Acessibilidade / Reportar erro

Morphology of the antennal sensilla of two species of Hoplopyga Thomson, 1880 (Coleoptera, Scarabaeidae, Cetoniinae)

ABSTRACT

Antennal sensilla are important functional elements of sensory systems in insects. This study aimed to determine the morphology and structure of the sensilla of two species of the genus Hoplopyga. Adults of Hoplopyga liturata (Olivier, 1789) were collected in traps with sugarcane juice as an attractant. Thereafter, larvae of Hoplopyga albiventris (Gory and Percheron, 1833) were collected in mounds of termites (Cornitermes cumulans (Kollar, 1832) Isoptera). Then, they were reared in the laboratory for adult observations. Antennae of H. liturata and H. albiventris have sensilla chaetica, trichodea, placodea (type I and II), coeloconica (type I and II), and ampullacea (or pore). Females of H. liturata have a total of about 10657 sensilla and males have about 12512, whereas females of H. albiventris have about 16490 sensilla and the males 24565 sensilla. Sensilla placodea are predominant in the antenna of males and females of both species.

Keywords:
Chemical communication; Gymnetini; Isoptera; Neotropical; Sexual dimorphism

Introduction

The genus Hoplopyga Thomson, 1880 (Coleoptera, Scarabaeidae, Cetoniinae, Gymnetini) includes 20 species distributed from Mexico to Argentina, of which 11 were registered in Brazil (Shaughney and Ratcliffe, 2015Shaughney, J. M., Ratcliffe, B. C., 2015. A monographic revision of the genus Hoplopyga Thomson, 1880 (Coleoptera: Scarabaeidae: Cetoniinae: Gymnetini). The Coleop. Bull. 69, 579–638. https://doi.org/10.1649/0010-065X-69.4.579.
https://doi.org/10.1649/0010-065X-69.4.5...
), namely: H. albiventris (Gory and Percheron, 1833), H. brasiliensis (Gory and Percheron, 1833), H. cerdani Antoine, 1998, H. liturata (Olivier, 1789), H. marginesignata (Gory and Percheron, 1833), H. miliaris (Gory and Percheron, 1833), H. multipunctata (Gory and Percheron, 1833), H. ocellata (Gory and Percheron, 1833), H. ravida (Janson, 1881), H. riparia Shaughney and Ratcliffe, 2015, and H. singularis (Gory and Percheron, 1833).

Adults of Hoplopyga have been noticed feeding on leaves, flowers, fruits, and plant sap (Ballou, 1937Ballou, C. H., 1937. Insect notes from Costa Rica in 1936. Insect Pest Surv. Bull. 17, 483–590.; Solís, 2004Solís, A., 2004. Escarabajos fruteros de Costa Rica. Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica.; Gonçalves and Louzada, 2005Gonçalves, T. T., Louzada, J. N. C., 2005. Estratificação vertical de coleópteros carpófilos (Insecta: Coleoptera) em fragmentos florestais do sul do estado de Minas Gerais, Brasil. Ecol. Austral 15, 101–110.; Puker et al., 2012Puker, A., Lopes-Andrade, C., Rosa, C. S., Grossi, P. C., 2012. New records of termite hosts for two species of Hoplopyga, with notes on the life cycle of Hoplopyga brasiliensis (Coleoptera: Scarabaeidae: Cetoniinae). Ann. Entomol. Soc. Am. 105, 872–878. https://doi.org/10.1603/AN12068.
https://doi.org/10.1603/AN12068...
; Rodrigues et al., 2013Rodrigues, S. R., Oliveira, J. L. N., Bagnara, C. A. C., Puker, A., 2013. Cetoniinae (Coleoptera: Scarabaeidae) attracted to fruitbaited traps near Aquidauana, Mato Grosso do Sul, Brazil. The Coleop. Bull. 67, 119–122. https://doi.org/10.1649/0010-065X-67.2.119.
https://doi.org/10.1649/0010-065X-67.2.1...
, Shaughney and Ratcliffe, 2015Shaughney, J. M., Ratcliffe, B. C., 2015. A monographic revision of the genus Hoplopyga Thomson, 1880 (Coleoptera: Scarabaeidae: Cetoniinae: Gymnetini). The Coleop. Bull. 69, 579–638. https://doi.org/10.1649/0010-065X-69.4.579.
https://doi.org/10.1649/0010-065X-69.4.5...
; Kirmse and Ratcliffe, 2019Kirmse, S., Ratcliffe, B. C., 2019. Composition and host-use patterns of a scarab beetle (Coleoptera: Scarabaeidae) community inhabiting the canopy of a lowland tropical rainforest in southern Venezuela. The Coleop. Bull. 73, 149–167. https://doi.org/10.1649/0010-065X-73.1.149.
https://doi.org/10.1649/0010-065X-73.1.1...
), while larvae feed on mounds of termites (Isoptera) and decaying woods trunks (Luederwaldt, 1911Luederwaldt, G., 1911. Quatro Lamellicorneos termitophilos. Rev. Mus. Paul. 8, 405–413.; Vanin and Costa, 1984Vanin, S. A., Costa, C., 1984. Larvae of Neotropical Coleoptera. IX: Scarabaeidae, Cetoniinae, Gymnetini. Rev. Bras. Entomol. 28, 329–335.; Micó et al., 2001Micó, E., Hall, W. E., Ratcliffe, B. C., 2001. Descriptions of the larvae of Hoplopyga singularis (Gory and Percheron) and Hologymnetis cinerea (Gory and Percheron) with a revised key to the larvae of new world Gymnetini (Coleoptera: Scarabaeidae: Cetoniinae). The Coleop. Bull. 55, 205–217. https://doi.org/10.1649/0010-065X(2001)055[0205:DOTLOH]2.0.CO;2.
https://doi.org/10.1649/0010-065X(2001)0...
; Garcia et al., 2013Garcia, F. P., Rodrigues, S. R., Bagnara, C. A. C., Oliveira, D. S., 2013. Survey of saproxylophagous Melolonthidae (Coleoptera) and some biological aspects in Aquidauana, MS. Biota Neotrop. 13, 38–43. https://doi.org/10.1590/S1676-06032013000300004.
https://doi.org/10.1590/S1676-0603201300...
; Puker et al., 2012Puker, A., Lopes-Andrade, C., Rosa, C. S., Grossi, P. C., 2012. New records of termite hosts for two species of Hoplopyga, with notes on the life cycle of Hoplopyga brasiliensis (Coleoptera: Scarabaeidae: Cetoniinae). Ann. Entomol. Soc. Am. 105, 872–878. https://doi.org/10.1603/AN12068.
https://doi.org/10.1603/AN12068...
, 2014Puker, A., Ad’Vincula, H. L., Korasaki, V., Ferreira, F. N. F., Orozco, J., 2014. Biodiversity of Cetoniinae beetles (Coleoptera: Scarabaeidae) in introduced and native habitats in the Brazilian Atlantic Forest. Entomol. Sci. 17, 309–315. https://doi.org/10.1111/ens.12069.
https://doi.org/10.1111/ens.12069...
; Shaughney and Ratcliffe, 2015Shaughney, J. M., Ratcliffe, B. C., 2015. A monographic revision of the genus Hoplopyga Thomson, 1880 (Coleoptera: Scarabaeidae: Cetoniinae: Gymnetini). The Coleop. Bull. 69, 579–638. https://doi.org/10.1649/0010-065X-69.4.579.
https://doi.org/10.1649/0010-065X-69.4.5...
).

Insect antennae are important sensory structures involved in the detection of odorants, and temperature, besides being tactile and gustative organs (Schneider, 1964Schneider, D., 1964. Insect antennae. Annu. Rev. Entomol. 9, 103–122.; Hansson and Stensmyr, 2011Hansson, B. S., Stensmyr, M. C., 2011. Evolution of insect olfaction. Neuron 72, 698–711. https://doi.org/10.1016/j.neuron.2011.11.003.
https://doi.org/10.1016/j.neuron.2011.11...
). Antennal sensilla are responsible for reception of semiochemicals (or infochemicals), such as sexual or aggregative pheromones, and of other volatiles, helping insects to locate plants used as food and mating sites (Visser, 1986Visser, J. H., 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31, 121–144. https://doi.org/10.1146/annurev.en.31.010186.001005.
https://doi.org/10.1146/annurev.en.31.01...
; Tegoni et al., 2004Tegoni, M., Campanacci, V., Cambillau, C., 2004. Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem. Sci. 29, 257–264. https://doi.org/10.1016/j.tibs.2004.03.003.
https://doi.org/10.1016/j.tibs.2004.03.0...
; Wee et al., 2016Wee, S. L., Oh, H. W., Park, K. C., 2016. Antennal sensillum morphology and electrophysiological responses of olfactory receptor neurons in trichoid sensilla of the diamondback moth (Lepidoptera: plutellidae). Fla. Entomol. 99, 146–158. https://doi.org/10.1653/024.099.sp118.
https://doi.org/10.1653/024.099.sp118...
).

Adults of scarab beetles (Coleoptera, Scarabaeidae) use to swarm to find partners to copulate (Rodrigues et al., 2014Rodrigues, S. R., Gomes, E. S., Bento, J. M. S., 2014. Sexual dimorphism and mating behavior in Anomala testaceipennis. J. Insect Sci. 14, 210–210. https://doi.org/10.1093/jisesa/ieu072.
https://doi.org/10.1093/jisesa/ieu072...
, 2016Rodrigues, S. R., Morón, M. A., Gomes, E. S., Bento, J. M. S., 2016. Morphology of immature stages and mating behavior in Liogenys fusca (Blanchard) (Coleoptera, Melolonthidae, Melolonthinae). Rev. Bras. Entomol. 60, 284–289. https://doi.org/10.1016/j.rbe.2016.06.005.
https://doi.org/10.1016/j.rbe.2016.06.00...
). During the couple formation, these beetles usually use chemical communication detecting released odors using their antennal sensilla (Meinecke, 1975Meinecke, C. C., 1975. Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphologie 82, 1–42.; Leal, 1998Leal, W. S., 1998. Chemical ecology of phytophagous scarab beetles. Annu. Rev. Entomol. 4, 39–61. https://doi.org/10.1146/annurev.ento.43.1.39.
https://doi.org/10.1146/annurev.ento.43....
). Sensilla types and number vary with species but also between males and females within a species, especially for Scarabaeidae (Ochieng et al., 2002Ochieng, S. A., Robbins, P. S., Roelofs, W. L., Baker, T. C., 2002. Sex pheromone reception in the scarab beetle Phyllophaga anxia (Coleoptera: scarabaeidae). Ann. Entomol. Soc. Am. 9, 97–102. https://doi.org/10.1603/0013-8746(2002)095[0097:SPRITS]2.0.CO;2.
https://doi.org/10.1603/0013-8746(2002)0...
; Romero-López et al., 2004Romero-López, A. A., Arzuffi, R., Valdez, J., Morón, M. A., Castrejón-Gómez, V., Villalobos, F. J., 2004. Sensory organs in the antennae of Phyllophaga obsoleta (Coleoptera: melolonthidae). Ann. Entomol. Soc. Am. 97, 1306–1313. https://doi.org/10.1603/0013-8746(2004)097[1306:SOITAO]2.0.CO;2.
https://doi.org/10.1603/0013-8746(2004)0...
, 2010Romero-López, A. A., Morón, M. A., Valcez, J., 2010. Sexual dimorphism in antennal receptors of Phyllophaga ravida Blanchard (Coleoptera: Scarabaeoidea: Melolonthidae). Neotrop. Entomol. 39, 957–966.; Tanaka et al., 2006Tanaka, S., Yukuhiro, F., Wakamura, S., 2006. Sexual dimorphism in body dimensions and antennal sensilla in the white grub beetle, Dasylepida ishigakiensis (Coleoptera: scarabaeidae). Appl. Entomol. Zool. 41, 455–462. https://doi.org/10.1303/aez.2006.455.
https://doi.org/10.1303/aez.2006.455...
; Handique et al., 2017Handique, G., Bhattacharyya, B., Baruah, A. A. L. H., Boruah, R., 2017. Antenna morphology and sensilla microstructure of the male and female scarab beetle, Lepidiota mansueta Burmeister (Coleoptera: scarabaeidae). Invertebr. Reprod. Dev. 61, 200–205. https://doi.org/10.1080/07924259.2017.1287784.
https://doi.org/10.1080/07924259.2017.12...
; Rodrigues et al., 2019Rodrigues, S. R., Fuhrmann, J., Amaro, R. A., 2019. Aspects of mating behavior and antennal sensilla in Anomala inconstans Burmeister, 1844 (Coleoptera: Scarabaeidae: Rutelinae). Biota Neotrop. 19, 1–7. https://doi.org/10.1590/1676-0611-BN-2018-0664.
https://doi.org/10.1590/1676-0611-BN-201...
).

The study of sensorial organs of insects is important to clarify questions about fine morphology, the process of communication, and habitat perception by these animals. The present paper aimed to describe the morphology of antennal sensilla of males and females of two species of phytophagous scarab beetles included in the genus Hoplopyga: H. albiventris and H. liturata. Larvae of H. liturata were collected from decaying woods, pupal instar lasted about 18 days (Garcia et al., 2013Garcia, F. P., Rodrigues, S. R., Bagnara, C. A. C., Oliveira, D. S., 2013. Survey of saproxylophagous Melolonthidae (Coleoptera) and some biological aspects in Aquidauana, MS. Biota Neotrop. 13, 38–43. https://doi.org/10.1590/S1676-06032013000300004.
https://doi.org/10.1590/S1676-0603201300...
), and immatures were described by Morón e Arce (2002)Morón, M. A., Arce, R., 2002. Descriptions of the immature stages of five Mexican species of Gymnetini (Coleoptera: Scarabaeidae: Cetoniinae). Proc. Entomol. Soc. Wash. 104, 1036–1054.. In Brazil, the species prefer cerrado landscapes (Brazilian savanna) to urban parks (Correa et al., 2020Correa, C.M.A., Silva, P.G., Lara, M.A., Puker, A., 2020. Spatiotemporal patterns of β-diversity of flower chafer beetles in urban park and natural reserve sites in Brazilian Cerrado. Int. J. Trop. Insect Sci. 41, 681–691. https://doi.org/10.1007/s42690-020-00257-x.
https://doi.org/10.1007/s42690-020-00257...
). Hedström and Elmqvist (1985)Hedström, I., Elmqvist, T., 1985. Prepona butterflies (Nyrnphalidae) and Hoplopyga beetles (Scarabaeidae) on the same food source during the Neotropical dry season – a case of commensalism? Rev. Biol. Trop. 32, 313–315. observed H. liturata damaging stems of the vine species Gouania polygama (Jacq.) Urb. (Rhamnaceae) in Costa Rica to feed on its exudates. Such an interaction attracted the butterfly species Prepona laertes (Hübner, 1811) (Nymphalidae, Lepidoptera), which also fed on the vine exudates and directly on beetle excreta. The authors suggested that this interaction between the beetle and the butterfly could be a case of commensalism. Occasional copresence of cetoniine beetles and butterflies around sources of plant exudates have been sometimes observed (Di Iorio, 2014Di Iorio, O., 2014. A review of the natural history of adult Cetoniinae (Coleoptera: Scarabaeidae) from Argentina and adjacent countries. Zootaxa 3790, 281–318. https://doi.org/10.11646/zootaxa.3790.2.3.
https://doi.org/10.11646/zootaxa.3790.2....
).

Luederwaldt (1911)Luederwaldt, G., 1911. Quatro Lamellicorneos termitophilos. Rev. Mus. Paul. 8, 405–413. found larvae of H. albiventris in termite mounds of Cornitermes sp. Also, Puker et al. (2014)Puker, A., Ad’Vincula, H. L., Korasaki, V., Ferreira, F. N. F., Orozco, J., 2014. Biodiversity of Cetoniinae beetles (Coleoptera: Scarabaeidae) in introduced and native habitats in the Brazilian Atlantic Forest. Entomol. Sci. 17, 309–315. https://doi.org/10.1111/ens.12069.
https://doi.org/10.1111/ens.12069...
noted the preference of this species for pastures due to the presence of mounds of Cornitermes in these agroecosystems regularly.

Material and methods

The study was conducted at the Universidade Estadual de Mato Grosso do Sul (UEMS), Campus of Cassilândia, Mato Grosso do Sul, Brazil.

Larvae of H. albiventris were collected from mounds of termites (Cornitermes cumulans (Kollar, 1832) (Isoptera: Termitidae)) between August 2017 and September 2018 in a pasture area (Urochloa decumbens Stapf, Poaceae). These mounds were open in the field. After collection, larvae were reared in the laboratory. Each larva was placed into plastic containers (500 mL) filled with the substrate used by immatures.

Adults of H. liturata were collected using traps baited with a banana and sugarcane juice mixture as an attractant. The species had been collected in recent studies using the same method as in Rondônia State (Puker et al., 2020aPuker, A., Correa, C.M.A, Butzske, L.S., Pacheco, R.P., 2020a. Using aerial fruit-baited traps with different naturally fermented baits to survey scarab beetles in the Amazon rainforest. Studies Neotrop. Fauna Environ. 55 (3), 1-6. https://doi.org/10.1080/01650521.2020.1786921.
https://doi.org/10.1080/01650521.2020.17...
, 2020bPuker, A., Correa, C. M. A., Silva, A. S., Silva, J. V. O., Korasaki, V., Grossi, P. C., 2020b. Effects of fruit-baited trap height on flower and leaf chafer scarab beetles sampling in Amazon rainforest. Entomol. Sci. 23 (3), 245–255. https://doi.org/10.1111/ens.12418.
https://doi.org/10.1111/ens.12418...
). Each trap was constructed from a PET bottle (2 L) with two 8 × 5 cm side openings. Three traps were used between November and December 2018, two in a “Cerrado” (Brazilian savanna) fragment and one in a pasture area. They were installed about 1.5 m high from the soil. The attractant was replaced two times per week (methodology modified by Rodrigues et al., 2013Rodrigues, S. R., Oliveira, J. L. N., Bagnara, C. A. C., Puker, A., 2013. Cetoniinae (Coleoptera: Scarabaeidae) attracted to fruitbaited traps near Aquidauana, Mato Grosso do Sul, Brazil. The Coleop. Bull. 67, 119–122. https://doi.org/10.1649/0010-065X-67.2.119.
https://doi.org/10.1649/0010-065X-67.2.1...
).

The reared adults of H. albiventris and those of H. liturata collected were preserved in 70% alcohol. The adults of H. albiventris were identified by comparison with the material of the Museu de Zoologia da Universidade de São Paulo, while those of H. liturata by comparison with the material of the UEMS, Campus of Cassilândia. The revision of the genus Hoplopyga was also used for identifications (Shaughney and Ratcliffe, 2015Shaughney, J. M., Ratcliffe, B. C., 2015. A monographic revision of the genus Hoplopyga Thomson, 1880 (Coleoptera: Scarabaeidae: Cetoniinae: Gymnetini). The Coleop. Bull. 69, 579–638. https://doi.org/10.1649/0010-065X-69.4.579.
https://doi.org/10.1649/0010-065X-69.4.5...
).

Antennal sensilla were studied by scanning of antennal clubs taken using an electron microscope (SEM, model Zeiss EVO LS15) in the Departamento de Física e Química, Universidade Estadual Paulista (UNESP), Campus of Ilha Solteira, São Paulo State (a method by Tanaka et al., 2006Tanaka, S., Yukuhiro, F., Wakamura, S., 2006. Sexual dimorphism in body dimensions and antennal sensilla in the white grub beetle, Dasylepida ishigakiensis (Coleoptera: scarabaeidae). Appl. Entomol. Zool. 41, 455–462. https://doi.org/10.1303/aez.2006.455.
https://doi.org/10.1303/aez.2006.455...
). Antennae of 10 males and 10 females were dissected and maintained in 70% alcohol. Afterwards, appendages were successively washed in 80% and 90% ethanol for 15 minutes each, and then 100% ethanol for 20 minutes. The pieces were taken to dry in a CO2 critical point dryer (model Leica® CPD300).

Antennal lamellae were also mounted on slides for optical microscope observation (model Nikon E200), following the method of Romero-López et al. (2004)Romero-López, A. A., Arzuffi, R., Valdez, J., Morón, M. A., Castrejón-Gómez, V., Villalobos, F. J., 2004. Sensory organs in the antennae of Phyllophaga obsoleta (Coleoptera: melolonthidae). Ann. Entomol. Soc. Am. 97, 1306–1313. https://doi.org/10.1603/0013-8746(2004)097[1306:SOITAO]2.0.CO;2.
https://doi.org/10.1603/0013-8746(2004)0...
.

Sensilla terminology follows Keil (1999)Keil, T. A., 1999. Chapter 1. Morphology and development of the peripheral olfactory organs. In: Hansson, B. (Ed.), Insect olfaction. Springer, Berlin, pp. 6−44.. Meinecke (1975)Meinecke, C. C., 1975. Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphologie 82, 1–42. was used as an alternative sensilla terminology (in brackets) to easily term comparison. The Student’s t-test was used to compare the distribution of sensilla.

Results

Adults of H. liturata and H. albiventris have antennae with ten antennomeres, and the antennal club has three antennomeres (Fig. 1).

Figure 1
Hoplopyga liturata, antenna. A) female, B) male. (s) scape, (p) pedicel, (f1-f5) flagellomeres of funicle, (pl) proximal lamella, (md) medial lamella, (md) distal lamella. Scale = 200 μm.

Hoplopyga liturata

Antennae of male and females are quite similar to each other, but males have medial lamella longer than to females (Table 1 e Fig. 2).

Table 1
Size of antennal lamellae of Hoplopyga liturata.
Figure 2
Hoplopyga liturata, antennal lamella of female (left: A, C, E, G, I) and male (right: B, D, F, H, J). (dl) distal lamella; (ex) outer side; (in) inner side; (md) medial lamella; (pl) proximal lamella. Scale = A, B, C, D, E, F, J: 100 μm; G, H, I: 200 μm.

Lamellae have sensilla trichodea, chaetica, placodea, coeloconica and ampullacea. Sensilla trichodea are hair-like, thin, and long, and found on edges of lamellae in both genders. Sensilla chaetica are like sensilla trichodea but short and grouped all together in a brush-like structure in the outer surface of the proximal lamella. Sensilla trichodea and sensilla chaetica have been sometimes termed together as sensilla chaetica (e.g., Zauli et al., 2016Zauli, A., Maurizi, E., Carpaneto, G. M., Hiari, S., Svensson, G. P., Giulio, A., 2016. Antennal fine morphology of the threatened beetle Osmoderma eremita (Coleoptera: Scarabaeidae), revealed by scanning electron microscopy. Microsc. Res. Tech. 79, 178–191. https://doi.org/10.1002/jemt.22618.
https://doi.org/10.1002/jemt.22618...
) or as sensilla trichodea (e.g., Bohacz et al., 2020Bohacz, C., Harrison, J. du G., Ahrens, D., 2020. Comparative morphology of antennal surface structures in pleurostict scarab beetles (Coleoptera). Zoomorphology 139, 327–346. https://doi.org/10.1007/s00435-020-00495-0.
https://doi.org/10.1007/s00435-020-00495...
). Hair-like sensilla cannot be easily separated into two categories (as used here and by the generalization for insects by Keil, 1999Keil, T. A., 1999. Chapter 1. Morphology and development of the peripheral olfactory organs. In: Hansson, B. (Ed.), Insect olfaction. Springer, Berlin, pp. 6−44.). They are quite variable in length and shape (with acute or blunt apex, simple or serrate, smooth or with perforations or striae; see Meinecke (1975)Meinecke, C. C., 1975. Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphologie 82, 1–42. and Bohacz et al. (2020)Bohacz, C., Harrison, J. du G., Ahrens, D., 2020. Comparative morphology of antennal surface structures in pleurostict scarab beetles (Coleoptera). Zoomorphology 139, 327–346. https://doi.org/10.1007/s00435-020-00495-0.
https://doi.org/10.1007/s00435-020-00495...
for sensilla comparison between scarab beetles). The present study considered sensilla trichodea to be long setae distributed in all antennomeres and sensilla chaetica the minor setae grouped in a brush-like structure (Fig. 3).

Figure 3
Hoplopyga liturata, proximal lamella of female, proximal lamella, outer side. Distribution of sensilla chaetica and sensilla trichodea. Scale = 200 μm.

The sensilla placodea found are type I (Meinecke, 1975Meinecke, C. C., 1975. Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphologie 82, 1–42.: sensilla B2; Fig. 4A) and type II (Meinecke, 1975Meinecke, C. C., 1975. Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphologie 82, 1–42.: sensilla B3; Fig. 4B). These are the predominant types of antennal sensilla found along lamellae in both sexes except on the outer side of the proximal lamella.

Figure 4
Antenna of Hoplopyga female. A−C) H. liturata; D) H. albiventris A) sensilla placodea type I; B) sensilla placodea type II; C) distal lamella, outer side, posterior area (white dotted line) with sensilla placodea type I, D) proximal lamella, inner side, anterior area (black dotted line) with sensilla placodea type I mixed with type II, posterior area (white dotted line) with type I homogeneously distributed. Scale = A: 2 μm; B: 20 μm; C, D: 100 μm.

The sensilla placodea type I are somewhat rounded and have a diameter of 8.2 ± 2.1 μm (n= 50; Fig. 4A). These sensilla are predominant in the posterior third of the outer side of proximal lamella (Fig. 4C).

The sensilla placodea type II are rounded and have diameter of 9.8 ± 3.1 (n= 50; Fig. 4D). These sensilla are predominant in the anterior half of the inner side of the medial lamella.

The sensilla coeloconica found are type I (short with acute apex; Meinecke, 1975Meinecke, C. C., 1975. Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphologie 82, 1–42.: sensilla L1; Fig. 5B) and type II (short with blunt apex; Meinecke, 1975Meinecke, C. C., 1975. Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphologie 82, 1–42.: sensilla L3; Fig. 5C). Both are found in the inner side of proximal and distal lamellae and inner and outer sides of medial lamella (sides of lamellae that can be closed). They are distributed mainly in the central areas of lamellae (Fig. 5A).

Figure 5
Hoplopyga liturata, distal lamella, inner side. A) distribution of sensilla coeloconica type I and II; B) sensilla coeloconica type I; C) sensilla coeloconica type II. Scale = A: 100 μm; B, C: 2 μm.

Several sensilla ampullacea (pore) are found in all lamella (Fig. 6AB).

Figure 6
Hoplopyga liturata. A, B) medial lamella, inner side, pores or sensilla ampullacea; C) predominance of pores along the inner side of medial lamella; D) presence of pores on the outer side of the distal lamella. Scale =A, C, D: 20 μm; B: 2 μm.

Males of H. liturata have more sensilla than females. Females (n = 08) have 10657 sensilla, of which 10279 (96.45%) are sensilla placodea and 378 (3.55%) are coeloconica. Males (n= 08) have 12512 sensilla, of which 11983 (95.77%) are sensilla placodea and 529 (4.23%) are coeloconica (Table 2).

Table 2
Number of sensilla placodea and sensilla coeloconica of Hoplopyga liturata.

Hoplopyga albiventris

The proximal and distal lamellae of male antennae are longer than those of females (Table 3 and Fig. 7).

Table 3
Size of antennal lamellae of Hoplopyga albiventris.
Figure 7
Hoplopyga albiventris, antenna female (left: A, C, E, G, I) and male (right: B, D, F, H, J). (dl) distal lamella; (ex) outer side; (in) inner side; (md) medial lamella; (pl) proximal lamella. Scale = A, C, E, F, I, J: 100 μm; B, D, G, H: 200 μm.

The antennae of H. albiventris are like those of H. liturata (Fig. 3) and both species have sensilla of the same types and with similar distribution. The differences of antennal structure of H. albiventris (regarding H. liturata described before) are listed below.

Sensilla placodea of type I have a diameter of 8.8 ± 2.1 μm (n = 50) and those of type II have diameter of 10.1 ± 2.1 (n = 50).

Females (n = 08) have 16490 sensilla, of which 15779 (95.69%) are sensilla placodea and 711 (4.31%) are coeloconica. Males (n= 08) have 25149 sensilla, of which 24565 (97.68%) are sensilla placodea and 584 (2.32%) are coeloconica (Table 4).

Table 4
Number of sensilla placodea and sensilla coeloconica of Hoplopyga albiventris.

Discussion

Adults of H. liturata and H. albiventris have similar antennae structure, shape, and size, but the amount of sensilla is quite different between both species. Male antennae are slightly longer than those of females and have more sensilla than female antennae. Sexual dimorphism in scarab beetle antennae have been frequently reported (e.g., Allsopp, 1990Allsopp, P. G., 1990. Sexual dimorphism in the adult antennae of Antitrogus parvulus Britton and Lepidiota negatoria Blackburn (Coleoptera: Scarabaeidae: Melolonthinae). J. Aust. Entomol. Soc. 29, 261–166. https://doi.org/10.1111/j.1440-6055.1990.tb00360.x.
https://doi.org/10.1111/j.1440-6055.1990...
; Romero-López et al., 2004Romero-López, A. A., Arzuffi, R., Valdez, J., Morón, M. A., Castrejón-Gómez, V., Villalobos, F. J., 2004. Sensory organs in the antennae of Phyllophaga obsoleta (Coleoptera: melolonthidae). Ann. Entomol. Soc. Am. 97, 1306–1313. https://doi.org/10.1603/0013-8746(2004)097[1306:SOITAO]2.0.CO;2.
https://doi.org/10.1603/0013-8746(2004)0...
; Mutis et al., 2014Mutis, A., Palma, R., Alvear, M., Morón, M., Quiroz, A., 2014. Morphology and distribution of sensilla on the antennae of Hylamorpha elegans Burmeister (Coleoptera: scarabaeidae). Neotrop. Entomol. 43, 260–265. https://doi.org/10.1007/s13744-014-0208-y.
https://doi.org/10.1007/s13744-014-0208-...
) and it could be related to how species find sexual partners or food sources by detecting volatiles with antennae.

Scarab beetles have two main and sometimes intermixed processes of aggregation: 1) beetles group around a food source using conspecific aggregative pheromones (e.g., Oryctes rhinoceros (Linnaeus, 1758), Dynastinae, studied by Renou et al., 1998Renou, M., Tauban, D., Morin, J. P., 1998. Structure and function of antennal pore plate sensilla of Oryctes rhinoceros (L.) (Coleoptera: dynastidae). Int. J. Insect Morphol. Embryol. 27, 227–233. https://doi.org/10.18474/0749-8004-22.3.264.
https://doi.org/10.18474/0749-8004-22.3....
) or plant volatiles (e.g., Melolontha hippocastani Fabricius, 1801, Melolonthinae, studied by Ruther et al., 2000Ruther, J., Reinecke, K., Tolasch, T., Francke, W., Hilker, M., 2000. Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol. Entomol. 25, 172–179. https://doi.org/10.1046/j.1365-3032.2000.00183.x.
https://doi.org/10.1046/j.1365-3032.2000...
; 2) beetles can group around potential sexual partners that releases sexual infochemicals (e.g., Phyllophaga anxia (LeConte, 1850), Melolonthinae, studied by Ochieng et al., 2002Ochieng, S. A., Robbins, P. S., Roelofs, W. L., Baker, T. C., 2002. Sex pheromone reception in the scarab beetle Phyllophaga anxia (Coleoptera: scarabaeidae). Ann. Entomol. Soc. Am. 9, 97–102. https://doi.org/10.1603/0013-8746(2002)095[0097:SPRITS]2.0.CO;2.
https://doi.org/10.1603/0013-8746(2002)0...
).

Sexual pheromones and plant volatiles are used together by Melolontha hippocastani (Ruther et al., 2000Ruther, J., Reinecke, K., Tolasch, T., Francke, W., Hilker, M., 2000. Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol. Entomol. 25, 172–179. https://doi.org/10.1046/j.1365-3032.2000.00183.x.
https://doi.org/10.1046/j.1365-3032.2000...
) and some Rutelinae (e.g., Anomala cuprea (Hope, 1839) and Phyllopertha diversa Waterhouse, 1875, studied by Hansson et al., 1999Hansson, B. S., Larsson, M. C., Leal, W. S., 1999. Green leaf volatile-detecting olfatory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol. Entomol. 24, 121–126. https://doi.org/10.1046/j.1365-3032.1999.00121.x.
https://doi.org/10.1046/j.1365-3032.1999...
; Larsson et al., 2001Larsson, M. C., Leal, W. S., Hansson, B. S., 2001. Olfactory receptor neurons detecting plant odors and male volatiles in Anomala cuprea beetles (Coleoptera: scarabaeidae). J. Insect Physiol. 47, 1065–1076. https://doi.org/10.1016/S0022-1910(01)00087-7.
https://doi.org/10.1016/S0022-1910(01)00...
) for example.

In Cetoniinae, plant volatiles are important for aggregation of the genus Pachnoda (Cetoniini; Larsson et al. 2003aLarsson, M. C., Stensmyr, M. C., Bice, S. B., Hansson, B. S., 2003a. Attractiveness of fruit and flower odorants detected by olfactory receptor neurons in the fruit chafer Pachnoda marginata. J. Chem. Ecol. 29, 1253–1268. https://doi.org/10.1023/a:1023893926038.
https://doi.org/10.1023/a:1023893926038...
; Bengtsson et al., 2011Bengtsson, J. M., Khbaish, H., Reinecke, A., Wolde-Hawariat, Y., Negash, M., Seyoum, E., Hansson, B. S., Hillbur, Y., Larsson, M. C., 2011. Conserved, highly specialized olfactory receptor neurons for food compounds in 2 congeneric scarab beetles, Pachnoda interrupta and Pachnoda marginata. Chem. Senses 36, 499–513. https://doi.org/10.1093/chemse/bjr002.
https://doi.org/10.1093/chemse/bjr002...
). For Cotinis nitida (Linnaeus, 1758) (Gymnetini), Domek and Johnson (1987Domek, J. M., Johnson, D. T., 1987. Evidence of a sex pheromone in the green June Beetle, Cotinis nitida (Coleoptera: scarabaeidae). J. Entomol. Sci. 22, 264–267. https://doi.org/10.18474/0749-8004-22.3.264.
https://doi.org/10.18474/0749-8004-22.3....
, 1988Domek, J. M., Johnson, D. T., 1988. Demonstration of semiochemically induced aggregation in the green June beetle, Cotinis nitida (L.) (Coleoptera: scarabaeidae). Environ. Entomol. 17, 147–149. https://doi.org/10.1093/ee/17.2.147.
https://doi.org/10.1093/ee/17.2.147...
, 1990Domek, J. M., Johnson, D. T., 1990. Inhibition of aggregation behavior in the green june beetle (Coleoptera: Scarabaeidae) by antibiotic treatment of food substrate. Environ. Entomol. 19, 995–1000. https://doi.org/10.1093/ee/19.4.995.
https://doi.org/10.1093/ee/19.4.995...
) found evidence of females releasing sexual attractant and males and females releasing aggregation volatiles related to the beetle diet (sites with fruits and feeding males attract more males and females than fruit alone or females alone). Therefore, both aggregation and sexual infochemicals could work together in the subfamily. Another possibility is that males attract females with sexual pheromones, as in Osmoderma eremita (Scopoli, 1763) (Cetoniinae, Osmodermatini, studied by Larsson et al., 2003bLarsson, M. C., Herin, J., Svensson, G. P., Tolasch, T., Francke, W., 2003b. Characteristic odor of Osmoderma eremita identified as a male-released pheromone. J. Chem. Ecol. 29, 575–587. https://doi.org/10.1023/a:1022850704500.
https://doi.org/10.1023/a:1022850704500...
), perhaps to guide females to a suitable habitat.

In some phytophagous scarab beetles (e.g., Maladera matrida Argaman, 1986, Melolonthinae, studied by Harari et al., 1994Harari, A. R., Ben-Yakir, D., Rosen, D., 1994. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera: scarabaeidae). J. Chem. Ecol. 20, 361–371. https://doi.org/10.1007/BF02064443.
https://doi.org/10.1007/BF02064443...
), males first find and damage a host plant and then attract females. Other scarab beetles have been reported with both behaviors: females directly attract males and females are attracted to damaged plants by males (e.g., Popillia japonica Newman, 1841, Rutelinae, studied by Smith 1923Smith, L. B., 1923. Feeding habits of the Japanese beetle which influence its control. Bulletin. U. S. Dep. Agric. 1154, 1–11. https://doi.org/10.5962/bhl.title.109044.
https://doi.org/10.5962/bhl.title.109044...
).

However, it is still not clear whether Hoplopyga males are directly attracted to females or they firstly find a food source and then attract females. It is also unclear whether these are behaviors related to antennal sexual dimorphism.

Antennal sensilla

Sensilla trichodea and chaetica, both present mainly in the outer surface of lamella, were associated with mechanoreceptors or gustative organs (contact chemoreceptors) and sometimes with airflow and sound detection (Keil, 1999Keil, T. A., 1999. Chapter 1. Morphology and development of the peripheral olfactory organs. In: Hansson, B. (Ed.), Insect olfaction. Springer, Berlin, pp. 6−44.; Ochieng et al., 2002Ochieng, S. A., Robbins, P. S., Roelofs, W. L., Baker, T. C., 2002. Sex pheromone reception in the scarab beetle Phyllophaga anxia (Coleoptera: scarabaeidae). Ann. Entomol. Soc. Am. 9, 97–102. https://doi.org/10.1603/0013-8746(2002)095[0097:SPRITS]2.0.CO;2.
https://doi.org/10.1603/0013-8746(2002)0...
; Romero-López et al., 2004Romero-López, A. A., Arzuffi, R., Valdez, J., Morón, M. A., Castrejón-Gómez, V., Villalobos, F. J., 2004. Sensory organs in the antennae of Phyllophaga obsoleta (Coleoptera: melolonthidae). Ann. Entomol. Soc. Am. 97, 1306–1313. https://doi.org/10.1603/0013-8746(2004)097[1306:SOITAO]2.0.CO;2.
https://doi.org/10.1603/0013-8746(2004)0...
; Mutis et al., 2014Mutis, A., Palma, R., Alvear, M., Morón, M., Quiroz, A., 2014. Morphology and distribution of sensilla on the antennae of Hylamorpha elegans Burmeister (Coleoptera: scarabaeidae). Neotrop. Entomol. 43, 260–265. https://doi.org/10.1007/s13744-014-0208-y.
https://doi.org/10.1007/s13744-014-0208-...
).

Both H. albiventris and H. liturata have large amounts of sensilla placodea, which are more abundant in males than in females of both species. This sort of sensillum was considered the main sexual pheromone receptor, as in Anomala cuprea (Leal and Mochizuki, 1993Leal, W. S., Mochizuki, F., 1993. Sex pheromone reception in the scarab beetle Anomala cuprea enantiomeric discrimination by sensilla placodea. Naturwissenschaften 80, 278–281. https://doi.org/10.1007/BF01135914.
https://doi.org/10.1007/BF01135914...
), Phyllopertha diversa (Nikonov et al., 2001Nikonov, A. A., Valiyaveettil, J. T., Leal, W. S., 2001. A photoaffinity-labeled green leaf volatile compound ‘tricks’ highly selective and sensitive insect olfactory receptor neurons. Chem. Senses 26, 49–54. https://doi.org/10.1093/chemse/26.1.49.
https://doi.org/10.1093/chemse/26.1.49...
), and Popillia japonica (Kim and Leal, 2000Kim, J. Y., Leal, W. S., 2000. Ultrastructure of pheromone-detecting sensillum placodeum of the Japanese beetle, Popillia japonica Newmann (Coleoptera: scarabaeidae). Arthropod Struct. Dev. 29, 121–128. https://doi.org/10.1016/S1467-8039(00)00022-0.
https://doi.org/10.1016/S1467-8039(00)00...
). Larsson et al. (2001)Larsson, M. C., Leal, W. S., Hansson, B. S., 2001. Olfactory receptor neurons detecting plant odors and male volatiles in Anomala cuprea beetles (Coleoptera: scarabaeidae). J. Insect Physiol. 47, 1065–1076. https://doi.org/10.1016/S0022-1910(01)00087-7.
https://doi.org/10.1016/S0022-1910(01)00...
found that the sensilla placodea of A. cuprea antennae are both sexual pheromones and plant volatile receptors and that where they are is decisive for their function.

Sensilla coeloconica are arranged mainly in the central area of lamellae. In antennal pedicel, Shao et al. (2019)Shao, K. M., Sun, Y., Wang, W. K., Chen, L. A., 2019. SEM study of antennal sensilla in Maladera orientalis Motschulsky (Coleoptera: Scarabaeidae: Melolonthinae). Micron 119, 17–23. https://doi.org/10.1016/j.micron.2019.01.004.
https://doi.org/10.1016/j.micron.2019.01...
suggested that this kind of sensilla respond to humidity and temperature (hygro-receptors and thermo-receptors). For lamellae, Kim and Leal (2000)Kim, J. Y., Leal, W. S., 2000. Ultrastructure of pheromone-detecting sensillum placodeum of the Japanese beetle, Popillia japonica Newmann (Coleoptera: scarabaeidae). Arthropod Struct. Dev. 29, 121–128. https://doi.org/10.1016/S1467-8039(00)00022-0.
https://doi.org/10.1016/S1467-8039(00)00...
and Romero-López et al. (2004)Romero-López, A. A., Arzuffi, R., Valdez, J., Morón, M. A., Castrejón-Gómez, V., Villalobos, F. J., 2004. Sensory organs in the antennae of Phyllophaga obsoleta (Coleoptera: melolonthidae). Ann. Entomol. Soc. Am. 97, 1306–1313. https://doi.org/10.1603/0013-8746(2004)097[1306:SOITAO]2.0.CO;2.
https://doi.org/10.1603/0013-8746(2004)0...
considered sensilla coeloconica as receptors to plant volatiles.

The numerous sensilla ampullacea, visible as small pores, were associated with detection of odorants or CO2 (Schneider, 1964Schneider, D., 1964. Insect antennae. Annu. Rev. Entomol. 9, 103–122.; Keil and Steinbrecht, 1984Keil, T. A., Steinbrecht, R. A., 1984. Mechanosensitive and olfactory sensilla of insects. In: King, R.C., Akai, H. (Eds.), Insect ultrastructure. Vol. 2. Plenum, New York, pp. 477–516.; Keil, 1999Keil, T. A., 1999. Chapter 1. Morphology and development of the peripheral olfactory organs. In: Hansson, B. (Ed.), Insect olfaction. Springer, Berlin, pp. 6−44.).

The antennal variation between H. albiventris and H. liturata could be related to how adults explore their habitats. Hoplopyga albiventris adults are found in open areas such as pastures (Puker et al., 2014Puker, A., Ad’Vincula, H. L., Korasaki, V., Ferreira, F. N. F., Orozco, J., 2014. Biodiversity of Cetoniinae beetles (Coleoptera: Scarabaeidae) in introduced and native habitats in the Brazilian Atlantic Forest. Entomol. Sci. 17, 309–315. https://doi.org/10.1111/ens.12069.
https://doi.org/10.1111/ens.12069...
), while immatures in termite mounds (Luederwaldt, 1911Luederwaldt, G., 1911. Quatro Lamellicorneos termitophilos. Rev. Mus. Paul. 8, 405–413.). Otherwise, H. liturata adults are found in tropical rainforests and Cerrado biomes (Shaughney and Ratcliffe, 2015Shaughney, J. M., Ratcliffe, B. C., 2015. A monographic revision of the genus Hoplopyga Thomson, 1880 (Coleoptera: Scarabaeidae: Cetoniinae: Gymnetini). The Coleop. Bull. 69, 579–638. https://doi.org/10.1649/0010-065X-69.4.579.
https://doi.org/10.1649/0010-065X-69.4.5...
; Correa et al., 2020Correa, C.M.A., Silva, P.G., Lara, M.A., Puker, A., 2020. Spatiotemporal patterns of β-diversity of flower chafer beetles in urban park and natural reserve sites in Brazilian Cerrado. Int. J. Trop. Insect Sci. 41, 681–691. https://doi.org/10.1007/s42690-020-00257-x.
https://doi.org/10.1007/s42690-020-00257...
), while larvae in rotten woods (Neita-M. et al., 2006; Garcia et al., 2013Garcia, F. P., Rodrigues, S. R., Bagnara, C. A. C., Oliveira, D. S., 2013. Survey of saproxylophagous Melolonthidae (Coleoptera) and some biological aspects in Aquidauana, MS. Biota Neotrop. 13, 38–43. https://doi.org/10.1590/S1676-06032013000300004.
https://doi.org/10.1590/S1676-0603201300...
).

Hoplopyga albiventris adults have more antennal sensilla (males: 24565, females 16490) than H. liturata (males: 12512, females 10657). Perhaps such an abundance of antennal sensilla in H. albiventris is related to the detection of termite mounds or food sources in open areas. However, the number of antennal sensilla in other Cetoniinae species (found or not associated with termites) are scarce for such an assumption.

The inner parts of Hoplopyga lamellae have two main areas, one homogeneous with sensilla placodea type I and another heterogeneous with placodea (type I and II) and some coeloconica (Fig. 4). In ruteline beetles (A. cuprea), Larsson et al. (2001)Larsson, M. C., Leal, W. S., Hansson, B. S., 2001. Olfactory receptor neurons detecting plant odors and male volatiles in Anomala cuprea beetles (Coleoptera: scarabaeidae). J. Insect Physiol. 47, 1065–1076. https://doi.org/10.1016/S0022-1910(01)00087-7.
https://doi.org/10.1016/S0022-1910(01)00...
observed that the homogeneous area is responsible for the detection of sexual pheromones, while the heterogeneous is related to the detection of other volatiles.

The kind of sensilla found in Hoplopyga is like that found in other Old-World Cetoniinae genera (Meinecke, 1975Meinecke, C. C., 1975. Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphologie 82, 1–42.; Baker and Monroe, 2005Baker, G. T., Monroe, W. A., 2005. Sensilla on the adult and larval antennae of Cotinis nitida (Coleoptera: scarabaeidae). Microsc. Microanal. 11 (Suppl. 2), 170–171. https://doi.org/10.1017/S1431927605500448.
https://doi.org/10.1017/S143192760550044...
; Zauli et al., 2016Zauli, A., Maurizi, E., Carpaneto, G. M., Hiari, S., Svensson, G. P., Giulio, A., 2016. Antennal fine morphology of the threatened beetle Osmoderma eremita (Coleoptera: Scarabaeidae), revealed by scanning electron microscopy. Microsc. Res. Tech. 79, 178–191. https://doi.org/10.1002/jemt.22618.
https://doi.org/10.1002/jemt.22618...
; Bohacz et al., 2020Bohacz, C., Harrison, J. du G., Ahrens, D., 2020. Comparative morphology of antennal surface structures in pleurostict scarab beetles (Coleoptera). Zoomorphology 139, 327–346. https://doi.org/10.1007/s00435-020-00495-0.
https://doi.org/10.1007/s00435-020-00495...
). More data on quantity and distribution of antennal sensilla are needed to further comparison between different Cetoniinae species.

Acknowledgments

Juares Fuhrmann thanks Sônia A. Casari (MZSP) for her supervision. Also to the Instituto Nacional de Ciência e Tecnologia (INCT) de Semioquímicos na Agricultura (FAPESP 2014/50871‒0 and CNPq 465511/2014‒7) for the financial support.

References

  • Allsopp, P. G., 1990. Sexual dimorphism in the adult antennae of Antitrogus parvulus Britton and Lepidiota negatoria Blackburn (Coleoptera: Scarabaeidae: Melolonthinae). J. Aust. Entomol. Soc. 29, 261–166. https://doi.org/10.1111/j.1440-6055.1990.tb00360.x
    » https://doi.org/10.1111/j.1440-6055.1990.tb00360.x
  • Baker, G. T., Monroe, W. A., 2005. Sensilla on the adult and larval antennae of Cotinis nitida (Coleoptera: scarabaeidae). Microsc. Microanal. 11 (Suppl. 2), 170–171. https://doi.org/10.1017/S1431927605500448
    » https://doi.org/10.1017/S1431927605500448
  • Ballou, C. H., 1937. Insect notes from Costa Rica in 1936. Insect Pest Surv. Bull. 17, 483–590.
  • Bengtsson, J. M., Khbaish, H., Reinecke, A., Wolde-Hawariat, Y., Negash, M., Seyoum, E., Hansson, B. S., Hillbur, Y., Larsson, M. C., 2011. Conserved, highly specialized olfactory receptor neurons for food compounds in 2 congeneric scarab beetles, Pachnoda interrupta and Pachnoda marginata. Chem. Senses 36, 499–513. https://doi.org/10.1093/chemse/bjr002
    » https://doi.org/10.1093/chemse/bjr002
  • Bohacz, C., Harrison, J. du G., Ahrens, D., 2020. Comparative morphology of antennal surface structures in pleurostict scarab beetles (Coleoptera). Zoomorphology 139, 327–346. https://doi.org/10.1007/s00435-020-00495-0
    » https://doi.org/10.1007/s00435-020-00495-0
  • Correa, C.M.A., Silva, P.G., Lara, M.A., Puker, A., 2020. Spatiotemporal patterns of β-diversity of flower chafer beetles in urban park and natural reserve sites in Brazilian Cerrado. Int. J. Trop. Insect Sci. 41, 681–691. https://doi.org/10.1007/s42690-020-00257-x
    » https://doi.org/10.1007/s42690-020-00257-x
  • Di Iorio, O., 2014. A review of the natural history of adult Cetoniinae (Coleoptera: Scarabaeidae) from Argentina and adjacent countries. Zootaxa 3790, 281–318. https://doi.org/10.11646/zootaxa.3790.2.3
    » https://doi.org/10.11646/zootaxa.3790.2.3
  • Domek, J. M., Johnson, D. T., 1987. Evidence of a sex pheromone in the green June Beetle, Cotinis nitida (Coleoptera: scarabaeidae). J. Entomol. Sci. 22, 264–267. https://doi.org/10.18474/0749-8004-22.3.264
    » https://doi.org/10.18474/0749-8004-22.3.264
  • Domek, J. M., Johnson, D. T., 1988. Demonstration of semiochemically induced aggregation in the green June beetle, Cotinis nitida (L.) (Coleoptera: scarabaeidae). Environ. Entomol. 17, 147–149. https://doi.org/10.1093/ee/17.2.147
    » https://doi.org/10.1093/ee/17.2.147
  • Domek, J. M., Johnson, D. T., 1990. Inhibition of aggregation behavior in the green june beetle (Coleoptera: Scarabaeidae) by antibiotic treatment of food substrate. Environ. Entomol. 19, 995–1000. https://doi.org/10.1093/ee/19.4.995
    » https://doi.org/10.1093/ee/19.4.995
  • Garcia, F. P., Rodrigues, S. R., Bagnara, C. A. C., Oliveira, D. S., 2013. Survey of saproxylophagous Melolonthidae (Coleoptera) and some biological aspects in Aquidauana, MS. Biota Neotrop. 13, 38–43. https://doi.org/10.1590/S1676-06032013000300004
    » https://doi.org/10.1590/S1676-06032013000300004
  • Gonçalves, T. T., Louzada, J. N. C., 2005. Estratificação vertical de coleópteros carpófilos (Insecta: Coleoptera) em fragmentos florestais do sul do estado de Minas Gerais, Brasil. Ecol. Austral 15, 101–110.
  • Handique, G., Bhattacharyya, B., Baruah, A. A. L. H., Boruah, R., 2017. Antenna morphology and sensilla microstructure of the male and female scarab beetle, Lepidiota mansueta Burmeister (Coleoptera: scarabaeidae). Invertebr. Reprod. Dev. 61, 200–205. https://doi.org/10.1080/07924259.2017.1287784
    » https://doi.org/10.1080/07924259.2017.1287784
  • Hansson, B. S., Larsson, M. C., Leal, W. S., 1999. Green leaf volatile-detecting olfatory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol. Entomol. 24, 121–126. https://doi.org/10.1046/j.1365-3032.1999.00121.x
    » https://doi.org/10.1046/j.1365-3032.1999.00121.x
  • Hansson, B. S., Stensmyr, M. C., 2011. Evolution of insect olfaction. Neuron 72, 698–711. https://doi.org/10.1016/j.neuron.2011.11.003
    » https://doi.org/10.1016/j.neuron.2011.11.003
  • Harari, A. R., Ben-Yakir, D., Rosen, D., 1994. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera: scarabaeidae). J. Chem. Ecol. 20, 361–371. https://doi.org/10.1007/BF02064443
    » https://doi.org/10.1007/BF02064443
  • Hedström, I., Elmqvist, T., 1985. Prepona butterflies (Nyrnphalidae) and Hoplopyga beetles (Scarabaeidae) on the same food source during the Neotropical dry season – a case of commensalism? Rev. Biol. Trop. 32, 313–315.
  • Keil, T. A., 1999. Chapter 1. Morphology and development of the peripheral olfactory organs. In: Hansson, B. (Ed.), Insect olfaction. Springer, Berlin, pp. 6−44.
  • Keil, T. A., Steinbrecht, R. A., 1984. Mechanosensitive and olfactory sensilla of insects. In: King, R.C., Akai, H. (Eds.), Insect ultrastructure. Vol. 2. Plenum, New York, pp. 477–516.
  • Kim, J. Y., Leal, W. S., 2000. Ultrastructure of pheromone-detecting sensillum placodeum of the Japanese beetle, Popillia japonica Newmann (Coleoptera: scarabaeidae). Arthropod Struct. Dev. 29, 121–128. https://doi.org/10.1016/S1467-8039(00)00022-0
    » https://doi.org/10.1016/S1467-8039(00)00022-0
  • Kirmse, S., Ratcliffe, B. C., 2019. Composition and host-use patterns of a scarab beetle (Coleoptera: Scarabaeidae) community inhabiting the canopy of a lowland tropical rainforest in southern Venezuela. The Coleop. Bull. 73, 149–167. https://doi.org/10.1649/0010-065X-73.1.149
    » https://doi.org/10.1649/0010-065X-73.1.149
  • Larsson, M. C., Leal, W. S., Hansson, B. S., 2001. Olfactory receptor neurons detecting plant odors and male volatiles in Anomala cuprea beetles (Coleoptera: scarabaeidae). J. Insect Physiol. 47, 1065–1076. https://doi.org/10.1016/S0022-1910(01)00087-7
    » https://doi.org/10.1016/S0022-1910(01)00087-7
  • Larsson, M. C., Stensmyr, M. C., Bice, S. B., Hansson, B. S., 2003a. Attractiveness of fruit and flower odorants detected by olfactory receptor neurons in the fruit chafer Pachnoda marginata. J. Chem. Ecol. 29, 1253–1268. https://doi.org/10.1023/a:1023893926038
    » https://doi.org/10.1023/a:1023893926038
  • Larsson, M. C., Herin, J., Svensson, G. P., Tolasch, T., Francke, W., 2003b. Characteristic odor of Osmoderma eremita identified as a male-released pheromone. J. Chem. Ecol. 29, 575–587. https://doi.org/10.1023/a:1022850704500
    » https://doi.org/10.1023/a:1022850704500
  • Leal, W. S., 1998. Chemical ecology of phytophagous scarab beetles. Annu. Rev. Entomol. 4, 39–61. https://doi.org/10.1146/annurev.ento.43.1.39
    » https://doi.org/10.1146/annurev.ento.43.1.39
  • Leal, W. S., Mochizuki, F., 1993. Sex pheromone reception in the scarab beetle Anomala cuprea enantiomeric discrimination by sensilla placodea. Naturwissenschaften 80, 278–281. https://doi.org/10.1007/BF01135914
    » https://doi.org/10.1007/BF01135914
  • Luederwaldt, G., 1911. Quatro Lamellicorneos termitophilos. Rev. Mus. Paul. 8, 405–413.
  • Meinecke, C. C., 1975. Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphologie 82, 1–42.
  • Micó, E., Hall, W. E., Ratcliffe, B. C., 2001. Descriptions of the larvae of Hoplopyga singularis (Gory and Percheron) and Hologymnetis cinerea (Gory and Percheron) with a revised key to the larvae of new world Gymnetini (Coleoptera: Scarabaeidae: Cetoniinae). The Coleop. Bull. 55, 205–217. https://doi.org/10.1649/0010-065X(2001)055[0205:DOTLOH]2.0.CO;2
    » https://doi.org/10.1649/0010-065X(2001)055[0205:DOTLOH]2.0.CO;2
  • Morón, M. A., Arce, R., 2002. Descriptions of the immature stages of five Mexican species of Gymnetini (Coleoptera: Scarabaeidae: Cetoniinae). Proc. Entomol. Soc. Wash. 104, 1036–1054.
  • Mutis, A., Palma, R., Alvear, M., Morón, M., Quiroz, A., 2014. Morphology and distribution of sensilla on the antennae of Hylamorpha elegans Burmeister (Coleoptera: scarabaeidae). Neotrop. Entomol. 43, 260–265. https://doi.org/10.1007/s13744-014-0208-y
    » https://doi.org/10.1007/s13744-014-0208-y
  • Neita-M., J.C., Orozco-A., J., Ratcliffe, B., 2006. Escarabajos (Scarabaeidae: Pleurosticti) de la selva baja del bosque pluvial tropical “BP-T”, Chocó, Colombia. Acta Zool. Mex. 22 (2), 1–32.
  • Nikonov, A. A., Valiyaveettil, J. T., Leal, W. S., 2001. A photoaffinity-labeled green leaf volatile compound ‘tricks’ highly selective and sensitive insect olfactory receptor neurons. Chem. Senses 26, 49–54. https://doi.org/10.1093/chemse/26.1.49
    » https://doi.org/10.1093/chemse/26.1.49
  • Ochieng, S. A., Robbins, P. S., Roelofs, W. L., Baker, T. C., 2002. Sex pheromone reception in the scarab beetle Phyllophaga anxia (Coleoptera: scarabaeidae). Ann. Entomol. Soc. Am. 9, 97–102. https://doi.org/10.1603/0013-8746(2002)095[0097:SPRITS]2.0.CO;2
    » https://doi.org/10.1603/0013-8746(2002)095[0097:SPRITS]2.0.CO;2
  • Puker, A., Ad’Vincula, H. L., Korasaki, V., Ferreira, F. N. F., Orozco, J., 2014. Biodiversity of Cetoniinae beetles (Coleoptera: Scarabaeidae) in introduced and native habitats in the Brazilian Atlantic Forest. Entomol. Sci. 17, 309–315. https://doi.org/10.1111/ens.12069
    » https://doi.org/10.1111/ens.12069
  • Puker, A., Correa, C.M.A, Butzske, L.S., Pacheco, R.P., 2020a. Using aerial fruit-baited traps with different naturally fermented baits to survey scarab beetles in the Amazon rainforest. Studies Neotrop. Fauna Environ. 55 (3), 1-6. https://doi.org/10.1080/01650521.2020.1786921
    » https://doi.org/10.1080/01650521.2020.1786921
  • Puker, A., Correa, C. M. A., Silva, A. S., Silva, J. V. O., Korasaki, V., Grossi, P. C., 2020b. Effects of fruit-baited trap height on flower and leaf chafer scarab beetles sampling in Amazon rainforest. Entomol. Sci. 23 (3), 245–255. https://doi.org/10.1111/ens.12418
    » https://doi.org/10.1111/ens.12418
  • Puker, A., Lopes-Andrade, C., Rosa, C. S., Grossi, P. C., 2012. New records of termite hosts for two species of Hoplopyga, with notes on the life cycle of Hoplopyga brasiliensis (Coleoptera: Scarabaeidae: Cetoniinae). Ann. Entomol. Soc. Am. 105, 872–878. https://doi.org/10.1603/AN12068
    » https://doi.org/10.1603/AN12068
  • Renou, M., Tauban, D., Morin, J. P., 1998. Structure and function of antennal pore plate sensilla of Oryctes rhinoceros (L.) (Coleoptera: dynastidae). Int. J. Insect Morphol. Embryol. 27, 227–233. https://doi.org/10.18474/0749-8004-22.3.264
    » https://doi.org/10.18474/0749-8004-22.3.264
  • Rodrigues, S. R., Fuhrmann, J., Amaro, R. A., 2019. Aspects of mating behavior and antennal sensilla in Anomala inconstans Burmeister, 1844 (Coleoptera: Scarabaeidae: Rutelinae). Biota Neotrop. 19, 1–7. https://doi.org/10.1590/1676-0611-BN-2018-0664
    » https://doi.org/10.1590/1676-0611-BN-2018-0664
  • Rodrigues, S. R., Gomes, E. S., Bento, J. M. S., 2014. Sexual dimorphism and mating behavior in Anomala testaceipennis. J. Insect Sci. 14, 210–210. https://doi.org/10.1093/jisesa/ieu072
    » https://doi.org/10.1093/jisesa/ieu072
  • Rodrigues, S. R., Morón, M. A., Gomes, E. S., Bento, J. M. S., 2016. Morphology of immature stages and mating behavior in Liogenys fusca (Blanchard) (Coleoptera, Melolonthidae, Melolonthinae). Rev. Bras. Entomol. 60, 284–289. https://doi.org/10.1016/j.rbe.2016.06.005
    » https://doi.org/10.1016/j.rbe.2016.06.005
  • Rodrigues, S. R., Oliveira, J. L. N., Bagnara, C. A. C., Puker, A., 2013. Cetoniinae (Coleoptera: Scarabaeidae) attracted to fruitbaited traps near Aquidauana, Mato Grosso do Sul, Brazil. The Coleop. Bull. 67, 119–122. https://doi.org/10.1649/0010-065X-67.2.119
    » https://doi.org/10.1649/0010-065X-67.2.119
  • Romero-López, A. A., Arzuffi, R., Valdez, J., Morón, M. A., Castrejón-Gómez, V., Villalobos, F. J., 2004. Sensory organs in the antennae of Phyllophaga obsoleta (Coleoptera: melolonthidae). Ann. Entomol. Soc. Am. 97, 1306–1313. https://doi.org/10.1603/0013-8746(2004)097[1306:SOITAO]2.0.CO;2
    » https://doi.org/10.1603/0013-8746(2004)097[1306:SOITAO]2.0.CO;2
  • Romero-López, A. A., Morón, M. A., Valcez, J., 2010. Sexual dimorphism in antennal receptors of Phyllophaga ravida Blanchard (Coleoptera: Scarabaeoidea: Melolonthidae). Neotrop. Entomol. 39, 957–966.
  • Ruther, J., Reinecke, K., Tolasch, T., Francke, W., Hilker, M., 2000. Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol. Entomol. 25, 172–179. https://doi.org/10.1046/j.1365-3032.2000.00183.x
    » https://doi.org/10.1046/j.1365-3032.2000.00183.x
  • Schneider, D., 1964. Insect antennae. Annu. Rev. Entomol. 9, 103–122.
  • Shao, K. M., Sun, Y., Wang, W. K., Chen, L. A., 2019. SEM study of antennal sensilla in Maladera orientalis Motschulsky (Coleoptera: Scarabaeidae: Melolonthinae). Micron 119, 17–23. https://doi.org/10.1016/j.micron.2019.01.004
    » https://doi.org/10.1016/j.micron.2019.01.004
  • Shaughney, J. M., Ratcliffe, B. C., 2015. A monographic revision of the genus Hoplopyga Thomson, 1880 (Coleoptera: Scarabaeidae: Cetoniinae: Gymnetini). The Coleop. Bull. 69, 579–638. https://doi.org/10.1649/0010-065X-69.4.579
    » https://doi.org/10.1649/0010-065X-69.4.579
  • Smith, L. B., 1923. Feeding habits of the Japanese beetle which influence its control. Bulletin. U. S. Dep. Agric. 1154, 1–11. https://doi.org/10.5962/bhl.title.109044
    » https://doi.org/10.5962/bhl.title.109044
  • Solís, A., 2004. Escarabajos fruteros de Costa Rica. Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica.
  • Tanaka, S., Yukuhiro, F., Wakamura, S., 2006. Sexual dimorphism in body dimensions and antennal sensilla in the white grub beetle, Dasylepida ishigakiensis (Coleoptera: scarabaeidae). Appl. Entomol. Zool. 41, 455–462. https://doi.org/10.1303/aez.2006.455
    » https://doi.org/10.1303/aez.2006.455
  • Tegoni, M., Campanacci, V., Cambillau, C., 2004. Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem. Sci. 29, 257–264. https://doi.org/10.1016/j.tibs.2004.03.003
    » https://doi.org/10.1016/j.tibs.2004.03.003
  • Vanin, S. A., Costa, C., 1984. Larvae of Neotropical Coleoptera. IX: Scarabaeidae, Cetoniinae, Gymnetini. Rev. Bras. Entomol. 28, 329–335.
  • Visser, J. H., 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31, 121–144. https://doi.org/10.1146/annurev.en.31.010186.001005
    » https://doi.org/10.1146/annurev.en.31.010186.001005
  • Wee, S. L., Oh, H. W., Park, K. C., 2016. Antennal sensillum morphology and electrophysiological responses of olfactory receptor neurons in trichoid sensilla of the diamondback moth (Lepidoptera: plutellidae). Fla. Entomol. 99, 146–158. https://doi.org/10.1653/024.099.sp118
    » https://doi.org/10.1653/024.099.sp118
  • Zauli, A., Maurizi, E., Carpaneto, G. M., Hiari, S., Svensson, G. P., Giulio, A., 2016. Antennal fine morphology of the threatened beetle Osmoderma eremita (Coleoptera: Scarabaeidae), revealed by scanning electron microscopy. Microsc. Res. Tech. 79, 178–191. https://doi.org/10.1002/jemt.22618
    » https://doi.org/10.1002/jemt.22618

Edited by

Associate Editor: Adriana Marvaldi

Publication Dates

  • Publication in this collection
    22 Mar 2021
  • Date of issue
    2021

History

  • Received
    07 Aug 2020
  • Accepted
    17 Feb 2021
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br