Acessibilidade / Reportar erro

Montane seasonal wetlands: an inventory of its associated flora in Parque Estadual do Ibitipoca, southeast Brazil

Abstract

The aim of the present study was to perform the floristic survey of the wetlands of the Parque Estadual do Ibitipoca (PEIB), comparing them regarding richness, floristic composition and life forms, based on monthly expeditions to collect vascular plants. Eighty-one (81) species were found in the moist grassland, most of them being endemic to Brazil and included in 55 genera and 21 families. The most representative families were Asteraceae (22 spp.), Melastomataceae (nine spp.), Xyridaceae (seven spp.), Poaceae and Orchidaceae (six spp. each), totalizing 62% of the sampled species. Twenty-seven (27) species were found in the seasonal pond, distributed in 23 genera and 11 families. Families with the highest specific richness were Poaceae (eight spp.), Cyperaceae and Asteraceae (five spp. each), totalizing 67% of the sampled species. There was a predominance of hemicryptophyte life form (nearly 43% of the moist grasslands and 63% of the seasonal pond) in both areas. The floristic analysis results showed great importance to conservation with 22% of species under some threatened category, 12 species endemics to Minas Gerais state and one new species of Cyperaceae. Furthermore, only five species occur in both wetland types (5.1% of the species richness).

Key words:
Atlantic Forest; campos rupestres; macrophytes; Serra da Mantiqueira

Resumo

O objetivo do presente trabalho foi realizar o levantamento florístico das áreas úmidas do Parque Estadual do Ibitipoca (PEIB), comparando-as em relação à riqueza, composição florística e formas de vida. Para isso, foram realizadas expedições mensais, ao longo de um ano, para a coleta de plantas vasculares. Nos campos úmidos foram encontradas 81 espécies, 55 gêneros e 21 famílias, sendo as mais representativas Asteraceae (22 spp.), Melastomataceae (nove spp.), Xyridaceae (sete spp.), Poaceae e Orchidaceae (seis spp. cada), totalizando 62% das espécies amostradas. Na lagoa temporária foram encontradas 27 espécies, distribuídas em 23 gêneros e 11 famílias. As famílias com maior riqueza específica foram Poaceae (oito spp.), Cyperaceae e Asteraceae (cinco spp. cada), totalizando 67% das espécies amostradas. Em ambas as áreas, houve predomínio da forma de vida hemicriptófita (aproximadamente 43% nos campos úmidos e 63% na lagoa sazonal). A composição florística mostrou grande importância conservacionista, com presença de doze espécies endêmicas de Minas Gerais, cerca de 22% da riqueza específica presente em alguma categoria de ameaça e a ocorrência de uma espécie nova de Cyperaceae. Além disso, apenas cinco espécies ocorreram em ambas áreas úmidas (5,1% da riqueza específica).

Palavras-chave:
Floresta Atlântica; campos rupestres; macrófitas; Serra da Mantiqueira

Introduction

Mountain regions are hotspots of biological richness due to their environmental heterogeneity and isolation degree, providing support to understand ecological and evolutionary processes that affect ecosystem biodiversity (Körner 2004Körner C (2004) Mountain biodiversity, its causes and function. Ambio Special Report 13: 11-17., 2007Körner C (2007) The use of “altitude” in ecological research. Trends in Ecology and Evolution 22: 569-574.). The Serra da Mantiqueira is one of the major mountain ranges in Brazil and includes high subtropical landscapes that are distributed along the borders of four states: Espírito Santo, Minas Gerais, Rio de Janeiro and São Paulo, within the Atlantic Forest domain (Stehmann et al. 2009Stehmann JR, Salino A, Sobral M & Kamino LHY (2009) Plantas da Floresta Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 516p.).

At over 1,200 m in this region there is a single-character environment called an altitudinal rock complex, which occurs on quartzite (campos rupestres) or igneous rock outcrops (campos de altitude) (Benites et al. 2003Benites VM, Caiafa AN, Mendonça ES, Schaefer CE & KER JC (2003) Solos e vegetação nos complexos rupestres de altitude da mantiqueira e do espinhaço. Floresta e Ambiente 10: 76-85.), comprising several vegetation types that differ floristically from the dominant flora and act as a refuge (IBGE 2012IBGE - Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. 2a ed. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. 271p.), with 1/3 of its richness being endemic (Giulietti et al. 1987Giulietti AM, Menezes NL, Pirani JR, Meguro M & Wanderley M (1987) Flora da Serra do Cipó, MG: caracterização e lista das espécies. Boletim de Botânica da Universidade de São Paulo 9: 1-152.) and contains some of the world’s richest flora (Fernandes et al. 2014Fernandes GW, Barbosa NPU, Negreiros D & Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Natureza e Conservação 12: 162-165.).

In quartzite rock outcrops (campos rupestres), soil depth, acidity, organic matter content and water availability lead to a mosaic landscape formation composed by predominantly herbaceous vegetation with scattered tortuous and sclerophyllous shrubs (fields on rocky or sandy outcrops) and permanent or temporary wetlands (peat bogs, moist grasslands, hydromorphic fields and ponds) (Ribeiro & Fernandes 2000Ribeiro KT & Fernandes GW (2000) Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecology 147: 205-218.). Several studies have shown the floristic richness of the quartzite rock outcrops of Serra da Mantiqueira, and we highlight systematic surveys conducted in the regions of Ibitipoca and Serra Negra in Minas Gerais state (Forzza et al. 2013Forzza RC, Menini Neto L, Salimena FRG & Zappi D (2013) Flora do Parque Estadual do Ibitipoca e seu entorno. Ed. UFJF, Juiz de Fora. 384p.; Salimena et al. 2013Salimena FRG, Matozinhos CN, Abreu NL, Ribeiro JHC, Souza FS & Menini Neto L (2013) Flora fanerogâmica da Serra Negra, Minas Gerais, Brasil. Rodriguésia 64: 311-320.). However, studies concerning the wetlands of these environments are still incipient, both in ecological aspects and floristic composition. Brazil is still far from obtaining a detailed survey of its wetlands, which is a prerequisite for building a coherent national policy for sustainable management and protection of these areas, where a lack of national wetlands classification that considers hydrological conditions and plant communities is one of the fundamental problems (Nunes da Cunha et al. 2015Nunes da Cunha C, Piedade MTF & Junk WJ (2015) Classificação e delineamento das áreas úmidas brasileiras e de seus macrohabitats. EdUFMT, Cuiabá. 165p.).

The floristic and structural surveys of Brazilian wetlands reveal their importance regarding species diversity and richness. Wetlands are essential in groundwater recharge, surface water storage and filtration, biogeochemical cycles and local climate regulation, as well as habitats for several species (Esteves 1998Esteves FDA (1998) Fundamentos de Limnologia, 2a ed. Interciência, Rio de Janeiro. 226p.; Lee et al. 2015Lee SY, Ryan ME, Hamlet AF, Palen WJ, Lawler JJ & Halabisky M (2015) Projecting the hydrologic impacts of climate change on montane wetlands. Plos One 10: 1-24.). However, they are constantly threatened by direct anthropogenic actions, mainly due to deforestation and urban and agricultural hydrographic basin use, which can generate disastrous consequences even when they are in conservation units (Meirelles et al. 2002Meirelles ML, Oliveira RC, Vivaldi LJ, Santos AR & Correia JR (2002) Espécies do estrato herbáceo e profundidade do lençol freático em áreas úmidas do Cerrado. Embrapa Cerrados, Planaltina. 32p.).

Due to the lack of knowledge about montane wetlands, especially in rocky quartzite outcrops, surveys are extremely relevant as an instrument to be utilized in evaluation and planning of management actions. Thus, this study is intended to fill a gap in the knowledge on the Brazilian montane wetlands vegetation and Parque Estadual do Ibitipoca wetlands flora. We also seek to identify the relationships and particularities of its flora in relation to richness, floristic composition and life forms.

Material and Methods

Study site

The Parque Estadual do Ibitipoca (PEIB) (21º40’-21º44’S, 43º52’-43º55’W, 1,000-1,784 m) is a conservation unit located between municipalities of Minas Gerais state, Bias Fortes, Lima Duarte and Santa Rita do Ibitipoca, and inserted in the Mantiqueira range. The park covers 1,488 hectares within the Atlantic Forest domain and has quartzite rock outcrops (campos rupestres) as its main vegetation formation (Vitta 2002Vitta FA (2002) Diversidade e conservação da flora dos campos rupestres da Cadeia do Espinhaço em Minas Gerais. In: Araújo EL, Moura AN, Sampaio EVSB, Gestinari LMS & Carneiro JMT (eds) Biodiversidade, conservação e uso sustentável da flora do Brasil. UFRPE/SBB, Pernambuco. Pp. 90-94.; Menini Neto & Salimena 2013Menini Neto L & Salimena FRG (2013) História do Arraial de Conceição de Ibitipoca e a criação do Parque Estadual do Ibitipoca. In: Forzza RC, Menini Neto L, Salimena FRG & Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno . UFJF, Juiz de Fora. Pp. 17-26.; Oliveira-Filho et al. 2013Oliveira-Filho AT, Fontes MAL, Viana PL, Valente ASM, Salimena FRG & Ferreira FM (2013) O mosaico de fitofisionomias do Parque Estadual do Ibitipoca. In: Forzza RC, Menini Neto L, Salimena FRG & Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno . UFJF, Juiz de Fora. Pp. 53-94.). The local climate is Cwb according to the Köppen classification, which indicates a well-defined precipitation cycle: cold and dry winter (April to September) and rainy summer (October to March). The annual average rainfall is approximately 2,248 mm at 1,350 m, and the average temperature is 18.9 ºC with a minimum of 4 ºC (Rodela & Tarifa 2002;Rodela LG & Tarifa JR (2002) O clima da Serra do Ibitipoca. GEOUSP - Espaço e Tempo 11: 101-113. Rocha 2013Rocha GC (2013) O meio físico da região de Ibitipoca: características e fragilidade. In: Forzza RC, Menini Neto L, Salimena FRG & Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno . UFJF, Juiz de Fora. Pp. 27-52.).

The vegetation can be interpreted as a mosaic of forested areas, grasslands and wetlands with high diversity and endemism (Oliveira-Filho et al. 2013Oliveira-Filho AT, Fontes MAL, Viana PL, Valente ASM, Salimena FRG & Ferreira FM (2013) O mosaico de fitofisionomias do Parque Estadual do Ibitipoca. In: Forzza RC, Menini Neto L, Salimena FRG & Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno . UFJF, Juiz de Fora. Pp. 53-94.). The grasslands occupy the second largest area of the park, with 22.4% of the total, occurring on clay soils or slabs and quartzite cliffs (Oliveira-Filho et al. 2013). This physiognomy includes subdivisions such as dry quartzite rock outcrops and moist quartzite rock outcrops (wetlands), controlled by the soil depth and flooding periodicity (Dias et al. 2002Dias HCT, Fernandes Filho EI, Schaefer CEGR, Fontes LEF & Ventorim LB (2002) Geoambientes do Parque Estadual do Ibitipoca, município de Lima Duarte-MG. Revista Árvore 26: 777-786.).

The wetlands in the park are represented by moist grasslands and one seasonal pond. The areas are small but enough to sustain a seasonal and predictable flood from October to March (rainy season). In this season, the moist grasslands have superficial flooding with a maximum depth of 10 cm. This vegetation occurs disjointed and interspersed with the dry quartzite rock outcrops (Fig. 1a). During the drought, it is possible to distinguish the dry quartzite rock outcrops by the soil darkness and the presence of bryophytes species covering a great part of the surface. The seasonal pond (Fig. 1b-e), locally named Lagoa seca is a closed depression that accumulates water during the rainy season due to the rainfall and superficial groundwater oscillation, with a maximum depth of 1 m (Fig. 1d-e). It is surrounded by cloud forests and is distinct from the moist grasslands by the presence of species which are completely adapted to aquatic life.

Figure 1
a-e. Wetlands of the Parque Estadual do Ibitipoca - a. moist grasslands; b-e. seasonal pond (lagoa seca) - b-c. dry season; d-e. rainy season.

Inventory

Sixteen trips to the study areas were carried out for 12 months (2015-2016). We selected four areas of moist grasslands located at the west part of the park, between 1,560 to 1,760 m (Tab. 1). Systematic exploration was conducted in the moist grasslands and seasonal pond to survey the flora. The checklist also included samples previously collected in the PEIB’ wetlands that were deposited in the herbarium of Universidade Federal de Juiz de Fora (CESJ) and identified by specialists. Collection and herborization followed the usual techniques for vascular plants (Fidalgo & Bononi 1989Fidalgo O & Bononi VL (1989) Técnicas de coleta, preservação e herborização de material botânico. Instituto de Botânica, São Paulo. 61p.) and the vouchers were incorporated into the CESJ. Identification was performed using specialized bibliography with comparisons to the CESJ collection and by consulting specialists. The classification of families followed the Angiosperm Phylogeny group (APG IV 2016APG IV - Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.) and the authors and species names were checked at BFG (2018)BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.. The species were grouped into the following life form classes: phanerophytes, chamaephytes, geophytes (terrestrial cryptophytes), hydrophytes (aquatic cryptophytes), hemicryptophytes, therophytes and lianas (Raunkiaer 1934Raunkiaer C (1934) The life forms of plants and statistical plant geography. Claredon Press, Oxford. 632p.; Braun-Blanquet 1979Braun-Blanquet J (1979) Fitosociología. Bases para el estudio de comunidades vegetales. H. Blume E, Madrid. 820p.).

Table 1
Location and altitude of the wetlands study area in Parque Estadual do Ibitipoca.

The conservation status of the species at national levels followed the CNCFlora (2018)CNCFlora (2018) Lista vermelha. Disponível em <http://cncflora.jbrj.gov.br/portal/pt-br/listavermelha>. Acesso em agosto 2018.
http://cncflora.jbrj.gov.br/portal/pt-br...
database. Species endemism and distributions were obtained from BFG (2018)BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527. and taxonomic reviews. We additionally identified alien species based on the Base de Dados Nacional de Espécies Exóticas Invasoras I3N Brasil (Instituto Hórus 2018Instituto Hórus (2018) Base de Dados Nacional de Espécies Exóticas Invasoras I3N Brasil. Disponível em <http://i3n.institutohorus.org.br/www/>. Acesso em agosto 2018.
http://i3n.institutohorus.org.br/www/...
).

Results

We recorded 148 specimens, representing 102 species of vascular plants distributed in 69 genera and 25 families in the PEIB wetlands, including a new species for science (Tab. 2).

Table 2
List of species collected in the wetlands of the Parque Estadual do Ibitipoca, Minas Gerais, Brazil, indicating: Voucher (CESJ); Location (MG = moist grasslands, SP = seasonal pond); Conservation Status (NA = not assessed; SD = slightly disturbing; AT = almost threatened; VU = vulnerable; EN = endangered); Life form (LF) (PHA = phanerophyte; CAM = chamaephyte; HEM = hemicryptophyte; GEO = geophyte; HYD = hydrophyte; TER = terophyte; LI = liana and Endemism). The species highlighted with (*) represent those endemics to Brazil; underlined are endemic to Minas Gerais state; (§) are new records for the park; and ( ? ) new species. In parentheses, ahead of the family name are the numbers of genera and species of each family.

Eighty-one (81) angiosperm species were found in the moist grasslands, representing 55 genera and 21 families. The most representative families were Asteraceae (22 species), Melastomataceae (nine spp.), Xyridaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). These families account for about 62% of the sampled species. The genus Xyris presented the highest specific representativeness (seven spp.), followed by Mikania and Baccharis (four spp. each). Twenty-seven (27) species were recorded at the seasonal pond, representing 23 genera and 11 families. Poaceae was the most representative (eight spp.), followed by Cyperaceae and Asteraceae (five spp. each), accounting for nearly 67% of the sampled species. The genus with the highest specific representativeness was Andropogon (three spp.), followed by Baccharis and Bulbostylis (two spp. each). Among the sampled genera, 74% are represented by only one species. About 70% of the recorded species have worldwide distribution. Some taxa have been found only in the studied area, not occurring in other areas of the park.

About 15% of the sampled species are new records for the park (Tab. 2). Beyond that, only five species are common to both areas (5.1% of the species richness). The richness found in the PEIB wetlands is expressive, despite the small size of the areas (Tab. 3).

Table 3
Comparison of altitude, area and species richness among wetland

The hemicryptophyte life form was the most representative in both areas, representing nearly 43% of the moist grasslands flora and 63% of the seasonal pond. At the moist grasslands phanerophytes represent about 21% of the species found, followed by geophytes (11%), chamaephytes and therophytes (9% each), and finally lianas (7%); whereas in the seasonal pond phanerophytes, hydrophytes, therophytes, chamaephytes and lianas have approximately 7% of species each (Fig. 2).

Figure 2
Species richness according to life-form spectra of the wetlands of Parque Estadual do Ibitipoca.

Discussion

The representativeness of Asteraceae in the moist grasslands is expected for open areas, since they provide the ideal conditions of high luminosity intensity, for their establishment (Tannus & Assis 2004Tannus JLS & Assis MA (2004) Composição de espécies vasculares de campo sujo e campo úmido em área de cerrado, Itirapina - SP, Brasil. Revista Brasileira de Botânica 27: 489-506.; Amaral et al. 2013Amaral AG, Munhoz CBR, Eugênio CUO & Felfili JM (2013) Vascular flora in dry-shrub and wet grassland Cerrado seven years after a fire, Federal District, Brazil. Check List 9: 487-503.). Poaceae and Cyperaceae stand out in the seasonal pond because part of its representatives are perennials and have similar ecological characteristics, propagating efficiently and dominating the environment both in flood and periods of low water column (Bove et al. 2003Bove CP, Santos A, Gil B & Moreira CB (2003) Hidrófitas fanerogâmicas de ecossistemas aquáticos temporários da planície costeira do estado do Rio de Janeiro, Brasil. Acta Botanica Brasilica 17: 119-135.). In addition, Cyperaceae species act as monocot ridge mats, increasing the environment heterogeneity according to the availability of water and mechanical support, thus facilitating the next successional steps (Barthlott et al. 1993Barthlott W, Groger A & Porembski S (1993) Some remarks on the vegetation of tropical inselberg: diversity and ecological differentiation. Biogeographyca 69: 105-124.; Meirelles 1996Meirelles ST (1996) Estrutura da comunidade e características funcionais dos componentes da vegetação de um afloramento rochoso em Atibaia. Tese de Doutorado. Universidade Federal de São Carlos, São Carlos. 270p.).

In general, the sampled families are well represented in other floristic surveys in the complexos rupestres and other Brazilians wetlands, such as the banhados wetlands in Santa Catarina state (Magalhães et al. 2013Magalhães TL, Lopes R & Mantovani A (2013) Levantamento florístico em três áreas úmidas (banhados) no Planalto de Santa Catarina, Sul do Brasil. Revista Brasileira de Biociêncas 11: 269-279.; Silva et al. 2013aSilva KM, Bortoluzzi RLC, Gomes JP & Mantovani A (2013a) Espécies bioativas em áreas úmidas do Planalto Catarinense. Revista Brasileira de Plantas Medicinais 15: 483-493.), wetlands in Rio Grande do Sul (Bertoluci 2004Bertoluci VDM (2004) Inventário, biodiversidade e conservação de áreas úmidas no município de São Leopoldo. Dissertação de Mestrado. Universidade do Vale do Rio do Sinos, São Leopoldo. 70p.; Boldrini et al. 2008Boldrini II, Trevisan R & Schneider AA (2008) Estudo florístico e fitossociológico de uma área às margens da lagoa do Armazém, Osório, Rio Grande do Sul, Brasil. Revista Brasileira de Biociências 6: 355-367.; Rolon et al. 2010Rolon AS, Homem HF & Maltchik L (2010) Aquatic macrophytes in natural and managed wetlands of Rio Grande do Sul State, Southern Brazil. Acta Limnologica Brasiliensia 22: 133-146.), Mato Grosso do Sul (Moreira et al. 2011Moreira SN, Pott A, Pott VJ & Damasceno-Junior GA (2011) Structure of pond vegetation of a vereda in the Brazilian Cerrado. Rodriguésia 62: 721-729.) Goiás (Munhoz & Felfili 2006Munhoz CBR & Felfili JM (2006) Floristics of the herbaceous and subshrub layer of a moist grassland in the Cerrado biosphere reserve (Alto Paraíso de Goiás), Brazil. Edinburgh Journal of Botany 63: 343-354., 2007Munhoz CBR & Felfili JM (2007) Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota Neotropica 7: 205-215.) states, and other seasonal wetlands (Bertuzzi 2013Bertuzzi T (2013) Florística de ecossistemas aquáticos temporários na região de Pelotas, Rio Grande do Sul, Brasil. Dissertação de Mestrado. Universidade Federal de Santa Maria, Santa Maria. 207p.). Moreover, the sampled families resemble what was found by Meyer & Franceschinelli (2010) in quartzite rock outcrops wetlands at the Cadeia do Espinhaço range.

The richest sampled genera (Xyris, Mikania, Baccharis, Andropogon and Bulbostylis) are common in swampy areas, rivers, lakes, grasslands and montane vegetation: Xyris has a Pantropical distribution such as Mikania, which also has Minas Gerais state as one of its diversity centers (Ritter & Miotto 2005Ritter MR & Miotto STS (2005) Taxonomia de Mikania Willd. (Asteraceae) no Rio Grande do Sul, Brasil. Hoehnea 32: 309-359.). Baccharis has a Pan-American distribution, with high richness in the Andes. Moreover, it also occurs in other Brazilian grasslands (Borges & Forzza 2008Borges RAX & Forzza RC (2008) A tribo Astereae (Asteraceae) no Parque Estadual do Ibitipoca, Minas Gerais, Brasil. Boletim de Botânica da Universidade de São Paulo 26: 131-154.). Both Andropogon and Bulbostylis have Tropical distribution and are very common in other Brazilian wetlands (Dias-Melo et al. 2009Dias-Melo R, Ferreira FM & Forzza R (2009) Panicoideae (Poaceae) no Parque Estadual de Ibitipoca, Minas Gerais, Brasil. Boletim de Botânica Universidade de São Paulo 27: 153-187.; Rolon & Maltchik 2006Rolon AS & Maltchik L (2006) Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221-231.).

The PEIB wetlands have distinct and singular floristic composition, probably due to floristic association with the adjacent physiognomy, that may act as a species pool due its proximity, and the different levels of flooding. The cloud forests that surround the seasonal pond and the area declivity together create a flood of more than 1 m of depth, leading to species submersion. On the other hand, the water depth in the moist grasslands does not exceed 10 cm. The temporary submersion of the seasonal pond species may be acting as an environmental filter and contributing to a smaller colonization of the species from the dry grasslands, and consequently resulting in the occurrence of species that only exist in that area, such as the new Cyperaceae species.

Regarding other recent surveys in altitudinal wetlands, it was not possible to observe an association between species richness and altitude (Tab. 3). Although the widely known concept that a decline in species richness occurs with altitude due to the lower nutrients availability and smaller rates of nitrogen mineralization and nitrification (Marrs et al. 1988Marrs RH, Proctor J, Heaney A & Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. Journal of Ecology 76: 466-482.), studies that contemplate this relation are rare in wetlands (Rolon & Maltchik 2006Rolon AS & Maltchik L (2006) Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221-231.). In the present work, it was possible to show that there are altitudinal wetlands with considerable richness showing an important composition to conservation, despite its size. It is possible to see a tendency to increase in species number in relation to an increase in the sampled area, except for the work by Meyer & Franceschinelli (2010)Meyer ST & Franceschinelli EV (2010) Estudo florístico de plantas vasculares associadas às áreas úmidas na Cadeia do Espinhaço (MG), Brasil. Revista Brasileira de Botânica 33: 677-691., probably for sampling lacustrine environments and wetlands adjacent to rivers, considering the surrounding flora extending up to 2.5 m from the shore. These findings corroborate the results of Vestergaard & Sand-Jensen (2000)Vestergaard O & Sand-Jensen K (2000) Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Canadian Journal Fisheries Aquatic Sciences 57: 2022-2031., which show that species richness is more related to colonization area over the wetland’s total surface area. According to Rolon & Maltchik (2006)Rolon AS & Maltchik L (2006) Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221-231., altitude and size are factors that influence species richness in flooded systems or swamps and are not significant in lacustrine systems.

Hemicryptophyte species show major facility in surviving in hydric stressed environments and are related to altitude fields and Brazilian savanna moist grasslands (e.g., Caiafa & Silva 2005Caiafa AN & Silva AF (2005) Composição florística e espectro biológico de um campo de altitude no Parque Estadual da Serra do Brigadeiro, Minas Gerais - Brasil. Rodriguésia 56: 163-173.; Tannus 2007Tannus JLS (2007) Estudo da vegetação dos campos úmidos de Cerrado: aspectos florísticos e ecológicos. Tese de Doutorado. Universidade Estadual Paulista, Rio Claro. 138p.). These species are mostly perennials and capable of resisting the unfavorable seasons of nutritional deficits occurring in the complexos rupestres and the seasonal water level fluctuation. This resistance is mainly due to different metabolic, physiologic and morphologic patterns existent for surviving anoxic and undernourished periods (Keddy & Reznicek 1986Keddy PA & Reznicek AA (1986) Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. Journal Great Lakes Research 12: 25-36.; Campbell et al. 2016Campbell D, Keddy PA, Broussard M & McFalls-Smith TB (2016) Small changes in flooding have large consequences: experimental data from ten wetland plants. Wetlands 36: 457-466.). In contrast, annual or terophyte species have minor occurrence in both areas due to germination which only occurs when the water level decreases and are capable to temporarily explore friendlier spots. These species only establish when they can complete their life cycles rapidly, with seeds protected by the soil (Keddy & Reznicek 1986Keddy PA & Reznicek AA (1986) Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. Journal Great Lakes Research 12: 25-36.; Martins & Batalha 2001Martins FR & Batalha MA (2001) Formas de vida, espectro biológico de Raunkiaer e fisionomia da vegetação. Available at <https://www2.ib.unicamp.br/profs/fsantos/bt682/2003/Apostila-FormasVida-2003.pdf>. Access on December 2016.
https://www2.ib.unicamp.br/profs/fsantos...
). The altitude could also contribute to the proportion of hemicryptophyte life forms. There is a decrease of annual species as the altitude increase in forests in China at an altitudinal gradient of 1,400 to 2,800 m, and the inverse occurs for perennial species (Wang et al. 2002Wang G, Zhou G, Yang L & Li Z (2002) Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology 165: 169-181.).

The moist grasslands flora is mostly composed of endemic species from Brazil (approximately 56%), with twelve of them being endemic to Minas Gerais state. In addition, 25 taxa have neotropical distribution. The predominance of endemic species is very unusual for wetlands due to clonal reproduction, high dispersion rates and the plasticity of its species (Santamaría 2002Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137-154.). The occurrence of the great number of endemic species in the PEIB moist grasslands not typical from flooded places may be explained by the occasional occurrence of some of them, that are generally found in other physiognomies in the park. Furthermore, the predictable flood pulse promotes the development of adaptations and endemism, with some organisms benefitting during the wet season, and others during the dry season (Nunes da Cunha et al. 2015Nunes da Cunha C, Piedade MTF & Junk WJ (2015) Classificação e delineamento das áreas úmidas brasileiras e de seus macrohabitats. EdUFMT, Cuiabá. 165p.). In addition, the convergence in species adaptations in quartzite rock outcrops also contributes to the occurrence of endemic species (Alves & Kolbek 1994Alves RJV & Kolbek J (1994) Plant-species endemisms in savanna vegetation on table mountains (campos rupestres) in Brazil. Vegetatio 113: 125-139.; Giulietti et al. 1987Giulietti AM, Menezes NL, Pirani JR, Meguro M & Wanderley M (1987) Flora da Serra do Cipó, MG: caracterização e lista das espécies. Boletim de Botânica da Universidade de São Paulo 9: 1-152.; Porembski & Barthlott 2000Porembski S & Barthlott W (2000) Granitic and gneissuc outcrops (inselbergs) as centers of diversity for desiccation tolerant vascular plants. Plant Ecology 151: 19-28.).

About 22% of the richness are at some national threatened degree (CNCFlora 2018), among which we may highlight: Ditassa linearis as “threatened” conservation status, Chinolaena lychnophorioides as “vulnerable” and Lobelia hilaireana, Myrsine glazioviana and Xyris cf. fusca as “endangered”.

Melinis minutiflora was the only alien species recorded in the PEIB wetlands. Despite the minor presence of alien species in the PEIB wetlands, the frequency of Melinis minutiflora in the seasonal pond is noteworthy. This species has African origin and was probably introduced in the PEIB through livestock grazing before the implantation of this conservation unit (Salimena-Pires 1997Salimena-Pires FR (1997) Aspectos fitofisionômicos e vegetacionais do Parque Estadual do Ibitipoca, Minas Gerais, Brasil. In: Rocha GC (ed.) Anais do 1º Seminário de pesquisas sobre o Parque Estadual do Ibitipoca, Juiz de Fora. Pp. 51-60.). It is very common in anthropized areas, as well as close to trails (Dias-Melo et al. 2009Dias-Melo R, Ferreira FM & Forzza R (2009) Panicoideae (Poaceae) no Parque Estadual de Ibitipoca, Minas Gerais, Brasil. Boletim de Botânica Universidade de São Paulo 27: 153-187.; Herrera et al. 2016Herrera I, Goncalves E, Pauchard A & Bustamante RO (2016) Manual de plantas invasoras de sudamérica. Trama Impresores S.A, Chile. 116p.) and has an efficient vegetative growth, easily dispersing to several locations. Dense clumps are formed in the seasonal pond at the water edges throughout the year. Its presence could work as a barrier hampering the arrival and germination of native seeds and the recruitment of seedlings (Hughes & Vitousek 1993Hughes F & Vitousek PM (1993) Barriers to shrub reestablishment following fire in the seasonal submontane zone of Hawai’i. Oecologia 93: 557-563.). The occurrence of alien species is a concerning issue due to its aggressiveness and capability of excluding native species by competing for resources. Moreover, M. minutiflora is capable to deprive the vegetation physiognomy in a few years (Martins et al. 2009Martins CR, Hay JDV & Carmona R (2009) Potencial invasor de duas cultivares de Melinis minutiflora no Cerrado brasileiro - características de sementes e estabelecimento de plântulas. Revista Árvore 33: 713-722.; Silva et al. 2013bSilva RR, Coelho FETA, Anjos MA & Vaz Filho V (2013b) Controle do Capim-gordura nas Áreas de Recuperação Ambiental da Mineração Corumbaense Reunida (MCR), Corumbá, MS. Biodiversidade Brasileira 3: 237-242.).

The new Cyperaceae species belongs to Eleocharis R. Br. subgenus Scirpidium. This subgenus occurs in subtropical regions or in high American altitudes such as the Andes. This would be the most tropical sample for the subgenus (Rafael Trevisan, personal communication). The most related species are Eleocharis radicans (Poir.) Kunth, found in the midwest, south and southeast of Brazil and in altitude fields; Eleocharis tucumanensis Barros and Eleocharis exigua (Kunth) Roem & Schult., exclusively in the Andes. This taxon has a great frequency in the seasonal pond with restricted occurrence to this site, which emphasizes the local importance for the taxon conservation, which may be considered micro endemic.

Although some of the sampled species also occur in other areas of the PEIB, the capability of established on the wetlands may be due some adaptation to a flooded environment. Thus, our work suggests that flooding acts as a filter to colonization in the PEIB wetlands, probably related to species submersion, generating differences in the most abundant life forms. In addition, the low number of shared species between both wetlands reaffirms the great physiognomic disparity with the presence of unique characteristics between them.

Quartzite rock outcrop edaphic patterns and flood amplitudes resulted in great floristic composition with conservation importance due to the presence of endemic species to Brazil and Minas Gerais state, endangered species, and a new species for science. However, it is important to highlight that the occurrence of Melinis minutiflora in the seasonal pond is of concern.

Thus, with all the known diversity and endemism for the Serra da Mantiqueira, especially on quartzite rock outcrops and a lack of knowledge from the floristic point of view of its wetlands, it is extremely important to continue working in these unique, rich and special environments, especially to better understand the plant colonization and establishment in these environments.

Acknowledgements

We thank the Instituto Estadual de Florestas (IEF) for the collection license; the Parque Estadual do Ibitipoca and Programa de Pós-Graduação em Ecologia (PGECOL) for logistic support. We thank the specialists for the botanical identifications: Carolina N. Matozinhos (Apocynaceae), Fabrício M. Ferreira (Poaceae), Inês Cordeiro (Euphorbiaceae), José Floriano B. Pastore (Polygalaceae), Juliana A. Oliveira (Rubiaceae), Lívia Echternacht (Eriocaulaceae), Luciana L. Justino (Melastomataceae), Michelle Christine A. Mota (Lamiaceae), Rafael Borges and Silvana Ferreira (Asteraceae both) and especially Rafael Trevisan, a Cyperaceae specialist for the identification of the new species. We are also thankful for the help provided by other CESJ herbarium students and the Plant Ecology Laboratory of the Universidade Federal de Juiz de Fora (UFJF), during field activities. Finally, we thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the Master’s degree scholarship for the first author Finance Code 001.

References

  • Alves RJV & Kolbek J (1994) Plant-species endemisms in savanna vegetation on table mountains (campos rupestres) in Brazil. Vegetatio 113: 125-139.
  • Amaral AG, Munhoz CBR, Eugênio CUO & Felfili JM (2013) Vascular flora in dry-shrub and wet grassland Cerrado seven years after a fire, Federal District, Brazil. Check List 9: 487-503.
  • APG IV - Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.
  • Barthlott W, Groger A & Porembski S (1993) Some remarks on the vegetation of tropical inselberg: diversity and ecological differentiation. Biogeographyca 69: 105-124.
  • Benites VM, Caiafa AN, Mendonça ES, Schaefer CE & KER JC (2003) Solos e vegetação nos complexos rupestres de altitude da mantiqueira e do espinhaço. Floresta e Ambiente 10: 76-85.
  • Bertoluci VDM (2004) Inventário, biodiversidade e conservação de áreas úmidas no município de São Leopoldo. Dissertação de Mestrado. Universidade do Vale do Rio do Sinos, São Leopoldo. 70p.
  • Bertuzzi T (2013) Florística de ecossistemas aquáticos temporários na região de Pelotas, Rio Grande do Sul, Brasil. Dissertação de Mestrado. Universidade Federal de Santa Maria, Santa Maria. 207p.
  • BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.
  • Boldrini II, Trevisan R & Schneider AA (2008) Estudo florístico e fitossociológico de uma área às margens da lagoa do Armazém, Osório, Rio Grande do Sul, Brasil. Revista Brasileira de Biociências 6: 355-367.
  • Borges RAX & Forzza RC (2008) A tribo Astereae (Asteraceae) no Parque Estadual do Ibitipoca, Minas Gerais, Brasil. Boletim de Botânica da Universidade de São Paulo 26: 131-154.
  • Bove CP, Santos A, Gil B & Moreira CB (2003) Hidrófitas fanerogâmicas de ecossistemas aquáticos temporários da planície costeira do estado do Rio de Janeiro, Brasil. Acta Botanica Brasilica 17: 119-135.
  • Braun-Blanquet J (1979) Fitosociología. Bases para el estudio de comunidades vegetales. H. Blume E, Madrid. 820p.
  • Caiafa AN & Silva AF (2005) Composição florística e espectro biológico de um campo de altitude no Parque Estadual da Serra do Brigadeiro, Minas Gerais - Brasil. Rodriguésia 56: 163-173.
  • Campbell D, Keddy PA, Broussard M & McFalls-Smith TB (2016) Small changes in flooding have large consequences: experimental data from ten wetland plants. Wetlands 36: 457-466.
  • CNCFlora (2018) Lista vermelha. Disponível em <http://cncflora.jbrj.gov.br/portal/pt-br/listavermelha>. Acesso em agosto 2018.
    » http://cncflora.jbrj.gov.br/portal/pt-br/listavermelha
  • Dias-Melo R, Ferreira FM & Forzza R (2009) Panicoideae (Poaceae) no Parque Estadual de Ibitipoca, Minas Gerais, Brasil. Boletim de Botânica Universidade de São Paulo 27: 153-187.
  • Dias HCT, Fernandes Filho EI, Schaefer CEGR, Fontes LEF & Ventorim LB (2002) Geoambientes do Parque Estadual do Ibitipoca, município de Lima Duarte-MG. Revista Árvore 26: 777-786.
  • Esteves FDA (1998) Fundamentos de Limnologia, 2a ed. Interciência, Rio de Janeiro. 226p.
  • Fernandes GW, Barbosa NPU, Negreiros D & Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Natureza e Conservação 12: 162-165.
  • Fidalgo O & Bononi VL (1989) Técnicas de coleta, preservação e herborização de material botânico. Instituto de Botânica, São Paulo. 61p.
  • Forzza RC, Menini Neto L, Salimena FRG & Zappi D (2013) Flora do Parque Estadual do Ibitipoca e seu entorno. Ed. UFJF, Juiz de Fora. 384p.
  • Giulietti AM, Menezes NL, Pirani JR, Meguro M & Wanderley M (1987) Flora da Serra do Cipó, MG: caracterização e lista das espécies. Boletim de Botânica da Universidade de São Paulo 9: 1-152.
  • Herrera I, Goncalves E, Pauchard A & Bustamante RO (2016) Manual de plantas invasoras de sudamérica. Trama Impresores S.A, Chile. 116p.
  • Hughes F & Vitousek PM (1993) Barriers to shrub reestablishment following fire in the seasonal submontane zone of Hawai’i. Oecologia 93: 557-563.
  • IBGE - Instituto Brasileiro de Geografia e Estatística (2012) Manual técnico da vegetação brasileira. 2a ed. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. 271p.
  • Instituto Hórus (2018) Base de Dados Nacional de Espécies Exóticas Invasoras I3N Brasil. Disponível em <http://i3n.institutohorus.org.br/www/>. Acesso em agosto 2018.
    » http://i3n.institutohorus.org.br/www/
  • Keddy PA & Reznicek AA (1986) Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. Journal Great Lakes Research 12: 25-36.
  • Körner C (2004) Mountain biodiversity, its causes and function. Ambio Special Report 13: 11-17.
  • Körner C (2007) The use of “altitude” in ecological research. Trends in Ecology and Evolution 22: 569-574.
  • Lee SY, Ryan ME, Hamlet AF, Palen WJ, Lawler JJ & Halabisky M (2015) Projecting the hydrologic impacts of climate change on montane wetlands. Plos One 10: 1-24.
  • Magalhães TL, Lopes R & Mantovani A (2013) Levantamento florístico em três áreas úmidas (banhados) no Planalto de Santa Catarina, Sul do Brasil. Revista Brasileira de Biociêncas 11: 269-279.
  • Marrs RH, Proctor J, Heaney A & Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. Journal of Ecology 76: 466-482.
  • Martins CR, Hay JDV & Carmona R (2009) Potencial invasor de duas cultivares de Melinis minutiflora no Cerrado brasileiro - características de sementes e estabelecimento de plântulas. Revista Árvore 33: 713-722.
  • Martins FR & Batalha MA (2001) Formas de vida, espectro biológico de Raunkiaer e fisionomia da vegetação. Available at <https://www2.ib.unicamp.br/profs/fsantos/bt682/2003/Apostila-FormasVida-2003.pdf>. Access on December 2016.
    » https://www2.ib.unicamp.br/profs/fsantos/bt682/2003/Apostila-FormasVida-2003.pdf
  • Meirelles ML, Oliveira RC, Vivaldi LJ, Santos AR & Correia JR (2002) Espécies do estrato herbáceo e profundidade do lençol freático em áreas úmidas do Cerrado. Embrapa Cerrados, Planaltina. 32p.
  • Meirelles ST (1996) Estrutura da comunidade e características funcionais dos componentes da vegetação de um afloramento rochoso em Atibaia. Tese de Doutorado. Universidade Federal de São Carlos, São Carlos. 270p.
  • Menini Neto L & Salimena FRG (2013) História do Arraial de Conceição de Ibitipoca e a criação do Parque Estadual do Ibitipoca. In: Forzza RC, Menini Neto L, Salimena FRG & Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno . UFJF, Juiz de Fora. Pp. 17-26.
  • Meyer ST & Franceschinelli EV (2010) Estudo florístico de plantas vasculares associadas às áreas úmidas na Cadeia do Espinhaço (MG), Brasil. Revista Brasileira de Botânica 33: 677-691.
  • Moreira SN, Pott A, Pott VJ & Damasceno-Junior GA (2011) Structure of pond vegetation of a vereda in the Brazilian Cerrado. Rodriguésia 62: 721-729.
  • Munhoz CBR & Felfili JM (2006) Floristics of the herbaceous and subshrub layer of a moist grassland in the Cerrado biosphere reserve (Alto Paraíso de Goiás), Brazil. Edinburgh Journal of Botany 63: 343-354.
  • Munhoz CBR & Felfili JM (2007) Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota Neotropica 7: 205-215.
  • Nunes da Cunha C, Piedade MTF & Junk WJ (2015) Classificação e delineamento das áreas úmidas brasileiras e de seus macrohabitats. EdUFMT, Cuiabá. 165p.
  • Oliveira-Filho AT, Fontes MAL, Viana PL, Valente ASM, Salimena FRG & Ferreira FM (2013) O mosaico de fitofisionomias do Parque Estadual do Ibitipoca. In: Forzza RC, Menini Neto L, Salimena FRG & Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno . UFJF, Juiz de Fora. Pp. 53-94.
  • Porembski S & Barthlott W (2000) Granitic and gneissuc outcrops (inselbergs) as centers of diversity for desiccation tolerant vascular plants. Plant Ecology 151: 19-28.
  • Raunkiaer C (1934) The life forms of plants and statistical plant geography. Claredon Press, Oxford. 632p.
  • Ribeiro KT & Fernandes GW (2000) Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecology 147: 205-218.
  • Ritter MR & Miotto STS (2005) Taxonomia de Mikania Willd. (Asteraceae) no Rio Grande do Sul, Brasil. Hoehnea 32: 309-359.
  • Rocha GC (2013) O meio físico da região de Ibitipoca: características e fragilidade. In: Forzza RC, Menini Neto L, Salimena FRG & Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno . UFJF, Juiz de Fora. Pp. 27-52.
  • Rodela LG & Tarifa JR (2002) O clima da Serra do Ibitipoca. GEOUSP - Espaço e Tempo 11: 101-113.
  • Rolon AS, Homem HF & Maltchik L (2010) Aquatic macrophytes in natural and managed wetlands of Rio Grande do Sul State, Southern Brazil. Acta Limnologica Brasiliensia 22: 133-146.
  • Rolon AS & Maltchik L (2006) Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221-231.
  • Salimena-Pires FR (1997) Aspectos fitofisionômicos e vegetacionais do Parque Estadual do Ibitipoca, Minas Gerais, Brasil. In: Rocha GC (ed.) Anais do 1º Seminário de pesquisas sobre o Parque Estadual do Ibitipoca, Juiz de Fora. Pp. 51-60.
  • Salimena FRG, Matozinhos CN, Abreu NL, Ribeiro JHC, Souza FS & Menini Neto L (2013) Flora fanerogâmica da Serra Negra, Minas Gerais, Brasil. Rodriguésia 64: 311-320.
  • Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137-154.
  • Silva KM, Bortoluzzi RLC, Gomes JP & Mantovani A (2013a) Espécies bioativas em áreas úmidas do Planalto Catarinense. Revista Brasileira de Plantas Medicinais 15: 483-493.
  • Silva RR, Coelho FETA, Anjos MA & Vaz Filho V (2013b) Controle do Capim-gordura nas Áreas de Recuperação Ambiental da Mineração Corumbaense Reunida (MCR), Corumbá, MS. Biodiversidade Brasileira 3: 237-242.
  • Stehmann JR, Salino A, Sobral M & Kamino LHY (2009) Plantas da Floresta Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 516p.
  • Tannus JLS (2007) Estudo da vegetação dos campos úmidos de Cerrado: aspectos florísticos e ecológicos. Tese de Doutorado. Universidade Estadual Paulista, Rio Claro. 138p.
  • Tannus JLS & Assis MA (2004) Composição de espécies vasculares de campo sujo e campo úmido em área de cerrado, Itirapina - SP, Brasil. Revista Brasileira de Botânica 27: 489-506.
  • Vestergaard O & Sand-Jensen K (2000) Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Canadian Journal Fisheries Aquatic Sciences 57: 2022-2031.
  • Vitta FA (2002) Diversidade e conservação da flora dos campos rupestres da Cadeia do Espinhaço em Minas Gerais. In: Araújo EL, Moura AN, Sampaio EVSB, Gestinari LMS & Carneiro JMT (eds) Biodiversidade, conservação e uso sustentável da flora do Brasil. UFRPE/SBB, Pernambuco. Pp. 90-94.
  • Wang G, Zhou G, Yang L & Li Z (2002) Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology 165: 169-181.

Edited by

Area Editor: Dra. Natalia Ivanauskas

Publication Dates

  • Publication in this collection
    05 Oct 2020
  • Date of issue
    2020

History

  • Received
    05 Sept 2018
  • Accepted
    05 Mar 2019
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br