10.3897/zoologia.37.e589...
) and land use (Martello et al., 2016Martello, F., Andriolli, F., de Souza, T. B., Dodonov, P., Ribeiro, M. C., 2016. Edge and land use effects on dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in Brazilian cerrado vegetation. J. Insect Conserv. 20, 957-970. https://doi.org/10.1007/s10841-016-9928-0.
https://doi.org/10.1007/s10841-016-9928-...
; Correa et al., 2019bCorrea, C. M. A., Braga, R. F., Puker, A., Korasaki, V., 2019b. Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. J. Insect Conserv. 23, 89-99. https://doi.org/10.1007/s10841-018-00118-6.
https://doi.org/10.1007/s10841-018-00118...
; Oliveira et al., 2021Oliveira, Y. F., Oliveira, C. M., Frizzas, M. R., 2021. Changes in land use affect dung beetle communities but do not affect ecosystem services in the Cerrado of Central Brazil. Ecol. Entomol. 46, 973–987. https://doi.org/10.1111/een.13034.
https://doi.org/10.1111/een.13034...
), have affected the beetle community. For most families, however, several knowledge gaps still exist, as a reflection of this, new species (Fernandes and Hamada, 2012Fernandes, A. S., Hamada, N., 2012. Description and notes on the bionomics of a new species of Potamophilops Grouvelle, 1896 (Coleoptera: Elmidae: Larainae), from the Cerrado biome in Brazil. J. Nat. Hist. 46, 717-727. https://doi.org/10.1080/00222933.2011.651643.
https://doi.org/10.1080/00222933.2011.65...
; Vaz-de-Mello et al., 2020Vaz-de-Mello, F. Z., Nunes, L. G. O. A., Costa-Silva, V., 2020. A new species of the genus Canthon Hoffmannsegg (Coleoptera, Scarabaeidae, Scarabaeinae, Deltochilini) from Central Brazil. Pap. Avulsos Zool. 60, https://doi.org/10.11606/1807-0205/2020.60.special-issue.04.
https://doi.org/10.11606/1807-0205/2020....
) and new species distribution (Gonçalves et al., 2020Gonçalves, J. A., Grossi, P. C., Togni, P. H. B., Oliveira, C. M., Frizzas, M. R., 2020. The genus Cyclocephala Dejean (Coleoptera: Scarabaeidae: Dynastinae) in Brazil: diversity and spatio-temporal distribution. J. Insect Conserv. 24, 547-559. https://doi.org/10.1007/s10841-020-00230-6.
https://doi.org/10.1007/s10841-020-00230...
; Evangelista et al., 2021Evangelista, J., Rocha, M. V. C., Monné, M. L., Monné, M. A., Frizzas, M. R., 2021. Diversity of Cerambycidae (Insecta: Coleoptera) in the Cerrado of central Brazil using a new type of bait. Biota Neotrop. 21, 1-9. https://doi.org/10.1590/1676-0611-BN-2020-1103.
https://doi.org/10.1590/1676-0611-BN-202...
) are frequently recorded in the Cerrado. Our study, however, evaluated several Coleoptera families in the Cerrado throughout the year, allowing us to have an overview of the diversity and distribution of these families in native vegetation areas. Studies related to Coleoptera community structure in conserved areas are important for future assessments of how these communities may be impacted over time by anthropogenic actions. In addition, the Cerrado is considered to be Brazil's last agricultural frontier (Sano et al., 2019Sano, E.E., Rosa, R., Scaramuzza, C.A.M., Adami, M., Bolfe, E.L., Coutinho, A.C., Esquerdo, J.C.D.M., Maurano, L.E.P., Narvaes, I.S., Oliveira Filho, F.J.B., Silva, E.B., Victoria, D.C., Ferreira, L.G., Brito, J.L.S., Bayma, A.P., Oliveira, G.H., Bayma-Silva, G., 2019. Land use dynamics in the Brazilian Cerrado in the period from 2002 to 2013. Pesqui. Agropecu. Bras. 54, 1-5. https://doi.org/10.1590/S1678-3921.pab2019.v54.00138.
https://doi.org/10.1590/S1678-3921.pab20...
). In recent years, the biome has suffered systematically from anthropic pressures, mainly in relation to deforestation and expansion of agricultural activities. Therefore, studies aimed at understanding patterns of seasonality and distribution are important to guide conservation planning programs, and are of great relevance in defining public conservation policies, since they can indicate priority sites for conservation.

The data presented here confirm the marked influence of the main characteristic of the Brazilian Cerrado, the bimodal distribution of the rains, with a dry season and a well-defined rainy season, which seems to mold the distribution pattern and seasonality of Coleoptera in this biome.

Acknowledgements

We thank the Instituto Chico Mendes (ICMBio) - Ministério do Meio Ambiente do Brasil for authorization of scientific activities SISBIO 38547/1-6. We would also like to thank the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) (processes 403376/2013-0) and Empresa Brasileira de Pesquisa Agropecuária - Embrapa (SEG MP2 02.13.14.006.00.00) for financial support. Authors, MRF and CMO are CNPq fellowship recipients (313952/2018-3 and 312050/2017-8).

References

  • Almeida, S., Louzada, J., 2009. Community structure of Scarabaeinae (Scarabaeidae: Coleoptera) in Brazilian savannah phytophysiognomies and its importance for conservation. Neotrop. Entomol. 38, 32-43. https://doi.org/10.1590/S1519-566X2009000100003
    » https://doi.org/10.1590/S1519-566X2009000100003
  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. (Berl.) 22, 711-728. https://doi.org/10.1127/0941-2948/2013/0507
    » https://doi.org/10.1127/0941-2948/2013/0507
  • Boiteau, G., Bousquet, Y., Osborn, W., 2000. Vertical and temporal distribution of Carabidae and Elateridae in flight above an agricultural landscape. Environ. Entomol. 29, 1157-1163. https://doi.org/10.1603/0046-225X-29.6.1157
    » https://doi.org/10.1603/0046-225X-29.6.1157
  • Borges, L. O., Santos, B. B., 2004. Abundância e riqueza das famílias de Coleoptera (Insecta) capturadas através de armadilha Malaise no Parque Zoológico de Goiânia, Goiás, Brasil. Rev. Biol. Neotrop. 1, 23-32.
  • Cammell, M. E., Knight, J. D., 1992. Effects of climatic change on the population dynamics of crop pests. Adv. Ecol. Res. Adv. Ecol. Res. 22, 117-162. https://doi.org/10.1016/S0065-2504(08)60135-X
    » https://doi.org/10.1016/S0065-2504(08)60135-X
  • Casari, S. A., Ide, S., 2012. Coleoptera Linnaeus, 1758. In: Rafael, J.A., Melo, G.A.R., Carvalho, C.J.B., Casari, S.A., Cosntantino, R. (Eds.), Insetos Do Brasil - Diversidade e Taxonomia. Holos Editora, Ribeirão Preto/SP, pp. 453–535.
  • Cherman, M. A., Morón, M. A., 2014. Validación de la familia Melolonthidae Leach, 1819 (Coleoptera: scarabaeoidea). Acta Zool. Mex. 30, 201-220. https://doi.org/10.21829/azm.2014.301139
    » https://doi.org/10.21829/azm.2014.301139
  • Correa, C. M. A., Braga, R. F., Puker, A., Korasaki, V., 2019b. Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. J. Insect Conserv. 23, 89-99. https://doi.org/10.1007/s10841-018-00118-6
    » https://doi.org/10.1007/s10841-018-00118-6
  • Correa, C. M. A., Ferreira, K. R., Puker, A., Audino, L. D., Korasaki, V., 2021. Greenspace sites conserve taxonomic and functional diversity of dung beetles in an urbanized landscape in the Brazilian Cerrado. Urban Ecosyst. https://doi.org/10.1007/s11252-021-01093-8
    » https://doi.org/10.1007/s11252-021-01093-8
  • Correa, C. M. A., Puker, A., Korasaki, V., Ferreira, K. R., 2013. Omorgus suberosus and Polynoncus bifurcatus (Coleoptera: Scarabaeoidea: Trogidae) in exotic and native environments of Brazil. Zool. 30, 238-241. https://doi.org/10.1590/S1984-46702013000200015
    » https://doi.org/10.1590/S1984-46702013000200015
  • Correa, C. M. A., Puker, A., Lara, M. A., Rosa, C. S., Korasaki, V., 2019a. Importance of urban parks in conserving biodiversity of flower chafer beetles (Coleoptera: Scarabaeoidea: Cetoniinae) in Brazilian Cerrado. Environ. Entomol. 48, 97-104. https://doi.org/10.1093/ee/nvy176
    » https://doi.org/10.1093/ee/nvy176
  • Freitas, F. A., Zanuncio, T. V., Lacerda, M. C., Zanuncio, J. C., 2002. Fauna de Coleoptera coletada com armadilhas luminosas em plantio de Eucalyptus grandis em Santa Bárbara, Minas Gerais. Rev. Árvore 26, 505-511. https://doi.org/10.1590/S0100-67622002000400014
    » https://doi.org/10.1590/S0100-67622002000400014
  • Desender, K., 2000. Flight muscle development and dispersal in the life cycle of carabid beetles: patterns and processes. Entomologie 70, 13-31.
  • Endrödi, S., 1966. Monographie der Dynastinae:(Coleoptera, Lamellicornia) I. Teil. Entomol. Abh. Mus. Tierkd. 33, 1-457.
  • Evangelista Neto, J., Oliveira, C. M., Vaz-de-Mello, F. Z., Frizzas, M. R., 2018. Diversity of Cetoniidae (Insecta: Coleoptera) in the Cerrado of Central Brazil. Entomol. Sci. 21, 84-92. https://doi.org/10.1111/ens.12284
    » https://doi.org/10.1111/ens.12284
  • Evangelista, J., Rocha, M. V. C., Monné, M. L., Monné, M. A., Frizzas, M. R., 2021. Diversity of Cerambycidae (Insecta: Coleoptera) in the Cerrado of central Brazil using a new type of bait. Biota Neotrop. 21, 1-9. https://doi.org/10.1590/1676-0611-BN-2020-1103
    » https://doi.org/10.1590/1676-0611-BN-2020-1103
  • Fernandes, A. S., Hamada, N., 2012. Description and notes on the bionomics of a new species of Potamophilops Grouvelle, 1896 (Coleoptera: Elmidae: Larainae), from the Cerrado biome in Brazil. J. Nat. Hist. 46, 717-727. https://doi.org/10.1080/00222933.2011.651643
    » https://doi.org/10.1080/00222933.2011.651643
  • Fonseca-Medrano, M., Specht, A., Silva, F. A. M., Otanásio, P. N., Malaquias, J. V., 2019. The population dynamics of three polyphagous owlet moths (Lepidoptera: Noctuidae) and the influence of meteorological factors and ENSO on them. Rev. Bras. Entomol. 63, 308-315. https://doi.org/10.1016/j.rbe.2019.07.004
    » https://doi.org/10.1016/j.rbe.2019.07.004
  • Frizzas, M. R., Batista, J. L. F. L., Rocha, M. V. C., Oliveira, C. M., 2020. Diversity of Scarabaeinae (Coleoptera: Scarabaeidae) in an urban fragment of Cerrado in central Brazil. Eur. J. Entomol. 117, 273-281. https://doi.org/10.14411/eje.2020.031
    » https://doi.org/10.14411/eje.2020.031
  • Ganho, N. G., Marinoni, R. C., 2003. Fauna de Coleoptera no Parque Estadual de Vila Velha, Ponta Grossa, Paraná, Brasil: abundância e riqueza das famílias capturadas através de armadilhas malaise. Rev. Bras. Zool. 20, 727-736. https://doi.org/10.1590/S0101-81752003000400028
    » https://doi.org/10.1590/S0101-81752003000400028
  • Gonçalves, J. A., Grossi, P. C., Togni, P. H. B., Oliveira, C. M., Frizzas, M. R., 2020. The genus Cyclocephala Dejean (Coleoptera: Scarabaeidae: Dynastinae) in Brazil: diversity and spatio-temporal distribution. J. Insect Conserv. 24, 547-559. https://doi.org/10.1007/s10841-020-00230-6
    » https://doi.org/10.1007/s10841-020-00230-6
  • Grimaldi, D., Engel, M. S., 2005. Evolution of the Insects. University Press, Cambridge.
  • Hanski, I., Cambefort, Y., 1991. Dung beetle ecology. Princeton University Press, New Jersey.
  • Herms, D. A., Haack, R. A., Ayres, B. D., 1991. Variation in semiochemical-mediated prey-predator interaction: Ips pini (Scolytidae) and Thanasimus dubius (Cleridae). J. Chem. Ecol. 17, 1705-1714. https://doi.org/10.1007/BF00984698
    » https://doi.org/10.1007/BF00984698
  • Holtz, A. M., Zanuncio, T. V., Zanuncio, J. C., Pratissoli, D., 2001. Coleópteros coletados em plantio de Eucalyptus urophylla na região de Três Marias, Minas Gerais. Rev. Floresta 31, 1-10.
  • Hutcheson, J., 1990. Characterization of terrestrial insect communities using quantified, Malaise-trapped Coleoptera. Ecol. Entomol. 15, 143-151. https://doi.org/10.1111/j.1365-2311.1990.tb00795.x
    » https://doi.org/10.1111/j.1365-2311.1990.tb00795.x
  • Jocque, M., Teofilova, T. M., Kodzhabashev, N. D., 2016. Light trapping as a valuable rapid assessment method for ground beetles (Carabidae) in a Bulgarian wetland. Acta Zool. Bulg. 68, 529-539.
  • Kádár, F., Lövei, G. L., 1992. Light trapping of carabids (Coleoptera: Carabidae) in an apple orchard in Hungary. Acta Phytopathol. Entomol. Hung. 27, 343-348.
  • Kellermann, V., van Heerwaarden, B., 2019. Terrestrial insects and climate change: adaptive responses in key traits. Physiol. Entomol. 44, 99-115. https://doi.org/10.1111/phen.12282
    » https://doi.org/10.1111/phen.12282
  • Kikuchi, R. M., Uieda, V. S., 2005. Composição e distribuição dos macroinvertebrados em diferentes substratos de fundo de um riacho no município de Itatinga, São Paulo, Brasil. Entomol. Vectores 12, 193-231.
  • Kovach, W. L., 2011. Oriana - circular statistics for windows, ver. 4, Kovach Computing Services, Pentraeth, Wales, UK.
  • Liu, Y., Axmacher, J. C., Li, L., Wang, C., Yu, Z., 2007. Ground beetle (Coleoptera: Carabidae) inventories: a comparison of light and pitfall trapping. Bull. Entomol. Res. 97, 577-583. https://doi.org/10.1017/S0007485307005299
    » https://doi.org/10.1017/S0007485307005299
  • Lövei, G. L., Sunderland, K. D., 1996. Ecology and behavior of ground beetles (Coleoptera: carabidae). Annu. Rev. Entomol. 41, 231-256. https://doi.org/10.1146/annurev.en.41.010196.001311
    » https://doi.org/10.1146/annurev.en.41.010196.001311
  • Macedo, R., Audino, L. D., Korasaki, V., Louzada, J., 2020. Conversion of Cerrado savannas into exotic pastures: the relative importance of vegetation and food resources for dung beetle assemblages. Agric. Ecosyst. Environ. 288, 106709. https://doi.org/10.1016/j.agee.2019.106709
    » https://doi.org/10.1016/j.agee.2019.106709
  • Marinoni, R. C., 2001. Os grupos tróficos em Coleoptera. Rev. Bras. Zool. 18, 205-224. https://doi.org/10.1590/s0101-81752001000100024
    » https://doi.org/10.1590/s0101-81752001000100024
  • Marinoni, R. C., Dutra, R. R. C., 1997. Famílias de Coleoptera capturadas com armadilha malaise em oito localidades do Estado do Paraná, Brasil: diversidades alfa e beta. Rev. Bras. Zool. 14, 751-770. https://doi.org/10.1590/S0101-81751997000300021
    » https://doi.org/10.1590/S0101-81751997000300021
  • Martello, F., Andriolli, F., de Souza, T. B., Dodonov, P., Ribeiro, M. C., 2016. Edge and land use effects on dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in Brazilian cerrado vegetation. J. Insect Conserv. 20, 957-970. https://doi.org/10.1007/s10841-016-9928-0
    » https://doi.org/10.1007/s10841-016-9928-0
  • Matioli, J. C., Figueira, A. R., 1988. Dinâmica populacional e efeitos da temperatura ambiental e precipitação pluviométrica sobre Astylus variegatus (Germar, 1824) e A. sexmaculatus (Perty, 1830) (Coleoptera; Dasytidae). An. Esc. Super. Agric. Luiz de Queiroz 45, 125-142. https://doi.org/10.1590/S0071-12761988000100009
    » https://doi.org/10.1590/S0071-12761988000100009
  • Mayor, A. J., 2002. Melyridae, Leach 1815. In: Arnett, R.H., Thomas, M.C., Skelley, P.E., Frank, J.H. (Eds.), American Beetles, Vol. 2, Polyphaga: Scarabaeoidea through Curculionoidea. CRC, New York, pp. 281–304.
  • Messenger, P. S., 1959. Bioclimatic Studies with Insects. Annu. Rev. Entomol. 4, 183-206. https://doi.org/10.1146/annurev.en.04.010159.001151
    » https://doi.org/10.1146/annurev.en.04.010159.001151
  • Miyazaki, R. D., Dutra, R. R. C., 1995. Famílias de Coleoptera capturadas com armadilha luminosa em oito localidades do Paraná, Brasil. Rev. Bras. Zool. 12, 321-332. https://doi.org/10.1590/S0101-81751995000200010
    » https://doi.org/10.1590/S0101-81751995000200010
  • Morais, H. C., Diniz, I. R., 1999. Caterpillar seasonality in a central Brazilian Cerrado. Rev. Biol. Trop. 47, 1025-1033.
  • Morais, H. C., Diniz, I. R., 2004. Herbívoros e herbivoria no Cerrado: lagartas como exemplo. In: Aguiar, L.M.S., Camargo, A.J.A. (Eds.), Cerrado: Ecologia e Caracterização. Embrapa Cerrados, Embrapa Informação Tecnológica, Brasília, Brazil, pp. 159–176.
  • National Oceanic and Atmospheric Administration – NOAA, 2020. Recent Evolution, Current Status and Predictions. Available in: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf (accessed 23 January 2012).
    » https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
  • Nunes, R. V., Frizzas, M. R., Vaz-de-Mello, F. Z., 2012. Scarabaeinae (Coleoptera: Scarabaeidae) de um campo rupestre na Área de Proteção Ambiental de Cafuringa, Distrito Federal, Brasil: Lista comentada de espécies e distribuição geográfica. Biota Neotrop. 12, 125-129. https://doi.org/10.1590/S1676-06032012000400013
    » https://doi.org/10.1590/S1676-06032012000400013
  • Oliveira, C. M., 2019. Recomendações para manejo de corós no Cerrado. Embrapa Cerrados, Planaltina, 12 pp. (Circular Técnica, 40).
  • Oliveira, C. M., Frizzas, M. R., 2008. Insetos de Cerrado: distribuição estacional e abundância. Embrapa Cerrados, Planaltina/DF. (Boletim de Pesquisa e Desenvolvimento, 216).
  • Oliveira, C. M., Frizzas, M. R., 2013. Field biology of the beetle Aegopsis bolboceridus in Brazil, with a list of host plants. J. Insect Sci. 13, 48. https://doi.org/10.1673/031.013.4801
    » https://doi.org/10.1673/031.013.4801
  • Oliveira, C. M., Frizzas, M. R., 2015. Bio-ecology of Poekilloptera phalaenoides (Hemiptera: Flatidae) under the influence of climatic factors in the brazilian cerrado. Ann. Entomol. Soc. Am. 108, 263-271. https://doi.org/10.1093/aesa/sav004
    » https://doi.org/10.1093/aesa/sav004
  • Oliveira, C. M., Frizzas, M. R., 2019. How climate influences the biology and behaviour of Phyllophaga capillata (Coleoptera: Melolonthidae) in the Brazilian Cerrado. Austral Entomol. 58, 336-345. https://doi.org/10.1111/aen.12309
    » https://doi.org/10.1111/aen.12309
  • Oliveira, C. M., Frizzas, M. R., Morón, M. A., 2019. Phyllophaga nitididorsis (Coleoptera: Melolonthidae), the first biennial melolonthid recorded in the Brazilian Cerrado. Austral Entomol. 58, 569-577. https://doi.org/10.1111/aen.12362
    » https://doi.org/10.1111/aen.12362
  • Oliveira, H. G., Zanuncio, T. V., Zanuncio, J. C., Santos, G. P., 2012. Coleópteros associados à eucaliptocultura na região de Nova Era, Minas Gerais, Brasil. Floresta Ambient. 8, 52-60.
  • Oliveira, P. E. A. M., 2008. Fenologia e biologia reprodutiva das espécies de Cerrado. In: Aguiar, L.M.S., Camargo, A.J.A. (Eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília, Brazil, pp. 273–290.
  • Oliveira, Y. F., Oliveira, C. M., Frizzas, M. R., 2021. Changes in land use affect dung beetle communities but do not affect ecosystem services in the Cerrado of Central Brazil. Ecol. Entomol. 46, 973–987. https://doi.org/10.1111/een.13034
    » https://doi.org/10.1111/een.13034
  • Passos, M. I. S., Nessimian, J. L., Ferreira, N., 2007. Identification keys to genera of Elmidae (Coleoptera) from Rio de Janeiro state, Brazil. Rev. Bras. Entomol. 51, 42-53. https://doi.org/10.1590/s0085-56262007000100008
    » https://doi.org/10.1590/s0085-56262007000100008
  • Peacock, L., Worner, S., Sedcole, R., 2006. Climate variables and their role in site discrimination of invasive insect species distributions. Environ. Entomol. 35, 958-963. https://doi.org/10.1603/0046-225X-35.4.958
    » https://doi.org/10.1603/0046-225X-35.4.958
  • Pimenta, M., De Marco, P., 2015. Leaf beetle (Chrysomelidae: Coleoptera) assemblages in a mosaic of natural and altered areas in the brazilian Cerrado. Neotrop. Entomol. 44, 242-255. https://doi.org/10.1007/s13744-015-0280-y
    » https://doi.org/10.1007/s13744-015-0280-y
  • Pinheiro, F., Diniz, I. R., Coelho, D., Bandeira, M. P. S., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132-136. https://doi.org/10.1046/j.1442-9993.2002.01165.x
    » https://doi.org/10.1046/j.1442-9993.2002.01165.x
  • Piovesan, M., Specht, A., Carneiro, E., Paula-Moraes, S. V., Casagrande, M. M., 2018. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna. Int. J. Biometeorol. 62, 413-422. https://doi.org/10.1007/s00484-017-1450-x
    » https://doi.org/10.1007/s00484-017-1450-x
  • Pohlert, T., 2014. The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR), R Foundation for Statistical Computing, Vienna, Áustria.
  • Puker, A., Silva, K. K. G., Santos, D. C., Correa, C. M. A., Vaz-de-Mello, F. Z., 2020. Dung beetles collected using flight intercept traps in an Amazon rainforest fragment and adjacent agroecosystems. Int. J. Trop. Insect Sci. 40, 1085-1092. https://doi.org/10.1007/s42690-020-00132-9
    » https://doi.org/10.1007/s42690-020-00132-9
  • Quinto, J., Micó, E., Martínez-Falcón, A. P., Galante, E., Marcos-García, M. Á., 2014. Influence of tree hollow characteristics on the diversity of saproxylic insect guilds in Iberian Mediterranean woodlands. J. Insect Conserv. 18, 981-992. https://doi.org/10.1007/s10841-014-9705-x
    » https://doi.org/10.1007/s10841-014-9705-x
  • R Core Team, 2016. R: A language and environment for statistical computing (Computer software), R Foundation for Statistical Computing, Vienna, Austria.
  • Ramos, F. A., Diniz, I. R., 1993. Seasonal cycles, survivorship and growth of colonies of Polistes versicolor (Hymenoptera: Vespidae) in the urban area of Brasília, Brazil. Entomologist 112, 191-200.
  • Ribeiro, J. F., Walter, B. M. T., 2008. As principais fitofisionomias do bioma Cerrado. In: Sano, S.M., Almeida, S.P., Ribeiro, J.F. (Eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília, Brazil, pp. 151–212.
  • Rocha, J. R. M., 2010. Ocorrência e dinâmica populacional de Scolytidae, Bostrichidae e Platypodidae em povoamentos de eucaliptos e fragmento de Cerrado, no município de Cuiabá - MT. Master of Science Thesis, Universidade Federal de Mato Grosso.
  • Rocha, J. R. M., Dorval, A., Peres Filho, O., 2011. Coleópteros (Bostrichidae, Platypodidae e Scolytidae) em um fragmento de cerrado da baixada Cuiabana. Ambiência 7, 89-101.
  • Rodrigues, S. R., Puker, A., 2013. Species of Geotrupidae (Coleoptera: Scarabaeoidea) in Aquidauana, Mato Grosso do Sul, Brazil. Biota Neotrop. 13, 349-352. https://doi.org/10.1590/S1676-06032013000100034
    » https://doi.org/10.1590/S1676-06032013000100034
  • Sable, M. G., Rana, D. K., 2016. Impact of global warming on insect behavior -A review. Agric. Rev. (Karnal) 37, 81-84.
  • Sano, E.E., Rosa, R., Scaramuzza, C.A.M., Adami, M., Bolfe, E.L., Coutinho, A.C., Esquerdo, J.C.D.M., Maurano, L.E.P., Narvaes, I.S., Oliveira Filho, F.J.B., Silva, E.B., Victoria, D.C., Ferreira, L.G., Brito, J.L.S., Bayma, A.P., Oliveira, G.H., Bayma-Silva, G., 2019. Land use dynamics in the Brazilian Cerrado in the period from 2002 to 2013. Pesqui. Agropecu. Bras. 54, 1-5. https://doi.org/10.1590/S1678-3921.pab2019.v54.00138
    » https://doi.org/10.1590/S1678-3921.pab2019.v54.00138
  • Santos, S. R., Specht, A., Carneiro, E., Paula-Moraes, S. V., Casagrande, M. M., 2017. Interseasonal variation of Chrysodeixis includens (Walker, [1858]) (Lepidoptera: Noctuidae) populations in the Brazilian Savanna. Rev. Bras. Entomol. 61, 294-299. https://doi.org/10.1016/j.rbe.2017.06.006
    » https://doi.org/10.1016/j.rbe.2017.06.006
  • Silva, F. A. M., Assad, E. D., Evangelista, B. A., 2008. Caracterização climática do bioma Cerrado. In: Sano, S.M., Almeida, S.P., Ribeiro, F.E. (Eds.), Cerrado: Ecologia e Flora. Embrapa Informação Tecnológica, Brasília/DF, pp. 69–88.
  • Silva, F. A. M., Evangelista, B. A., Malaquias, J. V., Oliveira, A. D., Muller, A. G., 2017b. Análise temporal de variáveis climáticas monitoradas entre 1974 e 2013 na estação principal da Embrapa Cerrados. Embrapa Cerrados, Planaltina/DF, Embrapa Cerrados, Planaltina, (Boletim de Pesquisa e Desenvolvimento, 340).
  • Silva, J. L., Silva, R. J., Fernandes, I. M., Sousa, W. O., Vaz-de-Mello, F. Z., 2020. Species composition and community structure of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) compared among savanna and forest formations in the southwestern Brazilian Cerrado. Zoologia 37, 1-12. https://doi.org/10.3897/zoologia.37.e58960
    » https://doi.org/10.3897/zoologia.37.e58960
  • Silva, N. A. P., Frizzas, M. R., Oliveira, C. M., 2011. Seasonality in insect abundance in the “Cerrado” of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79-87. https://doi.org/10.1590/S0085-56262011000100013
    » https://doi.org/10.1590/S0085-56262011000100013
  • Silva, W. D., Zou, Y., Bento, J. M. S., Hanks, L. M., Millar, J. G., 2017a. Aggregation-sex pheromones and likely pheromones of 11 South american cerambycid beetles, and partitioning of pheromone channels. Front. Ecol. Evol. 5, https://doi.org/10.3389/fevo.2017.00101
    » https://doi.org/10.3389/fevo.2017.00101
  • Teixeira, C. C. L., Hoffmann, M., Silva-Filho, G., 2009. Comunidade de Coleoptera de solo em remanescente de Mata Atlântica no Estado do Rio de Janeiro, Brasil. Biota Neotrop. 9, 91-95. https://doi.org/10.1590/S1676-06032009000400010
    » https://doi.org/10.1590/S1676-06032009000400010
  • Vaz-de-Mello, F. Z., Nunes, L. G. O. A., Costa-Silva, V., 2020. A new species of the genus Canthon Hoffmannsegg (Coleoptera, Scarabaeidae, Scarabaeinae, Deltochilini) from Central Brazil. Pap. Avulsos Zool. 60, https://doi.org/10.11606/1807-0205/2020.60.special-issue.04
    » https://doi.org/10.11606/1807-0205/2020.60.special-issue.04
  • Venn, S., 2016. To fly or not to fly: factors influencing the flight capacity of carabid beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 587-600. https://doi.org/10.14411/eje.2016.079
    » https://doi.org/10.14411/eje.2016.079
  • Wellington, W. G., 1957. Individual differences as a factor in population dynamics: the development of a problem. Can. J. Zool. 35, 293-323.
  • Wilson, J. B., 1999. Guilds, functional types and ecological groups. Oikos 86, 507-522. https://doi.org/10.2307/3546655
    » https://doi.org/10.2307/3546655
  • Wolda, H., 1988. Insect seasonality: why? Annu. Rev. Ecol. Syst. 19, 1-18. https://doi.org/10.1146/annurev.es.19.110188.000245
    » https://doi.org/10.1146/annurev.es.19.110188.000245
  • Wolda, H., Fisk, F. W., 1981. Seasonality of tropical insects. II. Blattaria in Panama. J. Anim. Ecol. 50, 827-838. https://doi.org/10.2307/4140
    » https://doi.org/10.2307/4140
  • Zar, J. H., 1999. Biostatistical analysis, 4th ed. Prentice Hall, New Jersey.
  • Zaragoza–Caballero, S., 2004. Cantharidae (Coleoptera), in: García Aldrete, A., Ayala–Barajas, R. (Eds.), Artrópodos de Chamela. Instituto de Biología, Universidad Nacional Autónoma de Mexico, Mexico, DF, pp. 127–137.

Edited by

Associate Editor: Rodrigo Kruger

Publication Dates

  • Publication in this collection
    23 July 2021
  • Date of issue
    2021

History

  • Received
    03 Mar 2021
  • Accepted
    27 June 2021
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br