Acessibilidade / Reportar erro

Comportamento plástico do aço inoxidável austenítico em baixa temperatura

The Uni-axial tensile strength test was used for loading austenitic stainless steel of type 304 at different temperatures below room temperature (from 77 K to 300 K). The relation between austenite stability and work hardening, as affected by testing temperature, is discussed in terms of the relationship between the strain-induced martensitic transformation, which occurs during plastic deformation, and the dislocation slip in austenite. In stress-strain curves that assume the Ludwik equation sigma = sigmao + kepsilonn, where s is the true stress and e the true plastic strain, a meaningful way to analyze work hardening is by plotting log dsigma / depsilon against log epsilon. A significant aspect is the variation of the work hardening rate ds/de with the true plastic strain at different temperatures. The changes in work hardening behavior, which provoked up to three deformation stages, may be associated with different micro-structural processes. The martensitic transformation may be regarded as a deformation process that competes with the usual slip process. The investigation of these stages within the plastic range gives a qualitative picture of how different factors, such as the degree of deformation, temperature and chemical composition of austenite affect the austenite-martensite transformation.

Austenitic stainless steel; tensile test; strain-induced transformation; work hardening


Escola de Minas Rua Carlos Walter Marinho Campos, 57 - Vila Itacolomy, 35400-000 Ouro Preto MG - Brazil, Tel: (55 31) 3551-4730/3559-7408 - Ouro Preto - MG - Brazil
E-mail: editor@rem.com.br