SciELO - Scientific Electronic Library Online

 
vol.33 issue2Study on patient dosimetry and image quality in digital mammographyPhantoms for diffusion-weighted imaging and diffusion tensor imaging quality control: a review and new perspectives author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Research on Biomedical Engineering

Print version ISSN 2446-4732On-line version ISSN 2446-4740

Abstract

SOUZA, Delmar Carvalho de et al. Power amplifier circuits for functional electrical stimulation systems. Res. Biomed. Eng. [online]. 2017, vol.33, n.2, pp.144-155. ISSN 2446-4732.  https://doi.org/10.1590/2446-4740.07716.

Introduction:

Functional electrical stimulation (FES) is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI). One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients.

Methods

A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator) and (circuit or design))” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles.

Discussion

The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical hazards and discomfort to the individual submitted to FES application.

Keywords : Functional electrical stimulator; SCI; Output stage; Power stage; Artificial gait rehabilitation.

        · text in English     · English ( pdf )