Acessibilidade / Reportar erro

On the salt transport in the Cananéia sea during a spring tide experiment

Observations of the velocity, salinity, water depths and tides in the southem region of the Cananéia Sea were sampled at an anchored station during two complete tidal cycles. The measurements were made during spring tides on 5-6 December, 1991. The observed non-tidal current profile for this weakly stratified tidal channel is found to be in close agreement with the results of a simple steady state unidimensional analytical model of a well-nuxed estuary. This comparison indicates that the primary driving mechanisms are the longitudinal salinity gradient and the fresh water discharge. The contribution to the advective salt transport is dominateô by the freshwater discharge through the down-stream non-tidal flow and the up-stream dispersive term due to Stokes wave transporto This dispersive term is almost one order of magnitude smaller than the down-stream non-tidãl transport inôuced bythe fresh water discharge. TidaI correlation, acting as a counter-dispersion term, and the steady shear dispersion term are two orders of magnitude smaller than the ôown-stream salt transporto The remaining dispersive terms, which are dependent on the deviations from the mean deptb, are smaller than eitlier of these terms by one order of magnitude. The computed total salt transport per unit width of a section perpendicular to the mean flow was in close agreement (within 12 %) with the sum of the individual advective and dispersive terms. On the assumption that the tidal channel sampled is laterally homogeneous, an imoalance of the salt budget across the section was observed.

Estuaries; Salt transport; Salt balance; Advection; Dispersion; Non-tidal profiles


Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico, 191, 05508-120 São Paulo SP Brasil, Tel: (55 11) 3091-6513, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: amspires@usp.br