Acessibilidade / Reportar erro

Ants of Ecuador: new species records for a megadiverse country in South America

ABSTRACT

Despite its small territory Ecuador hosts a remarkable biological diversity. Paradoxically, its prominent insect richness has been poorly studied and is usually underestimated in biodiversity inventories. Ants are a major component of such richness. With the aim of promoting myrmecological research, we present 20 new ant records for the country belonging to nine genera and six subfamilies. The species Tapinoma ramulorum inrectum Forel is recorded for the first time in South America. We provide brief taxonomic diagnoses and general comments for all species. Our results expand on the records of Formicidae species previously informed for Ecuador and stress the importance of scientific reference collections as biodiversity repositories.

Keywords:
Biological collections; First record; Formicidae; Neotropical realm; Yasuní

Introduction

Arguably, Ecuador is one of the most megadiverse countries in the world. In its small territory (256 370 Km2) converges a tremendous amount of species diversity, only comparable to that of few other tropical regions in the planet. Located in the northwest coast of South America, on the equinoctial line, this country has many ecosystems spread across a complex topography where three of the global hotspots of biological diversity converge, namely the Tropical Andes, the Chocó Biogeographic Region, and the Galápagos Islands (Myers et al., 2000Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. https://doi.org/10.1038/35002501.
https://doi.org/10.1038/35002501...
; Ridgely and Greenfield, 2001Ridgely, R. S., Greenfield, P. J., 2001. The Birds of Ecuador: Status, Distribution, and Taxonomy. Cornell University Press, Ithaca.; Ministerio del Ambiente del Ecuador, 2013Ministerio del Ambiente del Ecuador, 2013. Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaría de Patrimonio Natural, Quito.).

The comparatively high species diversity of Ecuador is perhaps explained by the array of Ecological and biogeographical units identified across its territory which encompass eight biogeographic divisions (Sierra, 1999Sierra, R. 1999. Vegetación Remanente del Ecuador Continental, Circa 1996, 1:1′000.000. Proyecto INEFAN/GEF-BIRF y Wildlife Conservation Society, Quito.; Ridgely and Greenfield, 2001Ridgely, R. S., Greenfield, P. J., 2001. The Birds of Ecuador: Status, Distribution, and Taxonomy. Cornell University Press, Ithaca.; Freile and Santander, 2005Freile, J. F., Santander, T., 2005. Áreas importantes para la conservación de las aves en Ecuador. In: Boyla, K., Estrada, A. (Eds.), Áreas importantes para la conservación de las aves en Los Andes tropicales: sitios prioritarios para la conservación de la biodiversidad BirdLife International, Quito, pp. 283–470.), 10 biomes (Bioweb, 2020Bioweb, 2020. Regiones Naturales del Ecuador. Available in: https://bioweb.bio/faunaweb/amphibiaweb/RegionesNaturales (accessed 20 April 2021)
https://bioweb.bio/faunaweb/amphibiaweb/...
), and 91 ecosystems (Ministerio del Ambiente del Ecuador, 2013Ministerio del Ambiente del Ecuador, 2013. Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaría de Patrimonio Natural, Quito.). Within this complex topographic matrix mostly filled by heterogeneous Andean and Amazonian habitats, which have boosted the diversification of a number of organisms (Hughes and Eastwood, 2006Hughes, C., Eastwood, R., 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA 103, 10334-10339. https://doi.org/https://doi.org/10.1073/pnas.0601928103
https://doi.org/https://doi.org/10.1073/...
Ribas et al., 2007Ribas, C. C., Moyle, R. G., Miyaki, C. Y., Cracraft, J., 2007. The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc. Biol. Sci. 274, 2399-2408. https://doi.org/https://doi.org/10.1098/rspb.2007.0613
https://doi.org/https://doi.org/10.1098/...
; De‐Silva et al., 2016Silva, D. L., Elias, M., Willmott, K., Mallet, J., Day, J. J., 2016. Diversification of clearwing butterflies with the rise of the Andes. J. Biogeogr. 43, 44-58. https://doi.org/10.1111/jbi.12611.
https://doi.org/10.1111/jbi.12611...
), approximately 19 000 species of plants and 3 500 species of terrestrial vertebrates have been recorded (Bioweb, 2020Bioweb, 2020. Regiones Naturales del Ecuador. Available in: https://bioweb.bio/faunaweb/amphibiaweb/RegionesNaturales (accessed 20 April 2021)
https://bioweb.bio/faunaweb/amphibiaweb/...
). In regards to the terrestrial arthropod fauna, particularly insects, the information is less well-structured. Current knowledge on insect species richness is biased to few, though highly diverse groups, for example, Lepidoptera (diurnal butterflies) (Dangles et al., 2009Dangles, O., Barragán, A., Cárdenas, R. E., Onore, G., Keil, C., 2009. Entomology in Ecuador: recent developments and future challenges. Ann. Soc. Entomol. Fr. 45, 424-436. https://doi.org//10.1080/00379271.2009.10697627
https://doi.org//10.1080/00379271.2009.1...
), Diptera (horse flies, flower flies, mosquitoes) (Cárdenas et al., 2009Cárdenas, R. E., Buestán, J., Dangles, O., 2009. Diversity and distribution models of horse flies (diptera: Tabanidae) from ecuador. Ann. Soc. Entomol. Fr. 45, 511-528. https://doi.org/10.1080/00379271.2009.10697633.
https://doi.org/10.1080/00379271.2009.10...
, Marín-Armijos et al., 2017Marín-Armijos, D., Quezada-Ríos, N., Soto-Armijos, C., Mengual, X., 2017. Checklist of the flower flies of Ecuador (Diptera, syrphidae). ZooKeys 2017, 163-199. https://doi.org/10.3897/zookeys.691.13328.
https://doi.org/10.3897/zookeys.691.1332...
, Ponce et al., 2021Ponce, P., Cevallos, V., Carrazco-Montalvo, A., 2021. Mosquitoes (Diptera: Culicidae) of Ecuador: a revised checklist, new records and species of medical importance. bioRxiv. Preprint. https://doi.org/10.1101/2021.02.10.429771.
https://doi.org/10.1101/2021.02.10.42977...
) and Coleoptera (ground beetles, click beetles, dung beetles) (Dangles et al., 2009Dangles, O., Barragán, A., Cárdenas, R. E., Onore, G., Keil, C., 2009. Entomology in Ecuador: recent developments and future challenges. Ann. Soc. Entomol. Fr. 45, 424-436. https://doi.org//10.1080/00379271.2009.10697627
https://doi.org//10.1080/00379271.2009.1...
, Aguirre-Tapiero and Johnson, 2014Aguirre-Tapiero, M., Johnson, P.J., 2014. A preliminary checklist, classification, and four new country records for the elateridae (Coleoptera) of Ecuador. Insecta Mundi. 0350, 1-11., Chamorro et al., 2018Chamorro, W., Marín-Armijos, D., Granda, V., Vaz-De-Mello, F. Z., 2018. Checklist with a key to genera and subgenera of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) present and supposed for Ecuador. Rev. Colomb. Entomol. 44, 72-100. https://doi.org/10.25100/socolen.v44i1.6545.
https://doi.org/10.25100/socolen.v44i1.6...
, 2019Chamorro, W., Marin-Armijos, D., Asenjo, A., Vaz-De-Mello, F. Z., 2019. Scarabaeinae dung beetles from Ecuador: a catalog, nomenclatural acts, and distribution records. ZooKeys 2019, 1-343. https://doi.org/10.3897/zookeys.826.26488.
https://doi.org/10.3897/zookeys.826.2648...
). Unveiling species richness of another mega diverse insect order, as for example, the Hymenoptera, will require the efforts of many generations of zoologists.

Among the Hymenoptera, ants stand out as one of the most conspicuous and abundant groups in preserved forests as well as in agricultural and urban ecosystems (Wolters et al., 2006Wolters, V., Bengtsson, J., Zaitsev, A. S., 2006. Relationship among the species richness of different taxa. Ecology 87, 1886-1895. https://doi.org//10.1890/0012-9658(2006)87[1886:RATSRO]2.0.CO;2
https://doi.org//10.1890/0012-9658(2006)...
; Santos, 2016Santos, M. N., 2016. Research on urban ants: approaches and gaps. Insectes Soc. 63, 359-371. https://doi.org//10.1007/s00040-016-0483-1
https://doi.org//10.1007/s00040-016-0483...
). Despite its dominance and ecological importance, historically the ant fauna of most Neotropical countries, including Ecuador, has been poorly studied (Fernández and Sendoya, 2004Fernández, F., Sendoya, S., 2004. Lista de las hormigas neotropicales. Biota Colomb. 5, 3-109.; Bezděčková et al., 2015Bezděčková, K., Bezděčka, P., Machar, I., 2015. A checklist of the ants (Hymenoptera: Formicidae) of Peru. Zootaxa 4020, 101-133. http://dx.doi.org/10.11646/zootaxa.4020.1.4
http://dx.doi.org/10.11646/zootaxa.4020....
). In the most recent literature review about ant species from Ecuador, Salazar et al. (2015)Salazar, F., Reyes-Bueno, F., Sanmartin, D., Donoso, D. A., 2015. Mapping continental Ecuadorian ant species. Sociobiology 62, 132-162. https://doi.org/http://dx.doi.org/10.13102/sociobiology.v62i2.132-162
https://doi.org/http://dx.doi.org/10.131...
informed a total of 679 species, belonging to 92 genera. Since that publication we have discovered a number of novel species records in three of the most representative ant collections of the country. For each new species record we provide a concise morphological diagnosis, and for most species we show brief notes about their biology, ecology and distribution.

Materials and methods

The specimens identified by the authors via direct examination are deposited in the natural history collections of the below institutions:

MECN – Museo Ecuatoriano de Ciencias Naturales, Instituto Nacional de Biodiversidad, Quito, Ecuador.

MEPN – Museo de Historia Natural, “Gustavo Orcés V.”, Escuela Politécnica Nacional, Quito, Ecuador.

QCAZ – Museo de Zoología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

We used the following taxonomic treatments for species determination: Fernández & Guerrero (2019)Fernández, F., Guerrero, R. J., 2019. Subfamilia Ponerinae. In: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 509–553. for Ponerinae, Mackay & Mackay (2019)Mackay, W. P., Mackay, E., 2019. Género Camponotus. In: Fernández, F. (ed.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 743-790. and W. Mackay (unpublished Camponotus revision) for Camponotus Mayr; Ortiz and Fernández (2011)Ortiz, C. M., Fernández, F., 2011. Hormigas del género Dolichoderus Lund (Formicidae: Dolichoderinae) en Colombia (No. Doc. 24586). Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Bogotá. for Dolichoderus Lund, Palacio (2019)Palacio, E. 2019. Subfamilia Dorylinae. In: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 571–630. for Nomamyrmex Borgmeier, Johnson (2015)Johnson, R. A., 2015. A taxonomic revision of South American species of the seed harvester ant genus Pogonomyrmex (Hymenoptera: Formicidae). Part I. Zootaxa 4029, 1-142. https://doi.org/https://doi.org/10.11646/zootaxa.4029.1.1
https://doi.org/https://doi.org/10.11646...
for Pogonomyrmex Mayr, Andrade & Baroni Urbani (1999) and Oliveira et al. (2021)Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
for Cephalotes Latreille, and Ward (2019)Ward, P. S. 2019. Subfamilia Pseudomyrmecinae. In: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 1089–1114. for Pseudomyrmex Lund.

We compared the remaining non identified material, i.e. those which did not key out using the treatments above, to already identified specimens in the following ant collections: Coleção do Laboratório de Mirmecologia, Centro de Pesquisas do Cacau (CPDC), Instituto Alexander von Humboldt (IAvH), Museu de Zoologia da Universidade de São Paulo (MZSP), United States National Museum of Natural History (USNM), and the Ecuadorian repositories of the present material, listed above. We also supported our identifications on AntWeb (www.antweb.org) images of type material, when available. R. J. Guerrero (Universidad del Magdalena, Colombia) assisted with species confirmation of the Dolichoderinae. L. Souza-Barros and A. Troya, who are revising Simopelta Mann and Neoponera Emery, respectively, confirmed the species records for those genera. Pseudomyrmex species, except P. penetrator, were identified by University of California, Davis.

In order to verify the new record status of our determined material, we consulted two main sources: the checklist of Salazar et al. (2015)Salazar, F., Reyes-Bueno, F., Sanmartin, D., Donoso, D. A., 2015. Mapping continental Ecuadorian ant species. Sociobiology 62, 132-162. https://doi.org/http://dx.doi.org/10.13102/sociobiology.v62i2.132-162
https://doi.org/http://dx.doi.org/10.131...
, and the Global Ant Biodiversity Informatics – GABI - database (Guénard et al., 2017Guénard, B., Weiser, M. D., Gomez, K., Narula, N., Economo, E. P., 2017. The global ant biodiversity informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol. News 24, 83-89. https://doi.org/10.25849/myrmecol.news_024:083.
https://doi.org/10.25849/myrmecol.news_0...
) visualized through Antmaps (Janicki et al., 2016Janicki, J., Narula, N., Ziegler, M., Guénard, B., Economo, E. P., 2016. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps.org. Ecol. Inform. 32, 185-193. https://doi.org/https://doi.org/10.1016/j.ecoinf.2016.02.006
https://doi.org/https://doi.org/10.1016/...
) (referred further in text as “antmaps”).

Collection information, e.g., site, coordinates, collector, associated with each specimen was directly digitized either from the accompanying labels and/or field catalogues. Geographic coordinates were verified with Google Maps and with The World Coordinate Converter (TWCC, 2020The World Coordinate Converter – TWCC, 2020. The World Coordinate Converter. Available in: https://twcc.fr (accessed 20 April 2021).
https://twcc.fr ...
). We georeferenced sites for specimens with no available coordinates. We used SimpleMappr (Shorthouse, 2010Shorthouse, D.P., 2010. SimpleMappr, an online tool to produce publication-quality point maps. Available in: https://www.simplemappr.net/ (accessed 20 April 2021).
https://www.simplemappr.net/...
) and Microsoft Power Point v. 2112 for making the distribution maps.

Geographic and collection information of our examined material is shown on each species treatment. The reader can also find the full record set, containing this information and additional collection details, including museum catalogue numbers (aka. unique specimen identifiers), in csv format (Supplementary Data 1 [online only]).

Images of the specimens were generated using a digital camera Nikon D 7500, adapted with a Leitz 3.2X lens. Final images were stacked in Helicon Focus v. 7.5.6 (Helicon Soft Ltd.) and posteriorly edited in Adobe Photoshop CS5®.

The following author abbreviations “APP” for Alex Pazmiño-Palomino and “AT” for Adrian Troya are used, where applicable, in the comments section of some species. The following symbols are used to refer to ant castes in the species accounts: ☿ = worker/soldier; ♀= queen.

Results

We identified 20 new ant species records for continental Ecuador, which are deposited in the three Ecuadorian natural history collections mentioned before (see also Supplementary Data 1 [online only]). The total number of new records is distributed in six subfamilies and nine genera: Myrmicinae (7 species), Formicinae (5), Ponerinae (3), Pseudomyrmecinae (2), Dolichoderinae (2), Dorylinae (1) (Table 1).

Table 1
Summary of new ant records in continental Ecuador. Provinces: ES=Esmeraldas, GU=Guayas, EO=El Oro, PI=Pichincha, LO=Loja, SU=Sucumbíos, NA=Napo, OR=Orellana, PA=Pastaza, ZC=Zamora Chinchipe. Abbreviations: G&B=Gotwald & Brown; M&M=Mackay & Mackay; O&F=Ortiz & Fernández.

Species accounts

Dolichoderinae

Dolichoderus utriensis Ortiz & Fernández, 2011

Figs. 1, 21A

Figure 1
Dolichoderus utriensis Ortiz & Fernández (worker, MEPN 4890): A) profile, B) frontal view, C) dorsal view. Images by Vladimir Carvajal. Scale bars = 1 mm.
Figure 21
Geographic distribution of the species examined in the present study.

Material examined. Ecuador. Esmeraldas: Reserva Ecológica Cotacachi Cayapas, 4 Km S Gualpi, Onzole river, 0.76111°N, 79.1542°W, 50m, 3☿, 2001-04-01, Araujo, P. et al., fogging, (MEPN).

Comments. This species can be separated from its congenerics by the carinated propodeal lateral margins bearing a weak spine from which four erect hairs emerge. The morphology of the specimen we examined matches the diagnostic characters of the original description. However, as expected for a representative from another population separated from that of the Colombian collection site by almost 600 Km, our specimen displays certain morphological variations in reference to the illustration of Ortiz and Fernández (2011)Ortiz, C. M., Fernández, F., 2011. Hormigas del género Dolichoderus Lund (Formicidae: Dolichoderinae) en Colombia (No. Doc. 24586). Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Bogotá.: absence of a lobe on the anterodorsal margin of the pronotum, mesonotum not bulging, and yellow hairs on the body dorsum. In Ecuador this species was collected by canopy fogging in the Chocó Biogeographic region. Nothing is known about its natural history except that it is likely arboreal. Dolichoderus utriensis was previously known by a single specimen from the Chocó Department of Colombia (Ortiz and Fernández, 2011Ortiz, C. M., Fernández, F., 2011. Hormigas del género Dolichoderus Lund (Formicidae: Dolichoderinae) en Colombia (No. Doc. 24586). Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Bogotá.).

Tapinoma ramulorum inrectum Forel, 1908

Figa. 2, 21A

Figure 2
Tapinoma ramulorum inrectum Forel (worker, MECN-EN-HYM 4601): A) profile, B) dorsal view, C) frontal view, D) nest on a metallic structure, E) nest on leaves of Rubiaceae. Images by Alex Pazmiño. Scale bars = 1 mm.

Material examined. Ecuador. Pichincha: Bosque Protector Mashpi, 0.1666°N, 78.8869°W, 895m, 50☿, 1♀, 2020-01-03, Pazmiño, A., hand collected, (MECN).

Comments. This species shows very long antennal scapes, about one third of their length extends beyond the posterior head margin; in frontal view, margin of vertex evenly rounded, not medially emarginate. T. ramulorum inrectum nests in small carton structures beneath leaves. It is the only species of the genus that uses a living resource for nesting (Guerrero, unpublished data). In the Mashpi cloud forest reserve APP observed colonies on the underside of leaves of Palicourea sp. (Rubiaceae) and Heliconia sp. (Heliconiaceae) on tourist trails, but also on human-made, metallic-based constructions. Mashpi lies in a complex of foothill forests in northwestern Ecuador, where the Chocoan and Andean biota converge. This population is more than 900 Km away from the southernmost record known so far. The status of this taxon will possibly change to species in the coming future, as is the case with other subspecies within the genus (Escárraga et al., 2021Escárraga, M. E., Lattke, J. E., Pie, M. R., Guerrero, R. J., 2021. Morphological and genetic evidence supports the separation of two Tapinoma ants (Formicidae, Dolichoderinae) from the Atlantic Forest biome. ZooKeys. 1033, 35-62. https://doi.org/10.3897/zookeys.1033.59880.
https://doi.org/10.3897/zookeys.1033.598...
; Guerrero, personal communication). Tapinoma ramulorum inrectum was previously known only in Central America (Janicki et al., 2016Janicki, J., Narula, N., Ziegler, M., Guénard, B., Economo, E. P., 2016. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps.org. Ecol. Inform. 32, 185-193. https://doi.org/https://doi.org/10.1016/j.ecoinf.2016.02.006
https://doi.org/https://doi.org/10.1016/...
).

Dorylinae

Nomamyrmex hartigii (Westwood, 1842)

Figs. 3, 21A

Figure 3
Nomamyrmex hartigii (Westwood) (worker, MEPN 40184): A) profile, B) frontal view, C) dorsal view. Images by Vladimir Carvajal. Scale bars = 1 mm.

Material examined. Ecuador. Guayas: Bosque Protector Cerro Blanco, 2.14153°S, 80.0862°W, 260m, 1☿, 2016-11-16, Pazmiño, A., Winkler, (MEPN).

Comments. This species differs from its morphologically closest species, N. esenbeckii Westwood, by the absence of the postoccipital sulcus and the posterior face of the petiolar node without longitudinal rugae (Palacio, 2019Palacio, E. 2019. Subfamilia Dorylinae. In: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 571–630.). Nomamyrmex hartigii is a rarely collected species. In the Cerro Blanco reserve, a seasonal dry forest within the city of Guayaquil, APP found a single individual in a leaf litter sample. This species is widely distributed in Central and South America (Janicki et al., 2016Janicki, J., Narula, N., Ziegler, M., Guénard, B., Economo, E. P., 2016. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps.org. Ecol. Inform. 32, 185-193. https://doi.org/https://doi.org/10.1016/j.ecoinf.2016.02.006
https://doi.org/https://doi.org/10.1016/...
).

Formicinae

Camponotus (Myrmoplatypus) banghaasi Emery, 1903

Figs. 4, 21A

Figure 4
Camponotus banghaasi Emery (worker, MEPN 34287): A) dorsal view, B) frontal view, C) lateral view. Images by Vladimir Carvajal. Scale bars = 1 mm.

Material examined. Ecuador. Orellana: Parque Nacional Yasuní, 32 Km SSE Limoncocha, Km 39 Pompeya sur, 0.65713°S, 76.453°W. 216m, 2☿, 1994-01-22. Erwin, T. et al., fogging, (MEPN); same information, except: 7☿, 1995-02-08, (MEPN).

Comments. The main distinguishing feature of this species is a whitish-yellow area partially covering the gaster, leaving a black subtriangular, longitudinal band dorsally; majors and minor workers lack erect hairs on the antennal scapes; pronotum lacking spines; hind tibiae strongly flattened (as in for example, C. sericeiventris Guérin-Méneville) with anterior concave surface. Although C. banghaasi is an uncommonly collected species, possibly because of its arboreal habits and presumably small colonies as compared to other Camponotus species, it may be easily noticed due to its large size (ca. 10-12 mm) in understorey Amazonian rainforest trails. It was previously reported only from Peru (Mackay, 2004Mackay, W. P. 2004. The Systematic and Biology of the New World Carpenter Ants of the Hyperdiverse Genus Camponotus (Hymenoptera: Formicidae). The University of Texas, El Paso.).

Camponotus (Myrmobrachys) heathi Mann, 1916

Figs. 5, 21B

Figure 5
Camponotus heathi Mann (worker, MEPN 34258): A) profile, B) frontal view, C) dorsal view. Images by Vladimir Carvajal and Alex Pazmiño. Scale bars= 1 mm.

Material examined. Ecuador. Orellana: Parque Nacional Yasuní, 32 Km SSE Limoncocha, Km 39 Pompeya sur, 1.29444°S, 76.0608°W, 216m, 2☿, 1995-10-07, Erwin, T. et al., fogging, (MEPN); Parque Nacional Yasuní, -1.2944, -76.0608, 216m, 1☿, 2014-02-01, Troya, A., (MEPN).

Comments. This uncommonly collected species is easily recognizable from other Neotropical Camponotus since it bears two ubiquitous propodeal spines: the first located anteriorly just next to the vestigial metanotal suture, and the other, usually bifurcated apically, located at the dorsal propodeal slope. The petiolar node shows three horizontally equidistant spines, smaller than those on the propodeum. Virtually nothing is known on the biology of C. heathi, except that it is arboreal. P.S. Ward collected one specimen in a fallen Hymenaea (Fabaceae) tree in Santa Cruz, Bolivia (AntWeb, 2021AntWeb, 2021. AntWeb Version 8.75.3: California Academy of Science. Available in: https://www.antweb.org (accessed 20 April 2021).
https://www.antweb.org...
). The presently examined specimens were collected through canopy fogging in Amazonian lowland rain forests. Wheeler (1923)Wheeler, W. M., 1923. Wissenschaftliche Ergebnisse der schwedischen entomologischen Reise des Herrn Dr. A. Roman in Amazonas 1914-1915. Ark. Zool. 15, 1-6. reported a specimen from an unidentified termite nest in the Brazilian Amazonia. The undescribed Camponotus JTL055 (INB0003605921) (AntWeb, 2021AntWeb, 2021. AntWeb Version 8.75.3: California Academy of Science. Available in: https://www.antweb.org (accessed 20 April 2021).
https://www.antweb.org...
) from Heredia, Costa Rica, may be potentially close to C. heathi. It was previously known from Colombia, Guyana, Peru, Bolivia, and Brazil (Amazonas, Rondônia, Mato Grosso), (Mackay and Mackay, 2019Mackay, W. P., Mackay, E., 2019. Género Camponotus. In: Fernández, F. (ed.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 743-790.; AntWeb, 2021AntWeb, 2021. AntWeb Version 8.75.3: California Academy of Science. Available in: https://www.antweb.org (accessed 20 April 2021).
https://www.antweb.org...
).

Camponotus (Myrmothrix) rufipes (Fabricius, 1775)

Figs. 6, 21B

Figure 6
Camponotus rufipes (Fabricius) (worker, MEPN 34036): A) profile, B) frontal view, C) dorsal view. Images by Vladimir Carvajal. Scale bars= 1 mm.

Material examined. Ecuador. Orellana: Parque Nacional Yasuní, 32 Km SSE Limoncocha, Km 39 Pompeya sur, 0.65713°S, 76.453°W, 216m, 5☿, 1995-02-08, Erwin, T. et al., fogging, (MEPN); same information, except: 1☿, 1994-01-22, (MEPN).

Comments. This species is easily recognizable due to its blackish body with brown or orange legs making a strong contrast; abundant erect hairs on the antennal scapes and tibiae; antennal scapes flattened near the base; anterior margin of clypeus concave and angled laterally. C. rufipes is widely distributed in South America (Mackay and Mackay, 2019Mackay, W. P., Mackay, E., 2019. Género Camponotus. In: Fernández, F. (ed.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 743-790.). Colonies make their nests in rotten wood or under tree bark. Oliveira et al., (2015)Oliveira, G. V., Correa, M. M., Goes, I. M. A., Machado, A. F. P., de Sa-Neto, R. J., Delabie, J. H. C., 2015. Interactions between Cecropia (Urticaceae) and ants (Hymenoptera: Formicidae) along a longitudinal east-west transect in the Brazilian Northeast. Ann. Soc. Entomol. Fr. 51, 153-160. https://doi.org/10.1080/00379271.2015.1061231.
https://doi.org/10.1080/00379271.2015.10...
found colonies of C. rufipes nesting in Cecropia trees, while Fagundes et al., (2010)Fagundes, R., Terra, G., Ribeiro, S. R., Majer, J. D., 2010. O bambu Merostachys fischeriana (Bambusoideae: Bambuseae) como habitat para formigas de floresta tropical montana. Neotrop. Entomol. 39, 906-911. https://doi.org/10.1590/S1519-566X2010000600009.
https://doi.org/10.1590/S1519-566X201000...
found nests in bamboo in Brazil. The workers can be very aggressive and may be found foraging inside the vegetation (litter leaf) or on ground trails. It may inhabit in anthropized areas, as for example, cities and crops, but also in natural grasslands, shrubby areas, and tropical rain forests (Mackay and Mackay, 2019Mackay, W. P., Mackay, E., 2019. Género Camponotus. In: Fernández, F. (ed.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 743-790.).

Camponotus (Myrmobrachys) santschii Forel, 1899

Figs. 7, 21B

Figure 7
Camponotus santschii Forel (worker, MEPN 40194): A) profile, B) frontal view, C) dorsal view. Images by Vladimir Carvajal. Scale bars = 1 mm.

Material examined. Ecuador. Guayas: Guayaquil, Bosque Protector Cerro Blanco, 2.17268°S, 80.0221°W, 160m, 1☿, 2016-11-16, Pazmiño, A., pitfall (MEPN); same information, except: 1☿, 2017-04-21, hand collected, (MEPN).

Comments. The workers of this species are distinguished from other similar taxa by showing a pair of spines on the propodeum and a long medial spine on the petiole; the propodeum is convex anteriorly and concave posteriorly; the metanotal groove is strongly depressed. The biology and behavior of C. santschii is unknown. The examined specimens were collected through pitfall traps and by hand in a seasonal dry forest in western Ecuador. It was formerly known from Central America and northern Colombia (Magdalena) (Mackay and Mackay, 2019Mackay, W. P., Mackay, E., 2019. Género Camponotus. In: Fernández, F. (ed.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 743-790.). This is the southernmost record of this species in the continent.

Camponotus (Dendromyrmex) traili Mayr, 1878

Figs. 8, 21B

Figure 8
Camponotus traili Mayr (worker, MEPN 34297): A) profile, B) frontal view, C) dorsal view. Images: A, C, Vladimir Carvajal; B, Alex Pazmiño. Scale bars= 1 mm.

Material examined. Ecuador. Orellana: Loreto, 0.733333°S, 77.5167°W, 870m, 1☿, 1991-08-08, Ward, P. S. (MECN); Parque Nacional Yasuní, 32 Km SSE Limoncocha, Km 39 Pompeya sur, 0.65713°S, 76.453°W, 216m, 2☿, 1994-01-22, Erwin, T. et al., fogging, (MEPN); same information, except: 3☿, 1994-10-06, (MEPN).

Comments. Within the subgenus Dendromyrmex this species is distinguished by having a sculpted pronotum with transverse, wrinkled striae dorsally, and similar striae arranged vertically on its side; antennal scapes with abundant hairs; dorsum of gaster mostly smooth and shiny (Mackay, 2004Mackay, W. P. 2004. The Systematic and Biology of the New World Carpenter Ants of the Hyperdiverse Genus Camponotus (Hymenoptera: Formicidae). The University of Texas, El Paso.). We examined specimens from canopy fogging and hand-collected samples from lowland Amazonian forests. Antmaps shows a record of C. traili for Ecuador, without reference though, only a non-traceable collection number is indicated. Camponotus traili was previously known from the Amazon region of Colombia, Venezuela, Bolivia, and Brazil, (Janicki et al., 2016Janicki, J., Narula, N., Ziegler, M., Guénard, B., Economo, E. P., 2016. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps.org. Ecol. Inform. 32, 185-193. https://doi.org/https://doi.org/10.1016/j.ecoinf.2016.02.006
https://doi.org/https://doi.org/10.1016/...
).

Myrmicinae

Cephalotes dentidorsum De Andrade, 1999

Figs. 9, 21C

Figure 9
Cephalotes dentidorsum De Andrade (worker, MEPN 28208): A) dorsal view, B) frontal view, C) profile. Images by Adrian Troya. Scale bars = 1 mm.

Material examined. Ecuador. Sucumbíos: Puchuchoa ravine forest, 0.08094°N, 77.27877°W, 411 m, 3☿, 2003-01-23, Araujo, P. & Enríquez, S., fogging, (MEPN).

Comments. This rare species is phylogenetically placed in the C. angustus clade sensu De Andrade and Baroni Urbani (1999) and confirmed in Oliveira et al. (2021)Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
. Workers of C. dentidorsum are highly similar to those of the also rare C. adolphi Emery. They differ only in the sculpture of the first gastral segment being opaque and with slight punctae in C. adolphi, and smooth and shining in C. dentidorsum. Based on their morphological features these two species should be very closely related, which is confirmed through analysis of COI gene sequences (< 2% interspecific divergence) (Troya & Donoso, unpublished data). Nothing is known about the biology of C. dentidorsum, which has only been previously recorded in western Amazonia (Peru), while C. adolphi has been recorded in Brazil (Mato Grosso, Minas Gerais and Distrito Federal) (De Andrade & Baroni Urbani, 1999; Oliveira et al., 2021Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
).

Cephalotes grandinosus (Smith, 1860)

Figs. 10, 21C

Figure 10
Cephalotes grandinosus (Smith) (worker, QCAZ 56564): A) dorsal view, B) frontal view, C) profile. Images by Adrian Troya. Scale bars = 1 mm.

Material examined. Ecuador. Napo: Carlos Julio Arosemena Tola, 1.165046°S, 77.855307°W, 490 m, 2☿, 2003-12, Wild, A., (QCAZ); Orellana: Parque Nacional YasunÍ, 0.66667°S, 76.3833°W, 120 m, 1☿, 1996-12, Baus, E., (QCAZ).

Comments. This species is placed in the C. grandinosus clade in the De Andrade and Baroni Urbani (1999) phylogeny and confirmed in Oliveira et al. (2021)Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
. Cephalotes grandinosus is morphologically very similar to C. persimilis De Andrade and C. persimplex De Andrade but differs from them in showing strongly impressed foveae mainly on the head dorsum; also, the propodeal lamellae of C. grandinosus are less broadened than in those species. Homoplasies are prevalent in Cephalotes, and in this specific case the degree of character conservatism is evident with C. persimilis and C. persimplex diverging from C. grandinosus (of Miocene origin) approximately during the late Paleocene (Price et al, 2014Price, S. L., Powell, S., Kronauer, D. J. C., Tran, L. A. P., Pierce, N. E., Wayne, R. K., 2014. Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J. Evol. Biol. 27, 242-258. https://doi.org/https://doi.org/10.1111/jeb.12300
https://doi.org/https://doi.org/10.1111/...
). This species is broadly distributed in the Americas, inhabiting tropical deciduous and rain forests from Central America, mainly at the Pacific side, to northwestern South American tropical flooded savannas, Amazonian tropical lowland forests, and deciduous and xeric shrublands and savannas of the Brazilian Caatinga and Cerrado. Cephalotes grandinosus was previously reported in Costa Rica, Panama, Colombia, Trinidad & Tobago, Venezuela, Guyana, French Guiana, Bolivia, and Brazil (Amazonas, Bahia, Ceará, Espírito Santo, Goiás, Maranhão, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Pará, Paraná, Rondônia, São Paulo, Sergipe, Tocantins) (De Andrade and Baroni Urbani, 1999; Oliveira et al. 2021Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
).

Cephalotes serraticeps (Smith, 1858)

Figs. 11, 21C

Figure 11
Cephalotes serraticeps (Smith) (worker, MEPN 28224): A) dorsal view, B) frontal view, C) profile. Images by Vladimir Carvajal. Scale bars = 1 mm.

Material examined. Ecuador. Orellana: Parque Nacional Yasuní, 27 Km SSE Limoncocha, 0.625226°S, 76.4967°W, 207m, 7☿, 2008-05-21, Troya, A., fogging, (MEPN).

Comments. This species is a member of the C. atratus clade, sensu De Andrade & Baroni Urbani (1999), and confirmed in Oliveira et al. (2021)Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
, and is characterized mainly by the bispinose cephalic corners; presence of dorsal stout spines both on the pronotum and propodeum; usually entirely jet-black body lacking scales and dense pubescence; and flattened meso- and metabasitarsi which are distally narrowed. Although the soldiers and queens of C. serraticeps are easily separated from those in its sister species C. alfaroi Emery by the strongly crenulate frontal lobes (absent in C. alfaroi), the workers of both species are not so easily distinguished. A longitudinal, well-impressed, dorsal pronotal carina present only in workers of C. serraticeps, can be of aid. Virtually nothing is known about the natural history of this species. The workers from Ecuador were collected through canopy fogging in a temporarily flooded Amazonian forest in the beginning of the rainy season. Previous records of this species include regions of the Colombian Amazonia and Orinoquia (Sandoval-Gómez and Sánchez-Restrepo, 2019Sandoval-Gómez, V., Sánchez-Restrepo, A., 2019. Género Cephalotes, in: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 899–915.), and Amazonian lowland forests in southern Peru and Brazil (Acre, Amapá, Amazonas, Maranhão, Rondônia, Pará) (De Andrade and Baroni Urbani, 1999; Oliveira et al. 2021Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
). A soldier (CASENT0922509) collected by P. Ward at Corcovado National Park, Costa Rica, has been recently uploaded to AntWeb (AntWeb, 2021AntWeb, 2021. AntWeb Version 8.75.3: California Academy of Science. Available in: https://www.antweb.org (accessed 20 April 2021).
https://www.antweb.org...
).

Cephalotes simillimus (Kempf, 1951)

Figs. 12, 21C

Figure 12
Cephalotes simillimus (Kempf) (worker, MEPN 4740): A) dorsal view, B) frontal view, C) profile. Images by Adrian Troya. Scale bars = 1 mm.

Material examined. Ecuador. Napo: Jatun Sacha Biological Reserve, 1.06667°S, 77.6167°W, 450m, 1☿, 2008-12-05, Troya, A. & Vizuete, J., fogging (MEPN); Orellana: Parque Nacional Yasuní, 27 Km SSE Limoncocha, 0.625226°S, 76.4967°W, 207m, 2☿, 2007-10-21, Troya, A., fogging (MEPN); same information, except: 1☿, 2007-06-15, Troya, A., (MEPN); Parque Nacional Yasuní, 28 Km SSE Limoncocha, 0.62389°S, 76.4806°W, 209m, 1☿, 2008-05-18, Troya, A., fogging (MEPN); Parque Nacional Yasuní, 58 km SEE Limoncocha, 0.631944°S, 76.1442°W, 250m, 1☿, 1☿ (soldier), 2002-07-21, Erwin, T. et al., fogging (MEPN).

Comments. This is a member of the C. pusillus group sensuOliveira et al. (2021)Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
. Cephalotes simillimus is highly similar to its sister species C. minutus, however, the latter shows more laterally salient and defined pronotal teeth (more like denticle- and lamella-shaped in C. simillimus); also, the posterior propodeal spines in C. minutus Fabricius usually do not expand ventrally in a lamella (these spines do expand into a lamella in all our C. simillimus). This species has been recorded only in South America, showing more records in lowland rain forests of central and southern Amazonia, though reaching also forest remnants in the Brazilian Atlantic Forest (De Andrade and Baroni Urbani, 1999De Andrade, M., Baroni Urbani, C., 1999. Diversity and Adaptation in the Ant Genus Cephalotes, Past and Present. Staatliches Museum für Naturkunde, Stuttgart.), and xeric shrublands of the Cerrado in Brazil (Oliveira et al. 2021Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
). Virtually nothing is known about the biology of C. simillimus except that it may nest in dead twigs and live branches (C. Moreau in AntWeb, 2021AntWeb, 2021. AntWeb Version 8.75.3: California Academy of Science. Available in: https://www.antweb.org (accessed 20 April 2021).
https://www.antweb.org...
). Current examined specimens were all collected through canopy fogging, mostly in primary Amazonian rain forests. Cephalotes simillimus has been previously recorded in Colombia, Guyana, French Guiana, Bolivia, Peru, and Brazil (Acre, Amazonas, Bahia, Mato Grosso, Minas Gerais, Goiás, Rondônia, Roraima, Pará, Sergipe) (De Andrade and Baroni Urbani, 1999De Andrade, M., Baroni Urbani, C., 1999. Diversity and Adaptation in the Ant Genus Cephalotes, Past and Present. Staatliches Museum für Naturkunde, Stuttgart.; Sandoval-Gómez and Sánchez-Restrepo, 2019Sandoval-Gómez, V., Sánchez-Restrepo, A., 2019. Género Cephalotes, in: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 899–915.; Oliveira et al. 2021Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
).

Cephalotes solidus (Kempf, 1974Kempf, W. W., 1974. Taxonomic and faunistic notes on some Neotropical Cephalotini ants (Hymenoptera, Formicidae). Rev. Bras. Entomol. 18, 67-76.)

Figs. 13, 21D

Figure 13
Cephalotes solidus (Kempf) (worker, MEPN 28447): A) dorsal view, B) frontal view, C) profile. Images by Adrian Troya. Scale bars = 1 mm.

Material examined. Ecuador. Napo: Jatun Sacha Biological Reserve, 1.06667°S, 77.6167°W, 450m, 1☿, 2008-12-03, Troya, A. & Vizuete, J., fogging (MEPN); same information, except: 3☿, 2008-12-04, (MEPN); Orellana: Parque Nacional Yasuní, 27 Km SSE Limoncocha, 0.625226°S, 76.4967°W, 207m, 1☿, 2008-05-19, Troya, A., fogging (MEPN); Parque Nacional Yasuní, 38 km SE Limoncocha, 0.66667°S, 76.3833°W, 120m, 1☿, 2005-07-05, Argoti, A., fogging (MEPN); Sucumbíos: Nuevo Sucumbíos, 0.229222°S, 77.3263°W, 655m, 1☿, 2005-12-27, Troya, A., fogging (MEPN).

Comments. The morphological features of C. solidus are unique in the genus, thus reflecting its “isolated” position in the Cephalotes phylogeny sensuDe Andrade and Baroni Urbani (1999)De Andrade, M., Baroni Urbani, C., 1999. Diversity and Adaptation in the Ant Genus Cephalotes, Past and Present. Staatliches Museum für Naturkunde, Stuttgart. where it is the sole member of its homonym clade. Cephalotes solidus is easily distinguished from other Cephalotes mainly by the almost complete absence of spinescence and lamellae on the head and mesosoma. The humeral dorsum is the only exception which shows a slightly developed, acute denticle; the petiolar and postpetiolar nodes are usually devoid of spines as well. According to Kempf’s (1974)Kempf, W. W., 1974. Taxonomic and faunistic notes on some Neotropical Cephalotini ants (Hymenoptera, Formicidae). Rev. Bras. Entomol. 18, 67-76. description, the petiolar node shows [a pair] of “prominent, stout denticle” (p. 74). No information is known about the natural history of this morphologically singular species. The specimens examined in our study were collected through canopy fogging in well-preserved, lowland Amazonian rain forests, so we assume it is arboreal. This species was previously recorded only in Brazil (Acre, Amazonas) (Janicki et al., 2016Janicki, J., Narula, N., Ziegler, M., Guénard, B., Economo, E. P., 2016. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps.org. Ecol. Inform. 32, 185-193. https://doi.org/https://doi.org/10.1016/j.ecoinf.2016.02.006
https://doi.org/https://doi.org/10.1016/...
; Oliveira et al. 2021Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
).

Cephalotes trichophorus De Andrade, 1999

Figs. 14, 21D

Figure 14
Cephalotes trichophorus De Andrade (worker, MEPN 28351): A) dorsal view, B) frontal view, C) profile. Images by Vladimir Carvajal. Scale bars = 1 mm.

Material examined. Ecuador. Orellana: Parque Nacional Yasuní, 38 km SE Limoncocha, 0.66667°S, 76.3833°W, 120m, 2☿, 2005-07-05, Argoti, A., fogging (MEPN).

Comments. This scantly collected species is placed in the diverse coffeae clade sensuDe Andrade and Baroni Urbani (1999)De Andrade, M., Baroni Urbani, C., 1999. Diversity and Adaptation in the Ant Genus Cephalotes, Past and Present. Staatliches Museum für Naturkunde, Stuttgart. and confirmed in Oliveira et al. (2021)Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
. Most of its members are extinct. Workers of C. trichophorus are morphologically very similar to those of C. setulifer Emery. The easiest way to distinguish the workers of C. trichophorus from C. setulifer is through the lateral pronotal margins: forming slight, non-spiny lamellae in C. trichophorus, while C. setulifer bears two pairs of small, feebly developed denticles anteriorly. According to the phylogeny of De Andrade and Baroni Urbani (1999)De Andrade, M., Baroni Urbani, C., 1999. Diversity and Adaptation in the Ant Genus Cephalotes, Past and Present. Staatliches Museum für Naturkunde, Stuttgart., C. trichophorus is sister to C. coffeae Kempf (morphological analysis), while in Price et al. (2014)Price, S. L., Powell, S., Kronauer, D. J. C., Tran, L. A. P., Pierce, N. E., Wayne, R. K., 2014. Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J. Evol. Biol. 27, 242-258. https://doi.org/https://doi.org/10.1111/jeb.12300
https://doi.org/https://doi.org/10.1111/...
C. trichophorus is sometimes placed as sister to C. setulifer (molecular analysis), and more usually as sister to C. peruviensis De Andrade (combined morphology and molecular data) which is another related species in this clade. Although Price et al. (2014)Price, S. L., Powell, S., Kronauer, D. J. C., Tran, L. A. P., Pierce, N. E., Wayne, R. K., 2014. Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J. Evol. Biol. 27, 242-258. https://doi.org/https://doi.org/10.1111/jeb.12300
https://doi.org/https://doi.org/10.1111/...
did not include C. coffeae in their analyses is clear that morphology alone is relatively limited for clarifying relationships in these taxa which show certain degree of morphological plasticity. Nothing is known about the biology of C. trichophorus except that it has been collected in Amazonian rainforests of Brazil (Acre) using arboreal pitfall traps (Oliveira et al., 2021Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
). Currently examined specimens were collected through fogging in a well-preserved Amazonian rain forest. This species was previously reported only in Peru and Brazil (Acre, Amazonas) (De Andrade and Baroni Urbani, 1999De Andrade, M., Baroni Urbani, C., 1999. Diversity and Adaptation in the Ant Genus Cephalotes, Past and Present. Staatliches Museum für Naturkunde, Stuttgart.; Oliveira et al., 2021Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028.
https://doi.org/10.1590/1806-9665-rbent-...
).

Pogonomyrmex naegelii Emery, 1878

Figs. 15, 21D

Figure 15
Pogonomyrmex naegelii Emery (worker, MEPN 40046): A) profile, B) frontal view, C) dorsal view. Images by Vladimir Carvajal. Scale bars = 1 mm.

Material examined. Ecuador. Zamora Chinchipe: Road to Zumba-La Balsa, Pucapamba, 4.9771°S, 79.1155°W, 680m, 1☿, 2017-08-10, Pazmiño, A., hand collected, (MEPN).

Comments. This species has been assigned to the P. naegelii group sensu Johnson (2015)Johnson, R. A., 2015. A taxonomic revision of South American species of the seed harvester ant genus Pogonomyrmex (Hymenoptera: Formicidae). Part I. Zootaxa 4029, 1-142. https://doi.org/https://doi.org/10.11646/zootaxa.4029.1.1
https://doi.org/https://doi.org/10.11646...
and among some of the morphological traits characterizing this taxon, we may cite the following for the worker caste (based on said author, in part): frontal lobes bearing between 8-10 strong rugae; concavity on anterior clypeal margin feebly to well-developed, and usually lacking well-developed acute lobes, in frontal view; peduncle of petiole and anterior region of petiolar node meeting at an obtuse angle, in lateral view. This is the most commonly collected taxon in the genus and is distributed only in South America from northern Venezuela to central-northern Argentina and can be found in a variety of biomes and ecosystems but appears to be absent from deserts and high elevation zones (Johnson, 2015Johnson, R. A., 2015. A taxonomic revision of South American species of the seed harvester ant genus Pogonomyrmex (Hymenoptera: Formicidae). Part I. Zootaxa 4029, 1-142. https://doi.org/https://doi.org/10.11646/zootaxa.4029.1.1
https://doi.org/https://doi.org/10.11646...
). APP collected a single specimen in a xerophytic disturbed area close to the southeastern border between Ecuador and Peru.

Ponerinae

Neoponera antecurvata (Mackay & Mackay, 2010Mackay, E., Mackay, W., 2010. The Systematics and Biology of the New World Ants of the Genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellen Press, Lewiston.)

Figs. 16, 21E

Figure 16
Neoponera antecurvata (MacKay & MacKay) (worker, MEPN5053): A) profile, B) frontal view, C) dorsal view. Images by Adrian Troya. Scale bars = 1 mm.

Material examined. Ecuador. Orellana: Parque Nacional Yasuní, 27 Km SSE Limoncocha, 0.62583°S, 76.4953°W, 207m, 1☿, 2008-05-21, Troya, A., fogging (MEPN); Parque Nacional Yasuní, 28 Km SSE Limoncocha, 0.608279°S, 76.4567°W, 186m, 1☿, 2008-05-24, Troya, A., fogging (MEPN); Parque Nacional Yasuní, 32 Km SSE Limoncocha, Km 39 Pompeya sur, 0.65713°S, 76.453°W, 216m, 1♀︎, 1995-02-12, Erwin, T. et al., fogging (MEPN).

Comments. This uncommonly collected species belongs to the N. crenata group sensuMackay and Mackay (2010)Mackay, E., Mackay, W., 2010. The Systematics and Biology of the New World Ants of the Genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellen Press, Lewiston.. This species is very similar to N. unidentata Mayr and N. donosoi Mackay & Mackay, but mainly differs from them in the form of the petiolar node in profile, with its posterior face slightly domed (evenly convex in both N. unidentata and N. donosoi); in addition, N. antecurvata usually bears few (ca. four) coarse horizontal striae ventrally on the subpetiolar process (clearly more and less coarse in N. unidentata, and few feeble striations in N. donosoi). Neoponera antecurvata is likely arboreal and apparently prefers well-preserved habitats (see also Longino, 2002Longino, J., 2002. Ants of Costa Rica. Available in: https://ants.biology.utah.edu/AntsofCostaRica.html (accessed 20 April 2021).
https://ants.biology.utah.edu/AntsofCost...
). Current records were collected with canopy fogging in mature Amazonian lowland wet forests. This species has been previously recorded in Guatemala, Honduras, Panama, Costa Rica, Peru, and Brazil (Amazonas) (Mackay and Mackay, 2010Mackay, E., Mackay, W., 2010. The Systematics and Biology of the New World Ants of the Genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellen Press, Lewiston.).

Neoponera moesta (Mayr, 1870)

Figs. 17, 21E

Figure 17
Neoponera moesta (Mayr) (worker, MEPN 34660): A) profile, B) frontal view, C) dorsal view. Images by Adrian Troya. Scale bars = 1 mm.

Material examined. Ecuador. Esmeraldas: Reserva Ecológica Cotacachi Cayapas, 0.69611°N, 78.9108°W, 37m, 1♀︎, 2☿, 2001-04-01, Araujo, P. et al., fogging (MEPN); same information, except: 0.845264°N, 78.7447°W, 120m, 1♀︎, 2☿, (MEPN); Orellana: Parque Nacional Yasuní, 32 Km SSE Limoncocha, Km 39 Pompeya sur, 0.65713°S, 76.453°W, 216m, 3♀, 5☿, 1995-02-08, Erwin, T. et al., fogging (MEPN); same information, except: 4☿, 1995-02-11, (MEPN); 3☿, 1995-02-10, (MEPN); Pastaza: Parque Nacional Yasuní, 151 Km SE Limoncocha, 1.61°S, 75.9692°W, 172m, 1☿, 2014-01-13, Chasiliquín, N. & Villacrés, E., Winkler, (MEPN).

Comments. According to Mackay and Mackay (2010)Mackay, E., Mackay, W., 2010. The Systematics and Biology of the New World Ants of the Genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellen Press, Lewiston. this species belongs to the N. crenata group. This is a hard-to-identify species due to its strong morphological resemblance to its closest lineages N. crenata Roger and N. globularia Mackay & Mackay. Even the types (images available on AntWeb) require further revision. The workers and queens of N. moesta mainly differ from those of N. crenata in the distance from the anterior margin of eye to the anterolateral head corner (at the mandibular articulation) which is greater than half eye maximum length (shorter in N. crenata). Neoponera moesta is distinguishable from N. globularia mainly by its petiolar node, which is sub-triangular dorsally, while that of N. globularia is mostly rounded dorsally. This arboreal species is fairly common in well preserved to semi-disturbed habitats of lowland and pre-mountainous wet habitats of Amazonia and the Brazilian Atlantic Forest, though it has been collected also in deciduous habitats of Central America. Despite being relatively common in field samples virtually nothing is known about its natural history, but see Mackay and Mackay (2010)Mackay, E., Mackay, W., 2010. The Systematics and Biology of the New World Ants of the Genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellen Press, Lewiston., and Longino (2002)Longino, J., 2002. Ants of Costa Rica. Available in: https://ants.biology.utah.edu/AntsofCostaRica.html (accessed 20 April 2021).
https://ants.biology.utah.edu/AntsofCost...
. This species is widely distributed throughout Central and South America (Mackay & Mackay 2010Mackay, E., Mackay, W., 2010. The Systematics and Biology of the New World Ants of the Genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellen Press, Lewiston.).

Simopelta laticeps Gotwald & Brown, 1967

Figs. 18, 21E

Figure 18
Simopelta laticeps Gotwald & Brown (worker, MECN-EN-HYM 4602): A) profile, B) frontal view, C) dorsal view. Images by Alex Pazmiño. Scale bars = 1 mm.

Material examined. Ecuador. El Oro: Santa Rosa, Birón Alto, 3.564°S, 79.774°W, 1472m, 8☿, 21-Nov-2018, Pazmiño, A. & Suárez-Torres, A., hand collected, (MECN).

Comments. This species can be distinguished by its posterior head margin being clearly concave medially; eyes present; mandible with four similarly sized teeth; and external mid tibial surface without thick and short hairs (Fernández and Guerrero, 2019Fernández, F., Guerrero, R. J., 2019. Subfamilia Ponerinae. In: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 509–553.). This species is rarely collected, and nothing is known about its biology (L. Souza-Barros, pers. comm., Dec-2021). APP found some workers in a foothill forest off the pacific coast in southern Ecuador. Simopelta laticeps was previously reported for Colombia, Peru, and French Guiana (Guénard et al., 2017Guénard, B., Weiser, M. D., Gomez, K., Narula, N., Economo, E. P., 2017. The global ant biodiversity informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol. News 24, 83-89. https://doi.org/10.25849/myrmecol.news_024:083.
https://doi.org/10.25849/myrmecol.news_0...
).

Pseudomyrmecinae

Pseudomyrmex penetrator (Smith, 1877)

Figs. 19, 21F

Figure 19
Pseudomyrmex penetrator (Smith) (worker, MEPN 31858): A) profile, B) frontal view, C) dorsal view. Images by Vladimir Carvajal and Alex Pazmiño. Scale bars = 1 mm.

Material examined. Ecuador. Orellana: Parque Nacional Yasuní, 32 Km SSE Limoncocha, Km 39 Pompeya sur, 0.65713°S, 76.453°W, 216m, 1☿, 1994-01-23, Erwin, T. et al., fogging, (MEPN), same information, except: 1☿, 1994-01-12, (MEPN).

Comments. This species is very similar to P. concolor Smith, differing primarily in overall body color; gaster, and usually mesosoma, petiole and postpetiole, dark brown; head brown or orange-brown; antennae, tarsi and tibiae lighter yellow-brown; petiole relatively lower, with a smaller subpetiolar process; and postpetiole relatively broader (Ward, 1999Ward, P. S., 1999. Systematics, biogeography and host plant associations of the Pseudomyrmex viduus group (Hymenoptera: Formicidae), Triplaris-and Tachigali-inhabiting ants. Zool. J. Linn. Soc. 126, 451-540. https://doi.org/https://doi.org/10.1111/j.1096-3642.1999.tb00157.x
https://doi.org/https://doi.org/10.1111/...
). Pseudomyrmex penetrator is mutually associated with Tachigali spp. (Fabaceae), and exclusively depends on its food sources (Ward, 1999Ward, P. S., 1999. Systematics, biogeography and host plant associations of the Pseudomyrmex viduus group (Hymenoptera: Formicidae), Triplaris-and Tachigali-inhabiting ants. Zool. J. Linn. Soc. 126, 451-540. https://doi.org/https://doi.org/10.1111/j.1096-3642.1999.tb00157.x
https://doi.org/https://doi.org/10.1111/...
). It is widely distributed in the east-central Amazon basin and the adjacent Guyanas.

Pseudomyrmex peruvianus (Wheeler, 1925)

Figs. 20, 21F

Figure 20
Pseudomyrmex peruvianus (Wheeler) (worker, MECN-EN-HYM 4612): A) profile, B) frontal view, C) dorsal view. Images by Vladimir Carvajal. Scale bars = 1 mm.

Material examined. Ecuador. Napo: Tena, Jatun Sacha Biological Reserve, 1.06667°S, 77.6167°W, 400m, 1☿, 1991-08-04, Ward, P. S., (MECN).

Comments. This species can be distinguished from its congeners by its yellowish-brown or orange-brown head and pronotum, which contrast with a dark-brown rest of the body; middorsal margin of petiolar node slightly shifted anteriorly, in lateral view; metanotal groove conspicuously incised. Pseudomyrmex peruvianus may nest in dead twigs. It has been previously collected in Colombia, Peru, French Guiana and Brazil (Acre, Mato Grosso) (Ward, 2019Ward, P. S. 2019. Subfamilia Pseudomyrmecinae. In: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 1089–1114.).

Discussion

In recent years, progress has been made towards knowing the biodiversity of insects in Ecuador (Marín-Armijos et al., 2017Marín-Armijos, D., Quezada-Ríos, N., Soto-Armijos, C., Mengual, X., 2017. Checklist of the flower flies of Ecuador (Diptera, syrphidae). ZooKeys 2017, 163-199. https://doi.org/10.3897/zookeys.691.13328.
https://doi.org/10.3897/zookeys.691.1332...
; Ponce et al., 2021Ponce, P., Cevallos, V., Carrazco-Montalvo, A., 2021. Mosquitoes (Diptera: Culicidae) of Ecuador: a revised checklist, new records and species of medical importance. bioRxiv. Preprint. https://doi.org/10.1101/2021.02.10.429771.
https://doi.org/10.1101/2021.02.10.42977...
; Kleemann et al., 2022Kleemann, J., Koo, H., Hensen, I., Mendieta-leiva, G., Kahnt, B., Kurze, C., Inclan, D. J., Cuenca, P., Noh, J. K., Hoffmann, M. H., Factos, A., Lehnert, M., Lozano, P., Fürst, C., 2022. Priorities of action and research for the protection of biodiversity and ecosystem services in continental Ecuador. Biol. Conserv. 265, 109404. https://doi.org/10.1016/j.biocon.2021.109404.
https://doi.org/10.1016/j.biocon.2021.10...
), it is still notorious, though, how little is known the ant fauna in this small but megadiverse territory. Before Salazar et al. (2015)Salazar, F., Reyes-Bueno, F., Sanmartin, D., Donoso, D. A., 2015. Mapping continental Ecuadorian ant species. Sociobiology 62, 132-162. https://doi.org/http://dx.doi.org/10.13102/sociobiology.v62i2.132-162
https://doi.org/http://dx.doi.org/10.131...
, an updated species list for this country’s continental area was inexistent. This first checklist was an important first contribution. However, a plethora of ant specimens contained in unexamined bottles and boxes which are deposited in various Ecuadorian institutions, still await proper study. The new records presented in our contribution reflect just a small proportion of the material that needs revision.

The new count of 803 species registered in Ecuador which is obtained by summing the current 783 valid records reported in GABI 1.0 release, January, 2022 (Guénard et al., 2017Guénard, B., Weiser, M. D., Gomez, K., Narula, N., Economo, E. P., 2017. The global ant biodiversity informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol. News 24, 83-89. https://doi.org/10.25849/myrmecol.news_024:083.
https://doi.org/10.25849/myrmecol.news_0...
) plus our additions, represents approximately 23% of the species richness of the Neotropics. This richness is concentrated in one of the smallest territories of South America, and is remarkably high if we compare it to other megadiverse, though much larger countries in the region, for example, Brazil (30 X the size of Ecuador) for which approximately 1530 species are reported (R.M. Feitosa, pers. comm., Aug-2020), Mexico (7 X) with 890 species (Dáttilo et al., 2020Dáttilo, W., Vásquez‐Bolaños, M., Ahuatzin, D. A., Antoniazzi, R., Chávez‐González, E., Corro, E., Luna, P., Guevara, R., Villalobos, F., Madrigal‐Chavero, R., Falcão, J. C. de F., Bonilla‐Ramírez, A., Romero, A. R. G., Mora, A., Ramírez‐Hernández, A., Escalante‐Jiménez, A. L., Martínez‐Falcón, A. P., Villarreal, A. I., Sandoval, A. G. C., Aponte, B., Juárez‐Juárez, B., Castillo‐Guevara, C., Moreno, C. E., Albor, C., Martínez‐Tlapa, D. L., Huber‐Sannwald, E., Escobar, F., Montiel‐Reyes, F. J., Varela‐Hernández, F., Castaño‐Meneses, G., Pérez‐Lachaud, G., Pérez‐Toledo, G. R., Alcalá‐Martínez, I., Rivera‐Salinas, I. S., Chairez‐Hernández, I., Chamorro‐Florescano, I. A., Hernández‐Flores, J., Toledo, J. M., Lachaud, J., Reyes‐Muñoz, J. L., Valenzuela‐González, J. E., Horta‐Vega, J. V., Cruz‐Labana, J. D., Reynoso‐Campos, J. J., Navarrete‐Heredia, J. L., Rodríguez‐Garza, J. A., Pérez‐Domínguez, J. F., Benítez‐Malvido, J., Ennis, K. K., Sáenz, L., Díaz‐Montiel, L. A., Tarango‐Arámbula, L. A., Quiroz‐Robedo, L. N., Rosas‐Mejía, M., Villalvazo‐Palacios, M., Gómez‐Lazaga, M., Cuautle, M., Aguilar‐Méndez, M. J., Baena, M. L., Madora‐Astudillo, M., Rocha‐Ortega, M., Pale, M., García‐Martínez, M. A., Soto‐Cárdenas, M. A., Correa‐Ramírez, M. M., Janda, M., Rojas, P., Torres‐Ricario, R., Jones, R. W., Coates, R., Gómez‐Acevedo, S. L., Ugalde‐Lezama, S., Philpott, S. M., Joaqui, T., Marques, T., Zamora‐Gutierrez, V., Martínez-Mandujano, V., Hajian‐Forooshani, Z., MacGregor-Fors, I., 2020. Mexico ants: incidence and abundance along the Nearctic–Neotropical interface. Ecology. 101 (4). http://dx.doi.org/10.1002/ecy.2944.
http://dx.doi.org/10.1002/ecy.2944...
), and Colombia (4 X) with approximately 1200 species (García et al., 2020García, E. I., Tocora, M. C., Fiorentino, G., Escárraga, M., Fernández, F., Guerrero, R. J., 2020. New records of ants (Hymenoptera: Formicidae) for Colombia. Biota Neotrop. 20, 1-9. https://doi.org/10.1590/1676-0611-BN-2020-1088.
https://doi.org/10.1590/1676-0611-BN-202...
).

By contrast, in Costa Rica (5 X smaller than Ecuador) 989 species have been registered so far (Guénard et al. 2017Guénard, B., Weiser, M. D., Gomez, K., Narula, N., Economo, E. P., 2017. The global ant biodiversity informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol. News 24, 83-89. https://doi.org/10.25849/myrmecol.news_024:083.
https://doi.org/10.25849/myrmecol.news_0...
). In terms of species richness Costa Rica may be amongst the most intensively studied country of the American continent. Bearing in mind that many habitats in Ecuador are poorly inventoried, especially with respect to the Formicidae (Salazar et al., 2015Salazar, F., Reyes-Bueno, F., Sanmartin, D., Donoso, D. A., 2015. Mapping continental Ecuadorian ant species. Sociobiology 62, 132-162. https://doi.org/http://dx.doi.org/10.13102/sociobiology.v62i2.132-162
https://doi.org/http://dx.doi.org/10.131...
), and that a significant proportion of already collected specimens remain unidentified in some Ecuadorian reference collections, we certainly expect a series of new discoveries for the Ecuadorian ant fauna be unveiled in future contributions.

The complex and rich habitat heterogeneity found in Ecuador possibly boosted such concentration of species richness in a comparatively small region (see Pitman et al., 2002Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez, V. P., Neill, D. A., Cerón, C. E., Palacios, W. A., Aulestia, M., 2002. A comparison of tree species diversity in two upper Amazonian forests. Ecology 83 (11), 3210-3224. http://dx.doi.org/10.1890/0012-9658(2002)083[3210:ACOTSD]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2002...
; Dangles et al., 2009Dangles, O., Barragán, A., Cárdenas, R. E., Onore, G., Keil, C., 2009. Entomology in Ecuador: recent developments and future challenges. Ann. Soc. Entomol. Fr. 45, 424-436. https://doi.org//10.1080/00379271.2009.10697627
https://doi.org//10.1080/00379271.2009.1...
; Bass et al., 2010Bass, M. S., Finer, M., Jenkins, C. N., Kreft, H., Cisneros-Heredia, D. F., McCracken, S. F., Pitman, N. C. A., English, P. H., Swing, K., Villa, G., Di Fiore, A., Voigt, C. C., Kunz, T. H., 2010. Global conservation significance of Ecuador’s Yasuní National Park. PLoS One 5, e8767. https://doi.org/10.1371/journal.pone.0008767.
https://doi.org/10.1371/journal.pone.000...
). Environmental heterogeneity coupled with a variety of climates, landscapes and vegetation types are considered among the potential drivers explaining current species richness, particularly in mountainous regions of tropical South America (Luebert and Weigend, 2014Luebert, F., Weigend, M., 2014. Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2, 1-17. https://doi.org/10.3389/fevo.2014.00027.
https://doi.org/10.3389/fevo.2014.00027...
, Cuesta et al., 2017Cuesta, F., Muriel, P., Llambí, L. D., Halloy, S., Aguirre, N., Beck, S., Carilla, J., Meneses, R. I., Cuello, S., Grau, A., Gámez, L. E., Irazábal, J., Jácome, J., Jaramillo, R., Ramírez, L., Samaniego, N., Suárez-Duque, D., Thompson, N., Tupayachi, A., Viñas, P., Yager, K., Becerra, M. T., Pauli, H., Gosling, W. D., 2017. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40, 1381-1394. https://doi.org/10.1111/ecog.02567.
https://doi.org/10.1111/ecog.02567...
, Boschman and Condamine, 2022Boschman, L. M., Condamine, F. L., 2022. Mountain radiations are not only rapid and recent: ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations. Global Planet. Change 208, 103704. https://doi.org/10.1016/j.gloplacha.2021.103704.
https://doi.org/10.1016/j.gloplacha.2021...
).

This high species richness hosted by a heterogenous matrix where Chocoan, Andean, and Amazonian habitats converge (Dangles et al., 2009Dangles, O., Barragán, A., Cárdenas, R. E., Onore, G., Keil, C., 2009. Entomology in Ecuador: recent developments and future challenges. Ann. Soc. Entomol. Fr. 45, 424-436. https://doi.org//10.1080/00379271.2009.10697627
https://doi.org//10.1080/00379271.2009.1...
; Bass et al., 2010Bass, M. S., Finer, M., Jenkins, C. N., Kreft, H., Cisneros-Heredia, D. F., McCracken, S. F., Pitman, N. C. A., English, P. H., Swing, K., Villa, G., Di Fiore, A., Voigt, C. C., Kunz, T. H., 2010. Global conservation significance of Ecuador’s Yasuní National Park. PLoS One 5, e8767. https://doi.org/10.1371/journal.pone.0008767.
https://doi.org/10.1371/journal.pone.000...
; Santillán et al., 2020Santillán, V., Quitián, M., Tinoco, B. A., Zárate, E., Schleuning, M., Böhning-Gaese, K., Neuschulz, E. L., 2020. Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecol. 102, 103500. https://doi.org/10.1016/j.actao.2019.103500.
https://doi.org/10.1016/j.actao.2019.103...
) is constantly threatened by deforestation due to extractivism, changes in land use and human settlements (Kleemann et al., 2022Kleemann, J., Koo, H., Hensen, I., Mendieta-leiva, G., Kahnt, B., Kurze, C., Inclan, D. J., Cuenca, P., Noh, J. K., Hoffmann, M. H., Factos, A., Lehnert, M., Lozano, P., Fürst, C., 2022. Priorities of action and research for the protection of biodiversity and ecosystem services in continental Ecuador. Biol. Conserv. 265, 109404. https://doi.org/10.1016/j.biocon.2021.109404.
https://doi.org/10.1016/j.biocon.2021.10...
). Researchers must act fast in collaborative initiatives while encouraging next generations of the society to further scientific discovery.

Our results strengthen the importance of scientific collections as biodiversity repositories. Local institutions responsible for their maintenance, in particular those with public-dependent (state) budget, from where most of the present new records are deposited, have to be supported with financial, technological and human resources. This is just part of the debt earned by our society as a consequence of development.

Conclusion

The ant fauna dwelling in this small, but megadiverse Latin American country is still poorly comprehended, both taxonomically and biologically. The current 803 ant species known for Ecuador makes it one of the richest regions of the Americas, especially considering the size of its territory. The new records presented here contribute to the knowledge of the Formicidae of this country and of the Neotropical realm with highlights on some species for which their distribution may be less understood than previously thought. Our study also illustrates the importance of scientific collections as biodiversity repositories, which harbor historical information that can be used to promote the conservation of nature in the long term.

Acknowledgments

We are grateful to Tony Albán, Daniel Sanmartín and Luis Espinoza for their valuable help in refining and cleaning our database. L. Espinoza also aided identifying some species records and contributed in revising prior versions of the manuscript. Thank you so much to Vladimir Carvajal for taking excellent images of various species. AT is thankful to various dynamic volunteers at MEPN who greatly expedited specimen mounting. We thank Mashpi Lodge, Fundación Pro Bosque, and GAD Santa Rosa for their support while collecting specimens in the areas under their management. We appreciate the aid of Roberto J. Guerrero for confirming the identifications of the Dolichoderinae. Thanks to Efrain Freire for his help in identifying the Tapinoma host plants. Finally, we appreciate the comments and suggestions of the three anonymous reviewers which significantly enhanced the quality of this work. This is the first contribution in the series The Ants of Ecuador.

  • Funding

    Financial support was obtained through one of the authors.

References

  • Aguirre-Tapiero, M., Johnson, P.J., 2014. A preliminary checklist, classification, and four new country records for the elateridae (Coleoptera) of Ecuador. Insecta Mundi. 0350, 1-11.
  • AntWeb, 2021. AntWeb Version 8.75.3: California Academy of Science. Available in: https://www.antweb.org (accessed 20 April 2021).
    » https://www.antweb.org
  • Bass, M. S., Finer, M., Jenkins, C. N., Kreft, H., Cisneros-Heredia, D. F., McCracken, S. F., Pitman, N. C. A., English, P. H., Swing, K., Villa, G., Di Fiore, A., Voigt, C. C., Kunz, T. H., 2010. Global conservation significance of Ecuador’s Yasuní National Park. PLoS One 5, e8767. https://doi.org/10.1371/journal.pone.0008767
    » https://doi.org/10.1371/journal.pone.0008767
  • Bezděčková, K., Bezděčka, P., Machar, I., 2015. A checklist of the ants (Hymenoptera: Formicidae) of Peru. Zootaxa 4020, 101-133. http://dx.doi.org/10.11646/zootaxa.4020.1.4
    » http://dx.doi.org/10.11646/zootaxa.4020.1.4
  • Bioweb, 2020. Regiones Naturales del Ecuador. Available in: https://bioweb.bio/faunaweb/amphibiaweb/RegionesNaturales (accessed 20 April 2021)
    » https://bioweb.bio/faunaweb/amphibiaweb/RegionesNaturales
  • Boschman, L. M., Condamine, F. L., 2022. Mountain radiations are not only rapid and recent: ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations. Global Planet. Change 208, 103704. https://doi.org/10.1016/j.gloplacha.2021.103704
    » https://doi.org/10.1016/j.gloplacha.2021.103704
  • Cárdenas, R. E., Buestán, J., Dangles, O., 2009. Diversity and distribution models of horse flies (diptera: Tabanidae) from ecuador. Ann. Soc. Entomol. Fr. 45, 511-528. https://doi.org/10.1080/00379271.2009.10697633
    » https://doi.org/10.1080/00379271.2009.10697633
  • Chamorro, W., Marin-Armijos, D., Asenjo, A., Vaz-De-Mello, F. Z., 2019. Scarabaeinae dung beetles from Ecuador: a catalog, nomenclatural acts, and distribution records. ZooKeys 2019, 1-343. https://doi.org/10.3897/zookeys.826.26488
    » https://doi.org/10.3897/zookeys.826.26488
  • Chamorro, W., Marín-Armijos, D., Granda, V., Vaz-De-Mello, F. Z., 2018. Checklist with a key to genera and subgenera of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) present and supposed for Ecuador. Rev. Colomb. Entomol. 44, 72-100. https://doi.org/10.25100/socolen.v44i1.6545
    » https://doi.org/10.25100/socolen.v44i1.6545
  • Cuesta, F., Muriel, P., Llambí, L. D., Halloy, S., Aguirre, N., Beck, S., Carilla, J., Meneses, R. I., Cuello, S., Grau, A., Gámez, L. E., Irazábal, J., Jácome, J., Jaramillo, R., Ramírez, L., Samaniego, N., Suárez-Duque, D., Thompson, N., Tupayachi, A., Viñas, P., Yager, K., Becerra, M. T., Pauli, H., Gosling, W. D., 2017. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40, 1381-1394. https://doi.org/10.1111/ecog.02567
    » https://doi.org/10.1111/ecog.02567
  • Dangles, O., Barragán, A., Cárdenas, R. E., Onore, G., Keil, C., 2009. Entomology in Ecuador: recent developments and future challenges. Ann. Soc. Entomol. Fr. 45, 424-436. https://doi.org//10.1080/00379271.2009.10697627
    » https://doi.org//10.1080/00379271.2009.10697627
  • Dáttilo, W., Vásquez‐Bolaños, M., Ahuatzin, D. A., Antoniazzi, R., Chávez‐González, E., Corro, E., Luna, P., Guevara, R., Villalobos, F., Madrigal‐Chavero, R., Falcão, J. C. de F., Bonilla‐Ramírez, A., Romero, A. R. G., Mora, A., Ramírez‐Hernández, A., Escalante‐Jiménez, A. L., Martínez‐Falcón, A. P., Villarreal, A. I., Sandoval, A. G. C., Aponte, B., Juárez‐Juárez, B., Castillo‐Guevara, C., Moreno, C. E., Albor, C., Martínez‐Tlapa, D. L., Huber‐Sannwald, E., Escobar, F., Montiel‐Reyes, F. J., Varela‐Hernández, F., Castaño‐Meneses, G., Pérez‐Lachaud, G., Pérez‐Toledo, G. R., Alcalá‐Martínez, I., Rivera‐Salinas, I. S., Chairez‐Hernández, I., Chamorro‐Florescano, I. A., Hernández‐Flores, J., Toledo, J. M., Lachaud, J., Reyes‐Muñoz, J. L., Valenzuela‐González, J. E., Horta‐Vega, J. V., Cruz‐Labana, J. D., Reynoso‐Campos, J. J., Navarrete‐Heredia, J. L., Rodríguez‐Garza, J. A., Pérez‐Domínguez, J. F., Benítez‐Malvido, J., Ennis, K. K., Sáenz, L., Díaz‐Montiel, L. A., Tarango‐Arámbula, L. A., Quiroz‐Robedo, L. N., Rosas‐Mejía, M., Villalvazo‐Palacios, M., Gómez‐Lazaga, M., Cuautle, M., Aguilar‐Méndez, M. J., Baena, M. L., Madora‐Astudillo, M., Rocha‐Ortega, M., Pale, M., García‐Martínez, M. A., Soto‐Cárdenas, M. A., Correa‐Ramírez, M. M., Janda, M., Rojas, P., Torres‐Ricario, R., Jones, R. W., Coates, R., Gómez‐Acevedo, S. L., Ugalde‐Lezama, S., Philpott, S. M., Joaqui, T., Marques, T., Zamora‐Gutierrez, V., Martínez-Mandujano, V., Hajian‐Forooshani, Z., MacGregor-Fors, I., 2020. Mexico ants: incidence and abundance along the Nearctic–Neotropical interface. Ecology. 101 (4). http://dx.doi.org/10.1002/ecy.2944
    » http://dx.doi.org/10.1002/ecy.2944
  • De Andrade, M., Baroni Urbani, C., 1999. Diversity and Adaptation in the Ant Genus Cephalotes, Past and Present. Staatliches Museum für Naturkunde, Stuttgart.
  • Escárraga, M. E., Lattke, J. E., Pie, M. R., Guerrero, R. J., 2021. Morphological and genetic evidence supports the separation of two Tapinoma ants (Formicidae, Dolichoderinae) from the Atlantic Forest biome. ZooKeys. 1033, 35-62. https://doi.org/10.3897/zookeys.1033.59880
    » https://doi.org/10.3897/zookeys.1033.59880
  • Fagundes, R., Terra, G., Ribeiro, S. R., Majer, J. D., 2010. O bambu Merostachys fischeriana (Bambusoideae: Bambuseae) como habitat para formigas de floresta tropical montana. Neotrop. Entomol. 39, 906-911. https://doi.org/10.1590/S1519-566X2010000600009
    » https://doi.org/10.1590/S1519-566X2010000600009
  • Fernández, F., Guerrero, R. J., 2019. Subfamilia Ponerinae. In: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 509–553.
  • Fernández, F., Sendoya, S., 2004. Lista de las hormigas neotropicales. Biota Colomb. 5, 3-109.
  • Freile, J. F., Santander, T., 2005. Áreas importantes para la conservación de las aves en Ecuador. In: Boyla, K., Estrada, A. (Eds.), Áreas importantes para la conservación de las aves en Los Andes tropicales: sitios prioritarios para la conservación de la biodiversidad BirdLife International, Quito, pp. 283–470.
  • García, E. I., Tocora, M. C., Fiorentino, G., Escárraga, M., Fernández, F., Guerrero, R. J., 2020. New records of ants (Hymenoptera: Formicidae) for Colombia. Biota Neotrop. 20, 1-9. https://doi.org/10.1590/1676-0611-BN-2020-1088
    » https://doi.org/10.1590/1676-0611-BN-2020-1088
  • Guénard, B., Weiser, M. D., Gomez, K., Narula, N., Economo, E. P., 2017. The global ant biodiversity informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol. News 24, 83-89. https://doi.org/10.25849/myrmecol.news_024:083
    » https://doi.org/10.25849/myrmecol.news_024:083
  • Guerrero, R.J., unpublished data. Taxonomic Revision of the Ant Genus Tapinoma Foerster (Hymenoptera: Formicidae) in Neotropical region.
  • Hughes, C., Eastwood, R., 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA 103, 10334-10339. https://doi.org/https://doi.org/10.1073/pnas.0601928103
    » https://doi.org/https://doi.org/10.1073/pnas.0601928103
  • Janicki, J., Narula, N., Ziegler, M., Guénard, B., Economo, E. P., 2016. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps.org. Ecol. Inform. 32, 185-193. https://doi.org/https://doi.org/10.1016/j.ecoinf.2016.02.006
    » https://doi.org/https://doi.org/10.1016/j.ecoinf.2016.02.006
  • Johnson, R. A., 2015. A taxonomic revision of South American species of the seed harvester ant genus Pogonomyrmex (Hymenoptera: Formicidae). Part I. Zootaxa 4029, 1-142. https://doi.org/https://doi.org/10.11646/zootaxa.4029.1.1
    » https://doi.org/https://doi.org/10.11646/zootaxa.4029.1.1
  • Kempf, W. W., 1974. Taxonomic and faunistic notes on some Neotropical Cephalotini ants (Hymenoptera, Formicidae). Rev. Bras. Entomol. 18, 67-76.
  • Kleemann, J., Koo, H., Hensen, I., Mendieta-leiva, G., Kahnt, B., Kurze, C., Inclan, D. J., Cuenca, P., Noh, J. K., Hoffmann, M. H., Factos, A., Lehnert, M., Lozano, P., Fürst, C., 2022. Priorities of action and research for the protection of biodiversity and ecosystem services in continental Ecuador. Biol. Conserv. 265, 109404. https://doi.org/10.1016/j.biocon.2021.109404
    » https://doi.org/10.1016/j.biocon.2021.109404
  • Longino, J., 2002. Ants of Costa Rica. Available in: https://ants.biology.utah.edu/AntsofCostaRica.html (accessed 20 April 2021).
    » https://ants.biology.utah.edu/AntsofCostaRica.html
  • Luebert, F., Weigend, M., 2014. Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2, 1-17. https://doi.org/10.3389/fevo.2014.00027
    » https://doi.org/10.3389/fevo.2014.00027
  • Mackay, E., Mackay, W., 2010. The Systematics and Biology of the New World Ants of the Genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellen Press, Lewiston.
  • Mackay, W. P. 2004. The Systematic and Biology of the New World Carpenter Ants of the Hyperdiverse Genus Camponotus (Hymenoptera: Formicidae). The University of Texas, El Paso.
  • Mackay, W. P., Mackay, E., 2019. Género Camponotus. In: Fernández, F. (ed.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 743-790.
  • Marín-Armijos, D., Quezada-Ríos, N., Soto-Armijos, C., Mengual, X., 2017. Checklist of the flower flies of Ecuador (Diptera, syrphidae). ZooKeys 2017, 163-199. https://doi.org/10.3897/zookeys.691.13328
    » https://doi.org/10.3897/zookeys.691.13328
  • Ministerio del Ambiente del Ecuador, 2013. Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaría de Patrimonio Natural, Quito.
  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. https://doi.org/10.1038/35002501
    » https://doi.org/10.1038/35002501
  • Oliveira, A. M., Powell, S., Feitosa, R. M., 2021. A taxonomic study of the Brazilian turtle ants (Formicidae: Myrmicinae: Cephalotes). Rev. Bras. Entomol. 65, 1-52. https://doi.org/10.1590/1806-9665-rbent-2021-0028
    » https://doi.org/10.1590/1806-9665-rbent-2021-0028
  • Oliveira, G. V., Correa, M. M., Goes, I. M. A., Machado, A. F. P., de Sa-Neto, R. J., Delabie, J. H. C., 2015. Interactions between Cecropia (Urticaceae) and ants (Hymenoptera: Formicidae) along a longitudinal east-west transect in the Brazilian Northeast. Ann. Soc. Entomol. Fr. 51, 153-160. https://doi.org/10.1080/00379271.2015.1061231
    » https://doi.org/10.1080/00379271.2015.1061231
  • Ortiz, C. M., Fernández, F., 2011. Hormigas del género Dolichoderus Lund (Formicidae: Dolichoderinae) en Colombia (No. Doc. 24586). Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Bogotá.
  • Palacio, E. 2019. Subfamilia Dorylinae. In: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 571–630.
  • Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez, V. P., Neill, D. A., Cerón, C. E., Palacios, W. A., Aulestia, M., 2002. A comparison of tree species diversity in two upper Amazonian forests. Ecology 83 (11), 3210-3224. http://dx.doi.org/10.1890/0012-9658(2002)083[3210:ACOTSD]2.0.CO;2
    » http://dx.doi.org/10.1890/0012-9658(2002)083[3210:ACOTSD]2.0.CO;2
  • Ponce, P., Cevallos, V., Carrazco-Montalvo, A., 2021. Mosquitoes (Diptera: Culicidae) of Ecuador: a revised checklist, new records and species of medical importance. bioRxiv. Preprint. https://doi.org/10.1101/2021.02.10.429771
    » https://doi.org/10.1101/2021.02.10.429771
  • Price, S. L., Powell, S., Kronauer, D. J. C., Tran, L. A. P., Pierce, N. E., Wayne, R. K., 2014. Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J. Evol. Biol. 27, 242-258. https://doi.org/https://doi.org/10.1111/jeb.12300
    » https://doi.org/https://doi.org/10.1111/jeb.12300
  • Ribas, C. C., Moyle, R. G., Miyaki, C. Y., Cracraft, J., 2007. The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc. Biol. Sci. 274, 2399-2408. https://doi.org/https://doi.org/10.1098/rspb.2007.0613
    » https://doi.org/https://doi.org/10.1098/rspb.2007.0613
  • Ridgely, R. S., Greenfield, P. J., 2001. The Birds of Ecuador: Status, Distribution, and Taxonomy. Cornell University Press, Ithaca.
  • Salazar, F., Reyes-Bueno, F., Sanmartin, D., Donoso, D. A., 2015. Mapping continental Ecuadorian ant species. Sociobiology 62, 132-162. https://doi.org/http://dx.doi.org/10.13102/sociobiology.v62i2.132-162
    » https://doi.org/http://dx.doi.org/10.13102/sociobiology.v62i2.132-162
  • Sandoval-Gómez, V., Sánchez-Restrepo, A., 2019. Género Cephalotes, in: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 899–915.
  • Santillán, V., Quitián, M., Tinoco, B. A., Zárate, E., Schleuning, M., Böhning-Gaese, K., Neuschulz, E. L., 2020. Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecol. 102, 103500. https://doi.org/10.1016/j.actao.2019.103500
    » https://doi.org/10.1016/j.actao.2019.103500
  • Santos, M. N., 2016. Research on urban ants: approaches and gaps. Insectes Soc. 63, 359-371. https://doi.org//10.1007/s00040-016-0483-1
    » https://doi.org//10.1007/s00040-016-0483-1
  • Shorthouse, D.P., 2010. SimpleMappr, an online tool to produce publication-quality point maps. Available in: https://www.simplemappr.net/ (accessed 20 April 2021).
    » https://www.simplemappr.net/
  • Sierra, R. 1999. Vegetación Remanente del Ecuador Continental, Circa 1996, 1:1′000.000. Proyecto INEFAN/GEF-BIRF y Wildlife Conservation Society, Quito.
  • Silva, D. L., Elias, M., Willmott, K., Mallet, J., Day, J. J., 2016. Diversification of clearwing butterflies with the rise of the Andes. J. Biogeogr. 43, 44-58. https://doi.org/10.1111/jbi.12611
    » https://doi.org/10.1111/jbi.12611
  • The World Coordinate Converter – TWCC, 2020. The World Coordinate Converter. Available in: https://twcc.fr (accessed 20 April 2021).
    » https://twcc.fr
  • Ward, P. S. 2019. Subfamilia Pseudomyrmecinae. In: Fernández, F., Guerrero, R.J., Delsinne, T. (Eds.), Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp. 1089–1114.
  • Ward, P. S., 1999. Systematics, biogeography and host plant associations of the Pseudomyrmex viduus group (Hymenoptera: Formicidae), Triplaris-and Tachigali-inhabiting ants. Zool. J. Linn. Soc. 126, 451-540. https://doi.org/https://doi.org/10.1111/j.1096-3642.1999.tb00157.x
    » https://doi.org/https://doi.org/10.1111/j.1096-3642.1999.tb00157.x
  • Wheeler, W. M., 1923. Wissenschaftliche Ergebnisse der schwedischen entomologischen Reise des Herrn Dr. A. Roman in Amazonas 1914-1915. Ark. Zool. 15, 1-6.
  • Wolters, V., Bengtsson, J., Zaitsev, A. S., 2006. Relationship among the species richness of different taxa. Ecology 87, 1886-1895. https://doi.org//10.1890/0012-9658(2006)87[1886:RATSRO]2.0.CO;2
    » https://doi.org//10.1890/0012-9658(2006)87[1886:RATSRO]2.0.CO;2

Edited by

Associate Editor:

Rodrigo Feitosa

Publication Dates

  • Publication in this collection
    27 May 2022
  • Date of issue
    2022

History

  • Received
    20 Aug 2021
  • Accepted
    26 Apr 2022
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br