SciELO - Scientific Electronic Library Online

 
vol.53 issue2Preliminary evaluation of yield losses due to a new abnormality affecting cotton crops in BrazilSoybean breeding line tolerante to high manganese concentration author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Bragantia

Print version ISSN 0006-8705On-line version ISSN 1678-4499

Bragantia vol.53 no.2 Campinas  1994

http://dx.doi.org/10.1590/S0006-87051994000200016 

VI. ADUBAÇÃO E NUTRIÇÃO DE PLANTAS

 

Sistema radicular e nutrição da soja em função da compactação do solo

 

Soybean nutrition and root growth as affected by soil compaction

 

 

Ciro Antonio RosolemI, III; Ana Cristina da Silveira AlmeidaII; Luiz Vitor Silva do SacramentoII

IDepartamento de Agricultura e Melhoramento Vegetal, Universidade Estadual Paulista, Caixa Postal 237, 18603-970 Botucatu (SP)
IIAlunos do Curso de Pós-Graduação em Agricultura, FCA/UNESP, Botucatu (SP)
IIICom bolsa de pesquisa do CNPq

 

 


RESUMO

A compactação do solo diminui o crescimento radicular, podendo afetar tanto o desenvolvimento quanto a produtividade da soja. No presente trabalho, estudaram-se os efeitos da compactação subsuperficial na morfologia radicular da soja (Glycine max L. Merrill), procurando relacioná-los ao crescimento e à nutrição da planta. O 'Primavera' foi cultivado até os 37 dias da emergência, em vasos onde a camada de 15-18,5 cm de profundidade foi campactada a 1,03, 1,25, 1,48 e 1,72 g/cm3, em um latossolo vermelho-escuro com 80% de areia e 16% de argila e cuja compactação em subsuperfície levou a um acúmulo de raízes na camada superficial do vaso, sem grandes conseqüências na nutrição da planta. Na densidade aparente de 1,72 g/cm3, as raízes não conseguiram penetrar, embora já houvesse alguma restrição ao crescimento na densidade de 1,25 g/cm3. Quando a camada compactada apresentava resistência à penetração de 0,69 MPa, houve uma redução de 50% no crescimento radicular da soja.

Termos de indexação: Glycine max L. Merrill, resistência à penetração, impedância do solo, crescimento de raízes.


ABSTRACT

Soil tillage can originate compacted layers in the soil subsurface. This compaction reduces root growth, plant development and eventually soybean yields. This study examined the effects of subsurface compaction on soybean root growth and morphology as related to plant growth and mineral nutrition. Soybean plants cv. Primavera were grown up to 37 days from seedling emergence in pots where a compacted layer was set at the 15.0 to 18.5 cm depth. This layer was compacted to bulk densities of 1.03, 1.25, 1.48 and 1.72 g/cm3, corresponding to cone penetrometer resistances of 0.05, 3.0, 7.5 and 2.0 MPa, respectively. The soil was a Dark Red Latosol (Haplortox), sandy loam, with 80% of sand and 16% of clay. Soil subsurface compaction led to a higher concentration of roots in the surface layer of the pots, without significant effects on plant canopy growth and nutrition. In the presence of a compacted layer the roots were shorter, but nutrient absorption/cm of root was higher. There was some restriction to root growth in the bulk density of 1.25 g/cm3, but there was necessary a bulk density of 1.72 g/cm3 to inhibit completely the root growth. Soybean root growth was decreased by 50% when the penetrometer resistance reached 0.69 MPa.

Index terms: Glycine max L. Merrill, penetrometer resistance, soil impedance, root growth.


 

 

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

 

 

REFERÊNCIAS BIBLIOGRÁFICAS

BALDWIN, J.P.; NIE, P.H. & TINKER, P.B. Uptake of solutes by multiple root systems from soil. III. A model for calculating the solute system developing in a finite volume of soil. Plant and Soil, Dordrecht, 38:621-635, 1973.        [ Links ]

BARBER, S.A. Soil nutrient bioavailability, a mechanistic approach. New York, John Wiley & Sons, 1984. 398p.        [ Links ]

BENGOUGH, A.G. & MULLINS, C.E. Mechanical impedance to root growth: a review of experimental techniques and root growth responses. Journal of Soil Science, London, 41:341-358, 1990.        [ Links ]

BENGOUG, A.G. & YOUNG, I.M. Root elongation of seedling peas through layered soil of different penetration resistances. Plant and Soil, Dordrecht, 149:129-139, 1993.        [ Links ]

BORGES, E.N.; NOAIS, R.F.; REGAZZI, A.J.; FERNANDES, B. & BARROS, N.F. Respostas de variedades de soja à compactação do solo. Revista Ceres, Viçosa, 35:553-568, 1988.        [ Links ]

DEXTER, A.R. Mechanics of root growth. Plant and Soil, Dordrecht, 98:303-312, 1987.        [ Links ]

DOLAN, M.S.; DOWDY, R.H.; VOORHEES, W.B.; JOHNSON, J.F. & BIDWELL-SCHRADER, A.M. Corn phosphorus and potassium uptake in response to soil compaction. Agronomy Journal, Madison, 84:639-642, 1992.        [ Links ]

HALLMARK, W.B. & BARBER, S.A. Root growth and morphology, nutrient uptake and nutrient status of early growth of soybeans as affetecd by soil P and K. Agronomy Journal, Madison, 76:209-212, 1984.        [ Links ]

JOHNSON, J.F.; VOORHEES, W.B.; NELSON, W.W. & RANDALL, G.W. Soybean growth and yield as affected by surface and subsoil compaction. Agronomy Journal, Madison, 82:973-979, 1990.        [ Links ]

JONES, C.A.; BLAND, W.L.; RITCHIE, J.T. & WILLIANS. J.R. Simulation of root growth. In: HANKS. J. & RITCHIE, J.T., eds. Modeling plant and soil systems. Madison, American Society of Agronomy, 1991. p.91-123.        [ Links ]

MALAVOLTA, E.; VITTI, G.C. & OLIVEIRA, S.A. Avaliação do estado nutricional de plantas: princípios e aplicações. Piracicaba, Potafos, 1989. 208p.        [ Links ]

MARSCHNERr H. Mineral nutrition of higher plants. New York, Academic Press, 1986. 403p.        [ Links ]

MISRA, R.K.; DEXTER, A.R. & ALSTON, A.M. Maximum axial and radial growth pressures of plant roots. Plant and Soil, Dordrecht, 95:315-326, 1986.        [ Links ]

MORAES, M.H. Efeitos da compactação em algumas propriedades físicas do solo e no desenvolvimento do sistema radicular de plantas de soja. Piracicaba, 1988. 105p. Tese (Mestrado em Agronomia) - ESALQ-USP, 1988.        [ Links ]

OUSSIBLE, M.; CROOKSTON, R.K. & LARSON, W.E. Subsurface compaction reduces the root and shoot growth and grain yield of wheat. Agronomy Journal, Madison, 84:34-38, 1992.        [ Links ]

RAIJ, B. van & QUAGGIO, J.A. Métodos de análise de solo para fins de fertilidade. Campinas, Instituto Agronômico, 1983. 31p. (Boletim técnico, 81)        [ Links ]

SARQUIS, J.I.; JORDAN, W.R. & MORGAN, P.W. Ethylene evolution from maize seedling roots and shoots in response to mechanical impedance. Plant Physiology, Lancaster, 96:1171-1177, 1991.        [ Links ]

SILBERBUSH, M.; HALLMARK, W.B. & BARBER, S.A. Simulation of effects of soil bulk density and P addition on K uptake of soybean. Communications in Soil Science and Plant Analysis, New York, 14:287-296, 1983.        [ Links ]

SINGH, A.; SINGH, J.N. & TRIPATHI, S.K. Effect of soil compaction on the growth of soybean. Indian Journal of Agricultural Science, New Delhi, 41:422-426, 1971.        [ Links ]

TAYLOR, H.M. & BRAR, G.S. Effect of soil compaction on root development. Soil & Tillage Research, Amsterdam, 19:111-119, 1991.        [ Links ]

TENNANT, D.A. A test of a modified line intersect method of estimating root length. Journal of Ecology, London, 63:995-1001, 1975.        [ Links ]

WRIGHT, G.C. & SMITH, C.J. Soybeans root distribution under wet soil culture on a red-brown earth. Plant and Soil, Dordrecht, 103:129-133, 1987.        [ Links ]

YAMAGUCHI, J. & TANAKA, A. Quantitative observation on the root system of various crops growing in the field. Soil Science & Plant Nutrition, Tokio, 36:483-493, 1990.        [ Links ]

 

 

Recebido para publicação em 8 de abril e aceito em 15 de julho de 1994.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License