Acessibilidade / Reportar erro

Phytochemicals and antimicrobial potentials of mahogany family

Abstract

Drug resistance to human infectious diseases caused by pathogens lead to premature deaths through out the world. Plants are sources for wide variety of drugs used for treating various diseases. Systematic screening of medicinal plants for the search of new antimicrobial drug candidates that can inhibit the growth of pathogens or kill with no toxicity to host is being continued by many laboratories. Here we review the phytochemical investigations and biological activities of Meliaceae. The mahogany (Meliaceae) is family of timber trees with rich source for limonoids. So far, amongst the different members of Meliaceae, Azadirachta indica and Melia dubia have been identified as the potential plant systems possessing a vast array of biologically active compounds which are chemically diverse and structurally complex. Despite biological activities on different taxa of Meliaceae have been carried out, the information of antibacterial and antifungal activity is a meager with exception to Azadirachta indica. Together we provide new insights of Meliaceae members demonstrating as a potential source as antimicrobial agents using in vitro studies.

Limonoids; Flavonoids; Antibacterial; Antifungal activity


Introduction

World wide, infectious disease is the number one cause of death accounting for approximately one-half of all deaths in tropical countries. Plants constitute one of the major raw materials of drugs for treating various human diseases. The modern society has been interested in drugs of natural origin due to their harmonious nature with our biological system (Amalraj, 1983Amalraj, V.A., 1983. Secondary Plant Constituents. Sci. Rep., June issue, CSIR, Oxfordand IBH Publishing Co. Pvt. Ltd., New Delhi, Calcutta.). It is reported that 41% prescriptions in USA and 50% in Europe contain constituents from natural products which shows that the trend of using natural products is getting increased. Scientific research on medicinal plants relies on identification of the active principles in the plants; scientific examination of the remedies which lead to standardization and quality control of products to ensure their safety. It is after such evaluations that they can be approved for use in the primary health care. Such research activities could also lead to the development of new drugs as in the past (Farnsworth et al., 1985Farnsworth, N.R., Akerele, O., Bingel, A.S., Soejarto, D.D., Guo, Z., 1985. Medicinal plants in therapy. Bull. World Health Organ. 63, 965–981.; Farnsworth, 1988Farnsworth, N.R., 1988. Screening plants for new medicines. In: Wilson, E.O. (Ed.), Biodiversity. National Academy Press, Washington, DC, pp. 83–97.). Phytochemical tests have been performed in about 5000 species and nearly 1100 species are extensively exploited in Ayurvedic, Unani and Allopathic medicines. In fact active plant extracts screening programs continue to end always with new drug discoveries.

In order to find new sources of plant drugs, number of plants has been screened for wide range of biological activity in various research institutions. Plant based antimicrobials represent a vast untapped source for medicines by possessing enormous therapeutic potential. They are effective in the treatment of infectious diseases while simultaneously mitigating many of the side effects that are often associated with synthetic antimicrobials. Although, a number of antibiotics are widely used in medicine, the search for antimicrobial substances from plants will continue as better and safer drugs to combat bacterial and fungal infections are still needed, because of their biodegradable nature and being relatively safer for human beings and non-target organisms in the environment. Extensive survey of the flora has been undertaken to search for potential plant extracts, which could be used in the management of agriculture and household pests. In order to study possible applications of extracts or compounds derived from extracts, methods to screen for biological activities and separation techniques to isolate the active principles have to be established. Nearly 80% of the world's population relies on traditional medicines for primary health care, most of which involve the use of plant extracts (Sandhya et al., 2006Samy, R.P., Ignacimuthu, S., 1998. Antibacterial activity of different extracts of Azadirachta indica Juss. Neem. J. Zoo. 18, 71–75.). Almost 95% of the prescriptions are plant based in the traditional systems of Unani, Ayurveda, Homoeopathy and Siddha (Satyavati et al., 1987Sandanasamy, J., Nour, A.H., Tajuddin, S.N.B., Nour, A.H., 2013. Fatty acid composition and antibacterial activity of neem (Azadirachta indica) seed oil. Open Conf. Proc. J. 4, 43–48.).

The mahogany (Meliaceae) family comprises more than fifty genera with about 1400 species (Nakatani et al., 2001Nakatani, M., Abdelgaeil, S.A.M., Kassem, S.M.I., Takezaki, K., Okamura, H., Iwagawa, T., Doe, M., 2002. Three new modified limonoids from Khaya senegalensis. J. Nat. Prod. 65, 1219–1221.) is distributed in tropical and subtropical regions. The family is represented by seventeen genera and 72 species of which twelve species and two varieties endemic in India. Approximately 18% are endemic to peninsular India. From 19th century up to the present time, the mahoganies have been the most important species for the development of the forest industry in Asia, tropical Africa and Latin America. Many species of this family were used in traditional medicine for treatment of various diseases and also in pest control. Here we review the phytochemical investigations and biological activities of Meliaceae. Together we provide insights of Meliaceae members demonstrating as a potential source as antimicrobial agents using in vitro studies. Till to date there is no review published on the phytochemical constituents and their antimicrobial properties of Meliaceae. Hence our review aims to coherently unite results obtained from various published investigations on this important family. Here we address the important phytochemical constituents of Meliaceae and plants that have been investigated for their antimicrobial potential other than A. indica from Meliaceae.

Phytochemical studies of Meliaceae

Various classes of chemical constituents were isolated from different parts of meliaceous members. Chemically, the Meliaceae is characterized by synthesis of modified triterpenes known as limonoids. Over 300 limonoids have been isolated to date and they are more diverse and abundant in this particular family than in any other family. Several triterpenoidal derivatives were also isolated from different genera of Meliaceae. Amongst different members of Meliaceae, Azadirachta indica had been extensively studied for its chemicals. Limonoids are secondary metabolites produced in plants found in the order Rutales. Over 300 limonoids have been isolated to date (Taylor, 1986Tane, P., Akam, M.T., Tsopmo, A., Ndi, C.P., Sterner, O., 2004. Two lab danediterpenoids and a seco-tetranortriterpenoid from Turreanthus africanus. Phytochemistry 65, 3083–3087.; Champagne et al., 1992Champagne, D.E., Koul, D.E., Isman, M.B., Scudder, G.G.E., Towers, G.H.N., 1992. Biological activity of limonoids from the Rutales. Phytochemistry 31, 377–394.) and their production is confined to plants in the order Rutales. In particular, they are characteristic members of the family Meliaceae where they are diverse and abundant (Taylor, 1981Tanaka, T., Koyano, T., Kowithayakorn, T., Fujimoto, H., Okuyama, E., Hayashi, M.,Komiyama, K., Ishibashi, M., 2001. New multiflorane-type triterpenoid acids from Sandoricum indicum. J. Nat. Prod. 64, 1243–1245.; Connolly, 1983Connolly, J.D., 1983. In: Waterman, P.G., Grundon, M.F. (Eds.), Chemistry and Chemical Taxonomy of the Rutales. Academic Press, New York, p. 175.) than in any other family and less frequently in the families Rutaceae and Cneoraceae.

Limonoids are described as modified triterpenes, having a 4,4,8-trimethyl-17-furanyl steroid skeleton. The term limonoids was derived from limonin, the first tetranortriterpenoid obtained from citrus bitter principles (Roy and Saraf, 2006Rogers, L.L., Zeng, L., Mc Laughlin, J.L., 1998. Volkensinin – a new limonoid from Melia volkensii. Tetrahedron Lett. 39, 4623–4626.). The effect of ring structure and chemical oxidation state parameters is a focus of why limonoids exhibit activity against insect herbivores. Arrangements of subgroups and ring structures within this basic building block provide a host of characteristics that have generated interest in this plant product. These characteristics include insecticidal, insect growth regulation, insect antifeedant, and medicinal effects to animals and humans such as antibacterial, viral, and antifungal properties. Of recent great interest, limonoid's possible anticarcinogenic properties are being explored. Of special interest to countries in tropical locations is the antimalarial activity attributed to tropical Meliaceae extracts and gendunin (1) derivatives. Previous investigations from various plant parts of Meliaceae led to the isolation of tetranortriterpenoids with a modified furan ring such as febrifugin (2)(Rao et al., 1978Randrianarivelojosia, M., Kotsos, M.P., Mulholland, D.A., 1999. A limonoid from Neobeguea mahafalensis. Phytochemistry 52, 1141–1143.) methyl angolensate (3), luteolin-7-O-glucoside (4), deoxyandirobin (5) from the bark (Ambaye et al., 1971Ambaye, R.Y., Indap, M.A., Panse, T.B., 1971. Identification of methyl angolensate inthe bark of Soymida febrifuga (Roxb.) A. Juss. Curr. Sci. India 7, 158–159.; Adesida and Taylor, 1972Adesida, G.A., Taylor, D.A.H., 1972. Extractives from Soymida febrifuga. Phytochem-istry 11, 1520–1524.; Purushothaman and Chandrasekharan, 1974Pupo, M.T., Vieira, P.C., Fernandes, B., Fatima Das, M., Da Silva, G.F., Rodrigues,E., 1997. Androstane e pregnane 2-beta, 19-hemiketal steroids from Trichilia claussenii. Phytochemistry 45, 1495–1500.; Purushothaman et al., 1977Pupo, M.T., Vieira, P.C., Fernandes, B., Fatima Das, M., Da Silva, G.F., Rodrigues,E., 1997. Androstane e pregnane 2-beta, 19-hemiketal steroids from Trichilia claussenii. Phytochemistry 45, 1495–1500.).


Tetranortriterpenoids febrifugin (2) (Rao et al., 1978Randrianarivelojosia, M., Kotsos, M.P., Mulholland, D.A., 1999. A limonoid from Neobeguea mahafalensis. Phytochemistry 52, 1141–1143.) and febrinins A and B (6) (Rao et al., 1979Rao, M.M., Gupta, P.S., Krishna, E.M., Singh, P.P., 1979. Constituents of heartwood of Soymida febrifuga – isolation of flavonoids. Ind. J. Chem. 17B, 178–180.) together with the flavonoids naringenin (7), quercetin (8), myricetin (9)and dihydromyricetin (10) from the heartwood (Rao et al., 1979Rao, M.M., Krishna, E.M., Guptam, P.S., Singh, P.P., 1978. A new tetranortriterpenoid isolated from the heartwood of Soymida febrifuga. Ind. J. Chem. 16B, 823–825.).


Seed oil containing linolenic, linoleic, oleic, palmitic and stearic acid, lupeol and sitosterol (Yoganarasimhan, 1996Yin, J.L., Di, Y.T., Fang, X., Liu, E.D., Liu, H.Y., He, H.P., Li, S.L., Li, S.F., Hao, X.J., 2011. Tabulvelutin A, the first 19-nor limonoid with unprecedented ring system from Chukrasia tabularis var. velutina. Tetrahedron Lett. 52, 3083–3085.). Leaves were found to contain quercetin-3-O-└-rhamnoside and 3-O-rutinoside (Rastogi and Mehrotra, 1993Ragasa, C.Y., Torres, O.B., Bernardo, L.B., Mandia, E.H., Don, M.J., Shen, C.C., 2013. Glabretal-type triterpenoids from Dysoxylum mollissimum. Phytochem. Lett. 6, 514–518.).

In view of the characteristic occurrence of the gedunin nucleus in the Meliaceae, the name meliacin has been proposed for this nucleus (Bevan et al., 1963Bevan, C.W.L., Powell, J.W., Taylor, D.A.H., 1963. West African timbers. Part VII. Anthothecol, an extractive from Khaya anthotheca. J. Chem. Soc., 983–993.). Compounds which may arise from closely similar biogenetic routes have also been isolated from the related families Rutaceae and Simarubaceae (Arigoni et al., 1960Arigoni, D., Barton, D.H.R., Bernasconi, R., Djerassi, C., Mills, J.S., Wolff, R.E., 1960. Theconstituents of dammarenolic and nyctanthic acid. J. Chem. Soc., 1900–1905.; Narayanan et al., 1964Nanduri, S., Banstola, P., 1995. Neeflone, a new tetranortriterpenoid from the flowers of Azadirachta indica A. Juss (Meliaceae). Ind. J. Chem. 34, 1019–1021.). It has been proposed that the Meliaceae compounds are derived biogenetically from an apo-euphol type triterpene in which the side chain has been oxidized leaving a furan ring (Arigoni et al., 1960Arigoni, D., Barton, D.H.R., Bernasconi, R., Djerassi, C., Mills, J.S., Wolff, R.E., 1960. Theconstituents of dammarenolic and nyctanthic acid. J. Chem. Soc., 1900–1905.). Possessing a reduced furan ring, flindissol is structurally midway between epo-euphol and the meliacins, and indicates a biochemical relationship between the two families. This interference is strengthened by the occurrence of a coumarin, a characteristic of the Rutaceae, in Ekbergia senegalensis (Meliaceae). It is hoped that elucidation of the structures of the other meliacins will reveal features giving more information about the biochemical relationships of these compounds, as well as making available further taxonomic criteria in this important family.

Various classes of chemical constituents were isolated from different parts of meliaceous members (Box 1). Amongst the different members of Meliaceae, Azadirachta indica and Melia dubia have been identified as the potential plant systems possessing a vast array of biologically active compounds, which are chemically diverse and structurally complex. It seems that other members of this family are tested for secondary metabolites and bioactivity besides multiplication, overcoming physiological barriers.

Box 1: Phytochemical investigations of Meliaceae. Plant Part used Compound Reference Aglaia andamanica Leaves Limonoid 24-epi-mellanodiol, the tirucallane aglaidiol and the two cyclopenta tetra hydrobenzo pyran derivatives pyramidaglan A and B Puripattanavong et al., 2000 Aglaia argentea Leaves Cycloartanes, argenteanones C-E and genteanols B-E Mohammad et al., 1997     Cycloartanes: argenteanones A and B, and argenteanol Omobuwajo et al., 1996   Bark 3,4-Seco apo tirucallanes, argentinic acids A-I Mohamad et al., 1999a   Seeds Apotirucallane triterpenes-gentinones A-D and gentinin Omobuwajo et al., 1996 Aglaia cordata Stem bark Aglacins I-K three highly methoxylated lignans Wang et al., 2004a Aglaia crassinervia Bark Glabretal-type triterpenoids, aglaiaglabretols A-C, nine known compounds, 3-epi-cabraleahydroxylactone, cabraleahydroxylactone, rocaglaol, 2β,3β-dihydroxy-5α-pregn-17(20)-(E)-16-one, scopoletin, mixtures of cabraleadiol, epicotillol, β-sitosterol and stigmasterol Su et al., 2006 Aglaia dasyclada Leaves Rocaglamides, glycosides and putrescine bisamides Chaidir et al., 2001 Aglaia duperreana Twigs and leaves Rocaglamide derivatives and rocaglamides Nugroho et al., 1997a   Flowers Insecticidal cyclopenta tetra hydro benzofuran derivatives of rocaglamide Chaidir et al., 1999 Aglaia edulis Leaves A bisamide, aglaiduline, and sulfur-containing bisamides, aglaithioduline and aglaidithioduline Saifah et al., 1999   Bark Benzo[b]oxepine derivatives, edulisones A and B Kim et al., 2005     Cyclopenta[b]benzofurans, aglaroxin A 1-O-acetate and 3′-methoxyaglaroxin A 1-O-acetate, benzo[b]oxepine, 19,20-dehydroedulisone A, and cyclopenta[bc]benzopyrans, edulirin A, edulirin A 10-O-acetate, 19,20-dehydroedulirin A, isoedulirin A, and isoedulirin B, cyclopenta[b]benzofuran, aglaroxin A Kim et al., 2006   Roots Favaglines, cyclopenta[bc]benzopyrans (thapsakins) and benzo[b]oxepines (thapoxepines), together with two known cyclopenta[b]benzofurans, aglaroxin A and pannellin Bacher et al., 1999 Aglaia elaeagnoidea Bark Lignans trans-2,3-bis(3,4,5-trimethoxybenzyl)-1,4-butanediol diacetate and 20S,24S-epoxy-25-hydroxymethyldammarane-3-one, one 1H-cyclopentatetrahydro[b]benzofuran, two dammarane triterpenoids and one limonoid Fuzzati et al., 1996 Aglaia elliptica Fruits Rocaglamide derivatives along with rocaglamide and didesmethylrocaglamide Nugroho et al., 1997b Aglaia exima Leaves Cycloartane; 24(E)-cycloart-24-ene-26-ol-3-one, cycloartane-type triterpenoids 24(E)-cycloart-24-ene-26-ol-3-one, cycloart-24-ene-3β,26-diol, schizandronic acid, 24(E)-3β-hydroxycycloart-24-ene-26-al, vaticinone, one dammarane-type triterpenoids cabraleahydroxylactone, and two steroids; β-sitosterol and stigmast-5-ene-28-one Awang et al., 2012   Stem bark Stigmastane steroid, 3,4-epoxy-(22R,25)-tetrahydrofuran-stigmast-5-en, triterpenoids dammara-20,25-diene-3b,24-diol, dammara-20S, 5a,24-en,3b,20-diol and steroids stigmasterol 3-O-β-d-glucoside and stigmast-5-ene-3b,4b-diol Harneti et al., 2014 Aglaia foveolata Leaves Flavagline derivatives: foveoglin A, foveoglin B, isofoveoglin, cyclofoveoglin, secofoveoglin and silvestrol, pyramidatine Salim et al., 2007a   Stem bark Baccharane-type triterpenoid and silvestrol,17,24-epoxy-25-hydroxy-3-oxobaccharan-21-oic acid       Dammarane triterpenes, foveolins A and B, together with three known, 3-epi-ocotillol, eichlerianic acid and shoreic acid Roux et al., 1998 Aglaia gracilis Leaf Secopiriferine and secoodorine and known compounds flavonol, flavagline, odorine, piriferine, pyramidatine, norsesquiterpene, desacetylaglain A, aglaistatin, Grege et al., 2001   Root bark Marikarin and 3′-hydroxy-marikarin along with known algafoline, aglaiastatin, dehydroalgastatin, shoreic acid Grege et al., 2001 Aglaia grandis Leaves Pregnanes and cycloartane type triterpenoid hydroperoxides Inada et al., 1997     Putrescine bisamides grandiamides A-C and aromadendrane-type sesquiterpene 4b,10a-dihydroxyaroma- Dendrane Inada et al., 2000 Aglaia harmsiana Leaves Cycloartane type triterpene-Cycloartane-3β,29-diol-24-one, (24R)-cycloartane-24,25-diol-3-one Inada et al., 1995     Rocaglamide compound Nugroho et al., 1997b Aglaia ignea Bark Dammarenolic acid Esimone et al., 2010 Aglaia lawii Leaves Dammaranes, aglinins A and B together with cabraleone, eichlerianic acid and shoreic acid Mohamad et al., 1999a   Bark A pregnane steroid, namely (E)-aglawone 20S, 24S-epoxy-dammarane-3α,25-diol acetate Qiu et al., 2001 Aglaia leucophylla Stem bark (+)-ocillatone, (+)-ocotillol, (+)-cabraleone, (+)-eichlerianic acid, (+)-caryophyllene oxide, (24Z)-3,4-secotirucalla-4 (28) 7,24-triene-3,26-dioic acid and 3-monomethyl ester. Benosman et al., 1994     Tirucallane triterpene, (−)-leucophyllonealong with (−)-caryophyllene oxide, (−)-niloticin, (−)-bourjotinolone and (−)-piscidinol. Benosman et al., 1995 Aglaia loheri Leaves Spinasterol, trilinolein, phytyl fatty acid ester Ragasa et al., 2012 Aglaia odorata Leaves Cyclopenta tetra hydro benzo furans along with desmethyl rocaglamide, methyl rocaglate, rocaglaol Ishibashi et al., 1993     Odorine, odorinol and dehydrodorin Duh et al., 1993     Rocaglamide congeners, aglain derivatives, two aminopyrrolidines odorine and odorinol, three flavonoid derivatives and syringaresinol Nugroho et al., 1999     Dolabellane diterpenoids (1R,3E,7E,10S,11S,12R)-dolabella-3,7-dien-10,18-diol, (1R,3S,7E,11S,12R)-dolabella-4(16),7-dien-3,18-diol, (1R,7E,11S,12R)-18-hydroxydolabella-4(16),7-dien-3-one, (1R,3S,4S,7E,11S,12R)-3,4epoxydolabella-7-en-18-ol, and (1R,3R,7E,11S,12R)-dolabella-4(16),7,18-trien-3-ol. Cai et al., 2010     Dolabellane diterpenoids, two dammarane triterpenoids and a protostane triterpenoid Yodsaoue et al., 2012   Leaves twigs Coumarinolignoid, 8-(70,80,90-propanetriol-40-methoxy-30-O-phenylpropanoid)-7-hydroxy-6-methoxycoumarin. Zhang et al., 2012a   Twigs Insecticidal rocaglamide compounds Nugroho et al., 1999     Norsesquiterpene 4α, 10β-dihydroxy-1βH,5αH-guai-6(7)-en-11-one and four new sesquiterpenes 1β,4α,7β-trihydroxy-14β-methyl-eudesman-11(12)-ene, 1α,6β,12-trihydroxy-1βH,5αH,11H-guai-6(7)-ene, 4α7β,11-trihydroxy-1βH,5αH-guai-10(14)-ene, and 4α,10α,11-trihydroxy-1βH,5βH-guai-7(8)-ene along with four known guaianediol, orientalol A, orientalol B and 1β,6α-dihydroxy-10β-methyl-5αH,7αH-eudesm-4-one Liu et al., 2014   Dried twigs Dammarane triterpenes and aminopyrolidine bis-amides such as odorinol Janprasert et al., 1993   Flower essential oil Cadinane derivatives murrola-4,10 (14)-dien-1β-ol accompanied by 1α-alchol, methyl jasmonate Weyerstahl et al., 1999 Aglaia oligophylla Leaves Dipterocarpol, ocotillone, cabraleone, ocotillol, 20(S),24(S)-dihydroxydammar-25-en-3-one, 20S,25-epoxy-24R-hydroxy-3-dammaranone, 20S,25-epoxy-24R-hydroxydammarane-3a-ol, flavagaline rocaglaol, bisamides odorine and 20-epi-odorine Joycharat et al., 2008 Aglaia ponapensis Leaves and stems Cyclopenta[bc]benzopyran, ponapensin, and an aglaialactone, 5,6-desmethylenedioxy-5-methoxy-aglalactone, cyclopenta[b]benzofuran(methyl rocaglate) four cyclopenta[bc]benzopyrans 4-epi-aglain A, aglain B, 10-O-acetylaglain B, and aglain C, and four pregnane steroids (E)-volkendousin, (Z)-volkendousin, 2β,3β-dihydroxy-5-pregn-17(20)-(E)-en-16-one, 20 and 2β,3β-dihydroxy-5-pregn-17(20)-(Z)-en-16-one Salim et al., 2007b Aglaia rubiginosa Leaves Androstane derivatives. 17-octanor-cycloartane-ring-A-seco acid Four cyclo artane-type triterpenes and three unusual cholesterol derivatives Weber et al., 2000   Twigs Cyclopenta{b}benzofuran, 1-O-acetyl rocaglaol Rivero-Cruz et al., 2004 Aglaia silvestris Leaves, twigs and roots Triterpenoids silvaglin A, B, methylisofoveolate B, methylfoveolate B, isosilvaglin A, B, desoxysilvaglin B, aglasilvinic acid, isoeichlerianic acid, methylfoveolate B, aglasilvinic acid, one pregnane steroid pregnacetal, two sesquiterpenes viridiflorol, α-muurolene Pointinger et al., 2008   Roots Silvaglenamin-unusual dimeric triterpene structure with two dammarane units linked with an enaminic NH group Hofer et al., 2009 Aglaia smithii Bark Dammarane triterpenoids, aglinone and aglinin E (20S,24S-epoxy-25-hydroxy-1-endammarene) along with three known compounds, 3-epiocotillol, aglinin A and eichlerianic acid Harneti et al., 2012 Aglaia spectabilis Bark Rocaglamide derivatives Schneider et al., 2000   Leaves Two bisamides secoisopiriferinol and secoisoodorinol Greger et al., 2008 Aglaia tenuicaulis Leaves, stem and root bark Six amide-esters tenucaulin A, B, isotenucaulin A, aglatenin, tenaglin, caulitenin and two sulphur-containing bisamides pyrrolotenin, secopyrrolotenin Greger et al., 2008 Aglaia testicularis Leaves Rocaglamide derivatives 1 and 2, one aglain derivative aglaxiflorin D, two cinnamic acid-derived bisamides, piriferine and odorinol and a diarylbutane lignan, secoisolariciresinol dimethyl ether Wang et al., 2004b Aglaia tomentosa Bark Dammaranes, aglinins C and D two pregnane steroids, aglatomins A and B and cyclopentate-trahydrobenzofuran, rocaglaol Mohamad et al., 1999b Amoora rohituka Bark Amoorinin Agnihotri et al., 1987   Stem bark Guaiane-derived sesquiterpenoids,6β,7β-epoxyguai-4-en-3-one and 6β,7β-epoxy-4β,5-dihydroxyguaiane. Chowdhury et al., 2003b   Seeds 7-Keto-octadec-cis-11-enoic acid Daulatabad and Jamkhandi, 1997 Aphanamixis grandifolia Leaves and twigs Tirucallane triterpenoids, 2α-ethoxy-2,3-secotirucalla-2,29-epoxy-7-ene-23-oxo-3-oic acid (1) and (23E)-2α-hydroxytirucalla-7,23,25-triene-3-one and a tirucallane triterpenoid 2,3-secotirucalla-2,3; 2,29-diepoxy-7-ene-3,23-dione Wang et al., 2012a     Cycloartane triterpenoids, aphagrandinoids A-C and aphagrandinoid D, and (20R)-3β-hydroxy-24,25,26,27-tetranor-5α-cycloartan-23,21-olide Wang et al., 2013   Leaves and stem Terpenoids, nemoralisins D-G, diterpenoids, nemoralisin C and nemoralisin Zhang et al., 2014   Stem barks Tirucallane type C26 triterpenoids, 3a-hydroxyl-21a-methoxy-24,25,26,27-tetranortirucall-7-ene-23(21)-lactone, 3a-hydroxy-21b-methoxy-24,25,26,27-tetranortirucall-7-ene-23(21)-lactone, 3-oxo-21a-methoxy-24,25,26,27-tetranortirucall-7-ene-23(21)-lactone, 3-oxo-21b-methoxy-24,25,26,27-tetranortirucall-7-ene-23(21)-lactone, and 3-oxo-21a-ethoxy-24,25,26,27-tetranortirucall-7-ene-23(21)-lactone Zhang et al., 2010     Tirucallane C27-triterpenoid epimers, aphagranins A and B Wang et al., 2012b   Stem 2,3-Seco-tirucallane triterpenoid derivatives aphanamgrandins A-F, three 3,4-seco-29-nor-tirucallane triterpenoid derivatives aphanamgrandins G–I, one 3,4-seco-tirucallane triterpenoid aphanamgrandin J, two tirucallane triterpenoids aphanamgrandin K and (23Z)-25-hydroxy-tirucalla-7,23-diene-3-one and three known triterpenoids (23S)-21,23-epoxy-5a-cycloart-24-en-3b-ol, 3b,25-dihydroxy-tirucalla-7,23-diene, and (−)-leucophyllone. Zeng et al., 2012     Triterpenoid Aphanamgrandiol A Zeng et al., 2013   Fruits Limonoids aphanamolides C and D, aphanamolide A and aphapolynin A Zhang et al., 2013a Aphanamixis polystachya Stem bark Diterpenes possessing rare five-membered peroxide ring, aphanaperoxides E-H Wu et al., 2013   Bark Dihydroamoorinin Agarwal et al., 2001   Roots Limonoids and flavonoids Amoorinin-3-O-α-l-rhamnopyranosyl-(1 to 6)-β-d-gluco pyranoside, 8-methyl-7,2′,4′-tri-O-methyl flavonone-5-O-α-l-rhamnopyranosyl-(1 to 4)-β-d-glucopyranosyl-(1 to 6)-β-d-glucopyranoside and 8-C-methyl-5,7,3′,4′-tetrahydroxy flavone-3-O-α-l-arabino pyranoside Srivastava et al., 2003   Fruits Ring A-seco limonoids, aphanalides A-H Wang et al., 2012c     Highly oxidized A,B-seco limonoids, aphapolynins A and B Zhang et al., 2011   Seed Limonoids rohituka-12, rohituka-13 and rohituka-14 and kihadalactone A and known compounds polystachin, rohituka-7 and rohituka-9. Mulholland and Naidoo, 1999 Astrotrichilia asterotricha Bark Astrotrichilin Mulholland et al., 1996 Astrotrichilia voamatata Stem bark Voamatins A and B Mulholland et al., 1999a   Stem bark Voamatins C and D Mulholland et al., 2000a Azadirachta indica Leaves Nimbolide, 28-deoxonimbolide Kigodi et al., 1989     Nimbinene and 6-deacetyl nimbinene, nimbadiol, hyperoside, quercetin, rutin, meldenindiol, 4α,6α-dihydroxy-A-homoazadirone Rastogi and Mehrotra, 1993     Tetracyclic triterpenoids zafaral 24,25,26,27-tetranorapotirucalla-(apoeupha)-6α-acetoxy-1,14-dien-3,16-dione-21-al(1) and meliacinanhydride 24,25,26,27-tetranorapotirucalla-(apoeupha)-6α-hydroxy, 11α-methoxy-7α,12α diacetoxy,1,14,20(22)-trien-3-one (2) Siddiqui et al., 2004     Teetranortriterpenoids 24,25,26,27 tetranorapotirucalla-(apoeupha)-6α-O-methyl, 7α-S enecioy (7-deacetyl)-1α,12α,21,23-tetrahydroxy-21,23-epoxy-2,14,20 (22)-trien-1,16-dione (1) Siddiqui et al., 2003     Triterpenoids 22,23-dihydronimocinol and des furano-6-α-hydroxyazadiradione Siddiqui et al., 2002   Seeds 1α-Methoxy-1,2-dihydroepoxyazadiradione, 1β,2β,14β,15β-diepoxyazadiradione, 7-acetylneotrichilenone, three C-7 benzoates of tetranortriterpenoids (I, II, III), nimbin and β-sitosterol, nimbinene and 6-deacetyl nimbinene, nimbandiol Rastogi and Mehrotra, 1993.     Tetranortriterpenoids 1α,2α-epoxy-17β-hydroxyazadiradione,1α,2α-epoxynimolicinol, 7-deacetyl nimolicinol Hallur et al., 2002     Margocin, margocinin and margocilin Ara et al., 1990     Limocinol, limonone, limocin A and B, limocinin. Siddiqui et al., 1991   Root bark 7α-acetoxy-4,4,8-trimethyl-5α-(13α Me)-androsta-1,14-dien-3,16-dione,7α-acetoxy-4,4,8-trimethyl-5α-(13α Me)-17-oxa-androsta-1,14-dien-3,16-dione and 7α-acetoxy-4,4,8-trimethyl-5α-17-oxa-androsta-1,14-dien-3,16-dione Siddiqui et al., 1992   Fruits Nimolicinol Rastogi and Mehrotra, 1993   Nodal callus Azadirachtin Babu and Nair, 2004 Azadirachta indica Seed kernels Azadirachtin derivatives, 29-oxymethylene azadirachtin analogue,29-oxymethylene-11-demethoxy-carbonyl-11-α-hydroxy azadirachtin (azadirachtin M), 22,23-dihydro-23α hydroxy-3-tigloyl-11-deoxyazadirachtin (azadirachtin N) Luo et al., 1999     Apo-tirucallols, 1a,7a-diacetoxyl-17a-20S-21,24-epoxy-apotirucall-14-ene-3a,23R,24S,25-tetraol Luo et al., 2002   Seeds 11-Hydroxyazadirachtin-B, 1-tigloyl-3-acetylazadirachtinin, 1,2-diacetyl-7-tigloyl-12-hydroxy vilasinin and 23-desmethyl limocin-B Kumar et al., 1996   Fruit coats Azadironolide, iso azadironolide, azadiradionolide Siddiqui et al., 1999     Tetracyclic triterpenoids, salimuzzalin, azadirolic acid, azadiradionol, azadironol Siddiqui et al., 1998     Tetranortriterpenoid, 11-epi-azadirachtin H Ramji et al., 1996   Dried cells and seed kernel Azadirachtin Jarvis et al., 1997     Triterpenoid, 1α,7α-diacetoxy apo tirucall-14-ene-3α,21,22,24,25-pentaol. Luo et al., 2000e   Flowers Neeflone, a new tetranortriterpenoid-15-acetoxy-7-deacetoxydihydro azadione Nanduri and Banstola, 1995   Essential oil of flowers Sesquiterpenes α-cubebene, copaene, humulene, Δ-cadinene, 3,4-dimethylthiophene, dipropyl disulphide, nonanal, propyl propenyl disulphide, Δ-elemene, α-gurjunene, linalool, caryophyllene, aromadendrene, allo-aromadendrene, viridiflorene, α-muurolene, Δ-cadinene, bicyclogermacrene, cis-3,5-diethyl-1,2-4-trithiolane, cadina-1,4-diene, trans-3,5-diethyl-1,2,4-trithiolane, 2-tridecanone, calamene, α-calacorene, palustrol, ledol, nerolidol, ethyl laurate, cubenol, epicubenol, globulol, viridiflorol, τ-cadinol, τ-muurolol, phytol Aromdee and Sriubolmas, 2006 Azadirachta excelsa Stem 4 Meliacin type limonoids, two novel namely and 2,3-dihydronimbolide and 3-deoxy methyl nimbidate Cui et al., 1998 Cabralea canjerana Stem Dammarane triterpenes 20S,24S-epoxy-7b,25-dihydroxy-3,4-secodammar-4(28)-en-3-oic acid, 20S,24S-epoxy-7b,15a,25-trihydroxy-3,4-secodammar-4(28)-en-3-oic acid and 20S,24R-epoxy-7b,22x,25-trihydroxy-3,4-secodammar-4(28)-en-3-oic acid, known dammarane triterpenes ocotillone, eichlerianic acid, shoreic acid and the sterols sitosterol, campesterol, sitostenone stigmasterol, and stigmast-5-en-3-one Campos Braga et al., 2006   Branches Ocotillone, eichlerianic acid, shoreic acid and eichlerialactone Campos Braga et al., 2006 Capuronianthus mahafalensis Stem barks Protolimonoid, capulin Fossen et al., 2012 Carapa guianensis Twig 1,3-Di-benzene carbon amine-2-octadecylic acid-glyceride (new), hexacosanoic acid-2,3-dihydroxy-glyceride (first time from natural source), ursolic acid, naringenin, scopoletin, 3,4-dihydroxymethylbenzoate, 2,6-dihydroxymethylbenzoate, tetratriacontanoic acid, triacontanoic acid. Qi et al., 2004   Flower oil Mexicanolides and phragmalin-type limonoids named Andirolides A, B, C, D, E, F and G, with the known 7-deacetoxy-7-oxogedunin and 6a-acetoxygedunin Tanaka et al., 2011   Flower oil Gedunins andirobin, three mexicanolides, and two phragmalin-type limonoids andirolides H, I, J, K, L, M, N, O, and P Tanaka et al., 2012   Flower oil Gedunins, an andirobin, two mexicanolides, and a phragmalin-type limonoid, named andirolides Q, R, S, T, U and V Sakamoto et al., 2013   Seeds Limonoids, carapanolides A and B Inoue et al., 2012 Cedrela odorata Leaves Tetranor tri tetraterrpenoids, 3-deoxo-3β, 8β epoxy-6,14α, dihydroxy-8,14α-dihydromxi canolide, cedrodorin: 3-deoxo-3β, 8β epoxy-6-14α hydroxy-8,14-dihydro mexicanolide, 6-acetoxy cedrodorin: 3-deoxo-3β, 8β epoxy-6-14α hydroxy-8, 14-dihydromexicanolide, 6-deoxy-9α-hydroxy cedrodorin and 3-deoxo-3β,8β-epoxy-6,9α, 14α-di hydroxy-mexicanolide (9α-hydroxy cedrodorin) Veitch et al., 1999   Leaf essential oil Sesquiterpenoids: α-santalene, β-acoradiene, β-elemene caryophylleneoxide, Z-α-bergamotene Asekun and Ekundayo, 1999   Stems Sesuiterpenes, triterpenes, limonoids and flavonoids De Paula et al., 1997   Stem bark Nomilin/obacunol derivatives 11β-acetoxyobacunyl acetate, 11β,19-diacetoxy-l-deacetyi-l-epidihydronomilin, 11β-acetoxyobacunol and odoralide and swietenolide derivative 8β,14α-dihydroswietenolide, and seven known limonoids of two nomilin derivatives, 7-acetyldihydronomilin, and 7-acetyl-11b-acetoxydihydronomilin, five mexicanolides, swietenolide, 3b,6-dihydroxydihydrocarapin, xyloccensin K, 3b-hydroxydihydrocarapin and cedrodorin Kipassa et al., 2008   Bark oil Sesquiterpene hydrocarbons and oxygenated sesquiterpenes 43.9%, 42.4% respectively. α-copaene (14.4%), α-cadinol (11.2%), β-eudesmol (9.4%), delta-cadinene (9.2%). Martin et al., 2003   Heart wood 3-oxo-threo-23,24,25-tri hydroxy tirucall-7-ene and 3β-O-Δ-glucopyranosyl-24-methylene cholesterol Campos et al., 1991 Cedrela mexicana Leaves and stem bark oil Sesquiterpenes α-terpinyl actate spathulenol, elemol, alismol Ogunwande et al., 2005 Cedrela salvadorensis Leaves Flavonol rhamnosides-(−)-epicatechin, a fzelin and quercitrin Barrios-Chica and Castro-Castillo, 1995 Cedrela sinensis Leaves Cedrellin and 2,6,10,15-phytatetraene-14-01- Luo et al., 2000a     Five limonoids:11β-hydroxy-7α-obacunyl acetate,11-oxo-7α-obacunyl acetate, 11-oxo-7α-obacunol, 11β-hydroxyceneorin G,11-oxocneorin G Mitsui et al., 2004   Seeds, leaves, and stems Apotirucallane triterpenoids Mitsui et al., 2005   Rachis Methyl gallate, quercitrin, bis-(p-hydroxy pheny)-ether adenosine, isoquercitrin, rutin, (+)-catechin and (−)-epicatechin Park et al., 1996 Cedrela tonduzii Leaves Quercetin-3-glucoside 2 and robinine Rastogi and Mehrotra, 1993 Cedrela tubiflora Leaves Water-soluble polysaccharide Benencia et al., 1999 Cedrelopsis grevei Trunk bark Coumarins, 7-methoxy-5-prenyl coumarin (iso cedrelopsin) and 3,′4′-dihydrobraylin, along with five known coumarins (6,7-dimethoxy-5-prenyl coumarin obliquin, 8-methoxy obliquin aesculetin, cedrelopsin and scoparone) Um et al., 2003 Chisocheton ceramicus Barks Limnoid ceramicine A Mohamad et al., 2008 Chisocheton erythrocarpus Barks Limonoids, erythrocarpines A-E Awang et al., 2007     Limonoids, malayanine A and malayanine B Chong et al., 2012 Chisocheton paniculata Fruit Meliacin 1,2-dihydro-6-acetoxy azadirone Bordoloi et al., 1993   Whole plant Protolimonoids and limonoids arunachalin Yadav et al., 1999 Chisocheton polyandrus Leaves Dammarane triterpenoids, dammara-20,24-dien-3-one and 24-hydroxydammara-20,25-dien-3-one Chan et al., 2012 Chisocheton tomentosus Bark 7α-Hydroxy-β-sitosterol (new), stigmasta-4,6-diene-3-one, stigmasterol and β-sitosterol Najmuldeen et al., 2011 Chukrasia tabularis Leaves Sitosterol, melianone, scopoletin, 6-7-dimethoxy coumarin, quercetin and its 3-galactoside and tannic acid Rastogi and Mehrotra, 1993   Wood Meliacins, chukrasin A, B, C, D and E Rastogi and Mehrotra, 1993   Stem bark Phragmalin-type limonoids, tabulalin F Jun et al., 2011     19-nor limonoid incorporating a unique 7,10-c-lactone tabulvelutin A, tabulvelutin B Yin et al., 2011   Root bark Phragmalin limonoids tabulalin and tabulalides A-E Nakatani et al., 2004   Seeds 3,30-Isobutyrate, 3-isobutyrate, 30-propionate of phragmalin, 12-acetoxy phragmalin Rastogi and Mehrotra, 1993     Linoleic, linolenic acid Goel, 1998 Cipadessa baccifera Leaves Cipadessi n-type limonoids, cipaferens A-D, and asmelianodiol, spicatin Siva et al., 2013a   Seeds Cipadesin, 17α, 20R-dihydroxy pregnan-3,16-dione, 1,4-epoxy-16-hydroxy heneicos-1,3,12,14,18-pentaene and 1,4-epoxy-16-hydroxy heneicos-1,3,12,14-tetraene Luo et al., 2000b     Cipadesin and febrifugin Marpaung et al., 2001     Methyl angolensate type cipaferen E-J and three new mexicanolide-typelimonoids cipaferen K-M Siva et al., 2013b Cipadessa boivinina Stem bark Sesquiterpenoid; boivinianin A (11,12,13-trisnorbisabola-1,3,5-trien-10,7-olide); boivinianin B (7,10-epoxy-1,3,5-bisabolatrien-11-ol); 4-hydroxy-4,7-dimethyl-1-tetralone Mulholland et al., 2006 Dysoxylum beddomei Leaves Beddomeilactone, beddomeilactone together with six known triterpenoids (3-oxo tirucalla-7,24-dien-23-ol, dipterocarpol, niloticin, melianone, melianodiol and 24-epi-melianodiol) Hisham et al., 2004 Dysoxylum binectariferum Stem bark Rohitukine Mohanakumara et al., 2010     Dysoline, a regioisomer of rohitukine and rohitukine-N-oxide Jain et al., 2013 Dysoxylum cumingianum Leaves Triterpenes cumingianol A-E and a triterpene glucoside Cumingianoside R and hispidol B, 21-O-methyltoosendanpentol andagladupol A Kurimoto et al., 2011 Dysoxylum densiflorum Twigs leaves Three degraded limonoids, dysodensiols A-C, and three sesquiterpenoids, dysodensiols D-F, along with seventeen known compounds Xie et al., 2008 Dysoxylum grande Leaves 23-Oxo-cholestane derivatives grandol A-G along with a new 3, 4-secodammar-4(28)-en-3-oic acid derivative Wah et al., 2013 Dysoxylum hainanense Bark Tirucallane derivatives. 3β, 22S-dihydroxy tirucalla-7,24-dien-23-one, 22,23-epoxy-tirucalla-7-ene-3β, 24,25-triol, 3β,25-dihydroxy-tirucalla-7,23-diene, 23,26-dihydroxy-tirucalla-7,24-diene-3 Luo et al., 2000c     Ent-pimarene diterpenoids, ent-18-acetoxy-8(14)-pimarene-15S, 16-diol, ent-18-acetoxy-16-hydroxy-8(14)-pimarene-15-one, ent-16, 18-hydroxy-8(14)-pimarene-15-one, ent-19-nor-4,16, 18-trihydroxy-8(14)-pimarene-15-one together with three known damarane triterpenoids, richenoic acid, eichlerianic acid and shoreic acid. Luo et al., 2001     Apo-tirucallols 7α-acetoxyl-17α-20S-21,24-epoxy-apotirucall-14-ene-3α,23R,24S,25-tetraol (2), 7α-acetoxyl-17α-20S-21,24-epoxy-apotirucall-14-en-3-one-23R,24S,25-triol Luo et al., 2002     Nor-dammarane triterpenoids, 12β-O-acetyl-15α, 28-dihydoxy-17β-methoxy-3-oxo-20,21,22–23,24,25,26,27-octanordammanran, 12β-O-acetyl-15α,17β,28-trihydoxy-3-oxo-20,21,22–23,24,25,26,27-octanordammanran, 12β-O-acetyl-15α,28-dihydoxy-3-oxo-17-en-20,21,22–23,24,25,26,27-ctanordammanran, and 12β,15α,17β,28-tetrahydoxy-3-oxo-20,21,22–23,24,25,26,27-octanordammanran Wang and Guan, 2012 Dysoxylum kuskusense Fruits Prenyleu desmane diterpenes, dysokusone I and dysokusone E Duh et al., 2000 Dysoxylum lenticellare Stem 2α-methoxycomosivine, 2α-methoxy lenticellarine and 2α-hydroxylenticellarine Aladesanmi and Hoffmann, 1994     Biflavonoid, robusta flavone 4′,7″-dimethyl ether, Isoginkgetin, bilobetin He et al., 1996 Dysoxylum macranthum Bark Triterpenes, dymacrins, A-Ktetracyclic terpenes and pregnane steroids Mohammad et al., 1999b Dysoxylum malabaricum Leaves Dammarane triterpenoid dymalol (20S,24R)-epoxy-4-hydroxy-3,4-secodammaran-3-oic acid methyl ester (along with two known dammarane triterpenoids) Govindachari et al., 1994     Ergostane, ergosta 5,24 (24′)-diene-3β,4β, 20s-triol, (24R)-cycloartane-3β-24,25-triol and ergosta-5,24 (24′)-diene-3β, 7β-diol Govindachari et al., 1997     Terpenes, 21R,23R-epoxy-21α-ethoxy-24S-25-dihydroxyapotirucall-7-en-3one 24R-acetoxy-3β,25-dihydroxy cycloartane Hisham et al., 2001 Dysoxylum mollissimum Leaves Glabretal-type triterpenoids dysoxylumglabretol A (1a-1b), dysoxylumglabretol B (2a-2b) along with the known compounds, 24,25-epoxy-3b,23-dihydroxy-7-tirucallene (3), squalene, polyprenol, linoleic acid and lutein Ragasa et al., 2013 Dysoxylum muelleri Wood Glabretal triterpenoids: Three dysoxins and also 6α-acetoxy-obacunone acetate (limonoid) Mulholland et al., 1996     Dammarane triterpenoids cabraleone, and richenone Mulholland and Naidoo, 2000 Dysoxylum richii Leaves Dammarane triterpenoids Aalbersberg and Singh, 1991 Dysoxylum schiffneri Wood Sesquiterpenoids (+)-8-hydroxy calamene, schiffnerone A (1,5-dihydroxy-1,3,5-bisabolatrien-10-one), trisa oresquiterpenoid, schiffnerone B (2-hydroxy-11,12,13-trinor-7-calamenone) Mulholland et al., 1998a Dysoxylum spectabile Bark Pimaradiene compounds, 6α-acetoxyobacunol acetate, methyl ivorensate, isopimara-8(14),15-diene, and 7α-hydroxyisopimara-8(14),15-diene Mulholland et al., 1999b Ekbergia benuguelensis Root bark 4-Methoxy-5-hydroxy methyl coumarin, together with poly hydroxy squalenes. 2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetra cosa tetraene and 2-hydroxymethyl-2,3,22,23-tetrahydroxyl-6,10,15,19,23-penta methyl-6,10,14,18-tetracosatetraene Jonker et al., 1997 Ekbergia capensis Dried bark Triterpenoids, 2,3,22,23-tetra hydroxy 2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene and 2-hydroxy, methyl-23,22,23-tetrahydroxy 6,10,15,19,23-penta methyl-6,10,14,18-tetra cosa tetraene Nishiyama et al., 1996   Seed Capensolactones 1-3 and methyl 3α-hydroxy-3-deoxy angolensate Mulholland and Iourine, 1998 Ekebergia pterophylla Leaves Lupeol Mulholland et al., 1998b   Bark Pterophyllins 1 and 2 and known atraric acid, β-amyrin, β-amyrone, oleanonic acid, β-sitosterol, β-sitosteryl acetate and the     Wood Pterophyllins 3-5   Entandrophragma angolense Leaves Tirucallane triterpenoidal compounds 3,23-dioxotirucalla-7,24-dien-21-al, 3,4-secotirucalla-23-oxo-4(28),7,24-trien-21-al-3-oic acid and 3,4-secotirucalla-23-oxo-4(28),7,24-trien-3,21-dioic acid (21-methyl ester) Orisadipe et al., 2005   Root bark Two gedunin type limonoids 5-hydroxy-7-deacetoxy-7-oxogedunin and 5,6-dehydro-7-deacetoxy-7-oxogedunin, and three methyl angolensate derivatives, 6-deacetoxydomesticulide D, 6-deacetoxydomesticulide D 21-methylether, and entangosin, together with known compounds, methyl angolensate, 6-acetoxymethyl angolensate and secomahoganin Nsiama et al., 2011 Entandrophragma cylindricum Bark Sesquiterpenes 3-hydroxy-copa-2-en (oil) and 2α-hydroxy-copa-3-en Daniewski et al., 1996     Acyclic triterpene derivatives named sapelenins G-J, along with eight known compounds, sapelenins A-D, ekeberin D2, (+)-catechin and epicatechin and anderolide G Kouam et al., 2012 Entandrophragma delevoyi Stem bark Delevoyin A (3,4-secotirucallane 4 (28),3-oic acid) and delevoyin B (6α-acetoxykinadealactone) Mulholland et al., 1994   Bark Acyclic triterpenoid, sapelenin D Ngnokam et al., 1995     A novel tetranortriterpenoid, delevoyin C. Mulholland et al., 2000b   Wood Gedunin and 11β-acetoxygedunin Mulholland et al., 2000b Entandrophragma utile Bark A new heptanortriterpenoid, entilin D Daniewski et al., 1995     New sterol, 7α,20(S)-dihyroxy-4,24 (28)-er-gostadien-3-one Tchouankeu et al., 1996 Guarea macrophylla Leaves Terpenes guai-6-en-10β-ol, isopimara-7,15-dien-2α-ol and cycloarta-23,25-dien-3-one. Lago et al., 2000     Cycloartane triterpenoids including two new derivatives 22,25-dihydroxy-cycloart-23E-en-3-one and 24-methylenecycloartane-3b,22-diol Lago et al., 2002a   Leaves essential oil Terpenes: one monoterpene, 16 sesquiterpenes and 6 diterpenes     Leaves oil Sesquiterpenes identified including hydrocarbon and oxygenated derivatives Lago et al., 2005   Stem bark Caryophyllene oxide, guai-6-en-10 β-ol, sphathulenol, aromadendrane-4α,10β-diol, aromadendrane-4α,10α-diol, alloaromadendrane-4α,10β diol, steroids: sitosterol and stigmasterol Lago et al., 2002a   Bark volatile oil 17 Sesquiterpenes, one diterpene and four fatty acids   Guarea guidonia Volatile oil Sesquiterpene (2S*)-eudesma-5,7-dien-2-ol Lago et al., 2002b   Leaves Triterpenes (23S*)-cycloart-24-ene-3b,23-diol and (23R*)-cycloart-24-ene-3b,23-diol     Wood bark Limonoid (mombasol) acoumari (scopoletin) and sesquiterpenes Garcez et al., 1998   Stem bark oil Sesquiterpenes, β-caryophyllene, germacrene Nunez and Roque, 1999 Guarea rhophalocarpa Leaves Terpenes including two sandara copimaradiene diterpenoids, ent-8-(14), 15-sandaracopimaradiene-2α,18-dioland ent-8-(14),15-sandaracopimaradiene-2β 18-dioland two lanostane triterpenoids,23-hydroxy-5α-lanosta 7,9(11),24-triene-3-one and 5α-lanosta-7,9(11),24-triene-3α,23-diol Del Rayo et al., 2001 Guarea trichilioides Dried leaves Cycloartane derivatives-cycloart-24-en-3,23-dione, 23-hydroxycycloart-24-en-3-one (epimers), 3β-hydroxycycloart-24-ene-23-one, 25-hydroxycycloart-23-en-3-one, 3β-21-dihydroxycycloartane, 3β-21,22,23-tetra hydroxycycloartane-24 (31)25-diene Furlan et al., 1993   Leaves Diterpenoids including four labdane and two clerodane derivatives Furlan et al., 1996   Fruits Diterpenoids including four labdane and two clerodane derivatives Wolter et al., 1993 Khaya anthotheca Stems Acyl peroxylated and seco-mexicanolides 1α,8α-oxido-3β-acetoxy-2α, 14α-dihydroxy-{3,3.110,2}-bicyclo meliac-7,19-olide and 3-acetoxy 8,14-dien-8,30-sec-khayalactone, methyl 1 α, 2β 3α, 6,8α, 14β-hexahydroxy {4.2.110.30. 11,4}-tricyc lomeliac-7-oate scopoletin and 3-β-d-gluco pyranosyl sitosterol Ferreira et al., 2005   Stem bark Anthothecanolide, 3-O-acetyl anthothecanolide, 2,3-di-O-acetyl anthothecanolide, 6R, 8α-dihydroxycarpin, 3β-acetoxy-3-deoxo-6Rhydroxycarpin, methyl angolensate, methyl 6-hydro angolensate, khayalactone Tchimene et al., 2005 Khaya grandifoliola Trunk bark A,B,D-Secolimonoid, khaya lactone (C27H34O9) Tchuendem et al., 1998   Stem bark Deacetylkhayanolide E, 6S-hydroxykhayalactone, and grandifolide A and khayanolide A, anthothecanolide, 3-O-acetylanthothecanolide Zhang et al., 2008 Khaya ivorensis Seeds Limonoid Vanucci et al., 1992   Stems 1-O-Deacetyl-6-deoxykhayanolide E, 1-O-deacetyl-2a-hydroxykhayanolide E, 3-acetyl-khayalactone, 11a-acetoxy-2a-hydroxy-6-deoxy-destigloylswietenine acetate, Zhang et al., 2009 Khaya senegalensis Stem bark Rings B and D opened limonoids, rings B and D opened limonoids, khayanone and 2-hydroxy seneganolide and phragmalin limonoid 1-O-acetyl khayanolide Nakatani et al., 2001     Phragmalin-type limonoids, khayanolides A, B and C, four B,D-seco compounds, seneganolide, methyl angolensate and its 6-hydroxy and 6-acetoxy derivatives Abdelgaleil et al., 2001     B/D opened limonoids, phragmalin limonoids khayanolides D and E and one limonoid glucoside, khayanoside Nakatani et al., 2002   Bark 2,6-Dihydroxy fissionolide Khalid et al., 1998     Tetranottriterpenoids of mexicanolide type: 2-hydroxymexicanolide, 6-deoxy destigloylswietenine, 2,3-dihydroxy-3-deoxymexicanolide Govindachari et al., 1998   Leaves Methyl-1α-acetoxy-3β,6,8α-trihydroxy-2α-methoxy-2β,14β-epoxy-tricyclomeliac-7-oateand methyl 1α-acetoxy-6,8α, 14β,30β-tetrahydroxy-3-oxo-tricyclomelin-C-7-oate Olmo et al., 1997   Seeds Mexicanolide tetranortriterpenoids 2-hydroxymexicanolide, 6-deoxydestigloylswietenine and 2,3-dihydroxy-3-deoxymexicanolide. In addition, mexicanolide, 3β-hydroxy-3-deoxymexicanolide, 3β-hydroxy-3-deoxycarapin, 6-hydroxy methyl angolensate, 3-acetyl-7-keto khivorin, 3-deacetyl khivorin and 3,7-dideacetyl khivorin Govindachari and Krishna Kumari, 1998 Malleastrum antsingyense Stem bark Vilasinin limonoids 1,3-diacetylvilasinin, 1,3-diacetyl-12a-hydroxy-7-tigloylvilasinin Coombes et al., 2008 Melia azedarach Leaves Meliacarpin derivatives (C-seco limonoids) 1,3-dicinnamoyl-11-hydroxymeliacarpin,1-cinnamoyl-3-methacrylyl-11-hydroxy-meliacarpin and 1-cinnamoyl-3-acetyl-11-hydroxymeliacarpin. Bohnenstengel et al., 1999     Dipenta decylketone, glycerol 1,3-bis-undec-9-enoate 2-do-dec-9-enoateand glycerol tris-tri dec-9-enoate Suhag et al., 2003     Steroids (20S)-5,24(28)-ergostadiene-3α,7α,16β,20-tetrol (1), (20S)-5-ergostene-3β,7α,16β,20-tetrol (2), and 2α,3β-dihydro-5-pregnen-16-one and 5-stigmastene-3β,7α, 20-triol, 5-stigmastene-3β,7α-diol, and 2α,3α,16β-trihydroxy-5α-pregnane 20R-methacrylate Wu et al., 2009   Stem 12-hydroxy amoora statone, 12-hydroxy amoora statin, 12-acetooxy amoora statin Ahn et al., 1994   Roots Teracrylmelazolide A, melazolide A and teracrylmelazolide B Ambrosio and Guerriero, 2002     Limonoids, azecins 1, 2, 3 and 4 Srivastava and Gupta, 1985   Root bark Azadararide 12α-acetoxy fraxinellone, fraxinellone, fraxinellonone Nakatani et al., 1998     Salannai, meliacarpinin E, salannin, nimbolinin B, nimbolidin B Ruo Chun et al., 1996     Azadarachin C Huang et al., 1995     Azadirachtin type limonoids: 1-tigloyl-3,20-diacetyl-11-methoxy meliacarpinin, 3-tigloyl-1,20-diacetyl-11-methoxy meliacarpinin, 1-cinnamoyl-3-hydroxy-11-methoxy melia carpinin, 1-deoxy-3-methacrylyl-11-methoxy meliacarpinin, 1-cinnamoyl-3-acetyl-11-methoxy melia carpinin Takeya et al., 1996     Azadirachtin type limonoids, 1-tigloyl-3-acetyl-11-methoxymeliacarpinin and 1-acetyl-3-tigloyl-11-methoxy meliacarpinin, sendanin type limonoids, 29-iso butyl sendanin, 12-hydroxy amoorastin, 29-deacetyl sendanin Itokawa et al., 1995     Trichilin H, 12-acetyltrichilin B, 7,12 diacetyl trichilin B, trichilin B and D, meliatoxin A2 Nakatani et al., 1994   Fruit Meliarttenin Carpinella et al., 2002     Limonoids and one tirucallane-triterpenoid Akihisa et al., 2013   Ripe fruits C-Seco limonoids and new tetracyclic limonoids Zhou et al., 2005     New ring C-seco limonoids Zhou et al., 2004 Melia dubia Bark Meliastatins 1-5 Pettit et al., 2002   Roots Tetranortriterpenoids Puroshothaman et al., 1984 Melia composita Roots Anthroquinones and glycosyl derivative of ellagic acid Srivastava and Srivastava, 1996 Melia toosendan Stem bark Trichilins K and L, along with five known limonoids, trichilins H, I and J, azedarachin A and 12-O-acetyl-azedarachin B. Zhou et al., 1996   Root bark Ring C-seco limonoids, 3-O-acetylohchinolal, ohchinolide C and nimbolidin F, salannin, azadirone and acetyl trichilenone Zhou et al., 1997     Limonoids with a C-19/C-29 bridged acetyl trichilin H 29-O-substituted amoorastatone derivatives neoazedarachins A, B and D Zhou et al., 1998     Limonoids spirosendan, trichilinin D-E, and 1-deacetylnimbolinin A, nimbolinin B and its 1-deacetyl derivative Nakatani et al., 1999   Fruits Toosendanal and 12-O-methylvolkensin, meliatoxin B, trichilin H and toosendanin Tada et al., 1999     12-O-methyl-1-O-deacetylnimbolinin B, 12-O-methy-1-O-tigloyl-1-O-deacetylnimbolinin B, 12-O-ethylnimbolinin B, and 1-O-cinnamoyl-1-O-debenzoylohchinal and tirucallane-type triterpenoids, meliasenins S and T Hu et al., 2011     Meliatoosenins E-S Zhang et al., 2012b     Nimbolinin-type limonoids, 12a/b-1-O-tigloyl-1-O-deacetyl-nimbolinin B, 1-deacetylnimbolininB, nimbolinin B and nimbolinin A Su et al., 2013     Limonoids Zhang et al., 2013b Melia volkensi Root bark Apotirucallane triterpenes meliavolkensins A and B, toosendanin and meliavolen, melianinone, 3-episapelin A, nimbolin B Zeng et al., 1995a     Meliavolin, apotirucallane triterpene, and meliavolkin, tetranortriterpene, together with melianin A, Zeng et al., 1995b     Ring C-seco limonoids, nimbolidins C-E along with known Seco-limonoids, nimbolidin B and salannin Nakatani et al., 1996     Volkensinin (C32H42O11) Rogers et al., 1998   Seeds Antimyco bacterial triterpenes, 12β-hydroxykulactone(1)6β-hydroxykulactone (2) Cantrell et al., 1999 Melicope semecarpifolia Leaves Furoquinoline alkaloids and cytotoxic constituents. Meliacarpine, semecarpine and (+/−)-8-methoxyplatydesmine, together with flavone ayanin Chen et al., 2003 Munronia delavayi Whole plants Limonoids, mulavanins A-E, along with four known compounds 2α,3α,15β-trihydroxy-20(S)-tigloyl-pregnane, mombasol, 14,15β-epoxyprieurianin and nymania 3 Lin et al., 2010 Munronia henryi Whole plant A,B-seco-tetranortriterpenoid lactam, munroniamide Qi et al., 2003     Limonoids munronolide, munronolide 21-O-β-d-glucopyranoside Zhang et al., 2004 Munronia unifoliolata Whole plant Limonoids, named munronoids A-J Ge et al., 2012 Neobeguea leandreana Stem bark Phragmalin limonoids leandreanins A, B and C Coombes et al., 2003 Neobegueae mahafalensis Bark Limonoid, neobeguin, and β-amyrin and stigmasterol Randrianarivelojosia et al., 1999   Seed shells Three triterpenoids, sapelin C, sapelin E acetate and grandifoliolenone Naidoo et al., 2003   Seed Methyl angolensate, mexicanolide and khayasin   Owenia cepiodora Leaves and bark Limonoid, 28-deoxonimbolide, and three protolimonoids, 24S,25-dihydroxytirucall-7-en-3-one, 3-oxo-tirucalla-7, 24-dien-21-al and 21,24R-epoxy-25-hydroxytirucall-7-en-3-one Mulholland et al., 1998c Quivisia papinae Seeds Limonoid quivisianthone, and 6a-hydroxyazadiradione and 7-deacetyl-7-angeloyl-6ahydroxyazadiradione, azadiradione Coombes et al., 2004.     Mexacanolide limonoids, quivisianolideA, quivisianolideB and quivisianone Coombes et al., 2005. Sandoricum indicum Stem bark Multiflorane-triterpenoid acids 12β-hydroxy multiflorane triterpenoid acids, sandorinic acids A-C Tanaka et al., 2001 Sandoricum koetjape Leaves Trijugin type limonoids, sandrapins A, B and C Ismail et al., 2003     Analogues of trijugin type limonoids sandrapins D and E Ismail et al., 2004     Andirobin-type limonoids, named sandoripin A and sandoripin B Pancharoen et al., 2009   Stem bark Secomultiflorane type triterpenoid acids, bryonic acid and two new ring-A seco triterpenoids Kosela et al., 1995 Soymida febrifuga Root callus Methyl angolensate and luteolin-7-O-glucoside Chiruvella et al., 2007   Bark Phragmalin type limonoids soymidin A and B. Ashok Yadav et al., 2012 Swietenia macrophylla Leaves Phragmalin ortho esters, named swietephragmin H-J, and polyhydroxylated phragmalin, swietemacrophine Tan et al., 2009   Fruits Phragmalin-type limonoid, 6-O-acetyl-3′-demethylswietephragmin E Chen et al., 2010   Seeds Tetranortriterpenoids Kojima et al., 1998     Limonoids; augustineolide, 3β-6 dihydroxy dihydrocarpin from S. macrophylla and 6-acetoxy humilinolide from aubrevillena Mootoo et al., 1999 Swietenia mahagoni Leaves Scopoletin, melianone, cyclo mehogenol, swietenin, stigmasterol glucose Rastogi and Mehrotra, 1993     Phragmalin limonoids swietephragmins A-G, and two other different types of 2-hydroxy-3-O-tigloylswietenolide and deacetylsecomahoganin, methyl 6-hydroxyangolensate, swietemahonin G and 7-deacetoxy-7-oxogedunin Abdelgaleil et al., 2006     Phragmalin-type limonoids, swietephragmin H, swietephragmin I and 11-hydroxyswietephragmin B, and a mexicanolide-type limonoid 2-hydroxy-6-deacetoxyswietenine 6-O-acetyl-2-hydroxyswietenin, 2-hydroxyswietenine, swietemahonin G, methyl 6-hydroxyangolensate and 7-deacetoxy-7-oxogedunin Abdelgaleil et al., 2013   Twigs and leaves Limonoids, swiemahogins A and B Chen et al., 2007   Stem bark Phragmalin 8,9,14-orthoacetate with the addition of methyl 2,30-orthoacetate or a propionate, swietenialides A, B, and C and two ring-D opened phragmalin-type 1,8,9-orthoacetates, swietenialides D and E, mexicanolide, 2-hydroxyswietenin Saad et al., 2003   Heart wood Cyclo swietenol, lupleol, benzoate hedergenin, cycloartenol, β-sitosterol Rastogi and Mehrotra, 1993   Seeds 6-Desoxyswietenine Govindachari et al., 1999a Toona ciliata Leaves Limonoids, toonayunnanins A-L Liu et al., 2012   Leaves and stems Siderin, 4,6,7-trimethoxy-5-methylcoumarin, isoscopoletin, scopoletin, 6,7-dimethoxycoumarin, 7-hydroxy-6,8-dime-thoxycoumarin, dehydrodiconiferyl alcohol, (−)-lariciresinol, thero-2,3-bis-(4-hydroxy-3-methoxypheyl)-3-methoxy-propa-nol, cycloeucalenol, 8(14), 15-isopimaradiene-2,3,19-triol, 3S,5R-dihydroxy-6R, 7-megstigmadien-9-one, (−)-loliolide, (+)-catechin, dimethyl malate, diisobutyl phthalate, dibutyl phthalate, 1,3,5-trimethoxybenzene, syringic acid, syringaldehyde, vanillic acid, vanillin, and 3,3′,5,5′-tetra-tert-butyl-2,2′-dihydroxybiphenyl Liu et al., 2011a   Stem Toonacilianins A-J, and two norlimonoids, toonacilianins K and L Liu et al., 2011b   Stem bark Five new pregnane steroids, toonasterones A, B, (Z)-aglawone, (Z)-toonasterone C, and (E)-toonasterone C Wang et al., 2011 Toona microcarpa Stem and bark A flavanone, (+)-catechin, two lignans, (6R,7S,8S)-7a-[(β-d-glucopyranosyl)oxy]lyoniresinol and (6R,7R,8R)-7a-[(β-d-glucopryanosyl) oxy]lyoniresinol and a steroid 20-hydroxyecdysone Fang et al., 2010 Trichilia americana Stem Steroid 2-hydroxyandrost-1,4-dien-3,16-dione (trichiliasterone B) Hantos et al., 2001 Trichilia casaretti Leaves β-sitosterol, stigmasterol Figueiredo, 2010 Trichilia catigua Bark Gamma lactones and its precursors omega-phenylalkanes, three omega phenyl alkanoic acids. Five omega-phenyl-gamma lactones, two alkyl-gammalactones, one alkenyl-gamma lactone and mixture of fatty acids ranging from C-14 to C-26 Pizzolatti et al., 2004   Whole plant 7-Hydroxy-1-oxo-14-norcalamenene, 7,14-dihydroxy calamenene, sitosteryl-β-Δ-glucopyranoside Garcez et al., 1997a   Fruits Meliacin-type limonoids fotogedunin A, B Matos et al., 2009   Seeds Methyl angolensate, 11β-methoxycedrelone Matos et al., 2007 Trichilia claussenii Leaves 24-Methylene-26-hydroxycycloartan-3-one, 24-methylene cycloartanol fatty acids derivatives, caryophyllene epoxide, a mixture of Ω-phenyl alkanoic and alkenoic acids, plastocromenol,α-tocopherol, squalene and a mixture of sitosterol and stigmasterol Pupo et al., 1996     3-O-β-glycopyranoside sitosterol, 3-O-β-glycopyranoside stigmasterol Pupo et al., 1997     β-Sitosterol etherified, stigmasterol etherified Pupo et al., 2002   Fruits γ-Lactones (2R,3S,4S)-3-hydroxy-4-methyl-2-(13′-phenyl-1′-n-tride cyl)-butanolide. (2R,3S,4S)-3-hydroxy-4-methyl-2-(11′-phenyl-1′-n-undecyl)-butanolide. (2R,3S,4S)-3-hydroxy-4-methyl-2-(1′n-hexa dec-7′(z)-enyl)-butanolide and (2R,3S,4S)-3-hydroxy-4methyl-2-(1′-n-tetra decyl)-butanolide Pupo et al., 1998   Wood 2α,3α-dihydroxyandrostan-16-one-2β,19-hemiketal,2α,3β-dihydroxypregnan-16-one-2β,19-hemiketal,2β,3β,4β-trihydroxypregnan-16-one,2α,3α,4β-trihydroxypregnan-16-one, 2β,3β-dihydroxypregnan-16-one Pupo et al., 1997 Trichilia connaroides Leaves Heynic acid and 24-methylene cycloartane-3β, 21-diol Rastogi and Mehrotra, 1993   Leaves Methyl 11′,13′-dioxo-12′-aza-[4,4,3]-pro, 4a,8a-(methaniminomethano)naphthalene-9,11, naphthalene, bicyclo[3.1.1],2,6,6-trimethyl heptan-3-one, isotridecanol, 7-tetradecene, octane, 1-bromo-2-chloro-1,1-difluro-2-tridecan (hexacosane), tetrahydroxy myrcenol, dodecyl acrylate (oleic acid), 1-(1,5-dimethyl)-4-hexyl-4-methyl benzene, 17-pentatriacontane, 2,4-bis(1,1-dimethylethyl) phenol, silane-trichlorodocosyl, -undecanethiol,2-methyl, pentadecane, undecane, decane, hydroxylamine, o-decyl, dodecanoic acid, 2-hexyl-1-octanol, germacrane-B, erucic acid, phthalic acid, cyclobetyl octyl ester, nonadecane, hexadecanoic acid methyl ester (palmitic acid), serverogenin acetate, dotriacontane, isochiapin B, phytol, oleic acid, ethyl linoleate, ethyl oleate, 2-(3-innoxyl)3-5-aminopyridol (2,3-dipyrimidine), 4,4′,6,6′-tetra-butyl O,O′-biphenol, eicosane, phthalic acid octyl tridec-2-yn-1-yl ester, 6,10,14,18,22-tetra cosa pentane 2-ol, 3-bromo,2,6,10,15, lycopersen, solanesol Senthilkumar et al., 2012   Twigs and leaves Trijugins D-H and methyl 8a-hydroxy-8,30-dihydroangolensate, two degraded limonoids, trichiconnarins A and B, and a pregnane steroid, 3b,4a-dihydroxypregnan-21-one, along with the known trijugin C and 3b,4a-dihydroxypregnan-16-one Wang et al., 2008   Pericarp Mexicanolide type limonoid, 2-hydroxy-3-O-tigloyl-6-O-acetyl swietenolide and tirucallane type triterpenoid derivative, lipo-3-epi sapelin A Inada et al., 1994 Trichilia cuneata Stem and leaves 13-acetoxy-14-nordehydrocacalohastine, maturinone Doe et al., 2005 Trichilia dregeana Stem Limonoids with furan-ringdregeana-5, dregeanin, 12-(2′-deacetyl)-dregeanin Connolly et al., 1976   Seeds Limonoids with furan-ring, dregeana 1-4, hispidin C Mulholland and Taylor, 1980 Trichilia elegans Seed and bark seco-A ring protolimonoids Garcez et al., 1996   Seeds Limonoids seco-A, B and D carbocyclic rings, kihadanin A and B, 3-O-β-d-glucopyranosyl-sitosterol Garcez et al., 1997b   Seeds 7-Deoxo-7β-acetoxykihadanin A, B, 7-deoxo-7β-hidroxykihadanin A, B, 7-deoxo-7α-hidroxykihadanin A, 7-deoxo-7α-acetoxykihadanin A, B Garcez et al., 2000 Trichilia emetica Stem bark Nymanial, drageane 4, trichilin A, rohituka 3, trichilin B and a protolimonoid Gunatilaka et al., 1998   Roots Four pregnanes: 1-methoxy-pregnan-17(R)-1,4-dien-3,16-dione, 1-methoxy-pregnan-17(S)-1,4-dien-3,16-dione, 2,3-seco-pregnan-17(S)-2,3-dioic acid-16-oxo-dimethyl ester, 2α,3α,16α-trihydroxy-5α-pregnan-17(R)-20-yl acetate, three androstanes: 1-methoxy-androstan-1,4-dien-3,16-dione,2,3-seco-androstan-2,3-dioic acid-16-oxo-dimethyl ester, 3-methoxycarbonyl-2,3-seco-androstan-3-oic acid-16-oxo-2,19-lactone, pregnane derivatives 2α,3α,16α,20-tetrahydroxy-5α-pregnane, 2β,3β-dihydroxypregnan-16-one, 2β,3α-dihydroxypregnan-16-one Malafronte et al., 2013 Trichilia estipulate Leaves 7-oxo-24α-sitosterol, β-sitosterol, sitosterone Cortez et al., 1998a   Bark Lignan glycosides. (−)-isolariciresinol-3α-O-β-d-xylopuranoside, (−)-lyoniresinol-3α-O-β-d-xylopyranoside and the new lignans (+)-4′-O-methyl-9′-deoxy isolari ciresinol-3α-O-β-d-glucopyranosi de, (−)-lyoniresinol-3α-l-rhamnopyranoside Cortez et al., 1998b     Meliacin butenolides, 7a-23-dihydroxy-3-oxo-24,25,26,27-tetranorapotirucall-1,14,20(22)-trien-21,23-olide, 7-deacetyl-23-hydroxyneotrichilenonelide and 7-deacetyl-21-hydroxyneotrichilenonelide, together with scopoletin, isofraxidin, 7-oxo-24β-, 7-oxo-24α-sitosterols and 3β-O-β-d-glucopyranosylsitosterol Cortez et al., 1998a     Limonoid 21,24,25,26,27-pentanor-15,22-oxo-7a,23-dihydroxy-apotirucalla(eupha)-1-en-3-one Cortez et al., 2000   Stem bark 21,24,25,26,27-pentanor-15,22-oxo-7α,23-dihydroxy-apotirucalla-1-en-3-oen Cortez et al., 2000 Trichilia havanensis Seeds Tetranortriterpenoid 1β,2β: 21,23 diepoxy 7α-hydroxy-24,25,26,27 tetranor-apotirucalla-14,20,22-trien-3-one Rodriguez et al., 2003     Trichavensin Rodriguez-Hahn et al., 1996     Hydroxybutenolide Arenas and Rodrigues-Hahn, 1990   Stem Limonoid neo-havanensin Chan et al., 1967   Stem and fruit Limonoid triacetyl-havanensin, trichilenone acetate Chan et al., 1967   Fruits Carda-14,20(22)-dienolide-1,3,7-tris(acetyloxy)-21-hydroxy-4,4,8-trimethyl-α,3α,5α,7α,13α,17α,21R Arenas and Rodrigues-Hahn, 1990     Limonoid 3,7-diacetyl-havanensin, havanensin Chan et al., 1967 Trichilia hirta Fruits Hirtinone, six protolimonoids – nilocitin, dihydronilocitin B, melianone epimers, piscidinol A, melianone lactone, one tertranortriterpenoid, hirtin, and one sesquiterpene, spathulenol Vieira et al., 2013     A limonoid methyl-11β-acetoxy-6,23-dihydroxy-12α(2-methylpropionyloxy)-3, 7,21-trioxo-1,5,14,20-meliacatetraen-29-oate Cortez et al., 1992   Seeds and leaves Hirtine Chan and Taylor, 1966   Seeds and fruits Deacetylhirtine, azadirone Chan and Taylor, 1966 Trichilia lepidota Leaves Terpenes: epoxide caryophyllene, epoxide humulene, spathulenol and steroids: ergost-5,24(28)-dien-3,12-diol-(3β,12β), ergost-5,24(28)-diene-3,12-diol-3-hexadecanoate (3β,12β), 24-methyl-12-β-hydroxycolest-4-en-3-one, 24-methylen-colesterol Pupo et al., 2002 Trichilia pallida Leaves 24-methylen-3β,4β,22-trihydroxycolesterol, 24-methylen-3β,22-dihydroxycolesterol, 24-methylen-colesterol Cunha et al., 2008   Roots Tetranortriterpnoids 6-hydroxy-11β-acetoxy-12α-(2-methyl propanoyloxy)-3,7-dioxo-14 β,15β-epoxy-1,5-meliacadien-29-oate, methyl 6,11 β-dihydroxy-12α-(2-methyl propanoyloxy)-3,7-dioxo-14β,15β-epoxy-1,5-meliacadien-29-oate and methyl 6-hydroxy-11β-acetoxy-12α-(2-methylbutanoyloxy)-3,7-dioxo-14β,15β-epoxy-1,5-meliacadien-29-oate Simmonds et al., 2001 Trichilia prieuriana Leaves Protolimonoid glucoside, prieurianoside, and glycolipid 1,2-dilinolenoyl-3-galactopyranosylglycerol Olugbade and Adesanya, 2000   Stem Prieurianin acetate and prieurianin Gullo et al., 1975 Trichilia quadrijuga Leaves Terpenes: kudtdiol, spathulenol and steroids, β-sitosterol, itesmol, stigmasterol Rodrigues et al., 2009 Trichilia rubra Root Three minor limonoid components, rubralins A-C Musza et al., 1995     Limonoids rubrin A, B, C, D, E, F and G Musza et al., 1994 Trichilia rubescens Leaves trichirubun A, trichirubun B Krief et al., 2004, 2006 Trichilia silvatica leaves (2S,3S,6R,7R)-humulene-2,3,6,7-diepoxide, (2R,3R,6R,7R)-humulene-2,3,6,7-diepoxide, mustacone Souza et al., 2009 Trichilia welwitschii Seeds Limonoids, dregeanin DM4, rohituka 3 and trichilia lactone D5 Tsamo et al., 2013   Bark 28,29-dinorcycloart-24-ene-3,4,6-triol (4), sitosterol-3-O-β-d-glucoside, 4-hydroxy-N-methyl- -proline, stigmasterol and sitosterol   Turraea floribunda Seed Limonoids and limonoid derivatives, turraflorins D-I, turraflorins A and B McFarland et al., 2004   Root bark 11β-acetoxy-3,7-diacetyl-4α-carbomethoxy-12α-isobutyryloxy-28-nor-1-tigloyl-havanensin Torto et al., 1996     Limonoids of the havanensis class Torto et al., 1995 Turraea holstii Stem and root bark Triterpenoids, holstinone A. (21R,23R-epoxy-7α,24S-dihydroxy-21α,25-dimethoxyapotirucalla-1,14-dien-3-one), holstinone B (21S,23R-epoxy-7α,24S,25-trihydroxy-21β-methoxyapotirucalla-1,14-dien-3-one) and holstinone C (21R,23R-epoxy-7α,24S,25-trihydroxy-21α-methoxyapotirucalla-1,14-dien-3-one). Mulholland et al., 1999c Turraea parvifolia Root bark Vilasinin limonoids, 1α,3α-diacetylvilasinin, 1α-acetyl-3α-propionylvilasinin and 1α,3α-diacetyl-7α-tigloylvilasinin, and two azadirone limonoids mzikonone and 12α-acetoxy-1,2-dihydroazadirone Cheplogoi and Mulholland, 2003a   Seeds Turraparvin A-D, 12α-acetoxyazadironolide, 11-epi-21-hydroxytoonacilide, 11-epi-23-hydroxytoonacilide Cheplogoi and Mulholland, 2003b Turraea pubescens Twigs and leaves Pregnane steroids, 2β,3β,5β-trihydroxy-pregn-20-en-6-one, 3β-hydroxy-5α-pregn-7,20-dien-6-one, and 3β-acetoxy-5α-pregn-7,20-dien-6-one Wang et al., 2006   Twigs Steroids turranin A-C and one new sesquiterpene turranin F and two new natural products turranin D and E, as well as three known steroids villosterol, 3β-hydroxy-5α-pregn-7,20-dien-6-one, and 2β,3β,5β-trihydroxypregn-20-en-6-one Yuan et al., 2013 Turraea wakefieldii Root bark Limonoids 11β,12α-diacetoxyneotecleanin, 11β,12α-diacetoxy-14β,15β-epoxyneotecleanin, 7α,12α-diacetoxy-14β,15β-epoxy-11β-hydroxyneotecleanin, 7α,12α-diacetoxy-11β-hydroxyneotecleanin, 11β,12α-diacetoxy-1-deoxo-14β,15β-epoxy-3β-hydroxy-2-oxo-neotecleanin Ndung'u et al., 2003 Turraeanthus mannii Root bark (3R,4R,3′R,4′R)-6,6′-dimethoxy-3,4,3′,4′-tetrahydro-2H,20H-[3,3′]bichromenyl-4,40-diol and 15-acetoxy-labda-8(17),12E,14Z-trien-16-alcoumarin derivative, chromenone, two labdane diterpenes and one pregnane steroid Sielinou et al., 2012 Turreanthus africanus Seeds Two labdane diterpenoids and seco-tetranortriterpenoid. 12,15-epoxylabda-8(17),12,14-trien-16al and 16-acetoxy-12(R), 15-epoxy-15β-hydroxylabda-8 (17), 13 (16)-diene and a limonoid 17-epi 12-dehydroxy heudebolin Tane et al., 2004 Walsura chrysogyne Barks Limonoids walsogyne A Mohamad et al., 2008     Limonoids, Walsogynes B-G Nugroho et al., 2013 Walsura piscidia Leaves Piscidinol F, apotirucallane Govindachari et al., 1995   Aerial parts Lup-20-(29)-ene-3β,30-diol and 5-hydroxy-7,3′,4′,5′-tetra methoxy flavones Balakrishna et al., 1995 Walsura robusta Leaves Sesquiterpenoid 10β-nitro-isodauc-3-en-15-al, 10-oxo-isodauc-3-en-15-al Li et al., 2013a Walsura trichostemon Roots Apotirucallane, trichostemonate Sichaem et al., 2012 Walsura trifoliata Leaves and twigs Apo-tirucallane triterpenoids, piscidinone A and B Rao et al., 2012 Walsura yunnanensis Bark Walsurin, isowalsuranolide, 11β-acetoxy walsuranolide and 20,22-dihydro-22,23-epoxy walsuranolide and 11β-hydroxy dihydrocedrelone, 11β-acetoxy dihydrocedrelone Luo et al., 2000d Xylocarpus granatum Bark Friedelin, β-sitosterol, stigmasterol, methyl-3β-isopropyl-1-oxomeliacate, methyl-3β-acetoxy-oxomeliacate tria contanol Rastogi and Mehrotra, 1993     Phragmalin-type limonoids, xyloccensins Q-U along with xyloccensin P Cui et al., 2005     Three mexicanolides, xyloccensins L-N and eight 8, 9, 30-phragmalin ortho esters, named xyloccensins O-V Wu et al., 2006   Fruit Xyloccensin K, W, aurantiamide, daucosterol, (β)-catechin, spicatin, 6-acetoxycedrodorin Wu et al., 2006   Seeds Xyloccensin K Kokpol et al., 1996     Seven protolimonoids odoratone, grandifoliolenone, sapelin E acetate, holstinone B, C, hispidol B, piscidinol G Yin et al., 2009 Xylocarpus moluccensis Seeds Xyloccensins A, B, C, D, E, F and methyl angolensate Rastogi and Mehrotra, 1993     Godavarins A-J along with eight known limonoids, viz. xyloccensins L, P, Q, mexicanolide, 6-deoxy-3-detigloyl-swietenine acetate, fissinolide, methyl 3β-acetoxy-1-oxomeliaca-8(30), 14-dienoate, and methyl 3β-acetoxy-1-oxomeliaca-8(9),14-dienoate Li et al., 2010     Thaixylomolins D-F Li et al., 2013b

Antimicrobial activity of Meliaceae

One of the major triumphs of medical science in the millennium has been the virtual eradication of many infectious diseases by the use of specific antimicrobial agents. Two important discoveries marked the beginning of a new era in chemotherapy. First discovery in 1935 curative discovery and development of the sulfonamide on Streptococcal infection. Second important pharmacokinetic property of the antibiotics quite varied, as are their antimicrobial spectra and mechanisms of action. Although, a number of antibiotics are widely used in medicine, the search for antimicrobial substances from plants will continue as better and safer drugs to combat bacterial and fungal infections are still needed, because of their biodegradable nature and being relatively safer for human beings and non target organisms in the environment. Plant extracts that inhibit pathogenic microorganisms without harming the host may have potential use as therapeutic agents. The susceptibility of a microorganism to antibiotics and other chemotherapeutic agents can be determined by the different methods available like tube-dilution, Paper-disk-plate, cylinder and well methods, single disk method and agar overlay method. The screening of large numbers of bacteria and fungi with various antibiotics and synthesized drugs requires simple techniques that can be used with several samples at the same time. Disk diffusion method for susceptibility testing currently recommended by the FDA is a slight modification of the procedure developed by Bauer et al. (1966)Bauer, A.W., Kirby, M.D.K., Sherris, J.C., Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45,493–496.. Different parts of meliaceous members were screened for the antibacterial and antifungal activity (Box 2).

Box 2: Antibacterial and antifungal activity of Meliaceae members. Plant name Part used Extract Microbes used Reference Agalia congylos Leaf and bark Hexane, dichloromethane, methanol Saccharomyces cerevisiae, Escherichia coli, Bacillus subtilis, Bacillus cereus Jayasinghe et al., 2002 Aglaia cucullata Leaf Methanol, chloroform:methanol, chloroform, Hexane Vibrio alginolyticu, Pseudomonas aeruginosa, Edwardsiella tarda, Pseudomonas fluorescens Choudhury et al., 2005 Amoora chittagonga Whole plant Methanol Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Vibrio parahemolyticus, Vibrio mimicus, Candida albicans, Saccharomyces, cerevisae Rahman et al., 2008 Amoora cucullata Leaves and stem Methanol Escherichia coli, Vibrio cholerae, Salmonella typhi, Salmonella paratyphi, Shigella dysenteriae, Shigella flexneri, Pseudomonas spp., Proteus spp. Ferdoushi et al., 2012 Aphanamixis grandifolia Arial parts Ethanol Staphylococcus aureus Yan-Jiao et al., 2013 Aphanamixis polystachya Leaf Petroleum ether, chloroform, ethyl acetate Bacillus subtilis, Bacillus megaterium, Sarcina lutea, Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio parahemolyticus, Shigella dysenteriae Ripa et al., 2012   Fruit Hexane, ethyl acetate, methanol Staphylococcus aureus, Shigella dysenteriae, Candida albicans Apu et al., 2013 Azadirachta indica Leaf Methanol Staphylococcus aureus, Escherichia coli Mishra et al., 2013   Leaf Chloroform, Hexane, methanol Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Aspergillus niger, Aspergillus fumigatus, Trichoderma viride, Cladosporium herbarum, Fusarium oxysporum Verma et al., 2013   Leaf, bark, seed Distilled water Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecalis, Aspergillus fumigatus, Candida albicans Reddy et al., 2013   Leaf, stem and root Hot water and ethanol Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis Sharma et al., 2011   Seed Volatile oil Staphyllococcus aureus, Escherichia coli Sandanasamy et al., 2013   Flower Volatile oil Bacillus subtillis, Candida albicans, Microsporum gypsum Aromdee et al., 2005 Cabralea canjerana Leaves Methanol Staphylococcus aureus, Escherichia coli, Candida albicans Moreno et al., 2004 Cedrela odorata Leaves Ethanol, chloroform Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillius subtilis, Aspergillus niger, Penicillium notatum, Mucor mucedo, Candida albicans Idu et al., 2013   Bark Volatile oil Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, Aspergillus niger Villanueva et al., 2009 Cedrela serrata Leaf and bark Methanol Staphylococcus aureus, Bacillus subtilis, Proteus mirabilis, Salmonella typhi, Escherichia coli, Citrobacter spp. Ahmad et al., 2013 Chukrasia tabularis Whole plant Methanol Escherichia coli Rahman et al., 2008 Entandrophragma angolense Seed Volatile oil Salmonella gallinallum, Klebseilla pneumonia Orishadipe et al., 2012 Guarea macrophylla Leaves Methanol Staphylococcus aureus subsp. Aureus, Escherichia coli, Candida albicans Moreno et al., 2004 Khaya senegalensis Stem bark Methanol, ethanol, water, chloroform, pet ether Escherichia coli, Salmonella typhi Adebayo and Osman, 2012 Melia azedarach Leaves, flowers and fruit-seed Methanol Pseudomonas syringae pv. syringae, Xanthomonas campestris pv. campestris, Rathayibacter tritici, Escherichia coli Neycee et al., 2012   Leaf Methanol, ethanol, petroleum ether and water Bacillus cereus, Staphylocous aureus, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, Aspergillus flavus, Fusarium oxisporum, Rhizopus stolonifer Sen and Batra, 2012   Leaves Petrol, benzene, ethyl acetate, methanol, aqueous Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Edwardsiella tarda, Klebsiella pneumonia, Proteus mirabilis, P. vulgaris, Pseudomonas aeruginosa, Salmonella typhi, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Plesiomonas shigelloides. Khan et al., 2011 Melia dubia Bark Petroleum ether, ethyl acetate, ethanol and water Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Aspergillus flavus Cinu and Sarma, 1999 Munronia pumila Stem Hexane, dichloromethane, methanol Saccharomyces cerevisiae, Escherichia coli, Micrococcus luteus, Bacillus subtilis, Bacillus cereus Jayasinghe et al., 2002 Naragamia alata Leaf, stem and root Hot water and ethanol Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis Sharma et al., 2011 Sandoricum indicum Root Distilled water, ethanol Streptococcus pyogenes NPRC 101 Limsuwan and Voravuthikunchai, 2013 Soymida febrifuga Leaf Butanol Bacillus subtillis, Escherichia coli, Klebsiella pneumonia, Proteus vulgaris, Staphylococcus aureus Riazunnisa et al., 2013 Swietenia macrophylla Seed Volatile oil Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa Suliman et al., 2013 Swietenia mahagoni Leaf Ether, chloroform, ethanol and water Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Candida albicans, Aspergillus flavus, Aspergillus niger, Trichophyton mentagrophytes Ayyappadhas et al., 2012   Wood Hexane Aspergillus flavus, A. niger Malairajan et al., 2012   Leaf, stem and root Hot water and ethanol Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis Sharma et al., 2011   Leaf Methanol Staphylococcus aureus, Bacillus subtilis, Escherichiae coli, Proteus vulgaris, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Aspergillus fumigatus, Candida albicans Chiranjib et al., 2011 Toona ciliata Aerial parts Ethanol Staphylococcus aureus Yan-Jiao et al., 2013   Leaf flower Petroleum ether, chloroform, ethyl acetate and methanol Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumonia, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhimurium, Erwinia carotovora, Xanthomonas axonopodis pv. malvacearum, Xanthomonas campestris pv. vesicatoria, Xanthomonasoryzae pv. oryzae, Candida albicans, Microsporum canis Kavitha and Satish, 2013   Heartwood Hexane Staphylococcus aureus, Staphylococcus epidermitis, Bacillus cereus, Micrococcus luteus, Candida albicans, Aspergillus niger Malairajan et al., 2012 Toona sinensis Leaves Essential oil Bacillus subtilis, Escherichia coli, Pencillium citrinum, Colletotrichum gloeosporioides Jie et al., 2008; Chen et al.,2014 Trichilia clausseni Bark Methanol Alternaria alternata Carvalho et al., 2011 Trichilia hirta Bark Methanol Alternaria alternate Carvalho et al., 2011 Trichilia lepidota Leaves Methanol   Moreno et al., 2004 Walsura robusta Leaf and branch Distilled water and butanol Streptococcus pyogenes NPRC 101 Limsuwan and Voravuthikunchai, 2013 Walsura trifoliata Bark Methanol, distilled water, petroleum ether, benzene Bacillus subtilis, B. licheniformis, B. coagulans, B. cereus, Staphylococcus aureus, S. epidermis, S. griséus, Escherichia coli, Proteus vulgaris, Pseudomonas flourescence, Aspergillus niger, A. flavus, Candida albicans, Pencillium chrysogenum Murthy and Nagamani, 2008 Xylocarpus granatum Pericarp, seed Distilled water, ethanol Streptococcus pyogenes NPRC 101 Limsuwan and Voravuthikunchai, 2013   Bark Methanol Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris Shahid-Ud-Daula and Basher, 2009   Leaf, cuticle, stem Methanol, hexane Vibrio alginolyticus, Edwardsiella tarda Choudhury et al., 2005 Xylocarpus mekongensis Bark Methanol, ethyl acetate, chloroform Staphylococcus aureas, Vibrio cholera, Shigella boydii, Shigella flexneri, Salmonella typhi, S. paratyphi Arif et al., 2013   Leaf stem Methanol, chloroform Staphylococcus aureus, Pseudomonas putida, Escherchia coli, Bacillus polymyxa, Klebsiella sp., Aspergillus fumigatus, A. niger Sahoo et al., 2013

Ethyl acetate extracts of Chukrasia tabularis leaves inhibited the growth of microorganisms like Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Klebsiella pneumoneae, Aspergillus fumigatus and Pseudomonas aeruginosa (Nagalakshmi et al., 2001Nagalakshmi, M.A.H., Thangadurai, D., Rao, D.M., Pullaiah, T., 2001. Phytochemical and antimicrobial study of Chukrasia tabularisleaves. Fitoterapia 72, 62–64.). Jayasinghe et al. (2002)Jayasinghe, U.L.B., Jayasooriya, C.P., Bandara, B.M.R., Ekanayake, S.P., Merlini, L., Asante, G., 2002. Antimicrobial activity of some Sri Lankan Rubiaceae and Meliaceae. Fitoterapia 73, 424–427. screened the antimicrobial activity of two Meliaceae members like Agalia congylos and Munronia pumila. According to them the methanol, n-hexane and dichloromethane extracts of leaves, bark and stem displayed the wide spectrum of antimicrobial activity against Aspergillus, Saccharomyces, Ustilago, Eschericia, Micrococcusand Bacillus species. Antibacterial activity of methanol and acetone flower extracts of Azadirachta indica by disk assay on most sensitive organisms like Staphylococcus aureus, Listeria monocysgenes, Escherichia coli, Bacillus cereus and Salmonella infantis were tested by Alzoreky and Nakahara (2003)Alzoreky, N.S., Nakahara, K., 2003. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int. J. Food Microbiol. 80, 223–230.. Aladesanmi and Odediran (2000)Aladesanmi, A.J., Odediran, S.A., 2000. Antimicrobial activity of Trichilia heudelotti leaves. Fitoterapia 71, 179–182. stated that Trichlia heudelotti leaves can be regarded as having moderate antibacterial and antifungal activities determined by the cup plate method using n-hexane, ethyl acetate, methanol extracts and some isolated compounds. Chowdhury et al. (2003a)Bauer, A.W., Kirby, M.D.K., Sherris, J.C., Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45,493–496. reported that petrol ether, dichloromethanol and methanol extracts along with siderin of two Meliaceae medicinal plants, Toona ciliata and Amoora rohituka (stem bark) exhibited significant antibacterial activity and mild antifungal effect.

Although several aspects of biological activity on different taxa of Meliaceae have been carried out, the information of antibacterial and antifungal activity is a meager excepting that of Azadirachta indica. Samy and Ignacimuthu (1998)Samy, R.P., Ignacimuthu, S., 1998. Antibacterial activity of different extracts of Azadirachta indica Juss. Neem. J. Zoo. 18, 71–75. reported that when antibacterial activity of different crude extracts of seed kernel, seed coat and leaves of Azadirachta indica were tested against Escherichia coli, Pseudomonas aerogenes, Klebsiella aerogenes and Proteus vulgaris, only the seed kernel extracts was found to show significant antibacterial activity. Another interesting feature reported was inhibitory action of seed and leaf extracts of Azadirachta indica on fungi such as Candida albicans, C. tropicalis, Neisseria gonorrhoeae and the multi drug resistant Staphylococcus aureus (Talwar et al., 1997Talwar, G.P., Raghuanshi, P., Misra, R., Mukerjee, S., Shah, S., 1997. Plant immunomodulators for termination of unwanted pregnancy and for contraception and reproductive health. Immunol. Cell Biol. 75, 190–192.). Jayasinghe et al. (2002)Jayasinghe, U.L.B., Jayasooriya, C.P., Bandara, B.M.R., Ekanayake, S.P., Merlini, L., Asante, G., 2002. Antimicrobial activity of some Sri Lankan Rubiaceae and Meliaceae. Fitoterapia 73, 424–427. screened Srilankan Meliaceae plants for antibacterial and antifungal activity.

Triterpenoids are an important group of constitutive defense substances present at sufficient concentrations to ward off potential plant pathogenic fungi (Grayer and Harborne, 1994Grayer, R.J., Harborne, J.B., 1994. A survey of antifungal compounds from higherplants, 1982–1993. Phytochemistry 37, 19–42.). Triterpenoids from the family Meliaceae, in particular, are highly diversified in structure and have been extensively studied for their insect antifeedant and growth regulating activities (Champagne et al., 1992Champagne, D.E., Koul, D.E., Isman, M.B., Scudder, G.G.E., Towers, G.H.N., 1992. Biological activity of limonoids from the Rutales. Phytochemistry 31, 377–394.). Extracts from seeds of the neem tree Azadirachta indica containing triterpenoidal compounds are known to be effective against plant pathogenic fungi (Khan et al., 1974Khan, M.W., Alam, M.M., Saxsena, S.K., 1974. Effect of water-soluble fractions of oil cakes and bitter principles of neem on some fungi and nematode. Acta Bot. Indica. 2, 120–128.; Singh et al., 1980Singh, U.P., Singh, H.B., Singh, R.B., 1980. The fungicidal effect of neem (Azadrichta indica) extracts on some soilborne pathogens of gram (Cicer arietinum). Mycologia 72, 1077–1093.; Locke, 1995Locke, J.C., 1995. Fungi in the neem tree sources of unique natural products for integrated pest management, medicine, industry and other purposes. VCH, Weinheim, Germany, pp. 118–127.; Coventry and Allan, 1996Carvalho, D.D., Alves, E., Barbosa Camargos, R., Oliveira, D.F., Soares Scolforo, J.R., de Carvalho, D.A., Sâmia Batista, T.R., 2011. Plant extracts to control Alternaria alternata in murcott tangor fruits. Rev. Iberoam Micol. 28, 173–178.; Govindachari et al., 1998Govindachari, T.R., Suresh, G., Gopalakrishnan, G., Banumathy, B., Masilamani, S.,1998. Identification of antifungal compounds from the seed oil of Azadirachta indica. Phytoparasitica 26, 106–109.; Steinhauer, 1999Steinhauer, B., 1999. Possible ways of using the neem tree to control phytopathogenic fungi. Plant Research and Development, Hamburg, v. 50, vol. 50.,pp. 83–92.). Antifungal triterpenoids of the Meliaceae include four meliacins from Chisocheton paniculatus (Bordoloi et al., 1993Bordoloi, M., Saikia, B., Mathur, R.K., Goswami, B.N., 1993. A meliacin from Chisocheton paniculatus. Phytochemistry 34, 583–584.) and nimonol and isomeldenin from Azadirachta indica (Suresh et al., 1997Takeya, K., Qiao, Z., Hirobe, C., Itokawa, H., 1996. Cytotoxic azadirachtin-type limonoids from Melia azedarach. Phytochemistry 42, 709–712.).

A number of limonoids have been reported from the genus Swieteniawith structures assigned on the basis of spectral data (Kadota et al., 1990Kadota, S., Marpaung, L., Kuchi, T.K., Ekimoto, H., 1990. Constituents of the seeds of Swietenia mahagoni Jacq. Isolation, structures and proton and carbon-13 nuclear magnetic resonance signal assignments of new tetranortripenoids related to swietenine and swietenolide. Chem. Pharm. Bull. 38, 639–651.). Seven limonoids from methanolic extract of the seeds of Swietenia mahogani were isolated by Govindachari et al. (1999b)Govindachari, T.R., Suresh, G., Banumathy, B., Masilamani, S., Gopalakrishnan, G., Krishna kumara, G.N., 1999b. Antifungal activity of some B,D-seco limonoids from two meliaceous plants. J. Chem. Ecol. 25, 923–933.. Triterpenoids (B,D-seco limonoids) from S. mahogani and Khaya senegalensis were evaluated for their antifungal activities (Govindachari et al., 1999bGovindachari, T.R., Suresh, G., Banumathy, B., Masilamani, S., Gopalakrishnan, G., Krishna kumara, G.N., 1999b. Antifungal activity of some B,D-seco limonoids from two meliaceous plants. J. Chem. Ecol. 25, 923–933.). Methyl angolensate and luteolin-7-O-glucoside obtained from ethyl acetate extracts of Soymida febrifuga root callus had an antibacterial effect against Bacillus subtilis and Salmonella typhimurium, respectively. In addition to that methyl angolensate had an anti-fungal activity against Aspergillus niger while luteolin-7-O-glucoside inhibited Alternaria alternata (Chiruvella et al., 2007Chiruvella, K.K., Mohammed, A., Dampuri, G., Ghanta, R.G., Raghavan, S.C., 2007. Phytochemical and antimicrobial studies of methyl angolensate and luteolin-7-O-glucoside isolated from callus cultures of Soymida febrifuga. IJBS 3, 269–278.).

Conclusion

Here we compiled the phytochemical and antimicrobial studies in taxa belong to the most important medicinal family Meliaceae, which might be effective in controlling infectious diseases. Nonetheless, the effectiveness of these phytochemicals needs to be validated in vivo for further investigation. Among the Meliaceae members, the genus Aglaia, Azadirachta, Dysoxylum, Swietenia, Trichilia have been more explored for the phytochemical screening where as Azadirachta, Swietenia, Trichilia have been more explored for their antimicrobial properties. Our critical analysis of published research data shows that most of the antimicrobial screening was carried out using plant crude extracts which is not much useful for further drug development. As these extracts contain many compounds along with the active compounds may cause side or toxic effects. Hence future research should be focused on the isolation and identification of active compounds with antimicrobial activity rather than simply screening the plant crude extracts. In addition research should take in depth studies to know the mechanism of action of drug so that it is beneficial for drug discovery and development. This review stands as a readymade map for phytochemical constituents and antimicrobial activities of Meliaceae family for the future researchers dealing with Meliaceae members.

  • 1
    These authors equally contributed to this work.

Acknowledgements

We thank Gayathri Dampuri for critical reading and help. The authors are highly grateful to the UMK for their logistical support under Grant No. R/SGJP/A07.00/00710A/001/2012/000081.

References

  • Aalbersberg, W., Singh, Y., 1991. Dammarane triterpenoids from Discoxylum richii. Phytochemistry 30, 921–926.
  • Abdelgaleil, S.A.M., Doe, M., Nakatani, M., 2013. Rings B,D-seco limonoidantifeedants from Swietenia mahogani Phytochemistry 96, 312–317.
  • Abdelgaleil, S.A.M., Doe, M., Morimoto, Y., Nakatani, M., 2006. Rings B,D-secolimonoids from the leaves of Swietenia mahogani Phytochemistry 67, 452–458.
  • Abdelgaleil, S.A., Okamura, H., Iwagawa, T., Sato, A., Miyahara, I., Doe, M., Nakatani,M., 2001. Khayanolides rearranged phragmalin limonoid antifeedants from Khaya senegalensis Tetrahedron 57, 119–126.
  • Adebayo, O.L., Osman, K., 2012. A comparative evaluation of in vitro growth inhibitory activities of different solvent extracts of some medicinal plants in Northern Ghana against selected human pathogens. IOSR J. Pharm. 2, 199–206.
  • Adesida, G.A., Taylor, D.A.H., 1972. Extractives from Soymida febrifuga Phytochem-istry 11, 1520–1524.
  • Agnihotri, V.K., Srivastava, S.D., Srivastava, S.K., 1987. A new limonoid, amoorinin,from the stem bark of Amoora rohituka Planta Med. 53, 298–299.
  • Ahmad, R., Upadhyay, A., Ahmad, M., Pieters, L., 2013. Antioxidant, antliglycationand antimicrobial activities of Ziziphus oxyphylla and Cedrela serrata extracts. Eur. J. Med. Plants 3, 520–529.
  • Ahn, J.W., Choi, S.U., Lee, C.O., 1994. Cytotoxic limonoids from Melia azedarachvar japonica Phytochemistry 36, 1493–1496.
  • Agarwal, S.K., Verma, S., Singh, S.S., Sushil, K., 2001. A new limonoid from Aphanamixis polystachya Ind. J. Chem. 40, 536–538.
  • Akihisa, T., Pan, X., Nakamura, Y., Kikuchi, T., Takahashi, N., Matsumoto, M., Ogihara,E., Fukatsu, M., Koike, K., Tokuda, H., 2013. Limonoids from the fruits of Melia azedarach and their cytotoxic activities. Phytochemistry 89, 59–70.
  • Aladesanmi, A.J., Hoffmann, J.J., 1994. Additional alkaloids from the stem of Dysoxylum lenticellare Phytochemistry 35, 1361–1362.
  • Aladesanmi, A.J., Odediran, S.A., 2000. Antimicrobial activity of Trichilia heudelotti leaves. Fitoterapia 71, 179–182.
  • Alzoreky, N.S., Nakahara, K., 2003. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int. J. Food Microbiol. 80, 223–230.
  • Amalraj, V.A., 1983. Secondary Plant Constituents. Sci. Rep., June issue, CSIR, Oxfordand IBH Publishing Co. Pvt. Ltd., New Delhi, Calcutta.
  • Ambaye, R.Y., Indap, M.A., Panse, T.B., 1971. Identification of methyl angolensate inthe bark of Soymida febrifuga (Roxb.) A. Juss. Curr. Sci. India 7, 158–159.
  • Ambrosio, D., Guerriero, A., 2002. Degraded limonoids from Melia azedarach and biogenetic implications. Phytochemistry 60, 419–424.
  • Apu, A.S., Chowdhury, F.A., Khatun, F., Jamaluddin, A.T.M., Pathan, A.H., Pal, A., 2013. Phytochemical screening and in vitro evaluation of pharmacological activities of Aphanamixis polystachya (Wall) Parker fruit extracts. Trop. J. Pharm. Res. 12,111–116.
  • Ara, I., Faizi, S., Siddiqui, S., 1990. Tricyclic diterpenoids from root bark of Azadirachta indica Phytochemistry 29, 911–914.
  • Arenas, C., Rodrigues-Hahn, L., 1990. Limonoids from Trichilia havanensis Phytochemistry 29, 2953–2956.
  • Arif, A., Zubair, K.L., Dey, S.K., Hira, A., Howlader, M.S.I., Hossain, M.H., Roy, J., 2013. Phytochemical screening, antibacterial and cytotoxic activity of different fractions of Xylocarpus mekongensis Bark, Ibnosina. J. Med. Biomed. Sci. 5, 206–213.
  • Arigoni, D., Barton, D.H.R., Bernasconi, R., Djerassi, C., Mills, J.S., Wolff, R.E., 1960. Theconstituents of dammarenolic and nyctanthic acid. J. Chem. Soc., 1900–1905.
  • Aromdee, C., Sriubolmas, N., 2006. Essential oil of the flowers of Azadirachta indica(Meliaceae). Songklanakarin J. Sci. Technol. 28, 115–119.
  • Aromdee, C., Anorach, R., Sriubolmas, N., 2005. Essential oil of the flower of Azadirachta indica (Meliaceae). In: Brovelli, E., Chansakaow, S., Farias, D., Hongratanaworakit, T., Botero Omary, M., Vejabhikul, S., Craker, L.E., Gardner, Z.E. (Eds.), Proc. WOCMAP III, Vol. 5: Quality, Efficacy, Safety, Processing & Trade in MAPs. Acta Hortic., 679. ISHS, pp. 11–14.
  • Asekun, O.T., Ekundayo, O., 1999. Constituents of the leaf essential oil of Cedrela odorata L. from Nigeria. Flav. Fragr. J. 14, 390–392.
  • Ashok Yadav, P., Suresh, G., Prasad, K.R., Rao, M.S.A., Babu, K.S., 2012. Newphragmalin-type limonoids from Soymida febrifuga Tetrahedron Lett. 53,773–777.
  • Awang, K., Loong, X., Leong, K.H., Supratman, U., Litaudon, M., Mukhtar, M.R., Mohamad, K., 2012. Triterpenes and steroids from the leaves of Aglaia exima (Meliaceae). Fitoterapia 83, 1391–1395.
  • Awang, K., Lim, C.S., Mohamad, K., Morita, H., Hirasawa, Y., Takeya, K., Thoison, O., Hadi, A.H.A., 2007. Erythrocarpines A-E, new cytotoxic limonoids from Chisocheton erythrocarpus Bioorg. Med. Chem. Lett. 15, 5997–6002.
  • Ayyappadhas, R., Jestin, C., Kenneth, N., Dayana, N., Dhanalekshmi, U.M., 2012. Preliminary studies on antimicrobial activity of Swietenia macrophylla leaf extract. Int. J. Pharm. Sci. Rev. Res. 16, 1–4.
  • Babu, V.S., Nair, G.M., 2004. Bioproduction of azadirachtin from callus cultures of neem (Azadirachta indica A. Juss.). In: IUPAC: International Conference on Biodiversity and Natural Products Chemistry and Medical Applications, New Delhi ,p. 52.
  • Bacher, M., Hofer, O., Brader, G., Vajrodaya, S., Greger, H., 1999. Thapsakins: possibleb iogenetic intermediates towards insecticidal cyclopenta[β]benzofurans from Aglaia edulis Phytochemistry 52, 253–263.
  • Balakrishna, K., Rao, R.B., Patra, A., Usman Ali, S., 1995. Constituents of Walsura piscidia Fitoterapia 66, 548–550.
  • Barrios-Chica, M., Castro-Castillo, O., 1995. Flavonol rhamnosides from Cedrela salvadorensis leaves. Fitoterapia 66, 92–95.
  • Bauer, A.W., Kirby, M.D.K., Sherris, J.C., Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45,493–496.
  • Benencia, F., Rodriguez, M.C., Matulewicz, M.C., Coulombie, F.C., 1999. Neutral polysaccharide from Cedrela tubiflora with anticomplementary activity. Phytochemistry 50, 57–62.
  • Benosman, A., Richomme, P., Sevenet, T., Hadi, A.H.A., Bruneton, J., 1995. Tirucallane triterpenes from the stem bark of Aglaia leucophylla Phytochemistry 40, 1485–1487.
  • Benosman, A., Richomme, P., Sevenet, T., Hadi, A.H.A., Bruneton, J., 1994. Secotirucallane triterpenes from the stem bark of Aglaia leucophylla Phytochemistry 37,1143–1145.
  • Bevan, C.W.L., Powell, J.W., Taylor, D.A.H., 1963. West African timbers. Part VII. Anthothecol, an extractive from Khaya anthotheca J. Chem. Soc., 983–993.
  • Bohnenstengel, F.I., Wray, V., Witte, L., Srivastava, R.P., Proksch, P., 1999. Insecticidal meliacarpins (C-seco limonoids) from Melia azadarach Phytochemistry 50, 977–982.
  • Bordoloi, M., Saikia, B., Mathur, R.K., Goswami, B.N., 1993. A meliacin from Chisocheton paniculatus Phytochemistry 34, 583–584.
  • Cai, X.H., Wang, Y.Y., Zhao, P.J., Li, Y., Luo, X.D., 2010. Dolabellane diterpenoids from Aglaia odorata Phytochemistry 71, 1020–1024.
  • Campos, A.M., Oliveira, F.S., Machado, M.I.L., Braz Filho, R., Matos, F.J.A., 1991. Triterpenes from Cedrela odorata Phytochemistry 30, 1225–1229.
  • Campos Braga, P.D., Soares, M.S., Silva, M.F.G.F., Vieira, P.C., Fernandes, J.B., Pinheiro, A.L., 2006. Dammarane triterpenes from Cabralea canjerana (Vell.) Mart. (Meliaceae): their chemosystematic significance. Biochem. Syst. Ecol. 34, 282–290.
  • Cantrell, C.L., Rajab, M.S., Franzblau, S.G., Fisher, N.H., 1999. Antimycobacterial triterpenes from Melia volkensii J. Nat. Prod. 62, 546–548.
  • Carpinella, C., Ferrayoli, C., Valladares, G., Defago, M., Palacios, S., 2002. Potentlimonoid insect antifeedant from Melia azedarach Biosci. Biotechnol. Biochem. 66, 1731–1736.
  • Carvalho, D.D., Alves, E., Barbosa Camargos, R., Oliveira, D.F., Soares Scolforo, J.R., de Carvalho, D.A., Sâmia Batista, T.R., 2011. Plant extracts to control Alternaria alternata in murcott tangor fruits. Rev. Iberoam Micol. 28, 173–178.
  • Cinu, T.A., Sarma, G.V.S.R., 1999. Preliminary phytochemical and antimicrobial inves-tigations on Melia dubia bark Anc. Sci. Life 19, 1–6.
  • Chaidir, H.J., Lin, W.H., Ebel, R., Edrada, R., Wray, V., Nimtz, M., Sumaryono, W.,Proksch, P., 2001. Rocaglamides, glycosides, and putrescine bisamides from Aglaia dasyclada J. Nat. Prod. 64, 1216–1220.
  • Chaidir, H.J., Nugroho, B.W., Bohnenstengel, F.I., Wray, V., Witte, L., Hung, P.D., Kiet,L.C., Sumaryono, W., Proksch, P., 1999. New insecticidal rocaglamide derivativesfrom flowers of Aglaia duperreana(Meliaceae). Phytochemistry 52, 837–842.
  • Champagne, D.E., Koul, D.E., Isman, M.B., Scudder, G.G.E., Towers, G.H.N., 1992. Biological activity of limonoids from the Rutales. Phytochemistry 31, 377–394.
  • Chan, K.Y., Mohamad, K., Ooi, A.J.A., Imiyabir, Z., Chung, L.Y., 2012. Bioactivity-guided fractionation of the lipoxygenase and cyclooxygenase inhibiting constituents from Chisocheton polyandrus Merr. Fitoterapia 83, 961–967.
  • Chan, W.R., Taylor, D.R., 1966. Hirtin and deacetylhirtin: new ‘limonoids’ from Trichilia hirta Chem. Commun. 7, 206–207.
  • Chan, W.R., Gibbs, J.A., Taylor, D.R., 1967. The Limonoids of Trichilia havanensis Jacq.:an epoxide rearrangement. Chem. Commun. 14, 720–721.
  • Chen, C., Tong, Z., Liao, D., Li, Y., Yang, G., Li, M., 2014. Chemical composition andantimicrobial and DPPH scavenging activity of essential oil of Toona sinensis (A.Juss.) Roem from China. BioResources 9, 5262–5278.
  • Chen, J.J., Huang, S.S., Liao, C.H., Wei, D.C., Sung, P.J., Wang, T.C., Cheng, M.J., 2010. A new phragmalin-type limonoid and anti-inflammatory constituents from thefruits of Swietenia macrophylla. Food Chem. 120, 379–384.
  • Chen, Y.Y., Wang, X.N., Fan, C.Q., Yin, S., Yue, J.M., 2007. Swiemahogins A and B, two novel limonoids from Swietenia mahogani Tetrahedron Lett. 48, 7480–7484.
  • Chen, J.J., Duh, C.Y., Huang, H.Y., Chen, I.S., 2003. Furoquinoline alkaloids and cytotoxic constituents from the leaves of Melicope semecarpifolia Planta Med. 69, 542–546.
  • Cheplogoi, P.K., Mulholland, D.A., 2003a. Limonoids from Turraea parvifolia (Meliaceae). Biochem. Syst. Ecol. 31, 799–803.
  • Cheplogoi, P.K., Mulholland, D.A., 2003b. Tetranortriterpenoid derivatives from Turraea parvifolia (Meliaceae). Phytochemistry 62, 1173–1178.
  • Chiranjib, B., Laxmaiah, Ch., Srikanth, V., Gouda, T.S., Kumar, C.S., Debnath, S., 2011. Antimicrobial activity of Swietenia mahagoni L (leaf) against various human pathogenic microbes. Indo Am. J. Pharm. Res. 1, 257–261.
  • Chiruvella, K.K., Mohammed, A., Dampuri, G., Ghanta, R.G., Raghavan, S.C., 2007. Phytochemical and antimicrobial studies of methyl angolensate and luteolin-7-O-glucoside isolated from callus cultures of Soymida febrifuga IJBS 3, 269–278.
  • Chong, S.L., Awang, K., Martin, M.T., Mokhtar, M.R., Chan, G., Litaudon, M., Gueritte, F., Mohamad, K., 2012. Malayanines A and B, two novel limonoids from Chisocheton erythrocarpus Hiern. Tetrahedron Lett. 53, 5355–5359.
  • Choudhury, S., Sree, A., Mukherjee, S.C., Pattnaik, P., Bapuji, M., 2005. In vitro antibac-terial activity of extracts of selected marine algae and mangroves against fishpathogens. Asian Fish. Sci. 18, 285–294.
  • Chowdhury, R., Hasan, C.M., Rashid, M.A., 2003a. Antimicrobial activity of Toon aciliata and Amoora rohituka Fitoterapia 74, 155–158.
  • Chowdhury, R., Hasan, C.M., Rashid, M.A., 2003b. Guaiane sesquiterpenes from Amoora rohituka Phytochemistry 62, 1213–1216.
  • Coombes, P.H., Mulholland, D.A., Randrianarivelojosia, M., 2008. Vilasinin limonoidsfrom Malleastrum antsingyense J.F. Leroy (Meliodeae: Meliaceae). Biochem. Syst.Ecol. 36, 74–76.
  • Coombes, P.H., Mulholland, D.A., Randrianarivelojosia, M., 2005. Mexicanolidelimonoids from the Madagascan Meliaceae Quivisia papinae Phytochemistry 66,1100–1107.
  • Coombes, P.H., Mulholland, D.A., Randrianarivelojosia, M., 2004. Quivisianthone, ane vodulone limonoid from the Madagascan Meliaceae Quivisia papinae Phytochemistry 65, 377–380.
  • Coombes, P.H., Mulholland, D.A., Randrianarivelojosia, M., 2003. Phragmalin limonoids from the Madagascan Meliaceae Neobeguea leandreana J. Nat. Prod.66, 735–738.
  • Connolly, J.D., 1983. In: Waterman, P.G., Grundon, M.F. (Eds.), Chemistry and Chemical Taxonomy of the Rutales. Academic Press, New York, p. 175.
  • Connolly, J.D., Okorie, D.A., De Wit, L.D., Taylor, D.A.H., 1976. Structure of dregeaninand rohitukin, limonoids from the subfamily Melioideae of the family Meliaceae. An unusual high absorption frequency for a six-membered lactone ring. J. Chem. Soc. Chem. Commun. 22, 909–910.
  • Cortez, D.A.G., Fernandes, J.B., Vieira, P.C., Da Silva, M.F.G.F., Ferreira, G.A., 2000. A limonoid from Thichilia estipulata Phytochemistry 55, 711–713.
  • Cortez, D.A.G., Fernandes, J.B., Vieira, P.C., Da Silva, M.F.G.F., Ferreira, G.A., Cass, Q.Z.B., Pirani, J.R., 1998a. Meliacin butenolides from Trichilia estipulata Phytochemistry 49, 2493–2496.
  • Cortez, D.A.G., Fernandes, J.B., Vieira, P.C., Cass, Q.Z.B., Da Silva, M.F.G.F., Ferreira, G.A., Pirani, J.R., 1998b. Lignan glycosides from Trichilia estipulata bark. Nat. Prod. Lett. 11, 255–262.
  • Cortez, D.A.G., Fernandes, J.B., Vieira, P.C., Da Silva, M.F.G.F., Ferreira, G.A., 1992. Limonoids from Trichilia hirta Phytochemistry 31, 625–628.
  • Coventry, E., Allan, E.J., 1996. The effect of neem based products on bacterial and fungal growth. In: Kleeberg, H., Zebitz, W. (Eds.), Practice Oriented Results on Use and Production of Neem Ingredients and Phermones. Druckand Graphic, Geissen, pp. 237–242.
  • Cui, B., Chai, H., Constant, H.L., Santisuk, T., Reutrakul, V., Beecher, C.W.W., Farnsworth, N.R., Cordell, G.A., Pezzuto, J.M., Kinghorn, A.D., 1998. Limonoids from Azadirachta excelsa Phytochemistry 47, 1283–1287.
  • Cui, J., Deng, Z., Li, J., Fu, H., Proksch, P., Lin, W., 2005. Phragmalin-type limonoids from the mangrove plant Xylocarpus granatum Phytochemistry 66, 2334–2339.
  • Cunha, U.S., Vendramim, J.D., Rocha, W.C., Vieira, P.C., 2008. Bioatividade de moléculas isoladas de Trichilia pallida Swatz (Meliaceae) sobre Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 37, 709–715.
  • Daniewski, W.M., Anczewski, W., Gumulka, M., Danikiewicz, W., Jacobson, U., Norin, T., 1996. Sesquiterpenoid constituents of Entandrophragma cylindricum Phytochemistry 43, 811–814.
  • Daniewski, W.M., Gumulka, M., Danikiewicz, W., Sitkowski, J., Jacobsson, U., Norin, T., 1995. Entilin D, a heptanortriterpenoid from the bark of Entandrophragma utile Phytochemistry 40, 903–905.
  • Daulatabad, C.D., Jamkhandi, S.A.M., 1997. A keto fatty acid from Amoora rohituka seed oil. Phytochemistry 46, 155–156.
  • Del Rayo, C.M., Phillipson, J.D., Croft, S.L., Kirby, G.C., Warhurst, D.C., Solis, P.N., 2001. Terpenoids from Guarea rhophalocarpa Phytochemistry 56, 203–210.
  • De Paula, J.R., Vieira, I.J.C., Das, M.F., Da Silva, M.F., Fo, E.R., Fernandes, J.B., Vieira, P.C., Pinheiro, A., Vilela, E.F., 1997. Sesquiterpenes, triterpenoids, limonoids and flavonoids of Cedrela odoratagraft and speculations on the induced resistanceagainst Hypsipyla grandella Phytochemistry 44, 1449–1454.
  • Doe, M., Shibue, T., Haraguchi, H., Morimoto, Y., 2005. Structures, biological activities, and total syntheses of 13-hydroxy- and 13-acetoxy-14-nordehydrocacalohastine, novel modified furanoeremophilane-type sesquiterpenes from Trichilia cuneata Org. Lett. 7, 1765–1768.
  • Duh, C.Y., Wang, S.K., Chen, I.S., 2000. Cytotoxic prenyleudesmane diterpenes fromthe fruits of Dysoxylum kuskusense J. Nat. Prod. 63, 1546–1547.
  • Duh, C.Y., Wang, S.K., Hou, R.S., Wu, Y.C., Wang, Y., Cheng, M.C., Chang, T.T., 1993.Dehydroodorin, a cytotoxic diamide from Aglaia formosana. Phytochemistry 34,857–858.
  • Esimone, C.O., Eck, G., Nworu, C.S., Hoffmann, D., Uberla, K., Proksch, P., 2010. Dammarenolic acid, a secodammarane triterpenoid from Aglaia sp. shows potentanti-retroviral activity in vitro Phytomedicine 17, 540–547.
  • Farnsworth, N.R., 1988. Screening plants for new medicines. In: Wilson, E.O. (Ed.), Biodiversity. National Academy Press, Washington, DC, pp. 83–97.
  • Farnsworth, N.R., Akerele, O., Bingel, A.S., Soejarto, D.D., Guo, Z., 1985. Medicinal plants in therapy. Bull. World Health Organ. 63, 965–981.
  • Fang, X., Di, Y.T., He, H.P., Hua, G.W., Li, S.L., Hao, X.J., 2010. Chemical constituentsof Toona microcarpa (C. DC.) Harms in Engl. (Meliaceae). Biochem. Syst. Ecol. 38,128–130.
  • Ferdoushi, A., Sabrin, F., Hasan, M.N., Islam, K.D., Billah, M.M., 2012. Antibacterialactivity of methanolic extracts of the leaves and stem of Amoora cucullata J.Innov. Dev. Strategy 6, 35–38.
  • Ferreira, I.C.P., Cortez, D.A.G., Da Silva, M.F.G.F., Fo, E.R., Vieira, P.C., Fernandes, J.B., 2005. Acylperoxylated and seco-mexicanolides from stems of Khaya anthotheca J. Nat. Prod. 67, 413–416.
  • Figueiredo, E.R., (Thesis) 2010. Estudo Fitoquímico de Trichilia casarettii e Trichilia silvatica State University of North Fluminense, Campos dos Goytacazes.
  • Fossen, T., Rasoanaivo, P., Manjovelo, C.S., Raharinjato, F.H., Yahorava, S., Yahorau, A., Wikberg, J.E.S., 2012. A new protolimonoid from Capuronianthus mahafalensis Fitoterapia 83, 901–906.
  • Fuzzati, N., Dyatmiko, W., Rahman, A., Achmad, F., Hostettmann, K., 1996. Triterpenoid, lignans and a benzofuran derivative from the bark of Aglaia elaeagnoidea Phytochemistry 42, 1395–1398.
  • Furlan, M., Lopes, M.N., Fernandes, J.B., Pirani, J.R., 1996. Diterpenes from Guarea trichilioides Phytochemistry 41, 1159–1161.
  • Furlan, M., Roque, N.F., Wolter-Filho, W., 1993. Cycloartane derivatives from Guarea trichilioides Phytochemistry 32, 1519–1522.
  • Garcez, F.R., Garcez, W.S., Roque, N.F., Castellano, E.E., Zukerman-Schpector, J., 2000. β-Oxygenated limonoids from Trichilia elegans ssp. Elegans. Phytochemistry 55,733–740.
  • Garcez, F.R., Nunez, C.V., Garcez, W.S., Roque, N.F., 1998. Sesquiterpenes, limonoid and coumarin from the wood bark of Guarea guidonia Planta Med. 64, 79–80.
  • Garcez, F.R., Garcez, W.S., Tsutsumi, M.T., Roque, N.F., 1997a. Limonoids from Trichilia elegans ssp. elegans Phytochemistry 45, 141–148.
  • Garcez, F.R., Garcez, W.S., Rodrigues, E.D., Roque, N.F., 1996. Seco-protolimonoids from Trichilia elegans ssp. elegans Phytochemistry 42, 1399–1403.
  • Garcez, W.S., Garcez, F.R., Ramos, L., Camargo, M.J., Damasceno Jr., G.A., 1997b. Sesquiterpenes from Trichilia catigua Fitoterapia 68, 87–88.
  • Ge, Y.H., Zhang, J.X., Mu, S.Z., Chen, Y., Yang, F.M., Lu, Y., Hao, X.J., 2012. Munronoids A-J, ten new limonoids from Munronia unifoliolata Oliv. Tetrahedron 68, 566–572.
  • Goel, C.L., 1998. Characteristics and fatty acid composition of potential Chukrasia tabularis seed oil. Van. Vigyan. 36, 8–11.
  • Govindachari, T.R., Banumathy, B., Gopalakrishnan, G., Suresh, G., 1999a. 6-Desoxyswietenine, a tetranortriterpenoids from Swietenia mahogani Fitoterapia70, 106–108.
  • Govindachari, T.R., Suresh, G., Banumathy, B., Masilamani, S., Gopalakrishnan, G., Krishna kumara, G.N., 1999b. Antifungal activity of some B,D-seco limonoids from two meliaceous plants. J. Chem. Ecol. 25, 923–933.
  • Govindachari, T.R., Suresh, G., Gopalakrishnan, G., Banumathy, B., Masilamani, S.,1998. Identification of antifungal compounds from the seed oil of Azadirachta indica Phytoparasitica 26, 106–109.
  • Govindachari, T.R., Krishna Kumari, G.N., 1998. Tetranortriterpenoids from Khaya senegalensis Phytochemistry 47, 1423–1425.
  • Govindachari, T.R., Krishna Kumari, G.N., Suresh, G., 1997. Ergosta-5,24(24')-diene-3β,4β,20S-triol, an ergostane steroid from Dysoxylum malabaricum Phytochemistry 44, 153–155.
  • Govindachari, T.R., Krishna Kumari, G.N., Suresh, G., 1995. Triterpenoids from Wal-sura piscidia Phytochemistry 39, 167–170.
  • Govindachari, T.R., Suresh, G., Krishna kumara, G.N., 1994. Triterpenoids from Dysoxylum malabaricum Phytochemistry 37, 1127–1129.
  • Grayer, R.J., Harborne, J.B., 1994. A survey of antifungal compounds from higherplants, 1982–1993. Phytochemistry 37, 19–42.
  • Greger, H., Hofer, M., Teichmann, K., Schinnerl, J., Pannell, C.M., Vajrodaya, S., Hofer, O., 2008. Amide-esters from Aglaia tenuicaulis – first representatives of a class of compounds structurally related to bisamides and flavaglines. Phytochemistry 69, 928–938.
  • Grege, H., Pache, T., Brem, B., Bacher, M., Hofer, O., 2001. Insectisidal flavagalines and other compounds from Fijian Aglaia species. Phytochemistry 57, 57–64.
  • Gullo, V.P., Miura, I., Nakanishi, K., Cameron, A.F., Connolly, J.D., Duncanson, F.D., Harding, A.E., Mccrindle, R., Taylor, D.A.H., 1975. Structure of prieurianin, a complex tetranortriterpenoid; nuclear magnetic resonance analysis at no ambient temperatures and X-ray structure determination. J. Chem. Soc. Chem. Commun. 9, 345–346.
  • Gunatilaka, A., Bolzani, A.L., Das, V., Dagne, E., Hofmann, G.A., Johnson, R.K., McCabe, F.L., Mattern, M.R., Kingston, D.G.I., 1998. Limonoids showing selective toxicity to DNA repair-deficient yeast and other constituents of Trichilia emetica J. Nat. Prod. 61, 179–184.
  • Hantos, S.M., Tripathy, S., Alibhai, N., Durst, T., 2001. Synthesis of trichiliasterones Aand B-16-ketosteroids isolated from Trichilia hirta and Trichilia americana Can.J. Chem. 79, 1747–1753.
  • Harneti, D., Tjokronegoro, R., Safari, A., Supratman, U., Loong, X., Mukhtar, M.R.,Mohamad, K., Awang, K., Hayashi, H., 2012. Cytotoxic triterpenoids from thebark of Aglaia smithii (Meliaceae). Phytochem. Lett. 5, 496–499.
  • Harneti, D., Supriadin, A., Ulfah, M., Safari, A., Supratman, U., Awang, K., Hayashi,H., 2014. Cytotoxic constituents from the bark of Aglaia eximia (Meliaceae).Phytochem. Lett. 8, 28–31.
  • Hallur, G., Sivaramakrishnan, A., Bhat, S.V., 2002. Three new tetranortriterpenoids from neem seed oil. J. Nat. Prod. 65, 1177–1179.
  • Hisham, A., Jayakumar, G., Bai, M.D.A.S., Fujimoto, Y., 2004. A new triterpenoids from Dysoxylum beddomei Nat. Prod. Res. 18, 329–334.
  • Hisham, A., Bai, M.D.A., Jayakumar, G., Nair, M.S., Fujimoto, Y., 2001. Triterpenoids from Dysoxylum malabaricum Phytochemistry 56, 331–334.
  • He, K., Timmerman, B.N., Aladesanmi, A.J., Zeng, L., 1996. A biflavonoid from Disoxylum lenticellare Gillespie Phytochemistry 42, 1199–1201.
  • Hofer, O., Pointinger, S., Brecker, L., Peter, K., Greger, H., 2009. Silvaglenamin – a novel dimeric triterpene alkaloid from Aglaia silvestris Tetrahedron Lett. 50, 467–468.
  • Hu, J.F., Fan, H., Wang, L.J., Wu, S.B., Zhao, Y., 2011. Limonoids from the fruits of Melia toosendan Phytochem. Lett. 4, 292–297.
  • Huang, R.C., Okamura, H., Iwagawa, T., Tadera, K., Nakatani, N., 1995. Azedarachin C, a limonoid antifeedant from Melia azedarach Phytochemistry 38, 593–594.
  • Idu, M., Oshomoh, E.O., Ovuakporie-Uvo, P.O., 2013. Phytochemistry and antimicrobial properties of Chlorophora excelsa, Cedrela odorata and Tectona grandis Topcls. J. Herb. Med. 2, 248–253.
  • Inada, A., Shono, K., Murata, H., Inatomi, Y., Darnaedi, D., Nakanishi, T., 2000. Three putrescine bisamides from the leaves of Aglaia grandis Phytochemistry 53, 1091–1095.
  • Inada, A., Muryta, H., Inatomi, Y., Nakanishi, T., Darnaedi, D., 1997. Pregnanes andtriterpenoid hydroperoxides from the leaves of Aglaia grandis. Phytochemistry 45, 1225–1228.
  • Inada, A., Muryta, H., Inatomi, Y., Nakanishi, T., Darnaedi, D., 1995. Cycloartane triterpenes from the leaves of Aglaia harmsiana J. Nat. Prod. 58, 1143–1146.
  • Inada, A., Konishi, M., Murata, H., Nakanishi, T., 1994. Structures of a new limonoid and a new triterpenoid derivative from pericarps of Trichilia connaroides J. Nat. Prod. 57, 1446–1449.
  • Inoue, T., Nagai, Y., Mitooka, A., Ujike, R., Muraoka, O., Yamada, T., Tanaka, R., 2012. Carapanolides A and B: unusual 9,10-seco-mexicanolides having a 2R,9S-oxygen bridge from the seeds of Carapa guianensis Tetrahedron Lett. 53, 6685–6688.
  • Ishibashi, F., Satasook, C., Isman, M.B., Towers, G.H.N., 1993. Indecticidal 1H-cyclopentate-trahydro[b]benzofurans from Aglaia odorata (Lour) (Meliaceae). Phytochemistry 32, 307–310.
  • Ismail, I.S., Ito, H., Hatano, T., Taniguchi, S., Yoshida, T., 2003. Modified limonoids from the leaves of Sandoricum koetjape Phytochemistry 64, 1345–1349.
  • Ismail, I.S., Ito, H., Hatano, T., Taniguchi, S., Yoshida, T., 2004. Two new analogues of trijugin-type limonoids from the leaves of Sandoricum koetjape Chem. Pharm. Bull. 52, 1145–1147.
  • Itokawa, H., Qiao, Z.S., Hirobe, C., Takeya, K., 1995. Cytotoxic limonoids and tetra-nortriterpenoids from Melia azedarach Chem. Pharm. Bull. 43, 1171–1175.
  • Jain, S.K., Meena, S., Qazi, A.K., Hussain, A., Bhola, S.K., Kshirsagar, R., Pari, K., Khajuria, A., Hamid, A., Shaanker, R.U., Bharate, S.B., Vishwakarma, R.A., 2013. Isolation and biological evaluation of chromone alkaloid dysoline, a new regioisomer of rohitukine from Dysoxylum binectariferum Tetrahedron Lett. 54, 7140–7143.
  • Janprasert, J., Satasook, C., Sukumalan, P., Champagne, D.E., Isman, M.B., Wiriyachitra, P., Towers, G.H.N., 1993. Rocaglamide, a new natural insecticide from Aglaia odorata (Lour.) (Family Meliaceae). Phytochemistry 32, 67–69.
  • Jarvis, A.P., Morgan, E.D., van der Esch, S.A., Vitali, F., Ley, S.V., Pape, A., 1997. Identification of azadirachtin in tissue-cultured cells of neem (Azadirachta indica). Nat. Prod. Lett. 10, 95–98.
  • Jayasinghe, U.L.B., Jayasooriya, C.P., Bandara, B.M.R., Ekanayake, S.P., Merlini, L., Asante, G., 2002. Antimicrobial activity of some Sri Lankan Rubiaceae and Meliaceae. Fitoterapia 73, 424–427.
  • Jie, O., Yan-wen, W., Xiao-rui, L., 2008. Comparison of anti-bacterial activities of the extracts from Yomig and old leaves of Toona sinensis Nat. Prod. Res. Dev. 20, 427–430.
  • Jonker, S.A., Nkunya, M.H.H., Mwamtobe, L., Geenevasen, J., Koomen, G.J., 1997. A new coumarin and polyhydroxysqualenes from Ekebergia benguelensis Nat. Prod. Lett. 10, 245–248.
  • Joycharat, N., Greger, H., Hofer, O., Saifah, E., 2008. Flavaglines and triterpenes as chemical markers of Aglaia oligophylla Biochem. Syst. Ecol. 36, 584–587.
  • Jun, L., Jun-Song, W., Wen-Jun, C., Ling-Yi, K., 2011. A New phragmalin-type limonoid from Chukrasia tabularis var. velutina Chin. J. Nat. Med. 9, 98–100.
  • Kadota, S., Marpaung, L., Kuchi, T.K., Ekimoto, H., 1990. Constituents of the seeds of Swietenia mahagoni Jacq. Isolation, structures and proton and carbon-13 nuclear magnetic resonance signal assignments of new tetranortripenoids related to swietenine and swietenolide. Chem. Pharm. Bull. 38, 639–651.
  • Kavitha, K.S., Satish, S., 2013. Evaluation of antimicrobial and antioxidant activities from Toona ciliata Roemer. J. Anal. Sci. Technol. 4, 23, http://dx.doi.org/10.1186/2093-3371-4-23.
    » http://dx.doi.org/10.1186/2093-3371-4-23
  • Khalid, S.A., Friendrichsen, G.M., Kharazmi, A., Theander, T.G., Olsen, C.E., Christensen, S.B., 1998. Limonoids from Khaya senegalensis Phytochemistry 49, 1769–1772.
  • Khan et al., 2011
  • Khan, M.W., Alam, M.M., Saxsena, S.K., 1974. Effect of water-soluble fractions of oil cakes and bitter principles of neem on some fungi and nematode. Acta Bot. Indica. 2, 120–128.
  • Kigodi, P.G.K., Blaskó, G., Thebtaranonth, Y., Pezzuto, J.M., Cordell, G.A., 1989. A new limonoid from Azdirachtaindica Spectroscopic and biological investigation of nimbolide and 28-deoxynimbolide. J. Nat. Prod. 52, 1246–1251.
  • Kim, S., Chin, Y.W., Riswan, S., Su, B.N., Kardono, L.B.S., Afriastini, J.J., Chai, H., Farnsworth, N.R., Cordell, G.A., Swanson, S.M., Kinghorn, A.D., 2006. Cytotoxic flavaglines and bisamides from Aglaia edulis J. Nat. Prod. 69, 1769–1775.
  • Kim, S., Su, B.N., Leonardus, S.R., Kardono, B.S., Afriastini, J.J., Gallucci, J.C., Chai, H.Y., Farnsworth, N.R., Cordell, G.A., Swanson, S.M., Kinghorn, A.D., 2005. Edulisones Aand B, two epimeric benzo[β]oxepine derivatives from the bark of Aglaia edulis Tetrahedron Lett. 46, 4902–9021.
  • Kipassa, N.T., Iwagawa, T., Okamura, H., Doe, M., Morimoto, Y., Nakatani, M.,2008. Limonoids from the stem bark of Cedrela odorata. Phytochemistry 69,1782–1787.
  • Kokpol, U., Chavasiri, W., Tip-Pyang, S., Veerachato, G., Zhao, F., Simpson, J., Rex, T.W.,1996. A Limonoid from Xylocarpus granatum Phytochemistry 41, 903–905.
  • Kouam, S.F., Kusari, S., Lamshöft, M., Tatuedom, O.K., Spiteller, M., 2012. Sapelenins G-J, acyclic triterpenoids with strong anti-inflammatory activities from the barkof the Cameroonian medicinal plant Entandrophragma cylindricum Phytochem-istry 83, 79–86.
  • Kouam, S.F., Kusari, S., Lamshöft, M., Tatuedom, O.K., Spiteller, M., 2012. SapeleninsG-J, acyclic triterpenoids with strong anti-inflammatory activities from the barkof the Cameroonian medicinal plant Entandrophragma cylindricum Phytochemistry 83, 79–86.
  • Kosela, S., Yulizar, Y., Tori, M., Asakawa, Y., 1995. Secomultiflorane-type triterpenoid acids from stem bark of Sandoricum koetjape Phytochemistry 38, 691–694.
  • Krief, S., Huffman, M.A., Sévenet, T., Hladik, C.M., Grellier, P., Loiseau, P.M., Wrangram, R.W., 2006. Bioactive properties plants species ingested by chimpanzees(Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda. Am. J. Primatol. 68, 51–71.
  • Krief, S., Martin, M.T., Grellier, P., Kasenene, J., Sévenet, T., 2004. Novel antimalarial compounds isolated in a survey of self-medicative behavior of wild chimpanzees in Uganda. Antimicrob. Agents Chemother. 48, 3196–3199.
  • Kumar, C.S .S.R., Srinivas, M., Yakkundi, R., 1996. Limonoids from the seeds of Azadirachta indica Phytochemistry 43, 451–455.
  • Kurimoto, S., Kashiwada, Y., Lee, K.H., Takaishi, Y., 2011. Triterpenes and a triterpene glucoside from Dysoxylum cumingianum Phytochemistry 72, 2205–2211.
  • Lago, J.H.G., Cornello, M.L., Moreno, P.R.H., Apel, M.A., Limberger, R.P., Henriques,A.T., Roque, N.F., 2005. Sesquiterpenes from essential oil from fruits of Guarea macrophylla Vahl ssp. tuberculata (Meliaceae). J. Essent. Oil Res. 17, 84–85.
  • Lago, J.H.G., Brochini, C.B., Roque, N.F., 2002a. Terpenoids from Guarea guidonia Phytochemistry 60, 333–338.
  • Lago, J.H.G., Reis, A.A., Roque, N.F., 2002b. Chemical composition from volatile oil ofthe stem bark of Guarea macrophylla Vahl. ssp. tuberculata Vellozo (Meliaceae).Flavour Frag J. 17, 255–259.
  • Lago, J.H.G., Brochini, C.B., Roque, N.F., 2000. Terpenes from leaves of Guarea macro-phylla (Meliaceae). Phytochemistry 55, 727–731.
  • Li, H., Tang, G.H., Yu, Z., Hao, X.J., Qing, Z., He, H.P., 2013a. A new carotane sesquiterpene from Walsura robusta Chin. J. Nat. Med. 11, 84–86.
  • Li, J., Li, M.Y., Xiao, Q., Pedpradab, P., Wu, J., 2013b. Thaixylomolins D-F, new limonoids from the Thai true mangrove, Xylocarpus moluccensis Phytochem. Lett. 6, 482–485.
  • Li, J., Li, M.Y., Feng, G., Xiao, Q., Sinkkonen, J., Satyanandamurty, T., Wu, J., 2010. Limonoids from the seeds of a Godavari mangrove, Xylocarpus moluccensis Phytochemistry 71, 1917–1924.
  • Limsuwan, S., Voravuthikunchai, S.P., 2013. Anti-Streptococcus pyogenes activity of selected medicinal plant extracts used in Thai Traditional Medicine. Trop. J. Pharm. Res. 12, 535–540.
  • Lin, B.D., Chen, H.D., Liu, J., Zhang, S., Wu, Y., Dong, L., Yue, J.M., 2010. Mulavanins A-E: limonoids from Munronia delavayi Phytochemistry 71, 1596–1601.
  • Locke, J.C., 1995. Fungi in the neem tree sources of unique natural products for integrated pest management, medicine, industry and other purposes. VCH, Weinheim, Germany, pp. 118–127.
  • Liu, S., Liu, S.B., Zuo, W.J., Guo, Z.K., Mei, W.L., Dai, H.F., 2014. New sesquiterpenoids from Aglaia odorata var. microphyllina and their cytotoxic activity. Fitoterapia 92, 93–99.
  • Liu, J.Q., Wang, C.F., Li, Y., Chen, J.C., Zhou, L., Qiu, M.H., 2012. Limonoids from the leaves of Toona ciliata var. yunnanensis Phytochemistry 76, 141–149.
  • Liu, Y.B., Cheng, X.R., Qin, J.J., Yan, S.K., Jin, H.Z., Zhang, W.D., 2011a. Chemical constituents of Toona ciliata var. pubescens. Chin. J. Nat. Med. 9, 115–119.
  • Liu, J.Q., Yang, S.P., Su, Z.S., Lin, B.D., Wu, Y., Yue, J.M., 2011b. Limonoids from the stems of Toona ciliata var. henryi (Meliaceae). Phytochemistry 72, 2189–2196.
  • Luo, X.D., Wu, S.H., Wu, D.G., Ma, Y.B., Qi, S.H., 2002. Three new apotirucallols with six-membered hemiacetal from Meliaceae. Tetrahedron 58, 6691–6695.
  • Luo, X.D., Wu, S.H., Ma, Y.B., Wu, D.G., 2001. Ent-Pimarane derivatives from Dysoxylum hainanense Phytochemistry 57, 131–134.
  • Luo, X.D., Wu, S.H., Ma, Y.B., Wu, D.G., 2000a. Limonoids and phytol derivatives from Cedrela sinensis Fitoterapia 71, 492–496.
  • Luo, X.D., Wu, S.H., Ma, Y.B., Wu, D.G., 2000c. Tirucallane triterpenoids from Dysoxylum hainanensis Phytochemistry 54, 801–805.
  • Luo, X.D., Wu, S.H., Ma, Y.B., Wu, D.G., 2000c. Tirucallane triterpenoids from Dysoxylum hainanensis Phytochemistry 54, 801–805.
  • Luo, X.D., Wu, S.H., Ma, Y.B., Wu, D.G., 2000d. Tetranortriterpenoids from Walsura yunnanensis J. Nat. Prod. 63, 947–951.
  • Luo, X.D., Wu, S.H., Ma, Y.B., Wu, D.G., 2000e. A new triterpenoid from Azadirachta indica A. Juss. Fitoterapia 71, 668–672.
  • Luo, X.D., Ma, Y.B., Wu, S.H., Wu, D.G., 1999. Two novel azadirachtin derivatives from Azadirachta indica J. Nat. Prod. 62, 1022–1024.
  • Malafronte, N., Sanogo, R., Vassallo, A., Tommasi, N.D., Bifulco, G., Piaz, F.D., 2013. Androstanes and pregnanes from Trichilia emetica ssp. suberosa J.J. de Wilde. Phytochemistry 96, 437–442.
  • Malairajan, P., Gopalakrishnan, G., Narasimhan, S., Veni, K.J.K., 2012. Preliminary antimicrobial screening of some Indian Medicinal Plants Part I. Int. J. Drug Dev. Res. 4, 133–137.
  • Matos, A.P., Nebo, L., Vieira, P.C., Fernandes, J.B., Silva, M.F.G.F., 2009. Constituintes químicos e atividade inseticida dos extratos de frutos de Trichilia elegans e T. catigua(Meliaceae). Quim. Nova 32, 1553–1556.
  • Matos, A.P., Nebo, L., Vieira, P.C., Souza, P.R., Fernandes, J.B., Silva, M.F.G.F., Rodrigues, R.R., 2007. Atividade biológica dos extratos de fungos e sementes de Trichilia spp. sobre Spodoptera frugiperda: limonóides de T. catigua. In: 30th Annual Conven-tion of Brazilian Society of Chemistry, Águas de Lindóia City, São Paulo State, 31June to 3 July (CD Data).
  • Marpaung, L., Nakamura, N., Kakula, H., Hattori, M., 2001. Absolute configuration of cipadesin and febrifugin from the seeds of Cipadessa baccifera Nat. Med. 55,220–226.
  • Martin, A.P., Salgueiro, L.R., Da Cunha, A.P., Vila, R., Canigueral, S., Omi, F., Casanova, J., 2003. Essential oil composition of Eryngium foetidum from S. Tome e Principe. J. Essent. Oil Res. 15, 422–424.
  • McFarland, K., Mulholland, D.A., Fraser, L.A., 2004. Limonoids from Turraea floribunda Meliaceae. Phytochemistry 65, 2031–2037.
  • Mishra, A., Neema, M., Poonam, N., Priyanka, P., 2013. Antibacterial effects of crude extract of Azadirachta indica against Escherichia coli and Staphylococcus aureus Int. J. Sci. Environ. Technol. 2, 989–993.
  • Mitsui, K., Maejima, M., Saito, H., Fukaya, H., Hitotsuyanagi, Y., Takeya, K., 2005.Triterpenoids from Cedrela sinensis Tetrahedron 61, 10569–10582.
  • Mitsui, K., Maejima, M., Fukaya, H., Hitotsuyanagi, Y., Takeya, K., 2004. Limonoids from Cedrela sinensis Phytochemistry 65, 3075–3081.
  • Mohamad, K., Hirasawa, Y., Lim, C.S., Awang, K., Hadi, A.H.A., Takeya, K., Morita,H., 2008. Ceramicine A and walsogyne A, novel limonoids from two species of Meliaceae. Tetrahedron Lett. 49, 4276–4278.
  • Mohamad, K., Sevenet, T., Dumontet, V., Pais, M., Tri, M.V., Hadi, H., Awang, K., Martin,M., 1999a. Dammarane triterpenes and pregnane steroids from Aglaia lawii and A. tomentosa Phytochemistry 51, 1031–1037.
  • Mohamad, K., Martin, M.A., Litaudon, M., Gaspard, C., Sevenet, T., Pais, M., 1999b. Tirucallane triterpenes from Dysoxylum macranthum Phytochemistry 52, 1461–1468.
  • Mohammad, K., Martin, M.T., Najdar, H., Gaspard, C., Sevenet, T., Awang, K., Pais, M.,1999. Cytotoxic 3,4-secoapotirucallanes from Aglaia argentea Bark. J. Nat. Prod.62, 868–872.
  • Mohammad, K., Martin, M.T., Leroy, E., Sevenet, T., Awang, K., Pais, M., 1997. Argenteanone C-E and argenteanols B-E, cytotoxic cycloartane from Aglaia argentea J. Nat. Prod. 60, 81–85
  • Mohanakumara, P., Sreejayan, N., Priti, V., Ramesha, B.T., Ravikanth, G., Ganeshaiah, K.N., Vasudeva, R., Mohan, J., Santhoshkumar, T.R., Mishra, P.D., Ram, V., Shaanker, R.U., 2010. Dysoxylum binectariferum Hook.f (Meliaceae), a rich source of rohitukine. Fitoterapia 81, 145–148.
  • Mootoo, B.S., Ali, A., Motilal, R., Pingal, R., Ramlal, A., Khan, A., Reynolds, W.F., McLean, S., 1999. Limonoids from Swietenia macrophylla and S. aubrevilleana J. Nat. Prod. 62, 1514–1517.
  • Moreno, P.R.H., Agripino, D.G., Lima, M.E.L., da Silva, M.R., Meda, C.I., da Silva Bolzani, V., Cordeiro, I., Young, M.C.M., 2004. Screening of Brazilian plants for antimicrobial and DNA damaging activities. I. Atlantic Rain Forest. Ecological Station Juréia-Itatins. Biota Neotrop. 4, BN03804022004.
  • Mulholland, D.A., Naidoo, N., 2000. Dammarane triterpenoids from Dysoxylum muellerii Biochem. Syst. Ecol. 28, 295–297
  • Mulholland, D.A., Naidoo, N., 1999. Limonoids from Aphanamixis polystacha Phytochemistry 51, 927–930.
  • Mulholland, D.A., Iourine, S.E., 1998. Limonoids from Ekebergia capensis. Phytochem-istry 47, 1357–1361.
  • Mulholland, D.A., Taylor, D.A.H., 1980. Limonoids from the seed of the natal Mahogany, Trichilia dregeana Phytochemistry 19, 2421–2425.
  • Mulholland, D.A., McFarland, K., Randrianarivelojosia, M., 2006. Sesquiterpenoid derivatives from Cipadessa boiviniana(Meliaceae). Biochem. Syst. Ecol. 34,365–369.
  • Mulholland, D.A., Randrianarivelojosia, M., Lavaud, C., Nuzillard, J.M., Schwikkar, S.L., 2000a. Limonoid derivatives from Astrotrichilia voamatata. Phytochemistry 53, 115–118.
  • Mulholland, D.A., Schwikkard, S.L., Sandor, P., Nuzillard, J.M., 2000b. Delevoyin C, a tetranortriterpenoid from Entandrophragma delevoyi Phytochemistry 53, 465–468.
  • Mulholland, D.A., Schwikkard, S.L., Randrianarivelojosia, M., 1999a. Limonoids from Astrotrichilia voamatata Phytochemistry 52, 705–707.
  • Mulholland, D.A., Monkhe, T.V., Pegel, K.H., Taylor, D.A.H., 1999b. Limonoids and diterpenoids from Dysoxylum spectabile(Meliaceae). Biochem. Syst. Ecol. 27, 313–315.
  • Mulholland, D.A., Monkhe, T.V., Taylor, D.A.H., Rajab, M.S., 1999c. Triterpenoids from Turraea holstii Phytochemistry 52, 123–126.
  • Mulholland, D.A., Iourine, S., Taylor, D.A.H., 1998a. Sesquiterpenoids from Dysoxylum schiffneri Phytochemistry 47, 1421–1422.
  • Mulholland, D.A., Iourine, S.E., Taylor, D.A.H., Dean, F.M., 1998b. Coumarins from Ekebergia pterophylla Phytochemistry 47, 1641–1644.
  • Mulholland, D.A., Kotsos, M., Mahomed, H.A., Taylor, D.A.H., 1998c. Triterpenoids from Owenia cepiodora Phytochemistry 49, 2457–2460.
  • Mulholland, D.A., Nair, J.J., Taylor, D.A.H., 1996. Astrotrichilin, alimonoid from Astrotrichilia asterotricha Phytochemistry 42, 1239–1241.
  • Mulholland, D.A., Osborne, R., Roberts, S.L., Taylor, D.A.H., 1994. Limonoids and triterpenoid acids from the bark of Entandrophragma delevoyi Phytochemistry 37, 1417–1420.
  • Murthy, K.S.R., Nagamani, K., 2008. Antimicrobial spectrum and phytochemical study of Walsura trifoliate (A. Juss) Harms. (Meliaceae) bark extracts. J. Pharmacol. Toxicol. 3, 267–271.
  • Musza, L.L., Killar, L.M., Speight, P., Barrow, C.J., Gillum, A.M., Cooper, R., 1995. Minor limonoids from Trichilia rubra Phytochemistry 39, 621–624.
  • Musza, L.L., Killar, L.M., Speight, P., Mcelhiney, S., Barrow, C.J., Gillum, A.M., Cooper, R., 1994. Potent new cell adhesion inhibitory compounds from the root of Trichilia rubra Tetrahedron 50, 11369–11378.
  • Nagalakshmi, M.A.H., Thangadurai, D., Rao, D.M., Pullaiah, T., 2001. Phytochemical and antimicrobial study of Chukrasia tabularisleaves. Fitoterapia 72, 62–64.
  • Naidoo, D., Mulholland, D.A., Randrianarivelojosia, M., Coombes, P.H., 2003. Limonoids and triterpenoids from the seed of Neobeguea mahafalensis Biochem.Syst. Ecol. 31, 1047–1050.
  • Najmuldeen, I.A., Hadi, A.H.A., Mohamad, K., Awang, K., Nasab, M.F., Ketuly, K.A., Mukhtar, M.R., Morita, H., 2011. Steroids from Chisocheton tomentosus Malaysian J. Sci. 30, 144–153.
  • Nakatani, M., Abdelgaeil, S.A.M., Saad, M.M.G., Huang, R.C., Doe, M., Iwagawa, T., 2004. Phragmalin limonoids from Chukrasia tabularis Phytochemistry 65, 2833–2841.
  • Nakatani, M., Abdelgaeil, S.A.M., Kassem, S.M.I., Takezaki, K., Okamura, H., Iwagawa, T., Doe, M., 2002. Three new modified limonoids from Khaya senegalensis J. Nat. Prod. 65, 1219–1221.
  • Nakatani, M., Abdelgaeil, S.A.M., Kurawaki, J., Okamura, H., Iwagawa, T., Doe, M.,2001. Antifeedant rings B and D opened limonoids from Khaya senegalensis J. Nat. Prod. 65, 1261–1265.
  • Nakatani, M., Shimokoro, M., Zhou, J.B., Okamura, H., Iwagawa, T., Tadera, K., Nakayama, N., Naoki, H., 1999. Limonoids from Melia toosendan Phytochemistry 52, 709–714.
  • Nakatani, M., Huang, R.C., Okamura, H., Iwagawa, T., Tadera, K., Huang, R.C., 1998. Degraded limonoids from Melia azedarach Phytochemistry 49, 1773–1776.
  • Nakatani, M., Huang, R.C., Okamura, H., Naoki, H., Iwagawa, T., 1994. Limonoidantifeedants from Chinese Melia azedarach Phytochemistry 36, 39–41.
  • Nakatani, M., Zhou, J.B., Nakayama, N., Okamura, H., Iwagawa, T., 1996. Nimbolidins C-E, limonoid antifeedants from Melia toosendan Phytochemistry 41, 733–739.
  • Nanduri, S., Banstola, P., 1995. Neeflone, a new tetranortriterpenoid from the flowers of Azadirachta indica A. Juss (Meliaceae). Ind. J. Chem. 34, 1019–1021.
  • Narayanan, C.R., Pachapurkar, R.V., Pradhan, S.K., Shah, V.R., Narasimhan, N.S., 1964. Structure of Nimbin. Chem Indus. 322, 1664–1671.
  • Ndung’u, M., Hassanali, A., Hooper, A.M., Chhabra, S., Miller, T.A., Paul, R.L., Torto, B., 2003. Ring A-seco mosquito larvicidal limonoids from Turraea wakefieldii Phytochemistry 64, 817–823.
  • Neycee, M.A., Nematzadeh, G.H.A., Dehestani, A., Alavi, M., 2012. Evaluation of antibacterial effects of chinaberry (Melia azedarach) against gram-positive and gram-negative bacteria. Intl. J. Agron. Plant. Prod. 3, 213–216.
  • Ngnokam, D., Massiot, G., Bilard, C., Tsamo, E., 1995. Sapelenin D, a new acyclic triterpenoid from the stem bark of Entandrophragma cylindricum Nat. Prod. Lett. 5, 289–293.
  • Nishiyama, Y., Moriyasu, M., Ichimaru, M., Tachibana, Y., Kato, A., Mathenge, S.G., Nganga, J.N., Juma, F.D., 1996. Acyclic triterpenoids from Ekebergia capensis Phytochemistry 42, 803–807.
  • Nsiama, T.K., Okamura, H., Hamada, T., Morimoto, Y., Doe, M., Iwagawa, T., Nakatani,M., 2011. Rings D-seco and B,D-seco tetranortriterpenoids from root bark of Entandrophragma angolense Phytochemistry 72, 1854–1858.
  • Nugroho, A.E., Okuda, M., Yamamoto, Y., Hirasawa, Y., Wong, C.P., Kaneda, T., Shirota, O., Hadi, A.H.A., Morita, H., 2013. Walsogynes B-G, limonoids from Walsura chrysogyne Tetrahedron 69, 4139–4145.
  • Nugroho, B.W., Edrada, R.A., Wray, V., Witte, L., Bringmann, G., Gehling, M., Proksch, P., 1999. An insecticidal rocaglamide derivatives and related compounds from Aglaia odorata (Meliaceae). Phytochemistry 51, 367–376.
  • Nugroho, B.W., Edrada, R.A., Güssregen, B., Wray, V., Witte, L., Proksch, P., 1997a. Insecticidal rocaglamide derivatives from Aglaia duppereana Phytochemistry 44, 1455–1461.
  • Nugroho, B.W., Güssregen, B., Wray, V., Witte, L., Bringmann, G., Proksch, P., 1997b. Insecticidal rocaglamide derivatives from Aglaia elliptica and A. harmsiana Phytochemistry 45, 1579–1585.
  • Nunez, C.V., Roque, N.F., 1999. Sesquiterpenes from the stem bark of Guarea guidonia (L.) Sleumer (Meliaceae). J. Essent. Oil Res. 11, 439–440.
  • Ogunwande, I.A., Ekundayo, O., Olawore, N.O., Adeleke, K.A., 2005. Constituents of the essential oils of the leaves and stem bark of Cedrela mexicana L. grown in Nigeria. J. Essent. Oil Res. 17, 289–291.
  • Olmo, L.R.V., Da Silva, M.F.D.G.F., Fo, E.R., Vieira, P.C., Fernandes, J.B., Pinheiro, A.L., Vilela, E.F., 1997. Limonoids from leaves of Khaya senegalensis Phytochemistry 44, 1157–1161.
  • Olugbade, T.A., Adesanya, S.A., 2000. Prieurianoside, a protolimonoid glucoside from the leaves of Trichilia prieuriana Phytochemistry 54, 867–870.
  • Omobuwajo, O.R., Martin, M.T., Perroma, G., Sevenet, T., Awang, K., Pais, M., 1996. Cytotoxic cycloartanes from Aglaia argentea Phytochemistry 41, 1325–1328.
  • Orisadipe, A.T., Adesomoju, A.A., Ambrosio, M.D., Guerriero, A., Okogun, J.I., 2005. Tirucallane triterpenes from the leaf extract of Entandrophragma angolense Phytochemistry 66, 2324–2328.
  • Orishadipe, A.T., Ibekwe, N.N., Adesomoju, A.A., Okogun, J.I., 2012. Chemical composition and antimicrobial activity of the seed oil of Entandrophragma angolense (Welw) C.DC. Afr. J. Pure Appl. Chem. 6, 184–187.
  • Pancharoen, O., Pipatanapatikarn, A., Taylor, W.C., Bansiddhi, J., 2009. Two new limonoids from the leaves of Sandoricum koetjape Nat. Prod. Res. 23, 10–16.
  • Park, J.C., Yu, Y.B., Lee, J.H., Choi, J.S., Ok, K.D., 1996. Phenolic compounds from therachis of Cedrela sinensis Korean J. Pharmacogn. 27, 219–223.
  • Pettit, G.R., Numata, A., Iwamoto, C., Morito, H., Yamada, T., Goswami, A., Clewlow, P.J., Cragg, G.M., Schmidt, J.M., 2002. Antineoplastic agents. 489. Isolation and structures of meliastatins 1–5 and related euphane triterpenes from the tree Melia dubia J. Nat. Prod. 65, 1886–1891.
  • Pizzolatti, M.G., Verdi, L.G., Brighente, I.M., Madurreira, L.A.D.S., Filho, R.B., 2004. Two epimeric flavalignans from Trichilia catigua (Meliaceae) with antimicrobialactivity. Nat. Prod. Res. 18, 433–438.
  • Pointinger, S., Promdang, S., Vajrodaya, S., Pannell, C.M., Hofer, O., Mereiter, K., Greger, H., 2008. Silvaglins and related 2,3-secodammarane derivatives – unusual types of triterpenes from Aglaia silvestris Phytochemistry 69, 2696–2703.
  • Pupo, M.T., Adorno, M.A.T., Vieira, P.C., Fernandes, J.B., Silva, M.F.G., Pirani, J.R., 2002. Terpenoids and steroids from Trichilia species. J. Braz. Chem. Soc. 13, 382–388.
  • Pupo, M.T., Vieira, P.C., Fernandes, J.B., Fatima Das, M., Da Silva, G.F., 1998. γ-Lactones from Trichilia claussenii Phytochemistry 48, 307–310.
  • Pupo, M.T., Vieira, P.C., Fernandes, J.B., Silva, M.F.G.F., 1996. A cycloartane triterpenoid and ω-phenyl alkanoic and alkenoic acids Trichilia claussenii Phytochemistry 42, 795–798.
  • Pupo, M.T., Vieira, P.C., Fernandes, B., Fatima Das, M., Da Silva, G.F., Rodrigues,E., 1997. Androstane e pregnane 2-beta, 19-hemiketal steroids from Trichilia claussenii Phytochemistry 45, 1495–1500.
  • Purushothaman, K.K., Chandrasekharan, S., 1974. Occurrence of methyl angolensateand deoxyandirobin in Soymida febrifuga A. Juss. Indian J. Chem. 12, 207–208.
  • Purushothaman, K.K., Chandrasekharan, S., Connolly, J.D., Rycroft, D.S., 1977. Tetranortriterpenoids and related substances. Part 18. Two new tetranortriterpenoids with a modified furan ring from the bark of Soymida febrifuga A. Juss (Meliaceae). J. Chem. Soc.: Perkin Trans. 1, 1873–1875.
  • Puroshothaman, K.K., Duraiswamy, K., Connolly, J.D., 1984. Tetranortriterpenoids from Melia dubia Phytochemistry 23, 135–137.
  • Puripattanavong, J., Weber, S., Brecht, V., Frahm, A.W., 2000. Phytochemical Investigation of Aglaia andamanica Planta Med. 66, 740–745.
  • Qi, S.H., Wu, D.G., Zhang, S., Luo, X.D., 2004. Constituents of Carapa guianensis Aubl. (Meliaceae). Pharmazie 59, 488–490.
  • Qi, S.H., Wu, D.G., Chen, L., Ma, Y.B., Luo, X.D., 2003. Insect antifeedants from Munronia henryi: structure of munroniamide. J. Agric. Food Chem. 51, 6949–6952.
  • Qiu, S.X., Nguyen, V.H., Le, T.X., Gu, J.Q., Lobkovsky, E., Khanh, T.C., Soejarto, D.D.,Clardy, J., Pezzuto, J.M., Dong, Y., Mai, V.T., Le, M.H., Fong, H.H., 2001. A pregnane steroid from Aglaia lawii and structure confirmation of cabraleadiol monoacetate by X-ray crystallography. Phytochemistry 56, 775–780.
  • Ragasa, C.Y., Torres, O.B., Shen, C., Gayle, M.M.R., Joyce, F.R., Jacinto, S.D., 2012. Chemical constituents of Aglaia loheri Phcog. J. 4, 29–31.
  • Rahman, M.S., Rahman, M.Z., Wahab, M.A., Chowdhury, R., Rashid, M.A., 2008. Antimicrobial activity of some indigenous plants of Bangladesh. Dhaka Univ. J. Pharm. Sci. 7, 23–26.
  • Reddy, Y.R.R., Kumari, C.K., Lokanatha, O., Mamatha, S., Reddy, C.D., 2013. Antimicrobial activity of Azadirachta Indica (neem) leaf, bark and seed extracts. Int. J.Res. Phytochem. Pharmacol. 3, 1–4.
  • Ramji, N., Venkatakrishnan, K., Madyastha, K.M., 1996. 11-Epiazadirachtin H from Azadirachta indica Phytochemistry 42, 561–562.
  • Randrianarivelojosia, M., Kotsos, M.P., Mulholland, D.A., 1999. A limonoid from Neobeguea mahafalensis Phytochemistry 52, 1141–1143.
  • Rao, M.M., Krishna, E.M., Guptam, P.S., Singh, P.P., 1978. A new tetranortriterpenoid isolated from the heartwood of Soymida febrifuga Ind. J. Chem. 16B, 823–825.
  • Rao, M.M., Gupta, P.S., Krishna, E.M., Singh, P.P., 1979. Constituents of heartwood of Soymida febrifuga – isolation of flavonoids. Ind. J. Chem. 17B, 178–180.
  • Rao, M.S.A., Suresh, G., Yadav, P.A., Prasad, K.R., Nayak, V.L., Ramakrishna, S., Rao, C.V., Babu, K.S., 2012. Novel apo-tirucallane triterpenoids from Walsura trifoliate Tetrahedron Lett. 53, 6241–6244.
  • Ragasa, C.Y., Torres, O.B., Bernardo, L.B., Mandia, E.H., Don, M.J., Shen, C.C., 2013. Glabretal-type triterpenoids from Dysoxylum mollissimum Phytochem. Lett. 6, 514–518.
  • Rastogi, R.P., Mehrotra, B.N., 1993. Compendium of Indian Medicinal Plants, vol. 2. CDRI, Lucknow, New Delhi, Publications and Information Directorate.
  • Riazunnisa, K., Adilakshmamma, U., Khadri, C.H., 2013. Phytochemical analysis and in vitro antibacterial activity of Soymida febrifuga (Roxb.) Juss. and Hemidesmus indicus(L.). Indian J. Appl. Res. 3, 57–59.
  • Ripa, F.A., Nahar, L., Fazal, A., Khatun, M.H., 2012. Antibacterial and phytochemical evaluation of three medicinal plants of Bangladesh. Int. J. Pharm. Sci. Res. 3, 788–792.
  • Rivero-Cruz, J.F., Chai, H.B., Kardono, L.B.S., Setyowati, F.M., Afriastini, J.J., Riswan, S., Farnsworth, N.R., Cordell, G.A., Pezzuto, J.M., Swanson, S.M., Kinghorn, A.D., 2004. Cytotoxic constituents of the twigs and leaves of Aglaia rubiginosa J. Nat. Prod. 67, 343–347.
  • Rodrigues, V.F., Carmo, H.M., Oliveira, R.R., Braz-Filho, R., Mathias, L., Vieira, I.J.C.,2009. Isolation of terpenoids from Trichilia quadrijuga (Meliaceae) by droplet counter-current chromatography. Chomatographia 70, 1191–1195.
  • Rodriguez-Hahn, L., Cardenas, J., Arenas, C., 1996. Trichavensin, a prieurianin deriva-tive from Trichilia havanensis Phytochemistry 43, 457–459.
  • Rodriguez, B., Caballero, C., Ortego, F., Castanera, P., 2003. A new tetranortriterpenoid from Trichilia havanensis J. Nat. Prod. 66, 452–454.
  • Rogers, L.L., Zeng, L., Mc Laughlin, J.L., 1998. Volkensinin – a new limonoid from Melia volkensii Tetrahedron Lett. 39, 4623–4626.
  • Roux, D., Martin, Mt., Adeline, Mt., Sevenet, T., Hadi, A.H.A., Pais, M., 1998. Foveolins A and B, dammarane triterpenes from Aglaia foveolata Phytochemistry 49, 1745–1748.
  • Roy, A., Saraf, S., 2006. Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharm. Bull. 29, 191–201.
  • Ruo Chun, H., Tadera, K., Yagi, F., Minami, Y., Okamura, H., Iwagawa, T., Nakatani, M., 1996. Limonoids from Melia azedarach Phytochemistry 43, 581–583.
  • Saad, M.M.G., Iwagawa, T., Doe, M., Nakatani, M., 2003. Swietenialides, novel ring Dopened phragmalin limonoid orthoesters from Swietenia mahogani Jacq. Tetrahedron 59, 8027–8033.
  • Sahoo, K., Khatua, D.K., Dhal, N.K., 2013. Antimicrobial screening of leaf and stemextracts of Xylocarpus mekongensis Pierre: a mangrove plant. Biohelica 3, 44–48.
  • Saifah, E., Suttisri, R., Shamsub, S., Pengsuparp, T., Lipipun, V., 1999. Bisamides from Aglaia edulis Phytochemistry 52, 1085–1088.
  • Sakamoto, A., Tanaka, Y., Inoue, T., Kikuchi, T., Kajimoto, T., Muraoka, O., Yamada, T., Tanaka, R., 2013. Andirolides Q-V from the flower of andiroba (Carapa guianensis, Meliaceae). Fitoterapia 90, 20–29.
  • Salim, A.A., Chai, H.B., Rachman, I., Riswan, S., Kardono, L.B.S., Farnsworth, N.R., Carcache-Blancoa, E.J., Kinghorn, A.D., 2007a. Constituents of the leaves and stem bark of Aglaia foveolata Tetrahedron 63, 7926–7934.
  • Salim, A.A., Pawlus, A.D., Chai, H.B., Farnsworth, N.R., Kinghorn, A.D., Carcache-Blanco, E.J., 2007b. Ponapensin, a cyclopenta[bc]benzopyran with potent NF-kBinhibitory activity from Aglaia ponapensis Bioorg. Med. Chem. Lett. 17, 109–112.
  • Samy, R.P., Ignacimuthu, S., 1998. Antibacterial activity of different extracts of Azadirachta indica Juss. Neem. J. Zoo. 18, 71–75.
  • Sandanasamy, J., Nour, A.H., Tajuddin, S.N.B., Nour, A.H., 2013. Fatty acid composition and antibacterial activity of neem (Azadirachta indica) seed oil. Open Conf. Proc. J. 4, 43–48.
  • Sandhya, B., Thomas, S., Isabel, W., Shenbagarathai, R., 2006. Ethnomedicinal plants used by the valaiyan community of Piranmalai hills (Reserved forest), Tamil Nadu, India – a pilot study. Afr. J. Tradit. Complement. Altern. Med. 3, 101–114.
  • Satyavati, G.V., Gupta, A.K., Tandon, N., 1987. Medicinal Plants of India. Indian Council of Medical Research, New Delhi, India.
  • Schneider, C., Bohnenstengel, F.I., Nugroho, B.W., Wray, V., Witte, L., Hung, P.D., Kiet,L.C., Proksch, P., 2000. Insecticidal rocaglamide derivatives from Aglaia spectabilis (Meliaceae). Phytochemistry 54, 731–736.
  • Sen, A., Batra, A., 2012. Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia AzedarachL. Int. J. Curr. Pharm. Res. 4, 67–73.
  • Senthilkumar, N., Murugesan, S., Vijayalakshmi, K.B., 2012. GC–MS–MS analysis of Trichilia connaroides (Wight & Arn.) Bentv (Meliaceae): a tree of ethnobotanical records. Asian J. Plant Sci. Res. 2, 207–211.
  • Shahid-Ud-Daula, A.F.M., Basher, M.A., 2009. Phytochemical screening, plant growth inhibition, and antimicrobial activity studies of Xylocarpus granatum Malaysian J. Pharm. Sci. 7, 9–21.
  • Sharma, M., Vimal, M., Maneesha, A., Joshy, P.J., Drishya, K.R., 2011. Antimicrobial screening of different extracts of South Indian medicinal plants of Meliaceae. J.Med. Plants Res. 5, 688–695.
  • Sichaem, J., Aree, T., Khumkratok, S., Jong-aramruang, J., Tip-pyang, S., 2012. A new cytotoxic apotirucallane from the roots of Walsura trichostemon Phytochem. Lett. 5, 665–667.
  • Siddiqui, B.S., Afshan, F., Gulzar, T., Hanif, M., 2004. Tetracyclic triterpenoids from the leaves of Azadirachta indica Phytochemistry 65, 2363–2367.
  • Siddiqui, B.S., Afshan, F., Gulzar, T., Sultana, R., Naqvi, S.N.H., Tariq, R.M., 2003. Tetracyclic triterpenoids from the leaves of Azadirachta indica and their insecticidal activities. Chem. Pharm. Bull. 51, 415–417.
  • Siddiqui, B.S., Afsjam, F., Naqvi, S.N.H., Tariq, R.M., 2002. Two new triterpenoids from Azadirachta indica and their insecticidal activity. J. Nat. Prod. 65, 1216–1218.
  • Siddiqui, B.S., Ghiasuddin, F.S., Rasheed, M., 1999. Triterpenoids of the fruit coats of Azadirachta indica J. Nat. Prod. 62, 1006–1009.
  • Siddiqui, B.S., Ghiasuddin, S., Faizi, S., 1998. Tetracyclic triterpenoids of the fruit coats of Azadirachta indica Phytochemistry 47, 1631–1636.
  • Siddiqui, B., Ghiasuddin, S., Faizi, S., Siddiqui, S., 1992. Triterpenoids from the fresh fruit coats of Azadirachta indica Phytochemistry 31, 4275–4278.
  • Siddiqui, S., Siddiqui, B., Ghiasuddin, S., Faizi, S., Siddiqui, S., Faizi, S., 1991. Terpenoids from the fruit coatings of Azadirachta indica Phytochemistry 30, 1615–1619.
  • Sielinou, V.T., Vardamides, J.C., Nkengfack, A.E., Laatsch, H., 2012. Phenolic derivatives and an antifungal and cytototoxic labdane diterpenoid from the root bark of Turraeanthus mannii Phytochem. Lett. 5, 409–413.
  • Simmonds, M.S.J., Stevenson, P.C., Porter, E.A., Veitch, N.C., 2001. Insect antifeedant activity of three new tetranortriterpenoids from Trichilia pallida J. Nat. Prod. 64, 1117–1120.
  • Singh, U.P., Singh, H.B., Singh, R.B., 1980. The fungicidal effect of neem (Azadrichta indica) extracts on some soilborne pathogens of gram (Cicer arietinum). Mycologia 72, 1077–1093.
  • Siva, B., Suresh, G., Poornima, B., Venkanna, A., Babu, K.S., Prasad, K.R., Reddy, L.P.A., Sreedhar, A.S., Rao, C.V., 2013a. Cipadessin-type limonoids from the leaves of Cipadessa baccifera Tetrahedron Lett. 54, 2934–2937.
  • Siva, B., Poornima, B., Venkanna, A., Prasad, K.R., Sridhar, B., Nayak, V.L., Ramakrishna, S., Babu, K.S., 2013b. Methyl angolensate and mexicanolide-type limonoids from the seeds of Cipadessa baccifera Phytochemistry 98, 174–182.
  • Souza, P.R., Paula, V.F., Correia, S.J., Nascimento, J.C., 2009. Terpenos das folhas de Trichilia silvatica (Meliaceae). In: 32nd Annual Convention of Brazilian Society of Chemistry, Fortaleza City, Ceará State, 30 May to 2 June (CD Data).
  • Srivastava, S.K., Gupta, H.O., 1985. New limnoids from the roots of Melia azedarah Linn. Indian J. Chem. Sect. B 24, 166–170.
  • Srivastava, S.D., Srivastava, S.K., 1996. New constituents of Melia composita Fitoterapia 67, 113–116.
  • Srivastava, S.K., Srivastava, S.D., Srivastava, S., 2003. New biologically activelimonoids and flavonoids from Aphanamixis polystachya Ind. J. Chem. 42, 3155–3158.
  • Steinhauer, B., 1999. Possible ways of using the neem tree to control phytopathogenic fungi. Plant Research and Development, Hamburg, v. 50, vol. 50.,pp. 83–92.
  • Su, B.N., Chai, H., Mi, Q., Riswan, S., Kardono, L.B.S., Afriastini, J.J., Santarsiero, B.D., Mesecar, A.D., Farnsworth, N.R., Cordell, G.A., Swansona, S.M., Kinghorn, A.D., 2006. Activity-guided isolation of cytotoxic constituents from the bark of Aglaia crassinervia collected in Indonesia. Bioorg. Med. Chem. 14, 960–972.
  • Su, S., Shen, L., Zhang, Y., Liu, J., Cai, J., Hao, L., Feng, Y., Yang, S., 2013. Characterizationof tautomeric limonoids from the fruits of Melia toosendan Phytochem. Lett. 6, 418–424.
  • Suhag, P., Meera, Kalidhar, S.B., 2003. Phytochemical investigation of Melia azedarach leaves. J. Med. Aromatic Plant Sci. 25, 397–399.
  • Suliman, M.B., Nour, A.H., Yusoff, M.M., Nour, A.H., Kuppusamy, P., Yuvaraj, A.R., Mazza, S., 2013. Adam. Fatty acid composition and antibacterial activity of Swietenia macrophylla king seed oil. Afr. J. Plant Sci. 7, 300–303.
  • Suresh, G., Narasimhan, N.S., Masilamani, P.D., Partho, P.P., Gopalakrishnan, G., 1997. Antifungal fractions and compounds from uncrushed green leaves of Azadirachta indica Phytoparasitica 25, 33–39.
  • Tada, K., Takido, M., Kitanaka, S., 1999. Limonoids from fruit of Melia toosendan and their cytotoxic activity. Phytochemistry 51, 787–791.
  • Takeya, K., Qiao, Z., Hirobe, C., Itokawa, H., 1996. Cytotoxic azadirachtin-type limonoids from Melia azedarach Phytochemistry 42, 709–712.
  • Talwar, G.P., Raghuanshi, P., Misra, R., Mukerjee, S., Shah, S., 1997. Plant immunomodulators for termination of unwanted pregnancy and for contraception and reproductive health. Immunol. Cell Biol. 75, 190–192.
  • Tan, S.K., Osman, H., Wong, K.C., Boey, P.L., 2009. New phragmalin-type limonoids from Swietenia macrophylla King. Food Chem. 115, 1279–1285.Tan et al., 2009
  • Tanaka, Y., Sakamoto, A., Inoue, T., Yamada, T., Kikuchi, T., Kajimoto, T., Muraoka, O., Sato, A., Wataya, Y., Kim, H.S., Tanaka, R., 2012. Andirolides H-P from the flower of andiroba (Carapa guianensis, Meliaceae). Tetrahedron 68, 3669–3677.
  • Tanaka, Y., Yamada, T., In, Y., Muraoka, O., Kajimoto, T., Tanaka, R., 2011. Absolute stereostructure of Andirolides A-G from the flower of Carapa guianensis (Meliaceae). Tetrahedron 67, 782–792.
  • Tanaka, T., Koyano, T., Kowithayakorn, T., Fujimoto, H., Okuyama, E., Hayashi, M.,Komiyama, K., Ishibashi, M., 2001. New multiflorane-type triterpenoid acids from Sandoricum indicum J. Nat. Prod. 64, 1243–1245.
  • Tane, P., Akam, M.T., Tsopmo, A., Ndi, C.P., Sterner, O., 2004. Two lab danediterpenoids and a seco-tetranortriterpenoid from Turreanthus africanus Phytochemistry 65, 3083–3087.
  • Taylor, D.A.H., 1981. In: Pennington, T.D., Styles, B.T. (Eds.), Chemtoxonomy: The Occurrence of Limonoids in the Meliaceae. Academic Press, New York, p. 450.
  • Taylor, D.A.H., 1986. In: Barton Sir, D., Ollis, W.D. (Eds.), Advances in Medicinal Phytochemistry. John Libbey, London, p. 179.
  • Tchimene, M.K., Tane, P., Ngamga, D., Connolly, J.D., Farrugia, L.J., 2005. Four triterpenoids from stem bark of Khaya anthotheca Phytochemistry 66, 1088–1093.
  • Tchouankeu, J.C., Nyasse, B., Tsamo, E., Connolly, J.D., 1996. 7-Alpha, 20(S)-dihydroxy-4,24(28)-ergostadien-3-one from Entandrophragma utile J. Nat. Prod.59, 958–959.
  • Tchuendem, M.H.K., Ayafor, J., Connolly, F., Sterner, O., 1998. Khayalactone, a novel limonoid from Khaya grandifoliola Tetrahedron Lett. 39, 719–722.
  • Torto, B., Hassanali, A., Nyandat, E., Bentley, M.D., 1996. A limonoid from Turraea floribunda Phytochemistry 42, 1235–1237.
  • Torto, B., Bentley, M.D., Cole, B.J.W., Hassanali, A., Huang, F.Y., Gelbaum, L., Van-derveer, D.G., 1995. Limonoids from Turraea floribunda Phytochemistry 40, 239–243.
  • Tsamo, A., Nkounga, P., Nkengfack, A.E., Langat, M.K., Kamdem Waffo, A.F., Mulholland, D.A., 2013. Limonoids from the West African Trichilia welwitschii(Meliaceae). Biochem. Syst. Ecol. 50, 368–370.
  • Um, B.H., Lobstein, A., Weniger, B., Spiegel, C., Yice, F., Rakotoarison, O., Andriantsitohaina, R., Anton, R., 2003. New coumarins from Cedrelopsis grevei Fitoterapia 74, 638–642.
  • Vanucci, C., Lange, C., Lhommet, G., Dupont, B., Davoust, D., Vauchot, B., Clement, J.L., Brunk, F., 1992. An insect antifeedant limonoid from seed of Khaya ivorensis Phytochemistry 31, 3003–3004.
  • Veitch, N.C., Wright, G.A., Stevenson, P.C., 1999. Four new tetranortriterpenoids from Cedrela odorata associated with leaf rejection by Exopthalmus jekelianus J. Nat.Prod. 62, 1260–1263.
  • Verma, A., Joshi, P., Arya, A., 2013. Screening of eight plant extracts for their antimicrobial properties. Int. J. Curr. Microbiol. Appl. Sci. 2, 315–320.
  • Vieira, I.J.C., de Aquino Azevedo, O., de Souza, J.J., Braz-Filho, R., dos Santos Gonçalves, M., de Araújo, M.F., 2013. Hirtinone, a novel cycloartane-type triterpene and other compounds from Trichilia hirta L. (Meliaceae). Molecules 18, 2589–2597.
  • Villanueva, H.E., Tuten, J.A., Haber, W.A., Setzer, W.N., 2009. Chemical composition and antimicrobial activity of the bark essential oil of Cedrela odorata from Monteverde, Costa Rica. Der Pharm. Chem. 1, 14–18.
  • Wah, L.K., Abas, F., Cordell, G.A., Ito, H., Ismail, I.S., 2013. Steroids from Dysoxylum grande (Meliaceae) leaves. Steroids 78, 210–219.
  • Wang, B.G., Ebel, R., Wang, C.Y., Edrada, R.A., Wray, V., Proksh, P., 2004a. Aglacins I-K, three highly methoxylated lignans from Aglaia cordata J. Nat. Prod. 67, 682–684.
  • Wang, B.G., Peng, H., Huang, H.L., Li, X.M., Eck, G., Gong, X., Proksch, P., 2004b. Rocaglamide, aglain, and other related derivatives from Aglaia testicularis (Meliaceae). Biochem. Syst. Ecol. 32, 1223–1226.
  • Wang, F., Guan, Y., 2012. Cytotoxic nor-dammarane triterpenoids from Dysoxylum hainanense Fitoterapia 83, 13–17.
  • Wang, J.S., Zhang, Y., Wang, X.B., Wei, D.D., Luo, J., Luo, J.G., Yang, M.H., Yao, H.Q., Sun, H.B., Kong, L.Y., 2012a. A pair of tirucallane C27-triterpenoid cyclopentenoneepimers from the stem barks of Aphanamixis grandifolia Tetrahedron Lett. 53, 1705–1709.
  • Wang, J.S., Zhang, Y., Wang, X.B., Kong, L.Y., 2012b. Aphanalides A-H, ring Aseco limonoids from the fruits of Aphanamixis polystachya Tetrahedron 68, 3963–3971.
  • Wang, J.R., Shen, Q., Fang, L., Peng, S.Y., Yang, Y.M., Li, J., Liu, H.L., Guo, Y.W., 2011. Structural and stereochemical studies of five new pregnane steroids from the stem bark of Toona ciliata var. pubescens Steroids 76, 571–576.
  • Wang, X.N., Fan, C.Q., Yin, S., Gan, L.S., Yue, J.M., 2008. Structural elucidation of limonoids and steroids from Trichilia connaroides Phytochemistry 69, 1319–1327.
  • Wang, X.N., Fan, C.Q., Yue, J.M., 2006. New pregnane steroids from Turraea pubescens Steroids 71, 720–724.
  • Wang, X.Y., Tang, G.H., Yuan, C.M., Zhang, Y., Zou, T., Yu, C., Zhao, Q., Hao, X.J., He, H.P., 2013. Aphagrandinoids A-D, cycloartane triterpenoids with antibacterial activities from Aphanamixis grandifolia Fitoterapia 85, 64–68.
  • Wang, X.Y., Tang, G.H., Yuan, C.M., Zhang, Y., Hou, L., Zhao, Q., Hao, X.J., He, H.P., 2012c. Two new tirucallane triterpenoids from Aphanamixis grandifolia Nat. Prod. Bioprospect. 2, 222–226.
  • Weber, S., Puripattanavong, J., Brecht, V., Frahm, A.W., 2000. Phytochemical investigation of Aglaia rubiginosa J. Nat. Prod. 63, 636–642.
  • Weyerstahl, P., Marschall, H., Son, P.T., Giang, P.M., 1999. Constituents of the flower essential oil of Aglaia odorata Lour from Vietnam. Flavour Frag. J. 14, 219–224.
  • Wolter, E.L.A., da Rocha, A.F.L., Wolter Filho, W., Peureira Junior, O.L., Siqueira, J.B.G., Zoghbi, M., Das, G.B., 1993. Chemical study of fruits and steam bark of Guarea trichilioides, Meliaceae. Acta Amaz. 23, 177–180.
  • Wu, H.F., Zhang, X.P., Wang, Y., Zhang, J.Y., Ma, G.X., Tian, Y., Wu, L.Z., Chen, S.H., Yang, J.S., Xu, X.D., 2013. Four new diterpenes from Aphanamixis polystachya Fitoterapia 90, 126–131.
  • Wu, J., Xiao, Q., Li, Q., 2006. Limonoids from the Mangrove Xylocarpus granatum Biochem. Syst. Ecol. 34, 838–841.
  • Wu, S.B., Ji, Y.P., Zhu, J.J., Zhao, Y., Xia, G., Hu, Y.H., Hu, J.F., 2009. Steroids from the leaves of Chinese Melia azedarachand their cytotoxic effects on human cancer cell lines. Steroids 74, 761–765.
  • Xie, B.J., Yang, S.P., Yue, J.M., 2008. Terpenoids from Dysoxylum densiflorum Phytochemistry 69, 2993–2997.
  • Yadav, R.D., Kataky, J.C.S., Mathur, R.K., 1999. New protolimonoids and limonoids: Part III-Arunachalin, a new tetranortriterpenoid from Chisocheton paniculatus Hiern (Meliaceae). Ind. J. Chem. 38, 243–245.
  • Yan-Jiao, D., Guo-Ying, Z., Xiao-Yan, H., Gen-Chun, W., Jun, H., 2013. Screening ofantibacterial activity of 20 Chinese herbal medicines in Yunnan. Afr. J. Pharm.Pharmacol. 7, 2859–2865.
  • Yin, B., Huo, C., Shen, L., Wang, C., Zhao, L., Wang, Y., Shi, Q., 2009. Protolimonoidsfrom the seeds of Xylocarpus granatum Biochem. Syst. Ecol. 37, 218–220.
  • Yin, J.L., Di, Y.T., Fang, X., Liu, E.D., Liu, H.Y., He, H.P., Li, S.L., Li, S.F., Hao, X.J., 2011. Tabulvelutin A, the first 19-nor limonoid with unprecedented ring system from Chukrasia tabularis var. velutina Tetrahedron Lett. 52, 3083–3085.
  • Yodsaoue, O., Sonprasit, J., Karalai, C., Ponglimanont, C., Tewtrakul, S., Chantrapromma, S., 2012. Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata Phytochemistry 76, 83–91.
  • Yoganarasimhan, S.N., 1996. Medicinal plants of India, vol. 1. Interline Publishing Pvt. Ltd., Banglore.
  • Yuan, C.M., Tang, G.H., Wang, X.Y., Zhang, Y., Cao, M.M., Li, X.H., Li, Y., Li, S.L., Di, Y.T., He, H.P., Hao, X.J., Hua, H.M., 2013. New steroids and sesquiterpene from Turraea pubescens Fitoterapia 90, 119–125.
  • Zeng, L., Gu, Z., Chang, C.J., Smith, D.L., McLaughlin, J.L., 1995a. A pair of new apotirucallane triterpenes, meliavolkensins A and B, from Melia volkensii (Meliaceae). Bioorg. Med. Chem. Lett. 5, 181–184.
  • Zeng, L., Gu, Z.M., Chang, C.J., Wood, K.V., Mc Laughin, J.L., 1995b. Meliavolkenin, a new bioactive triterpenoid from Melia volkensii (Meliaceae). Bioorg. Med. Chem. Lett. 3, 383–390.
  • Zeng, Q., Guan, B., Ren, J., Wang, C.H., Cheng, X., Qin, J.J., Yan, S.K., Jin, H.Z., Zhang, W.D., 2013. Aphanamgrandiol A, a new triterpenoid with a unique carbon skeleton from Aphanamixis grandifolia Fitoterapia 86, 217–221.
  • Zeng, Q., Guan, B., Qin, J.J., Wang, C.H., Cheng, X.R., Ren, J., Yan, S.K., Jin, H.Z., Zhang, W.D., 2012. 2,3-Seco- and 3,4-seco-tirucallane triterpenoid derivatives from the stems of Aphanamixis grandifolia Blume. Phytochemistry 80, 148–155.
  • Zhang, Y., Wang, J.S., Gu, Y.C., Kong, L.Y., 2013a. Ring A rearranged limonoids from the fruits of Aphanamixis grandifoliaand their cytotoxicity evaluation. Phytochem.Lett. 6, 539–543.
  • Zhang, Q., Li, J.K., Ge, R., Liang, J.Y., Li, Q.S., Min, Z.D., 2013b. Novel NGF-potentiating limonoids from the fruits of Melia toosendan. Fitoterapia 90, 192–198.
  • Zhang, H., Song, Z., Chen, W., Wu, X., Xu, H., 2012a. Chemical constituents from Aglaia odorata Lour. Biochem. Syst. Ecol. 41, 35–40.
  • Zhang, Y., Tang, C.P., Ke, C.Q., Li, X.Q., Xie, H., Ye, Y., 2012b. Limonoids from the fruits of Melia toosendan Phytochemistry 73, 106–113.
  • Zhang, B., Yang, S.P., Yin, S., Zhang, C.R., Wu, Y., Yue, J.M., 2009. Limonoids from Khaya ivorensis Phytochemistry 70, 1305–1308.
  • Zhang, H., Odeku, O.A., Wang, X.N., Yue, J.M., 2008. Limonoids from the stem bark of Khaya grandifoliola Phytochemistry 69, 271–275.
  • Zhang, H.P., Bao, G.H., Wang, H.B., Qin, G.W., 2004. Two new limonoids from Munronia henryi Nat. Prod. Res. 18, 415–419.
  • Zhang, R., He, H.P., Di, Y.T., Li, S.L., Zuo, G.Y., Zhang, Y., Hao, X.J., 2014. Chemical constituents from Aphanamixis grandifolia Fitoterapia 92, 100–104.
  • Zhang, Y., Wang, J.S., Wang, X.B., Wei, D.D., Luo, J.G., Luo, J., Yang, M.H., Kong, L.Y.,2011. Aphapolynins A and B, two new limonoids from the fruits of Aphanamixis polystachya Tetrahedron Lett. 52, 2590–2593.
  • Zhang, Y., Wang, J., Wei, D., Wang, X., Luo, J., Luo, J., Kong, L., 2010. Cytotoxic tirucallane C26 triterpenoids from the stem barks of Aphanamixis grandifolia Phytochemistry 71, 2199–2204.
  • Zhou, H., Hamazaki, A., Fontana, J.D., Takahashi, H., Wandscheer, C.B., Fukuyama, Y., 2005. Cytotoxic limonoids from Brazilian Melia azedarach Biol. Pharm. Bull. 28, 1362–1365.
  • Zhou, H., Hamazaki, A., Fontana, J.D., Takahashi, H., Esumi, T., Wandscheer, C.B., Tsujimoto, H., Fukuyama, Y., 2004. New ring C-seco limonoids from Brazilian Melia azedarach and their cytotoxic activity. J. Nat. Prod. 67, 1544–1547.
  • Zhou, J.B., Tadera, K., Minami, Y., Yagi, F., Kukawaki, J., Takezaki, K., Nakatani, M.,1998. New limonoids from Melia toosendan Biosci. Biotechnol. Biochem. 62, 496–500.
  • Zhou, J., Minami, Y., Yagi, F., Tadera, K., Nakatani, M., 1997. Ring C-seco limonoids from Melia toosendan Phytochemistry 46, 911–914.
  • Zhou, J.B., Okamura, H., Iwagawa, T., Nakatan, M., 1996. Limonoid Antifeedants from Melia toosendan Phytochemistry 41, 117–120.

Publication Dates

  • Publication in this collection
    Jan-Feb 2015

History

  • Received
    09 July 2014
  • Accepted
    03 Nov 2014
Sociedade Brasileira de Farmacognosia Universidade Federal do Paraná, Laboratório de Farmacognosia, Rua Pref. Lothario Meissner, 632 - Jd. Botânico, 80210-170, Curitiba, PR, Brasil, Tel/FAX (41) 3360-4062 - Curitiba - PR - Brazil
E-mail: revista@sbfgnosia.org.br