Acessibilidade / Reportar erro

PAHs diagnostic ratios for the distinction of petrogenic and pirogenic sources: applicability in the Upper Iguassu Watershed - Parana, Brazil

Relações diagnósticas de HPAs para distinção de fontes petrogênicas e pirogênicas: aplicabilidade na Bacia do Alto Rio Iguaçu - Paraná, Brasil

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are considered persistent organic pollutants and can cause serious damage in some organisms, including mutagenic and carcinogenic properties. The aim of this study was to evaluate the PAH concentrations in an urban basin and use diagnostic ratios to possible distinguish sources of contamination. The surface water analysis showed predominance of compounds containing 3 to 4 aromatic rings while in suspended particulate matter and sediment there was a predominance of compounds containing 4, 5 and 6 rings. Although present in low concentrations in the sediment, assessment of toxicity equivalent factor (TEF) showed values higher than 3 ng g–1 pellet to 50% of the samples with values of up to 125.35 ng g-1. The use of diagnostic ratios allowed verifying that the main source of PAHs in these aquatic environments, are pyrogenic sources. Still, the use of such relations should be done with caution, trying to assess possible interference of degradation factors

Keywords:
Diagnostic ratios; Risk assessment; Polycyclic aromatic hydrocarbons; Environmental contamination

RESUMO

Hidrocarbonetos policíclicos aromáticos (HPAs) são poluentes orgânicos considerados persistentes e que podem causar sérios danos em alguns organismos, incluindo propriedades mutagênicas e carcinogênicas. O objetivo desse estudo foi avaliar as concentrações de HPAs em uma bacia urbanizada e utilizar relações diagnósticas para tentar distinguir fontes de contaminação. A análise de água superficial mostrou um predomínio de compostos de 3 a 4 anéis aromáticos, enquanto que para material particulado suspenso e sedimentos houve uma predominância de compostos com 4, 5 e 6 anéis aromáticos. Apesar de baixas concentrações no sedimento, avaliação de equivalentes de toxicidade mostraram valores superiores a 3 ng g-1 de sedimento para 50% das amostras, com valores de até 125.35 ng g–1. O uso de relações diagnósticas permitiu atribuir, nestes ambientes aquáticos, que os HPAs foram provenientes, principalmente, de origem pirogênicas. Mesmo assim, o uso de tais relações deve ser feito com o devido cuidado, tentando avaliar possíveis interferências de fatores de degradação.

Palavras-chave:
Relações diagnóstico; Avaliação de risco; Hidrocarbonetos policíclicos aromáticos; Contaminação ambiental

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are a class that belongs to persistent organic pollutants.

The processes that originate these substances are both natural and anthropogenic (MAGALHÃES; BURNS; VASCONCELLOS, 2007MAGALHÃES, D.; BURNS, R. E.; VASCONCELLOS, P. C. Hidrocarbonetos policíclicos aromáticos como traçadores da queima de cana-de-açúcar: uma abordagem estatística. Quimica Nova, v. 30, n. 3, p. 577-581, 2007. http://dx.doi.org/10.1590/S0100-40422007000300014.
http://dx.doi.org/10.1590/S0100-40422007...
; ACQUAVITA et al., 2014ACQUAVITA, A.; FALOMO, J.; PREDONZANI, S.; TAMBERLICH, F.; BETTOSO, N.; MATTASSI, G. The PAH level, distribution and composition in surface sediments from a Mediterranean Lagoon: the Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Marine Pollution Bulletin, v. 81, n. 1, p. 234-241, 2014. PMid:24492154. http://dx.doi.org/10.1016/j.marpolbul.2014.01.041.
http://dx.doi.org/10.1016/j.marpolbul.20...
).

Examples of natural sources of PAHs are forest fires, petroleum seeps, post depositional changes of biogenic precursors and also biosynthesis origin of some plants and fungi (AIZENSHTAT, 1973AIZENSHTAT, Z. Perylene and its geochemical significance. Geochimica et Cosmochimica Acta, v. 37, n. 3, p. 559-567, 1973. http://dx.doi.org/10.1016/0016-7037(73)90218-4.
http://dx.doi.org/10.1016/0016-7037(73)9...
; SUESS, 1976SUESS, M. J. The environmental load and cycle of polycyclic aromatic hydrocarbons. The Science of the Total Environment, v. 6, n. 3, p. 239-250, 1976. http://dx.doi.org/10.1016/0048-9697(76)90033-4.
http://dx.doi.org/10.1016/0048-9697(76)9...
; WAKEHAM; SCHAFFNER; GIGER, 1980WAKEHAM, S. G.; SCHAFFNER, C.; GIGER, W. Polycyclic aromatic hydrocarbons in recent lake sediments: I. Compounds having anthropogenic origins. Geochimica et Cosmochimica Acta, v. 44, n. 3, p. 403-413, 1980. http://dx.doi.org/10.1016/0016-7037(80)90040-X.
http://dx.doi.org/10.1016/0016-7037(80)9...
; BAUMARD et al., 1998BAUMARD, P.; BUDZINKI, H.; MICHON, P.; GARRIGUES, P.; BURGOT, T.; BELLOCQ, J. Origin and Bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science, v. 47, n. 1, p. 77-90, 1998. http://dx.doi.org/10.1006/ecss.1998.0337.
http://dx.doi.org/10.1006/ecss.1998.0337...
; BETTIN; FRANCO, 2005BETTIN, S. M. E.; FRANCO, D. W. Hidrocarbonetos policíclicos aromáticos (HPAs) em aguardentes. Ciência e Tecnologia de Alimentos, v. 25, n. 2, p. 234-238, 2005. http://dx.doi.org/10.1590/S0101-20612005000200008.
http://dx.doi.org/10.1590/S0101-20612005...
; WANG et al., 2009WANG, Z.; YAMG, C.; KELLY-HOOPER, F.; HOLLENBONE, B. P.; PENG, X.; BROWN, C. E.; LANDRIAULT, M.; SUN, J.; YANG, Z. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross contaminated soils and sediments. Journal of Chromatography. A, v. 1216, n. 7, p. 1174-1191, 2009. PMid:19131067. http://dx.doi.org/10.1016/j.chroma.2008.12.036.
http://dx.doi.org/10.1016/j.chroma.2008....
; ZHANG et al., 2015ZHANG, J.; WANG, J.; HUA, P.; KREBS, P. The qualitative and quantitative source apportionments of polycyclic aromatic hydrocarbons in size dependent road deposited sediment. The Science of the Total Environment, v. 505, p. 90-101, 2015. PMid:25310884. http://dx.doi.org/10.1016/j.scitotenv.2014.09.091.
http://dx.doi.org/10.1016/j.scitotenv.20...
). As anthropogenic sources the examples that may be pointed out are combustion of fossil fuels, leaking of petroleum and derivatives, incineration of waste, production of coke, pitch, asphalt, cracking of petroleum and industrial effluents (MCCREADY et al., 2000MCCREADY, S.; SLEE, G. F.; BIRCH, G. F.; TAYLOR, S. E. The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Marine Pollution Bulletin, v. 40, n. 11, p. 999-1006, 2000. http://dx.doi.org/10.1016/S0025-326X(00)00044-8.
http://dx.doi.org/10.1016/S0025-326X(00)...
; CHANG; SHIUNG; YUAN, 2002CHANG, B. V.; SHIUNG, S. Y.; YUAN, S. Y. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, v. 48, n. 7, p. 717-724, 2002. PMid:12201202. http://dx.doi.org/10.1016/S0045-6535(02)00151-0.
http://dx.doi.org/10.1016/S0045-6535(02)...
; MURI; WAKEHAM, 2009MURI, G. E.; WAKEHAM, S. G. Effect of depositional regimes on polycyclic aromatic hydrocarbons in Lake Bled (NW Slovenia) sediments. Chemosphere, v. 77, n. 1, p. 74-79, 2009. PMid:19539349. http://dx.doi.org/10.1016/j.chemosphere.2009.05.023.
http://dx.doi.org/10.1016/j.chemosphere....
; MOSERT; AYOKO; KOKOT, 2010MOSERT, M. M. R.; AYOKO, G. A.; KOKOT, S. Application of chemometrics to analysis of soil pollutants. TrAC Trends in Analytical Chemistry, v. 29, n. 5, p. 430-445, 2010. http://dx.doi.org/10.1016/j.trac.2010.02.009.
http://dx.doi.org/10.1016/j.trac.2010.02...
).

A recent increase on concentrations of PAHs in the environment may be associated to economic development and population increase, which leads to a greater number of sources of these compounds (ANDERSON et al., 2014ANDERSON, M.; KLUG, M.; EGGEN, O. A.; OTTESEN, R. T. Polycyclic aromatic hydrocarbons (PAHs) in sediments from lake Lille Lungegårdsvannet in Bergen, western Norway; appraising pollution sources from the urban history. The Science of the Total Environment, v. 470, p. 1160-1172, 2014. PMid:24246939. http://dx.doi.org/10.1016/j.scitotenv.2013.10.086.
http://dx.doi.org/10.1016/j.scitotenv.20...
; YANG et al., 2016YANG, R.; XIE, T.; LI, A.; YANG, H.; TURNER, S.; WU, G.; JING, C. Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau. Environmental Pollution, v. 214, p. 1-7, 2016. PMid:27061469. http://dx.doi.org/10.1016/j.envpol.2016.03.068.
http://dx.doi.org/10.1016/j.envpol.2016....
). The majority of the anthropogenic sources are related to exploration, transformation and combustion of fossil fuels (WITT, 1995WITT, G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, v. 31, n. 4, p. 237-248, 1995. http://dx.doi.org/10.1016/0025-326X(95)00174-L.
http://dx.doi.org/10.1016/0025-326X(95)0...
).

Regarding toxicity, compounds with two and three aromatic rings exhibit a significant acute toxicity (PEREIRA NETTO et al., 2000PEREIRA NETTO, A. D. P.; MOREIRA, J. C.; DIAS, A. E. X. O.; ARBILLA, G.; FERREIRA, L. F. V.; OLIVEIRA, A. S.; BAREK, J. Avaliação da contaminação humana por hidrocarbonetos policíclicos aromáticos (HPAs) e seus derivados nitrados (NHPAs): uma revisão metodológica. Quimica Nova, v. 23, n. 6, p. 765-773, 2000. http://dx.doi.org/10.1590/S0100-40422000000600010.
http://dx.doi.org/10.1590/S0100-40422000...
) and compounds with a larger number of aromatic rings present a considerable carcinogenic, mutagenic and teratogenic potential (WITT, 1995WITT, G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, v. 31, n. 4, p. 237-248, 1995. http://dx.doi.org/10.1016/0025-326X(95)00174-L.
http://dx.doi.org/10.1016/0025-326X(95)0...
; CAVALCANTE et al., 2007CAVALCANTE, R. M.; MACHADO FILHO, N. S.; VIANA, R. B.; OLIVEIRA, I. R.; NASCIMENTO, R. F.; SILVEIRA, E. R.; FREIRE, G. S. Utilização da extração em fase sólida (SPE) na determinação de hidrocarbonetos policíclicos aromáticos em matrizes aquosas ambientais. Quimica Nova, v. 30, n. 3, p. 560-564, 2007. http://dx.doi.org/10.1590/S0100-40422007000300010.
http://dx.doi.org/10.1590/S0100-40422007...
; HUSSAIN; BALACHANDRAN; HOQUE, 2015HUSSAIN, K.; BALACHANDRAN, S.; HOQUE, R. R. Sources of polycyclic aromatic hydrocarbons in sediments of the Bharalu River, a tributary of the River Brahmaputra in Guwahati, India. Ecotoxicology and Environmental Safety, v. 122, p. 61-67, 2015. PMid:26210608. http://dx.doi.org/10.1016/j.ecoenv.2015.07.008.
http://dx.doi.org/10.1016/j.ecoenv.2015....
; ZHENG et al., 2016ZHENG, B.; WANG, L.; LEI, K.; NAN, B. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere, v. 149, p. 91-100, 2016. PMid:26855211. http://dx.doi.org/10.1016/j.chemosphere.2016.01.039.
http://dx.doi.org/10.1016/j.chemosphere....
). The PAHs may induce growth inhibition, degradation of the lymphatic system, and interference in hematopoietic functions (ZAGHDEN et al., 2007ZAGHDEN, H.; KALLEL, M.; ELLEUCH, B.; OUDOT, J.; SALIOT, A. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Marine Chemistry, v. 105, n. 1, p. 70-89, 2007. http://dx.doi.org/10.1016/j.marchem.2006.12.016.
http://dx.doi.org/10.1016/j.marchem.2006...
; RUIZ et al., 2011RUIZ, Y.; SUAREZ, P.; ALONSO, A.; LONGO, E.; VILLAVERDE, A.; SAN JUAN, F. Environmental quality of mussel farms in the Vigo estuary: pollution by PAHs, origin and effects on reproduction. Environmental Pollution, v. 159, n. 1, p. 250-265, 2011. PMid:20980085. http://dx.doi.org/10.1016/j.envpol.2010.08.031.
http://dx.doi.org/10.1016/j.envpol.2010....
). The main concern about the presence of PAHs in the environment is primary to the bioaccumulation effect, mainly in invertebrates (EUROPEAN COMMISSION, 2002EUROPEAN COMMISSION. Polycyclic aromatic hydrocarbons: occurrence in foods, dietary exposure and health effects. Brussels, 2002. Available from: <http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf>. Access on: 2016 may 15.
http://ec.europa.eu/food/fs/sc/scf/out15...
; EEA, 2014EEA - EUROPEAN ENVIRONMENT AGENCY. European Union Emission inventory report 1990-2012: under the UNECE convention on long-range transboundary air pollution (LRTAP). Copenhagen, 2014.).

Considering these environmental harmful effects the United States Environmental Protection Agency (USEPA) classified some PAHs as primary control organic pollutants. These pollutants must be monitored in several environments, like sediments, water, soil and biota. One of the most toxic PAHs is benzo(a)pyrene, which is usually applied as an indicator of PAHs (ALBUQUERQUE; COUTINHO; BORREGO, 2016ALBUQUERQUE, M.; COUTINHO, M.; BORREGO, C. Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. The Science of the Total Environment, v. 543, n. Pt A, p. 439-448, 2016. PMid:26599144. http://dx.doi.org/10.1016/j.scitotenv.2015.11.064.
http://dx.doi.org/10.1016/j.scitotenv.20...
).

PAHs can be introduced in aquatic ecosystems due to atmospheric deposition, wastewater discharges, navigation activities and oil spills (HEENKEN et al., 2000HEENKEN, O. P.; STACHEL, B.; THEOBALD, N.; CLAWIAK, B. W. Temporal variability of organic micropollutants in suspended particulate matter of the River Elbe at Hamburg and the River Mulde at Dessau, Germany. Archives of Environmental Contamination and Toxicology, v. 38, n. 1, p. 11-31, 2000. PMid:10556367. http://dx.doi.org/10.1007/s002449910003.
http://dx.doi.org/10.1007/s002449910003...
; GARBAN et al., 2002GARBAN, B.; BLANCHOUD, H.; MOTELAY-MASSEI, A.; CHEVREUIL, M.; OLLIVION, D. Atmospheric bulk deposition of PAHs onto France: trends from urban to remote sites. Atmospheric Environment, v. 36, n. 34, p. 5395-5403, 2002. http://dx.doi.org/10.1016/S1352-2310(02)00414-4.
http://dx.doi.org/10.1016/S1352-2310(02)...
; MONTELAY-MASSEI et al., 2007MONTELAY-MASSEI, A.; OLLIVION, D.; GARBAN, B.; TIPHAGNE-LRCHER, K.; ZIMERLIN, I.; CHEVREUILL, M. PAHs in the bulk atmospheric deposition of the Seine River basin: Source identification and apportionment by ratios, multivariate statistical techniques and scanning electron microscopy. Chemosphere, v. 67, n. 2, p. 312-321, 2007. PMid:17109933. http://dx.doi.org/10.1016/j.chemosphere.2006.09.074.
http://dx.doi.org/10.1016/j.chemosphere....
; MOUHRI et al., 2008MOUHRI, A.; MONTELAY-MASSEI, A.; MASSEI, N.; FOURNIER, M.; LAIGNEL, B. Polycyclic aromatic hydrocarbon transport processes on the scale of a flood event in the rural watershed of Le Bebec, France. Chemosphere, v. 73, n. 4, p. 443-450, 2008. PMid:18625511. http://dx.doi.org/10.1016/j.chemosphere.2008.05.046.
http://dx.doi.org/10.1016/j.chemosphere....
; MASOOD et at., 2016MASOOD, N.; ZAKARIA, M. P.; HALIMOON, N.; ARIS, A. Z.; MAGAM, S. M.; KANNAN, N.; MUSTAFA, S.; ALI, M. M.; KESHAVARZIFARD, M.; VAEZZADEH, V.; ALKHADHER, S. A.; AL-ODAINI, N. A. Anthropogenic waste indicators (AWIs), particularly PAHs and LABs, in Malaysian sediments: Application of aquatic environment for identifying anthropogenic pollution. Marine Pollution Bulletin, v. 102, n. 1, p. 160-175, 2016. PMid:26616745. http://dx.doi.org/10.1016/j.marpolbul.2015.11.032.
http://dx.doi.org/10.1016/j.marpolbul.20...
).

Considering their hydrophobic properties, PAHs tend to adsorb to other particles and deposit, contributing to sediment formation. When PAHs bind to other particles they can represent a greater risk to benthic organisms, which can affect the entire food chain (BOULOUBASSI et al., 2012BOULOUBASSI, I.; ROUSSIEZB, V.; AZZOUG, M.; LORRE, A. Sources, dispersal pathways and mass budget of sedimentary polycyclic aromatic hydrocarbons (PAH) in the NW Mediterranean margin, Gulf of Lions. Marine Chemistry, v. 142, p. 18-28, 2012. http://dx.doi.org/10.1016/j.marchem.2012.07.003.
http://dx.doi.org/10.1016/j.marchem.2012...
; ADHIKARI et al., 2016ADHIKARI, P. L.; MAITI, K.; OVERTON, E. B.; ROSENHEIM, B. E.; MARX, B. D. Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments. Environmental Pollution, v. 212, p. 413-423, 2016. PMid:26895564. http://dx.doi.org/10.1016/j.envpol.2016.01.064.
http://dx.doi.org/10.1016/j.envpol.2016....
) also, in favorable conditions, adsorbed PAHs can be released to water column e become bioavailable in the aquatic ecosystem (CHEN et al., 2013CHEN, C.; CHEN, C.; DONG, C.; KAO, C. Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. The Science of the Total Environment, v. 463, p. 1174-1181, 2013. PMid:22818911. http://dx.doi.org/10.1016/j.scitotenv.2012.06.101.
http://dx.doi.org/10.1016/j.scitotenv.20...
).

Recent studies show that PAHs are a substantial interest in aquatic environments that are influenced by urban areas (BOURGEAULT; GOURLAY-FRANCÉ, 2013BOURGEAULT, A.; GOURLAY-FRANCÉ, C. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools. The Science of the Total Environment, v. 454, p. 328-336, 2013. PMid:23562685. http://dx.doi.org/10.1016/j.scitotenv.2013.03.021.
http://dx.doi.org/10.1016/j.scitotenv.20...
) and also in estuarine environments (SANT’ANNA JUNIOR et al., 2010SANT’ANNA JUNIOR, N.; BERETTA, M.; TEIXEIRA, S. M.; TAVARES, T. M. Hidrocarbonetos policíclicos aromáticos em sedimentos superficiais na Baía de Todos os Santos - Nordeste do Brasil. Tropical Oceanography, v. 38, n. 1, p. 60-75, 2010.; MIZUKAWA et al., 2015MIZUKAWA, A.; DOS SANTOS, M. M.; IDE, A. H.; AZEVEDO, J. C. R. Distribuição de hidrocarbonetos policíclicos aromáticos e alifáticos em sedimentos estuarinos. RBRH: Revista Brasileira de Recursos Hídricos, v. 20, n. 4, p. 1019-1028, 2015. http://dx.doi.org/10.21168/rbrh.v20n4.p1019-1028.
http://dx.doi.org/10.21168/rbrh.v20n4.p1...
). Due to their extensive environmental distribution and their exposure risk, it became fundamental to identify the main sources of these compounds (BOULOUBASSI et al., 2012BOULOUBASSI, I.; ROUSSIEZB, V.; AZZOUG, M.; LORRE, A. Sources, dispersal pathways and mass budget of sedimentary polycyclic aromatic hydrocarbons (PAH) in the NW Mediterranean margin, Gulf of Lions. Marine Chemistry, v. 142, p. 18-28, 2012. http://dx.doi.org/10.1016/j.marchem.2012.07.003.
http://dx.doi.org/10.1016/j.marchem.2012...
).

One of the ways to differentiate contamination sources of PAHs is to employ diagnostic ratios (YUNKER et al., 1996YUNKER, M. B.; SNOWDON, L. R.; MACDONALD, R. W.; SMITH, J. N.; FOWLER, M. G.; SKIBO, D. N.; MCLAUGHLIN, F. A.; DANYUSHEVSKAYA, A. I.; PETROVA, V. I.; IVANOV, G. I. Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents seas. Environmental Science & Technology, v. 30, n. 4, p. 1310-1320, 1996. http://dx.doi.org/10.1021/es950523k.
http://dx.doi.org/10.1021/es950523k...
; YUNKER et al., 2002YUNKER, M. B.; MACDONALD, R. W.; VINGARZAN, R.; MITCHELL, R. H.; GOYETTE, D.; SYLVESTRE, S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, v. 33, n. 4, p. 489-515, 2002. http://dx.doi.org/10.1016/S0146-6380(02)00002-5.
http://dx.doi.org/10.1016/S0146-6380(02)...
; ZHANG et al., 2004aZHANG, J.; CAI, L.; YUAN, D.; CHEN, M. Distribution and sources of polynuclear aromatic hydrocarbons in mangrove surficial sediments of Deep Bay, China. Marine Pollution Bulletin, v. 49, n. 5-6, p. 479-486, 2004a. PMid:15325216. http://dx.doi.org/10.1016/j.marpolbul.2004.02.030.
http://dx.doi.org/10.1016/j.marpolbul.20...
). Such relations allow differentiating between petroleum related sources and combustion related sources.

The use of these ratios is based on the relative thermodynamic stability of some PAHs isomers. One isomer is formed by fast chemical reactions and exhibits a low stability. These isomers are usually formed during combustion processes or other chemical treatments (BIACHE; MANSUY-HUAULTA; FAUREA, 2014BIACHE, A. C.; MANSUY-HUAULTA, L.; FAUREA, P. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications. Journal of Hazardous Materials, v. 267, p. 31-39, 2014. PMid:24413049. http://dx.doi.org/10.1016/j.jhazmat.2013.12.036.
http://dx.doi.org/10.1016/j.jhazmat.2013...
). A higher thermodynamics stability isomer is formed during processes that take longer period of times, like diagenesis or catagenesis, resulting in fossil organic matter such as petroleum or charcoal, defined as petrogenic sources that are enriched with these isomers (YUNKER et al., 2002YUNKER, M. B.; MACDONALD, R. W.; VINGARZAN, R.; MITCHELL, R. H.; GOYETTE, D.; SYLVESTRE, S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, v. 33, n. 4, p. 489-515, 2002. http://dx.doi.org/10.1016/S0146-6380(02)00002-5.
http://dx.doi.org/10.1016/S0146-6380(02)...
). Therefore, these ratios can be employed to better understand PAHs distribution and diagnose the main sources in the environment (SOUZA, 2010SOUZA, D. B. Avaliação da composição geoquímica da matéria orgânica de sedimentos lacustres. 2010. 122 p. Dissertação (Mestrado em Engenharia de Recursos Hídricos e Ambiental) - Universidade Federal do Paraná, Curitiba, 2010.).

The employment of these ratios is based on the assumption that such PAHs isomers have similar physical and chemical properties and therefore will be transformed and degraded at the same rate, preserving the relation that is present in the emission (MOSERT; AYOKO; KOKOT, 2010MOSERT, M. M. R.; AYOKO, G. A.; KOKOT, S. Application of chemometrics to analysis of soil pollutants. TrAC Trends in Analytical Chemistry, v. 29, n. 5, p. 430-445, 2010. http://dx.doi.org/10.1016/j.trac.2010.02.009.
http://dx.doi.org/10.1016/j.trac.2010.02...
; TOBISZEWSKI; NAMIESNIK, 2012TOBISZEWSKI, M.; NAMIESNIK, J. PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, v. 162, p. 110-119, 2012. PMid:22243855. http://dx.doi.org/10.1016/j.envpol.2011.10.025.
http://dx.doi.org/10.1016/j.envpol.2011....
; BIACHE; MANSUY-HUAULTA; FAUREA, 2014BIACHE, A. C.; MANSUY-HUAULTA, L.; FAUREA, P. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications. Journal of Hazardous Materials, v. 267, p. 31-39, 2014. PMid:24413049. http://dx.doi.org/10.1016/j.jhazmat.2013.12.036.
http://dx.doi.org/10.1016/j.jhazmat.2013...
; CLÉMENT et al., 2015CLÉMENT, N.; MURESAN, B.; HEDDE, M.; FRANÇOIS, D. PAH dynamics in roadside environments: Influence on the consistency of diagnostic ratio values and ecosystem contamination assessments. The Science of the Total Environment, v. 538, p. 997-1009, 2015. PMid:26367069. http://dx.doi.org/10.1016/j.scitotenv.2015.08.072.
http://dx.doi.org/10.1016/j.scitotenv.20...
).

These ratios have been widely adopted in several researches (BAUMARD et al., 1998BAUMARD, P.; BUDZINKI, H.; MICHON, P.; GARRIGUES, P.; BURGOT, T.; BELLOCQ, J. Origin and Bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science, v. 47, n. 1, p. 77-90, 1998. http://dx.doi.org/10.1006/ecss.1998.0337.
http://dx.doi.org/10.1006/ecss.1998.0337...
; MAGI et al., 2002MAGI, E.; BIANCO, R.; IANNI, C.; DI CARRO, M. Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environmental Pollution, v. 119, n. 1, p. 91-98, 2002. PMid:12125734. http://dx.doi.org/10.1016/S0269-7491(01)00321-9.
http://dx.doi.org/10.1016/S0269-7491(01)...
; YUNKER et al., 2002YUNKER, M. B.; MACDONALD, R. W.; VINGARZAN, R.; MITCHELL, R. H.; GOYETTE, D.; SYLVESTRE, S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, v. 33, n. 4, p. 489-515, 2002. http://dx.doi.org/10.1016/S0146-6380(02)00002-5.
http://dx.doi.org/10.1016/S0146-6380(02)...
; MEDEIROS; BICEGO, 2004MEDEIROS, P. M.; BICEGO, M. C. Investigation of natural and anthropogenic hydrocarbon inputs in sediments using geochemical markers. I. São Sebastião, SP, Brazil. Marine Pollution Bulletin, v. 49, n. 11-12, p. 892-899, 2004. PMid:15556173. http://dx.doi.org/10.1016/j.marpolbul.2004.06.002.
http://dx.doi.org/10.1016/j.marpolbul.20...
; DE LUCA et al., 2005DE LUCA, G.; FURESI, A.; MICERA, G.; PANAZANELLI, A.; PIU, P. C.; PILO, M. I.; SPANO, N.; SANNA, G. Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Italy). Marine Pollution Bulletin, v. 50, n. 11, p. 1223-1232, 2005. PMid:15894340. http://dx.doi.org/10.1016/j.marpolbul.2005.04.021.
http://dx.doi.org/10.1016/j.marpolbul.20...
; LI et al., 2006LI, G.; XIA, X.; YANG, Z.; WANG, R.; VOULVOULIS, N. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environmental Pollution, v. 144, n. 3, p. 985-993, 2006. PMid:16603293. http://dx.doi.org/10.1016/j.envpol.2006.01.047.
http://dx.doi.org/10.1016/j.envpol.2006....
; ZAGHDEN et al., 2007ZAGHDEN, H.; KALLEL, M.; ELLEUCH, B.; OUDOT, J.; SALIOT, A. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Marine Chemistry, v. 105, n. 1, p. 70-89, 2007. http://dx.doi.org/10.1016/j.marchem.2006.12.016.
http://dx.doi.org/10.1016/j.marchem.2006...
; MONTELAY-MASSEI et al., 2007MONTELAY-MASSEI, A.; OLLIVION, D.; GARBAN, B.; TIPHAGNE-LRCHER, K.; ZIMERLIN, I.; CHEVREUILL, M. PAHs in the bulk atmospheric deposition of the Seine River basin: Source identification and apportionment by ratios, multivariate statistical techniques and scanning electron microscopy. Chemosphere, v. 67, n. 2, p. 312-321, 2007. PMid:17109933. http://dx.doi.org/10.1016/j.chemosphere.2006.09.074.
http://dx.doi.org/10.1016/j.chemosphere....
; MEIRE et al., 2008MEIRE, R. O.; AZEREDO, A.; PEPERIRA, M. S.; TORRES, J. M.; MALM, O. Polycyclic aromatic hydrocarbons assessment in sediment of national parks in southeast Brazil. Chemosphere, v. 73, n. 1, p. 180-185, 2008. Supplement. PMid:18472130. http://dx.doi.org/10.1016/j.chemosphere.2007.01.089.
http://dx.doi.org/10.1016/j.chemosphere....
; BAKHTIARI et al., 2009BAKHTIARI, A. R.; ZAKARIA, M. P.; YAZIZ, M. I.; LAKIS, M. N. H.; BI, X.; RAHIM, M. C. A. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: perylene as indicator of land plant-derived hydrocarbons. Applied Geochemistry, v. 24, n. 9, p. 1777-1787, 2009. http://dx.doi.org/10.1016/j.apgeochem.2009.05.008.
http://dx.doi.org/10.1016/j.apgeochem.20...
; BAKHTIARII et al., 2010BAKHTIARII, A. R.; ZAKARIA, M. P.; YAZIZ, M. I.; LAJIS, M. N. H.; BI, X.; SHAFIEE, M. R. M.; SAKARI, M. Distribution of PAHs and n-alkanes in Klang River surface sediments, Malaysia. Pertanika: Journal of Science & Technology, v. 18, n. 1, p. 167-179, 2010.; PIETZSCH et al., 2010PIETZSCH, R.; PATCHINEELAM, R. S.; TORRES, J. P. M. Polycyclic aromatic hydrocarbons in recent sediments from a subtropical estuary in Brazil. Marine Chemistry, v. 118, n. 1, p. 56-66, 2010. http://dx.doi.org/10.1016/j.marchem.2009.10.004.
http://dx.doi.org/10.1016/j.marchem.2009...
; YUNKER et al., 2011YUNKER, M. B.; MACDONALD, R. W.; SNOWDON, L. R.; FOWLER, B. R. Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments. Organic Geochemistry, v. 42, n. 9, p. 1109-1146, 2011.; EVANS et al., 2016EVANS, M.; DAVIE, M.; JANZEN, K.; MUIR, D.; HAZEWINKEL, R.; KIRK, J.; BOER, D. PAH distributions in sediments in the oil sands monitoring area and western Lake Athabasca: Concentration, composition and diagnostic ratios. Environmental Pollution, v. 213, p. 671-687, 2016. PMid:27020047. http://dx.doi.org/10.1016/j.envpol.2016.03.014.
http://dx.doi.org/10.1016/j.envpol.2016....
), however, they must be used with caution (TOBISZEWSKI; NAMIESNIK, 2012TOBISZEWSKI, M.; NAMIESNIK, J. PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, v. 162, p. 110-119, 2012. PMid:22243855. http://dx.doi.org/10.1016/j.envpol.2011.10.025.
http://dx.doi.org/10.1016/j.envpol.2011....
) due to complex mixtures that may happen in the environment and can interfere in the final conclusions (YUNKER et al., 2002YUNKER, M. B.; MACDONALD, R. W.; VINGARZAN, R.; MITCHELL, R. H.; GOYETTE, D.; SYLVESTRE, S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, v. 33, n. 4, p. 489-515, 2002. http://dx.doi.org/10.1016/S0146-6380(02)00002-5.
http://dx.doi.org/10.1016/S0146-6380(02)...
; DASKALOU et al., 2009DASKALOU, V.; VREČA, P.; MURI, G.; STALIKAS, C. Recent Environmental Changes in the Shallow Lake Pamvotis (NW Greece): Evidence from Sedimentary Organic Matter, Hydrocarbons, and Stable Isotopes. Archives of Environmental Contamination and Toxicology, v. 57, n. 1, p. 21-31, 2009. PMid:18931963. http://dx.doi.org/10.1007/s00244-008-9246-y.
http://dx.doi.org/10.1007/s00244-008-924...
).

The aim of this research was to determine concentrations of some PAHs in aquatic environments inside a strongly urbanized water basin, assessing PAHs distribution between sediments and water column (dissolved fractions and PAHs associated to the suspended particulate material). The distinction between PAHs sources was performed based on the diagnostic ratios.

MATERIALS AND METHODS

Study area

The study area was located in the Upper Iguassu River basin (Figure 1) in the Metropolitan Region of Curitiba (MRC). Curitiba is the capital and biggest city in the Brazilian state of Paraná. This basin is the main source of water supply in the MRC, corresponding to approximately 60% of the water supply. The unplanned and uncoordinated urban growth in this region also contributes to aquatic environments pollution. The main source of pollution is wastewater, a problem that is aggravated by clandestine sewer connections (ANDREOLI et al., 1999ANDREOLI, C. V.; DALARMI, O.; LARA, A.I.; ANDREOLII, F.N. Os Mananciais de Abastecimento do Sistema Integrado da Região Metropolitana de Curitiba. Revista Técnica da Sanepar, v. 12, n. 12, p. 19-30, 1999.). Currently, this region incorporates 13 neighboring cities of Curitiba. The MRC have an estimated population of 3.5 millions of inhabitants, corresponding to 30% of the Paraná state entire population (IBGE, 2016IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Rio de Janeiro, 2016. Available fom: <http://www.ibge.gov.br>. Access on: 2016 Oct. 14.
http://www.ibge.gov.br...
).

Figure 1
Upper Iguassu River Basin, highlighted, sampling points localization in Atuba River (AT), Barigui River (BA), Belém River (BL), Iraí RIver (IR), Palmital River (PA), Pequeno River (PQ) and Iguassu River (IG) in the Metropolitan Region of Curitiba (MRC).

The Upper Iguassu River basin covers an area close to 2882 km2 and it is formed by 32 rivers. Among these 32 Rivers the main rivers are Iguassu River (main river), Barigui River, Palmital River, Atuba River, Passaúna River, Iraí River, Belém River, Itaqui River, and Pequeno River. The total length of Iguassu River is nearly 910 km, and of 910 km, approximately 100 km are inside the MRC, which encompasses the Upper Iguassu River basin.

For this research, four sampling events were performed in the Rivers of the MRC (Figure 1).

In Atuba River (AT) samples were collected in two points along the River, both with urban influence from MRC. The sampling point AT1 is located upstream of a Wastewater Treatment Plant (WWTP-South Atuba) and the sampling point AT2 is located downstream the same WWTP.

In Palmital River there were three sampling points. Sampling point PA1 was located in a rural area, PA2 was located in an urbanized area, between the cities of Colombo and Curitiba. Sampling point PA3 is located near the mouth of Palmital River, between the cities of Pinhais and Curitiba, where it suffers a bigger urban influence than the previous sampling points. Palmital River is located in an area that presents less demographic influence, although also shows problems in the treatment and collection of domestic sewage, mainly near Palmital River mouth.

In Belém River (BL) there were two sampling points. The sampling point BL1 was located in the middle of the length of the river, with an expressive urban influence and the second sampling point, BL2, is near the mouth of Belém River, influenced by an extensive and continuous urban area, one of the most degraded sampling points.

In Barigui River there were three sampling points. The sampling point BA2 is after the lake of the Barigui Park, receiving influence from degraded sewage and phytoplankton from the lake. Sampling point BA3 is upstream of a WWTP and sampling point BA4 is downstream the WWTP. Barigui River basin is known by the great quantity and diversity of industrial activities.

The rivers cited above are all located in the right side of the bank of Rio Iguassu. They are currently degraded due to the high population density and to the irregular occupation on their banks, which imply in clandestine launches of domestic sewage and solid waste (IDE et al., 2013IDE, A. H.; CARDOSO, F. D.; SANTOS, M. M. D.; KRAMER, R. D.; AZEVEDO, J. C. R. D.; MIZUKAWA, A. Utilização da Cafeína como Indicador de Contaminação por Esgotos Domésticos na Bacia do Alto Iguassu. Revista Brasileira de Recursos Hídricos, v. 18, n. 2, p. 201-211, 2013. http://dx.doi.org/10.21168/rbrh.v18n2.p201-211.
http://dx.doi.org/10.21168/rbrh.v18n2.p2...
; KRAMER et al., 2015KRAMER, R. D.; MIZUKAWA, A.; IDE, A. H.; MARCANTE, L. O.; DOS SANTOS, M. M.; AZEVEDO, J. C. R. Determinação de anti-inflamatórios na água e sedimento e suas relações com a qualidade da água na bacia do Alto Iguassu, Curitiba-PR. Revista Brasileira de Recursos Hídricos, v. 20, n. 3, p. 657-667, 2015. http://dx.doi.org/10.21168/rbrh.v20n3.p657-667.
http://dx.doi.org/10.21168/rbrh.v20n3.p6...
; SANTOS et al., 2016SANTOS, M. M. D.; BREHM, F. D. A.; FILIPPE, T. C.; KNAPIK, H. G.; AZEVEDO, J. C. R. D. Occurrence and risk assessment of parabens and triclosan in surface waters of southern Brazil: a problem of emerging compounds in an emerging country. Brazilian Journal of Water Resources, v. 21, n. 3, p. 603-617, 2016.).

Also, there were two sampling points in Iguassu River, the main river of the basin. The first sampling point in Iguassu River (IG1) was after the contributions of Atuba River (AT2) and Iraí River (IR1). The second sampling point (IG2) was located after the contribution of Belém River (BL2). The choice of the sampling points in Iguassu River had the goal to assess the influence of its tributaries.

In the left bank there were also sampling points in Pequeno River. The left bank has less urban influence and less population density. Nevertheless, the two sampling points located in Pequeno River (PQ1 and PQ2) are close to a highway (BR-277), which can be a pollution source, due to an expressive traffic in this highway.

Sample collection

The surface water and sediment samples were collected in 15 points along the Upper Iguassu River basin (Figure 1). The campaigns were performed in Jun/11, Set/11, Nov/11 and Apr/12. Surface water samples were collected in decontaminated amber bottles and were stored in low temperature (4 °C). Afterwards the water samples were filtered on 0.45 µm cellulose acetate membranes and extracted in a maximum of 24 hours after sampling.

Sediment samples were collected with a modified Peterson grab sampler and stored in previously decontaminated aluminum containers (450 °C).

PAHs extraction

Extraction procedures were based in the ones stablished by Mater et al. (2004)MATER, L.; ALEXANDRE, M. R.; HANSEL, F. A.; MADUREIRA, L. A. S. Assessment of lipid compounds and phosphorus in mangrove sediments of Santa Catarina Island, SC, Brazil. Journal of the Brazilian Chemical Society, v. 15, n. 5, p. 725-734, 2004. http://dx.doi.org/10.1590/S0103-50532004000500019.
http://dx.doi.org/10.1590/S0103-50532004...
. The samples were filtered through micro glass fiber filters with a 1.2 µm diameter, to analyze PAHs. The material that was retained in the filters was separated to analyze the suspended particulate matter (SPM). The filtrated water was acidified until pH 3.00 with hydrochloric acid.

To the solid phase extraction the cartridges were washed with 5mL of dichloromethane, 5 mL of methanol, and 5 mL of ultrapure water. A volume of 1000 mL was transferred to the C18 cartridges, with a 6-8mL min–1 flux, so the target compounds could be retained. After, the cartridges were dried under a nitrogen flux and eluted with two portions of 5 mL of dichloromethane and 5 mL of ethyl acetate.

The SPM retained in the filters was lyophilized. After the filters were completely dry, the extraction was performed utilizing ultrasonification. The extraction was executed in three parts. First, the filters were immersed in 20 mL of hexane. In the second part the filters were immersed in 20 mL of a solution containing 10 mL of hexane and 10 mL of dichloromethane and in the last part the filters were immersed in 20 mL of dichloromethane. In each part of the processes the samples were sonified during 20 minutes. The three parts were filtered, reunited and evaporated. The material was then reconstituted in 3 mL of dichloromethane.

In sediments PAHs extraction was performed in sediment samples dried in a temperature of 40 °C. The same procedures applied to the filters containing SPM were applied to 20 g of sediment. Due to the large amount of the sediment the volumes were altered to 40 mL of hexane, 40 mL of hexane and dichloromethane in a 1:1 proportion and 40 mL of dichloromethane.

The reconstituted extract of the dissolved PAHs, and the PAHs present in SPM and in the sediments were cleaned-up in a chromatography column filled with 2 g of silica, 2 g of alumina and 1 g of sodium sulfate. The column was conditioned with 20 mL of hexane and after the samples were inserted, 20 mL of hexane were eluted from the column, eliminating a fraction containing n-alkanes. To the PAHs elution 20 mL of dichloromethane were utilized. After evaporation, the final volume was adjusted to 1 mL.

Chromatographic conditions

PAHs analyses were performed in the gas chromatography GC-431 (Varian). The employed chromatography column was a HO-5Ms (30 m × 0.25 mm × 0.25 µm). The carrier gas was Helium 6.0 (99.9999%) with a 1 mL min–1 flux. The initial temperature of the oven was adjusted to 60 °C with a 20 °C elevation per minute until 120 °C, remaining isothermal for 1 minute. Subsequently the elevation was scheduled to 10 °C per minute until 200 °C and then an elevation of 5 °C per minute until 300 °C, remaining isothermal for 34 minutes. A volume of 1 µL was injected in the gas chromatography (GC-MS). The injector and the transfer line temperatures were adjusted to 280 °C and the trap ion temperature was adjusted to 200 °C. The data acquisition was operated in the 50 to 650 m/z band.

To validate the employed method recover tests were performed in two concentrations with five repetitions (N=5). To assess possible contaminations blank samples were prepared during the analysis. Also, repetition tests were performed (intra-day precision) with five injections in the same day (N=5) of a sample replica with a concentration of 2 µg L–1. To verify precision (inter-day precision) a sample replica with a concentration of 2 µg L–1 was injected 5 times a day, during three consecutive days.

RESULTS AND DISCUSSION

Validation and quality control

Table 1 demonstrates the main variables in the validation and control of the analytical method applied in the PAHs quantification. Detection limits varied from 0.10 to 23.57 ng L–1, according to analytical sensibility of each solute. Recovery rates to water samples in the lower level varied from 86 to 94%. In sediment samples recovery rates varied from 60 to 91% in the lower level. In the precision and repetition tests, the coefficients of variation were below 20%, which are acceptable levels to chromatographic methods destined to trace analysis. PAHs weren´t detected in blank samples during the analyses, confirming that contaminations didn´t occur in the analytical method.

Table 1
Validation parameters of the HPA analytical method employed.

Distribution of dissolved PAHs and PAHs associated to particulate matter

PAHs concentrations in the sampling points tend to increase the nearest the sampling point is to intense urban occupation zones, like can be observed in PA2, AT2, BA3 and IG2. This tendency can be confirmed by the concentrations of the dissolved PAHs and PAHs associated to suspended particulate matter (Figures 2 and 3).

Figure 2
PAHs distribution in samples (Jun/11, Sep/11, Nov/11 and Apr/12) in surface water in the following rivers: Palmital (PA), Pequeno (PQ), Atuba (AT), Iguassu (IG), Iraí (IR), Barigui (BA) e Belém (BL).
Figure 3
PAHs distribution in samples (Jun/11, Sep/11, Nov/11 e Apr/12) of suspended particulate material in the following rivers: Palmital (PA), Pequeno (PQ), Atuba (AT), Iguassu (IG), Iraí (IR), Barigui (BA) and Belém (BL).

In the dissolved fraction PAHs with three or four rings were the largest contribution, with an exception of the Jun/11 campaign, where PAHs with five or six rings were predominant in some rivers. The predominance of small molecular structures occurred, mainly, because their high solubility in water compared to higher molecular mass compounds, which are hydrophobic (Figure 2) and show a tendency to be adsorbed in the SPM.

In the dissolved fraction, the concentrations varied from 250 to 18983 ng L–1, values close to the ones obtained by Wang et al. (2009)WANG, Z.; YAMG, C.; KELLY-HOOPER, F.; HOLLENBONE, B. P.; PENG, X.; BROWN, C. E.; LANDRIAULT, M.; SUN, J.; YANG, Z. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross contaminated soils and sediments. Journal of Chromatography. A, v. 1216, n. 7, p. 1174-1191, 2009. PMid:19131067. http://dx.doi.org/10.1016/j.chroma.2008.12.036.
http://dx.doi.org/10.1016/j.chroma.2008....
and Bourgeault and Gouulay-France (2013) in impacted urban areas.

The greater total PAHs concentrations were:

  • a) In Jun/11, because of the results obtained in the PA1 sampling point (Palmital River). There are indications that the PAHs may be originated from organic matter combustion, since the sampling point is located in a rural area, where the act of burning plants is recurrent;

  • b) In Sep/11, in the PA2 sampling point (also in Palmital River), presumably due to petroleum combustion or asphaltic residues, since sampling point PA2 is upstream a bridge in a highway (BR 116), which has a high traffic flux that can influence in the PAHs concentration in this environment;

  • c) In Nov/11 and Apr/12 the greatest dissolved PAHs concentrations were obtained in the BL1 (Belém Rover) and PQ1 (Pequeno River) sampling points. Sampling point BL1 is located inside the city of Curitiba. In this particular case the PAHs must be originated from the traffic in the central area of the city. Sampling point PQ1 is located in a bridge in a highway (BR 277), which connects Curitiba to the east coast, where the traffic is extensive and continuous.

Due to the lower solubility of compounds with 4, 5 and 6 rings, an increase of these compounds has been observed in the suspended particulate material (Figure 3).

The predominance of higher molecular mass compounds in the suspended particulate material can generate greater adverse effects in the environment, once these compounds tend to induce carcinogenic, mutagenic and teratogenic responses in some organisms, originating chronic effects (WITT, 1995WITT, G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, v. 31, n. 4, p. 237-248, 1995. http://dx.doi.org/10.1016/0025-326X(95)00174-L.
http://dx.doi.org/10.1016/0025-326X(95)0...
; CAVALCANTE et al., 2007CAVALCANTE, R. M.; MACHADO FILHO, N. S.; VIANA, R. B.; OLIVEIRA, I. R.; NASCIMENTO, R. F.; SILVEIRA, E. R.; FREIRE, G. S. Utilização da extração em fase sólida (SPE) na determinação de hidrocarbonetos policíclicos aromáticos em matrizes aquosas ambientais. Quimica Nova, v. 30, n. 3, p. 560-564, 2007. http://dx.doi.org/10.1590/S0100-40422007000300010.
http://dx.doi.org/10.1590/S0100-40422007...
). Otherwise, compounds containing 3 rings are frequently associated to acute effects. However, acute effects occur only in elevated concentrations, superior to the ones observed in the environment (PEREIRA NETTO et al., 2000PEREIRA NETTO, A. D. P.; MOREIRA, J. C.; DIAS, A. E. X. O.; ARBILLA, G.; FERREIRA, L. F. V.; OLIVEIRA, A. S.; BAREK, J. Avaliação da contaminação humana por hidrocarbonetos policíclicos aromáticos (HPAs) e seus derivados nitrados (NHPAs): uma revisão metodológica. Quimica Nova, v. 23, n. 6, p. 765-773, 2000. http://dx.doi.org/10.1590/S0100-40422000000600010.
http://dx.doi.org/10.1590/S0100-40422000...
).

Total PAHs concentrations in suspended particulate material (SPM) varied from 13 ng mg–1 to 675 ng mg–1. The greatest concentration was observed in sample point BA3 (Barigui River) in Nov/11. During the four sample campaigns (Jun/11, Sep/11, Nov/11 and Apr/12) sampling points BA3 e PQ1 were the ones where higher concentrations of total PAHs in SPM were found. In sampling point PQ1, this outcome is probably due to the localization of the sampling point, in a bridge in a highway (BR 277), which connects Curitiba with the Port of Paranaguá and Paraná Coast., with a lot of traffic. Sampling point BA3 is located in an urban area, which also presents a lot of traffic, due to everyday car flux. In both sampling points, the main source of PAHs may be fuel combustion.

PAHs distribution in surface sediments

The spatial distribution of PAHs in sediments of the Upper Iguassu River basin (Table 2), suggests that higher concentrations of total PAHs were detected in environments with intense anthropic influence, like Barigui River, Iguassu River and Belém River (Figure 4). Compounds that have stable molecular structures, less predisposed to degradation, hydrophobic, with greater number of aromatic rings were predominant in the sediments

Table 2
Concentrations of some PAHs determined in sediment samples of the following rivers: Palmital (PA), Pequeno (PQ), Atuba (AT), Iguassu (IG), Iraí (IR), Barigui (BA) and Belém (BL).
Figure 4
PAHs distribution in sediment samples (Jun/11, Sep/11, Nov/11 e Apr/12) in the following rivers: Palmital (PA), Pequeno (PQ), Atuba (AT), Iguassu (IG), Iraí (IR), Barigui (BA) e Belém (BL).

Considering the Brazilian resolution CONAMA 344/2004 (BRASIL, 2004BRASIL. Conselho Nacional do Meio Ambiente. Resolution n° 344, de March, 25, 2004. It establishes the general guidelines and minimum procedures to assess the material to be dredged in Brazilian jurisdictional water, and provides other measures. Brasília, DF, 2004. Available from: <http://www.mma.gov.br>. Access on: 2016 may 15.
http://www.mma.gov.br...
), highest values were detected in sampling point BA2, regarding the first level to: phenanthrene, pyrene, benzo(a)pyrene e para o dibenzo(a,h)anthracene. Sampling points BA3 and IG1 also showed superior values to benzo(a)pyrene e para o dibenzo(a,h)anthracene. Sampling points PQ2 and BL1 showed superior values to dibenzo(a,h)anthracene. These values characterize that the sediments offer, even if concentrations of some PAHs are low, a probability of adverse effects in the biota.

Total PAHs concentration varied from 28.82 to 1521.22 ng g–1. These values are relatively lower than the ones observed in other aquatic environments (MA et al., 2001MA, M.; FENG, Z.; GUAN, C.; MA, Y.; XU, H.; LI, H. DDT, PAH and PCB in sediments from the intertidal zone of the Bohai sea and the Yellow sea. Marine Pollution Bulletin, v. 42, n. 2, p. 132-136, 2001. PMid:11381883. http://dx.doi.org/10.1016/S0025-326X(00)00118-1.
http://dx.doi.org/10.1016/S0025-326X(00)...
; WU; ZHANG; ZHU, 2003WU, Y.; ZHANG, J.; ZHU, Z. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China. Marine Pollution Bulletin, v. 46, n. 5, p. 619-625, 2003. PMid:12735959. http://dx.doi.org/10.1016/S0025-326X(03)00035-3.
http://dx.doi.org/10.1016/S0025-326X(03)...
; ZHANG et. al., 2004bZHANG, Z. L.; HONG, H. S.; ZHOU, J. L.; YU, G. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. The Science of the Total Environment, v. 323, n. 1-3, p. 71-86, 2004b. PMid:15081718. http://dx.doi.org/10.1016/j.scitotenv.2003.09.026.
http://dx.doi.org/10.1016/j.scitotenv.20...
; KANNAN et al., 2005KANNAN, K.; JOHNSON-RESTREPO, B.; YOHN, S. S.; GIESY, J. P.; LONG, D. T. Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan Inland lakes. Environmental Science & Technology, v. 39, n. 13, p. 4700-4706, 2005. PMid:16053066. http://dx.doi.org/10.1021/es050064f.
http://dx.doi.org/10.1021/es050064f...
; LIU et al., 2009LIU, W. X.; DOU, H.; WEI, Z. C.; CHANG, B.; QIU, W. X.; LIU, Y.; TAO, S. Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China. The Science of the Total Environment, v. 407, n. 4, p. 1436-1446, 2009. PMid:19036409. http://dx.doi.org/10.1016/j.scitotenv.2008.10.055.
http://dx.doi.org/10.1016/j.scitotenv.20...
), however, considering their effects and accumulation it is necessary to follow their variations in the environment.

Generally, higher molecular mass compounds, the ones with 4 to 6 aromatic rings (Chrysene to Benzo(ghi)perylene), were found in higher concentrations than the ones with lower molecular mass, with 2 to 4 aromatic rings (Naphtalene to Benzo(a)anthracene). That indicates, in general, mixtures of PAHs originated from high temperature fossil fuels combustion (SOCLO; GARRIGUES; EWALD, 2000SOCLO, H. H.; GARRIGUES, P.; EWALD, M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, v. 40, n. 5, p. 387-396, 2000. http://dx.doi.org/10.1016/S0025-326X(99)00200-3.
http://dx.doi.org/10.1016/S0025-326X(99)...
; GOGOU; BOULOUBASSI; STEPHANOU, 2000GOGOU, A.; BOULOUBASSI, I.; STEPHANOU, E. G. Marine organic geochemistry of the Eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments. Marine Chemistry, v. 68, n. 4, p. 265-282, 2000. http://dx.doi.org/10.1016/S0304-4203(99)00082-1.
http://dx.doi.org/10.1016/S0304-4203(99)...
). The average percentage value of PAHs with 4 or more rings, in relation to the total concentration of PAHs was 61.88%. Sampling point BA3 showed the greatest percentage (91%), indicating that the environment may have concentrations of PAHs harmful to the biota.

However, total concentration of PAHs may be intangible about the possibility of negative effects due to the presence of these substances in the environment and many times toxicity related analysis of the compounds should be performed.

One of the ways to assess toxicity of sediments containing PAHs is by toxicity equivalent factor of Benzo(a)Pyrene (TEF(BaP)) (LIU et al., 2009LIU, W. X.; DOU, H.; WEI, Z. C.; CHANG, B.; QIU, W. X.; LIU, Y.; TAO, S. Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China. The Science of the Total Environment, v. 407, n. 4, p. 1436-1446, 2009. PMid:19036409. http://dx.doi.org/10.1016/j.scitotenv.2008.10.055.
http://dx.doi.org/10.1016/j.scitotenv.20...
). Of the 14 sampling points, 7 showed concentrations above 3 ng g–1 of TEF(BaP) (Figure 5), a recommended value of sediment quality guidelines from Netherlands (VAN DER GAAG et al., 1991VAN DER GAAG, M. A.; STORTELDER, P. B. M.; VAN DER KOOIJ, L. A.; BRUGGEMAN, W. A. Setting environmental quality criteria for water and sediment in the Netherlands: a pragmatic ecotoxicological approach. European Water Management, v. 1, n. 3, p. 13-20, 1991.). Therefore, even with lower concentrations than the ones observed in other environments, PAHs found in sediments of the Upper Iguassu River basin may offer risk to some organisms.

Figure 5
Toxicity equivalent factor (TEF) of Benzo(a)Pyrene (BaP), TEF-BaP, in sediments of the Upper Iguassu River basin in the following rivers: Palmital (PA), Pequeno (PQ), Atuba (AT), Iguassu (IG), Iraí (IR), Barigui (BA) and Belém (BL).

Pyrogenic and petrogenic distinction using diagnostic ratios

To identify possible PAHs sources in the samples (water, SPM and sediments), ratios between PAHs isomers were employed. According to Yunker et al. (2002)YUNKER, M. B.; MACDONALD, R. W.; VINGARZAN, R.; MITCHELL, R. H.; GOYETTE, D.; SYLVESTRE, S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, v. 33, n. 4, p. 489-515, 2002. http://dx.doi.org/10.1016/S0146-6380(02)00002-5.
http://dx.doi.org/10.1016/S0146-6380(02)...
, these ratios are possible due to thermodynamic characteristics of the PAHs and to the differences in the formation heat of these compounds, distinguishing the most stable isomer from the least stable, making it possible to differentiate the sources.

The ration between phenanthrene/anthracene (PHEN/ANT) was applied to differentiate PAHs of pyrogenic sources from PAHs of petrogenic sources (SOCLO; GARRIGUES; EWALD, 2000SOCLO, H. H.; GARRIGUES, P.; EWALD, M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, v. 40, n. 5, p. 387-396, 2000. http://dx.doi.org/10.1016/S0025-326X(99)00200-3.
http://dx.doi.org/10.1016/S0025-326X(99)...
; MAGI et al., 2002MAGI, E.; BIANCO, R.; IANNI, C.; DI CARRO, M. Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environmental Pollution, v. 119, n. 1, p. 91-98, 2002. PMid:12125734. http://dx.doi.org/10.1016/S0269-7491(01)00321-9.
http://dx.doi.org/10.1016/S0269-7491(01)...
; CHEN; CHEN, 2011CHEN, C. W.; CHEN, C. F. Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Marine Pollution Bulletin, v. 63, n. 5-12, p. 417-423, 2011. PMid:21616510. http://dx.doi.org/10.1016/j.marpolbul.2011.04.047.
http://dx.doi.org/10.1016/j.marpolbul.20...
; CHEN et al., 2013CHEN, C.; CHEN, C.; DONG, C.; KAO, C. Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. The Science of the Total Environment, v. 463, p. 1174-1181, 2013. PMid:22818911. http://dx.doi.org/10.1016/j.scitotenv.2012.06.101.
http://dx.doi.org/10.1016/j.scitotenv.20...
). To water, SPM and sediment samples the values of this ratio were lower than 10 (Figure 6A, C, E), indicating that PAHs samples from MRC may be associated to pyrogenic sources (combustion).

Figure 6
Diagnostic ratios of PAHs to distinguish between pyrogenic and petrogenic sources in water (A and B), suspended particulate material (C and D) and sediments (E na F) in the Upper Iguassu River basin, in the following rivers: Palmital (PA), Pequeno (PQ), Atuba (AT), Iguassu (IG), Iraí (IR), Barigui (BA) and Belém (BL).

In the same Figure 6A, C, E values from Fluoranthene/pyrene (FLUT/PYR) are shown. It was observed that not all sample points, applying FLUT/PYR ratio, had the same results as in the PHEN/ANT ratio, because not all sample points and collected samples show PAHs from pyrogenic sources. Some values were more than one, indicating, according to Magi et al. (2002)MAGI, E.; BIANCO, R.; IANNI, C.; DI CARRO, M. Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environmental Pollution, v. 119, n. 1, p. 91-98, 2002. PMid:12125734. http://dx.doi.org/10.1016/S0269-7491(01)00321-9.
http://dx.doi.org/10.1016/S0269-7491(01)...
and Chen and Chen et al. (2011), PAHs from petrogenic sources.

Alternatively to the PHEN/ANT ratio it can be employed the [anthracene/(phenanthrene+anthracene)] [ANT/(PHEN+ANT)] ratio. In this diagnostic, according to author that applied it (YUNKER et al., 2002YUNKER, M. B.; MACDONALD, R. W.; VINGARZAN, R.; MITCHELL, R. H.; GOYETTE, D.; SYLVESTRE, S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, v. 33, n. 4, p. 489-515, 2002. http://dx.doi.org/10.1016/S0146-6380(02)00002-5.
http://dx.doi.org/10.1016/S0146-6380(02)...
; ZHANG et al., 2004aZHANG, J.; CAI, L.; YUAN, D.; CHEN, M. Distribution and sources of polynuclear aromatic hydrocarbons in mangrove surficial sediments of Deep Bay, China. Marine Pollution Bulletin, v. 49, n. 5-6, p. 479-486, 2004a. PMid:15325216. http://dx.doi.org/10.1016/j.marpolbul.2004.02.030.
http://dx.doi.org/10.1016/j.marpolbul.20...
; QIAO et al., 2006QIAO, M.; WANG, C.; HUANG, S.; WANG, D.; WANG, Z. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environment International, v. 32, n. 1, p. 28-33, 2006. PMid:15996733. http://dx.doi.org/10.1016/j.envint.2005.04.005.
http://dx.doi.org/10.1016/j.envint.2005....
; CHEN et al., 2013CHEN, C.; CHEN, C.; DONG, C.; KAO, C. Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. The Science of the Total Environment, v. 463, p. 1174-1181, 2013. PMid:22818911. http://dx.doi.org/10.1016/j.scitotenv.2012.06.101.
http://dx.doi.org/10.1016/j.scitotenv.20...
), values superior to 0.10 indicate pyrogenic sources. To water, SPM and sediment samples (Figure 6B, D, F), the ratio indicate that PAHs found in the rivers of the MRC may be associated to pyrogenic sources.

Another ratio employed to distinguish PAHs sources was [fluoranthene/(fluoranthene+pyrene)]. This ratio was already applied in other studies (MAGI et al.; 2002MAGI, E.; BIANCO, R.; IANNI, C.; DI CARRO, M. Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environmental Pollution, v. 119, n. 1, p. 91-98, 2002. PMid:12125734. http://dx.doi.org/10.1016/S0269-7491(01)00321-9.
http://dx.doi.org/10.1016/S0269-7491(01)...
; ZHANG et al., 2004bZHANG, Z. L.; HONG, H. S.; ZHOU, J. L.; YU, G. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. The Science of the Total Environment, v. 323, n. 1-3, p. 71-86, 2004b. PMid:15081718. http://dx.doi.org/10.1016/j.scitotenv.2003.09.026.
http://dx.doi.org/10.1016/j.scitotenv.20...
; LI et al., 2006LI, G.; XIA, X.; YANG, Z.; WANG, R.; VOULVOULIS, N. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environmental Pollution, v. 144, n. 3, p. 985-993, 2006. PMid:16603293. http://dx.doi.org/10.1016/j.envpol.2006.01.047.
http://dx.doi.org/10.1016/j.envpol.2006....
). The ratio [FLUOR/(FLUOR+PYR)] was employed to assess if the PAHs were originated from the combustion of petroleum byproducts or from the wood, grass and/or coal burning. Values below to 0,40 indicate petrogenic sources, values between 0.40 and 0.50 indicate petroleum combustion and values above 0,50 indicate PAHs from wood, grass or coal burning. With Figure 6B, D, E it was possible to verify that PAHs from wood, grass or coal burning were detected in the samples.

Based on the employment of the diagnostic ratios method (Figure 6), it was possible to confirm the predominance of PAHs originated from pyrogenic sources in practically the entire basin. This phenomenon was observed in all analyzed environmental matrices (water, SPM and sediment).

From the four ratios used, the FLUT/PYR may be considered the most sensitive among the other methods, since its distribution was close to the distinction range. Other factor that may have influenced ratio results was the possible transformation that the PAHs may have suffered in the aquatic environment, mainly photolysis oxidation (BIACHE; MANSUY-HUAULTA; FAUREA, 2014BIACHE, A. C.; MANSUY-HUAULTA, L.; FAUREA, P. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications. Journal of Hazardous Materials, v. 267, p. 31-39, 2014. PMid:24413049. http://dx.doi.org/10.1016/j.jhazmat.2013.12.036.
http://dx.doi.org/10.1016/j.jhazmat.2013...
).

CONCLUSION

Monitoring of PAHs may provide interesting data to the understanding of the environmental conditions in the rivers of the Upper Iguassu River basin, in the Metropolitan Region of Curitiba. The observed concentrations in all studied matrices are elevated and potentially harmful to the environment. The concentration of PAHs in surface water, suspended particulate material and sediments indicated that the studied area is under an elevated urban pressure and the human activities are probably affecting the contribution of PAHs. Diagnostic ratios have been shown to be an enlightening tool to distinction of pyrogenic and petrogenic PAHs sources, which may help in the implementation of measures to control emissions of PAHs. In the MRC, in the studied rivers, a predominance of pyrogenic sources was observed.

ACKNOWLEDGEMENTS

This work was sponsored by CNPq (Process 482443/2012-0); and SETI/Araucária Foundation (443/2013 PQ/FA - FPT). The authors also would like to thank CAPES for the support and the scholarship, UTFPR and to the CT-Infra 2010/FINEP for the FNDCT Resources, subproject NIPTA – Interdisciplinary Nucleus of Research in Environmental Technologies.

REFERENCES

  • ACQUAVITA, A.; FALOMO, J.; PREDONZANI, S.; TAMBERLICH, F.; BETTOSO, N.; MATTASSI, G. The PAH level, distribution and composition in surface sediments from a Mediterranean Lagoon: the Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Marine Pollution Bulletin, v. 81, n. 1, p. 234-241, 2014. PMid:24492154. http://dx.doi.org/10.1016/j.marpolbul.2014.01.041
    » http://dx.doi.org/10.1016/j.marpolbul.2014.01.041
  • ADHIKARI, P. L.; MAITI, K.; OVERTON, E. B.; ROSENHEIM, B. E.; MARX, B. D. Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments. Environmental Pollution, v. 212, p. 413-423, 2016. PMid:26895564. http://dx.doi.org/10.1016/j.envpol.2016.01.064
    » http://dx.doi.org/10.1016/j.envpol.2016.01.064
  • AIZENSHTAT, Z. Perylene and its geochemical significance. Geochimica et Cosmochimica Acta, v. 37, n. 3, p. 559-567, 1973. http://dx.doi.org/10.1016/0016-7037(73)90218-4
    » http://dx.doi.org/10.1016/0016-7037(73)90218-4
  • ALBUQUERQUE, M.; COUTINHO, M.; BORREGO, C. Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. The Science of the Total Environment, v. 543, n. Pt A, p. 439-448, 2016. PMid:26599144. http://dx.doi.org/10.1016/j.scitotenv.2015.11.064
    » http://dx.doi.org/10.1016/j.scitotenv.2015.11.064
  • ANDERSON, M.; KLUG, M.; EGGEN, O. A.; OTTESEN, R. T. Polycyclic aromatic hydrocarbons (PAHs) in sediments from lake Lille Lungegårdsvannet in Bergen, western Norway; appraising pollution sources from the urban history. The Science of the Total Environment, v. 470, p. 1160-1172, 2014. PMid:24246939. http://dx.doi.org/10.1016/j.scitotenv.2013.10.086
    » http://dx.doi.org/10.1016/j.scitotenv.2013.10.086
  • ANDREOLI, C. V.; DALARMI, O.; LARA, A.I.; ANDREOLII, F.N. Os Mananciais de Abastecimento do Sistema Integrado da Região Metropolitana de Curitiba. Revista Técnica da Sanepar, v. 12, n. 12, p. 19-30, 1999.
  • BAKHTIARI, A. R.; ZAKARIA, M. P.; YAZIZ, M. I.; LAKIS, M. N. H.; BI, X.; RAHIM, M. C. A. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: perylene as indicator of land plant-derived hydrocarbons. Applied Geochemistry, v. 24, n. 9, p. 1777-1787, 2009. http://dx.doi.org/10.1016/j.apgeochem.2009.05.008
    » http://dx.doi.org/10.1016/j.apgeochem.2009.05.008
  • BAKHTIARII, A. R.; ZAKARIA, M. P.; YAZIZ, M. I.; LAJIS, M. N. H.; BI, X.; SHAFIEE, M. R. M.; SAKARI, M. Distribution of PAHs and n-alkanes in Klang River surface sediments, Malaysia. Pertanika: Journal of Science & Technology, v. 18, n. 1, p. 167-179, 2010.
  • BAUMARD, P.; BUDZINKI, H.; MICHON, P.; GARRIGUES, P.; BURGOT, T.; BELLOCQ, J. Origin and Bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science, v. 47, n. 1, p. 77-90, 1998. http://dx.doi.org/10.1006/ecss.1998.0337
    » http://dx.doi.org/10.1006/ecss.1998.0337
  • BETTIN, S. M. E.; FRANCO, D. W. Hidrocarbonetos policíclicos aromáticos (HPAs) em aguardentes. Ciência e Tecnologia de Alimentos, v. 25, n. 2, p. 234-238, 2005. http://dx.doi.org/10.1590/S0101-20612005000200008
    » http://dx.doi.org/10.1590/S0101-20612005000200008
  • BIACHE, A. C.; MANSUY-HUAULTA, L.; FAUREA, P. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications. Journal of Hazardous Materials, v. 267, p. 31-39, 2014. PMid:24413049. http://dx.doi.org/10.1016/j.jhazmat.2013.12.036
    » http://dx.doi.org/10.1016/j.jhazmat.2013.12.036
  • BOULOUBASSI, I.; ROUSSIEZB, V.; AZZOUG, M.; LORRE, A. Sources, dispersal pathways and mass budget of sedimentary polycyclic aromatic hydrocarbons (PAH) in the NW Mediterranean margin, Gulf of Lions. Marine Chemistry, v. 142, p. 18-28, 2012. http://dx.doi.org/10.1016/j.marchem.2012.07.003
    » http://dx.doi.org/10.1016/j.marchem.2012.07.003
  • BOURGEAULT, A.; GOURLAY-FRANCÉ, C. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools. The Science of the Total Environment, v. 454, p. 328-336, 2013. PMid:23562685. http://dx.doi.org/10.1016/j.scitotenv.2013.03.021
    » http://dx.doi.org/10.1016/j.scitotenv.2013.03.021
  • BRASIL. Conselho Nacional do Meio Ambiente. Resolution n° 344, de March, 25, 2004. It establishes the general guidelines and minimum procedures to assess the material to be dredged in Brazilian jurisdictional water, and provides other measures. Brasília, DF, 2004. Available from: <http://www.mma.gov.br>. Access on: 2016 may 15.
    » http://www.mma.gov.br
  • CAVALCANTE, R. M.; MACHADO FILHO, N. S.; VIANA, R. B.; OLIVEIRA, I. R.; NASCIMENTO, R. F.; SILVEIRA, E. R.; FREIRE, G. S. Utilização da extração em fase sólida (SPE) na determinação de hidrocarbonetos policíclicos aromáticos em matrizes aquosas ambientais. Quimica Nova, v. 30, n. 3, p. 560-564, 2007. http://dx.doi.org/10.1590/S0100-40422007000300010
    » http://dx.doi.org/10.1590/S0100-40422007000300010
  • CHANG, B. V.; SHIUNG, S. Y.; YUAN, S. Y. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, v. 48, n. 7, p. 717-724, 2002. PMid:12201202. http://dx.doi.org/10.1016/S0045-6535(02)00151-0
    » http://dx.doi.org/10.1016/S0045-6535(02)00151-0
  • CHEN, C. W.; CHEN, C. F. Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Marine Pollution Bulletin, v. 63, n. 5-12, p. 417-423, 2011. PMid:21616510. http://dx.doi.org/10.1016/j.marpolbul.2011.04.047
    » http://dx.doi.org/10.1016/j.marpolbul.2011.04.047
  • CHEN, C.; CHEN, C.; DONG, C.; KAO, C. Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. The Science of the Total Environment, v. 463, p. 1174-1181, 2013. PMid:22818911. http://dx.doi.org/10.1016/j.scitotenv.2012.06.101
    » http://dx.doi.org/10.1016/j.scitotenv.2012.06.101
  • CLÉMENT, N.; MURESAN, B.; HEDDE, M.; FRANÇOIS, D. PAH dynamics in roadside environments: Influence on the consistency of diagnostic ratio values and ecosystem contamination assessments. The Science of the Total Environment, v. 538, p. 997-1009, 2015. PMid:26367069. http://dx.doi.org/10.1016/j.scitotenv.2015.08.072
    » http://dx.doi.org/10.1016/j.scitotenv.2015.08.072
  • DASKALOU, V.; VREČA, P.; MURI, G.; STALIKAS, C. Recent Environmental Changes in the Shallow Lake Pamvotis (NW Greece): Evidence from Sedimentary Organic Matter, Hydrocarbons, and Stable Isotopes. Archives of Environmental Contamination and Toxicology, v. 57, n. 1, p. 21-31, 2009. PMid:18931963. http://dx.doi.org/10.1007/s00244-008-9246-y
    » http://dx.doi.org/10.1007/s00244-008-9246-y
  • DE LUCA, G.; FURESI, A.; MICERA, G.; PANAZANELLI, A.; PIU, P. C.; PILO, M. I.; SPANO, N.; SANNA, G. Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Italy). Marine Pollution Bulletin, v. 50, n. 11, p. 1223-1232, 2005. PMid:15894340. http://dx.doi.org/10.1016/j.marpolbul.2005.04.021
    » http://dx.doi.org/10.1016/j.marpolbul.2005.04.021
  • EEA - EUROPEAN ENVIRONMENT AGENCY. European Union Emission inventory report 1990-2012: under the UNECE convention on long-range transboundary air pollution (LRTAP). Copenhagen, 2014.
  • EUROPEAN COMMISSION. Polycyclic aromatic hydrocarbons: occurrence in foods, dietary exposure and health effects. Brussels, 2002. Available from: <http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf>. Access on: 2016 may 15.
    » http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf
  • EVANS, M.; DAVIE, M.; JANZEN, K.; MUIR, D.; HAZEWINKEL, R.; KIRK, J.; BOER, D. PAH distributions in sediments in the oil sands monitoring area and western Lake Athabasca: Concentration, composition and diagnostic ratios. Environmental Pollution, v. 213, p. 671-687, 2016. PMid:27020047. http://dx.doi.org/10.1016/j.envpol.2016.03.014
    » http://dx.doi.org/10.1016/j.envpol.2016.03.014
  • GARBAN, B.; BLANCHOUD, H.; MOTELAY-MASSEI, A.; CHEVREUIL, M.; OLLIVION, D. Atmospheric bulk deposition of PAHs onto France: trends from urban to remote sites. Atmospheric Environment, v. 36, n. 34, p. 5395-5403, 2002. http://dx.doi.org/10.1016/S1352-2310(02)00414-4
    » http://dx.doi.org/10.1016/S1352-2310(02)00414-4
  • GOGOU, A.; BOULOUBASSI, I.; STEPHANOU, E. G. Marine organic geochemistry of the Eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments. Marine Chemistry, v. 68, n. 4, p. 265-282, 2000. http://dx.doi.org/10.1016/S0304-4203(99)00082-1
    » http://dx.doi.org/10.1016/S0304-4203(99)00082-1
  • HEENKEN, O. P.; STACHEL, B.; THEOBALD, N.; CLAWIAK, B. W. Temporal variability of organic micropollutants in suspended particulate matter of the River Elbe at Hamburg and the River Mulde at Dessau, Germany. Archives of Environmental Contamination and Toxicology, v. 38, n. 1, p. 11-31, 2000. PMid:10556367. http://dx.doi.org/10.1007/s002449910003
    » http://dx.doi.org/10.1007/s002449910003
  • HUSSAIN, K.; BALACHANDRAN, S.; HOQUE, R. R. Sources of polycyclic aromatic hydrocarbons in sediments of the Bharalu River, a tributary of the River Brahmaputra in Guwahati, India. Ecotoxicology and Environmental Safety, v. 122, p. 61-67, 2015. PMid:26210608. http://dx.doi.org/10.1016/j.ecoenv.2015.07.008
    » http://dx.doi.org/10.1016/j.ecoenv.2015.07.008
  • IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Rio de Janeiro, 2016. Available fom: <http://www.ibge.gov.br>. Access on: 2016 Oct. 14.
    » http://www.ibge.gov.br
  • IDE, A. H.; CARDOSO, F. D.; SANTOS, M. M. D.; KRAMER, R. D.; AZEVEDO, J. C. R. D.; MIZUKAWA, A. Utilização da Cafeína como Indicador de Contaminação por Esgotos Domésticos na Bacia do Alto Iguassu. Revista Brasileira de Recursos Hídricos, v. 18, n. 2, p. 201-211, 2013. http://dx.doi.org/10.21168/rbrh.v18n2.p201-211
    » http://dx.doi.org/10.21168/rbrh.v18n2.p201-211
  • KANNAN, K.; JOHNSON-RESTREPO, B.; YOHN, S. S.; GIESY, J. P.; LONG, D. T. Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan Inland lakes. Environmental Science & Technology, v. 39, n. 13, p. 4700-4706, 2005. PMid:16053066. http://dx.doi.org/10.1021/es050064f
    » http://dx.doi.org/10.1021/es050064f
  • KRAMER, R. D.; MIZUKAWA, A.; IDE, A. H.; MARCANTE, L. O.; DOS SANTOS, M. M.; AZEVEDO, J. C. R. Determinação de anti-inflamatórios na água e sedimento e suas relações com a qualidade da água na bacia do Alto Iguassu, Curitiba-PR. Revista Brasileira de Recursos Hídricos, v. 20, n. 3, p. 657-667, 2015. http://dx.doi.org/10.21168/rbrh.v20n3.p657-667
    » http://dx.doi.org/10.21168/rbrh.v20n3.p657-667
  • LI, G.; XIA, X.; YANG, Z.; WANG, R.; VOULVOULIS, N. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environmental Pollution, v. 144, n. 3, p. 985-993, 2006. PMid:16603293. http://dx.doi.org/10.1016/j.envpol.2006.01.047
    » http://dx.doi.org/10.1016/j.envpol.2006.01.047
  • LIU, W. X.; DOU, H.; WEI, Z. C.; CHANG, B.; QIU, W. X.; LIU, Y.; TAO, S. Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China. The Science of the Total Environment, v. 407, n. 4, p. 1436-1446, 2009. PMid:19036409. http://dx.doi.org/10.1016/j.scitotenv.2008.10.055
    » http://dx.doi.org/10.1016/j.scitotenv.2008.10.055
  • MA, M.; FENG, Z.; GUAN, C.; MA, Y.; XU, H.; LI, H. DDT, PAH and PCB in sediments from the intertidal zone of the Bohai sea and the Yellow sea. Marine Pollution Bulletin, v. 42, n. 2, p. 132-136, 2001. PMid:11381883. http://dx.doi.org/10.1016/S0025-326X(00)00118-1
    » http://dx.doi.org/10.1016/S0025-326X(00)00118-1
  • MAGALHÃES, D.; BURNS, R. E.; VASCONCELLOS, P. C. Hidrocarbonetos policíclicos aromáticos como traçadores da queima de cana-de-açúcar: uma abordagem estatística. Quimica Nova, v. 30, n. 3, p. 577-581, 2007. http://dx.doi.org/10.1590/S0100-40422007000300014
    » http://dx.doi.org/10.1590/S0100-40422007000300014
  • MAGI, E.; BIANCO, R.; IANNI, C.; DI CARRO, M. Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environmental Pollution, v. 119, n. 1, p. 91-98, 2002. PMid:12125734. http://dx.doi.org/10.1016/S0269-7491(01)00321-9
    » http://dx.doi.org/10.1016/S0269-7491(01)00321-9
  • MASOOD, N.; ZAKARIA, M. P.; HALIMOON, N.; ARIS, A. Z.; MAGAM, S. M.; KANNAN, N.; MUSTAFA, S.; ALI, M. M.; KESHAVARZIFARD, M.; VAEZZADEH, V.; ALKHADHER, S. A.; AL-ODAINI, N. A. Anthropogenic waste indicators (AWIs), particularly PAHs and LABs, in Malaysian sediments: Application of aquatic environment for identifying anthropogenic pollution. Marine Pollution Bulletin, v. 102, n. 1, p. 160-175, 2016. PMid:26616745. http://dx.doi.org/10.1016/j.marpolbul.2015.11.032
    » http://dx.doi.org/10.1016/j.marpolbul.2015.11.032
  • MATER, L.; ALEXANDRE, M. R.; HANSEL, F. A.; MADUREIRA, L. A. S. Assessment of lipid compounds and phosphorus in mangrove sediments of Santa Catarina Island, SC, Brazil. Journal of the Brazilian Chemical Society, v. 15, n. 5, p. 725-734, 2004. http://dx.doi.org/10.1590/S0103-50532004000500019
    » http://dx.doi.org/10.1590/S0103-50532004000500019
  • MCCREADY, S.; SLEE, G. F.; BIRCH, G. F.; TAYLOR, S. E. The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Marine Pollution Bulletin, v. 40, n. 11, p. 999-1006, 2000. http://dx.doi.org/10.1016/S0025-326X(00)00044-8
    » http://dx.doi.org/10.1016/S0025-326X(00)00044-8
  • MEDEIROS, P. M.; BICEGO, M. C. Investigation of natural and anthropogenic hydrocarbon inputs in sediments using geochemical markers. I. São Sebastião, SP, Brazil. Marine Pollution Bulletin, v. 49, n. 11-12, p. 892-899, 2004. PMid:15556173. http://dx.doi.org/10.1016/j.marpolbul.2004.06.002
    » http://dx.doi.org/10.1016/j.marpolbul.2004.06.002
  • MEIRE, R. O.; AZEREDO, A.; PEPERIRA, M. S.; TORRES, J. M.; MALM, O. Polycyclic aromatic hydrocarbons assessment in sediment of national parks in southeast Brazil. Chemosphere, v. 73, n. 1, p. 180-185, 2008. Supplement. PMid:18472130. http://dx.doi.org/10.1016/j.chemosphere.2007.01.089
    » http://dx.doi.org/10.1016/j.chemosphere.2007.01.089
  • MIZUKAWA, A.; DOS SANTOS, M. M.; IDE, A. H.; AZEVEDO, J. C. R. Distribuição de hidrocarbonetos policíclicos aromáticos e alifáticos em sedimentos estuarinos. RBRH: Revista Brasileira de Recursos Hídricos, v. 20, n. 4, p. 1019-1028, 2015. http://dx.doi.org/10.21168/rbrh.v20n4.p1019-1028
    » http://dx.doi.org/10.21168/rbrh.v20n4.p1019-1028
  • MONTELAY-MASSEI, A.; OLLIVION, D.; GARBAN, B.; TIPHAGNE-LRCHER, K.; ZIMERLIN, I.; CHEVREUILL, M. PAHs in the bulk atmospheric deposition of the Seine River basin: Source identification and apportionment by ratios, multivariate statistical techniques and scanning electron microscopy. Chemosphere, v. 67, n. 2, p. 312-321, 2007. PMid:17109933. http://dx.doi.org/10.1016/j.chemosphere.2006.09.074
    » http://dx.doi.org/10.1016/j.chemosphere.2006.09.074
  • MOSERT, M. M. R.; AYOKO, G. A.; KOKOT, S. Application of chemometrics to analysis of soil pollutants. TrAC Trends in Analytical Chemistry, v. 29, n. 5, p. 430-445, 2010. http://dx.doi.org/10.1016/j.trac.2010.02.009
    » http://dx.doi.org/10.1016/j.trac.2010.02.009
  • MOUHRI, A.; MONTELAY-MASSEI, A.; MASSEI, N.; FOURNIER, M.; LAIGNEL, B. Polycyclic aromatic hydrocarbon transport processes on the scale of a flood event in the rural watershed of Le Bebec, France. Chemosphere, v. 73, n. 4, p. 443-450, 2008. PMid:18625511. http://dx.doi.org/10.1016/j.chemosphere.2008.05.046
    » http://dx.doi.org/10.1016/j.chemosphere.2008.05.046
  • MURI, G. E.; WAKEHAM, S. G. Effect of depositional regimes on polycyclic aromatic hydrocarbons in Lake Bled (NW Slovenia) sediments. Chemosphere, v. 77, n. 1, p. 74-79, 2009. PMid:19539349. http://dx.doi.org/10.1016/j.chemosphere.2009.05.023
    » http://dx.doi.org/10.1016/j.chemosphere.2009.05.023
  • PEREIRA NETTO, A. D. P.; MOREIRA, J. C.; DIAS, A. E. X. O.; ARBILLA, G.; FERREIRA, L. F. V.; OLIVEIRA, A. S.; BAREK, J. Avaliação da contaminação humana por hidrocarbonetos policíclicos aromáticos (HPAs) e seus derivados nitrados (NHPAs): uma revisão metodológica. Quimica Nova, v. 23, n. 6, p. 765-773, 2000. http://dx.doi.org/10.1590/S0100-40422000000600010
    » http://dx.doi.org/10.1590/S0100-40422000000600010
  • PIETZSCH, R.; PATCHINEELAM, R. S.; TORRES, J. P. M. Polycyclic aromatic hydrocarbons in recent sediments from a subtropical estuary in Brazil. Marine Chemistry, v. 118, n. 1, p. 56-66, 2010. http://dx.doi.org/10.1016/j.marchem.2009.10.004
    » http://dx.doi.org/10.1016/j.marchem.2009.10.004
  • QIAO, M.; WANG, C.; HUANG, S.; WANG, D.; WANG, Z. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environment International, v. 32, n. 1, p. 28-33, 2006. PMid:15996733. http://dx.doi.org/10.1016/j.envint.2005.04.005
    » http://dx.doi.org/10.1016/j.envint.2005.04.005
  • RUIZ, Y.; SUAREZ, P.; ALONSO, A.; LONGO, E.; VILLAVERDE, A.; SAN JUAN, F. Environmental quality of mussel farms in the Vigo estuary: pollution by PAHs, origin and effects on reproduction. Environmental Pollution, v. 159, n. 1, p. 250-265, 2011. PMid:20980085. http://dx.doi.org/10.1016/j.envpol.2010.08.031
    » http://dx.doi.org/10.1016/j.envpol.2010.08.031
  • SANT’ANNA JUNIOR, N.; BERETTA, M.; TEIXEIRA, S. M.; TAVARES, T. M. Hidrocarbonetos policíclicos aromáticos em sedimentos superficiais na Baía de Todos os Santos - Nordeste do Brasil. Tropical Oceanography, v. 38, n. 1, p. 60-75, 2010.
  • SANTOS, M. M. D.; BREHM, F. D. A.; FILIPPE, T. C.; KNAPIK, H. G.; AZEVEDO, J. C. R. D. Occurrence and risk assessment of parabens and triclosan in surface waters of southern Brazil: a problem of emerging compounds in an emerging country. Brazilian Journal of Water Resources, v. 21, n. 3, p. 603-617, 2016.
  • SOCLO, H. H.; GARRIGUES, P.; EWALD, M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, v. 40, n. 5, p. 387-396, 2000. http://dx.doi.org/10.1016/S0025-326X(99)00200-3
    » http://dx.doi.org/10.1016/S0025-326X(99)00200-3
  • SOUZA, D. B. Avaliação da composição geoquímica da matéria orgânica de sedimentos lacustres. 2010. 122 p. Dissertação (Mestrado em Engenharia de Recursos Hídricos e Ambiental) - Universidade Federal do Paraná, Curitiba, 2010.
  • SUESS, M. J. The environmental load and cycle of polycyclic aromatic hydrocarbons. The Science of the Total Environment, v. 6, n. 3, p. 239-250, 1976. http://dx.doi.org/10.1016/0048-9697(76)90033-4
    » http://dx.doi.org/10.1016/0048-9697(76)90033-4
  • TOBISZEWSKI, M.; NAMIESNIK, J. PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, v. 162, p. 110-119, 2012. PMid:22243855. http://dx.doi.org/10.1016/j.envpol.2011.10.025
    » http://dx.doi.org/10.1016/j.envpol.2011.10.025
  • VAN DER GAAG, M. A.; STORTELDER, P. B. M.; VAN DER KOOIJ, L. A.; BRUGGEMAN, W. A. Setting environmental quality criteria for water and sediment in the Netherlands: a pragmatic ecotoxicological approach. European Water Management, v. 1, n. 3, p. 13-20, 1991.
  • WAKEHAM, S. G.; SCHAFFNER, C.; GIGER, W. Polycyclic aromatic hydrocarbons in recent lake sediments: I. Compounds having anthropogenic origins. Geochimica et Cosmochimica Acta, v. 44, n. 3, p. 403-413, 1980. http://dx.doi.org/10.1016/0016-7037(80)90040-X
    » http://dx.doi.org/10.1016/0016-7037(80)90040-X
  • WANG, Z.; YAMG, C.; KELLY-HOOPER, F.; HOLLENBONE, B. P.; PENG, X.; BROWN, C. E.; LANDRIAULT, M.; SUN, J.; YANG, Z. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross contaminated soils and sediments. Journal of Chromatography. A, v. 1216, n. 7, p. 1174-1191, 2009. PMid:19131067. http://dx.doi.org/10.1016/j.chroma.2008.12.036
    » http://dx.doi.org/10.1016/j.chroma.2008.12.036
  • WITT, G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, v. 31, n. 4, p. 237-248, 1995. http://dx.doi.org/10.1016/0025-326X(95)00174-L
    » http://dx.doi.org/10.1016/0025-326X(95)00174-L
  • WU, Y.; ZHANG, J.; ZHU, Z. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China. Marine Pollution Bulletin, v. 46, n. 5, p. 619-625, 2003. PMid:12735959. http://dx.doi.org/10.1016/S0025-326X(03)00035-3
    » http://dx.doi.org/10.1016/S0025-326X(03)00035-3
  • YANG, R.; XIE, T.; LI, A.; YANG, H.; TURNER, S.; WU, G.; JING, C. Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau. Environmental Pollution, v. 214, p. 1-7, 2016. PMid:27061469. http://dx.doi.org/10.1016/j.envpol.2016.03.068
    » http://dx.doi.org/10.1016/j.envpol.2016.03.068
  • YUNKER, M. B.; MACDONALD, R. W.; SNOWDON, L. R.; FOWLER, B. R. Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments. Organic Geochemistry, v. 42, n. 9, p. 1109-1146, 2011.
  • YUNKER, M. B.; MACDONALD, R. W.; VINGARZAN, R.; MITCHELL, R. H.; GOYETTE, D.; SYLVESTRE, S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, v. 33, n. 4, p. 489-515, 2002. http://dx.doi.org/10.1016/S0146-6380(02)00002-5
    » http://dx.doi.org/10.1016/S0146-6380(02)00002-5
  • YUNKER, M. B.; SNOWDON, L. R.; MACDONALD, R. W.; SMITH, J. N.; FOWLER, M. G.; SKIBO, D. N.; MCLAUGHLIN, F. A.; DANYUSHEVSKAYA, A. I.; PETROVA, V. I.; IVANOV, G. I. Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents seas. Environmental Science & Technology, v. 30, n. 4, p. 1310-1320, 1996. http://dx.doi.org/10.1021/es950523k
    » http://dx.doi.org/10.1021/es950523k
  • ZAGHDEN, H.; KALLEL, M.; ELLEUCH, B.; OUDOT, J.; SALIOT, A. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Marine Chemistry, v. 105, n. 1, p. 70-89, 2007. http://dx.doi.org/10.1016/j.marchem.2006.12.016
    » http://dx.doi.org/10.1016/j.marchem.2006.12.016
  • ZHANG, J.; CAI, L.; YUAN, D.; CHEN, M. Distribution and sources of polynuclear aromatic hydrocarbons in mangrove surficial sediments of Deep Bay, China. Marine Pollution Bulletin, v. 49, n. 5-6, p. 479-486, 2004a. PMid:15325216. http://dx.doi.org/10.1016/j.marpolbul.2004.02.030
    » http://dx.doi.org/10.1016/j.marpolbul.2004.02.030
  • ZHANG, J.; WANG, J.; HUA, P.; KREBS, P. The qualitative and quantitative source apportionments of polycyclic aromatic hydrocarbons in size dependent road deposited sediment. The Science of the Total Environment, v. 505, p. 90-101, 2015. PMid:25310884. http://dx.doi.org/10.1016/j.scitotenv.2014.09.091
    » http://dx.doi.org/10.1016/j.scitotenv.2014.09.091
  • ZHANG, Z. L.; HONG, H. S.; ZHOU, J. L.; YU, G. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. The Science of the Total Environment, v. 323, n. 1-3, p. 71-86, 2004b. PMid:15081718. http://dx.doi.org/10.1016/j.scitotenv.2003.09.026
    » http://dx.doi.org/10.1016/j.scitotenv.2003.09.026
  • ZHENG, B.; WANG, L.; LEI, K.; NAN, B. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere, v. 149, p. 91-100, 2016. PMid:26855211. http://dx.doi.org/10.1016/j.chemosphere.2016.01.039
    » http://dx.doi.org/10.1016/j.chemosphere.2016.01.039

Publication Dates

  • Publication in this collection
    2017

History

  • Received
    21 June 2016
  • Reviewed
    17 Oct 2016
  • Accepted
    17 Oct 2016
Associação Brasileira de Recursos Hídricos Av. Bento Gonçalves, 9500, CEP: 91501-970, Tel: (51) 3493 2233, Fax: (51) 3308 6652 - Porto Alegre - RS - Brazil
E-mail: rbrh@abrh.org.br