Acessibilidade / Reportar erro

Avaliação do fluxo arterial mesentérico em humanos durante o exercício

Mesenteric artery blood flow avaliation in humans during exercice

Resumos

O aumento da atividade simpática durante o exercício dinâmico progressivo associa-se à resposta da concentração de lactato sangüíneo. Com o objetivo de testar a hipótese de que a diminuição do fluxo da artéria mesentérica superior também tenha relação com a lactiacidemia, oito indivíduos saudáveis (idade de 21-26 anos) foram submetidos a exercício com incremento progressivo de cargas ajustadas para os limiares de lactato, sendo o fluxo da artéria mesentérica superior medido pelo EcoDoppler. O fluxo na artéria mesentérica superior, calculado por medidas planimétricas das velocidades e medidas da área de secção, foi avaliado em repouso, após carga de 30 Watts, no primeiro e segundo limiares de lactato e esforço máximo, O fluxo (média ± EP) no repouso foi de 1.034 ± 112 ml/min, de 1.002 ± 124 na carga de 30 Watts, de 869 ± 122 ml/min no primeiro limiar de lactato, de 866 ± 127 ml/min no segundo limiar de lactato e de 689 ± 104 ml/min logo após o esforço máximo, Ocorreu uma redução linear, sendo a redução média na carga máxima de 34% do fluxo de repouso, não havendo correlação com os limiares de lactato. Portanto, a redução do fluxo da artéria mesentérica superior apresenta uma resposta linear ao exercício progressivo.

EcoDoppler; Limiar aeróbico; Artéria mesentérica superior; Isquemia mesentérica


Mesenteric artery blood flow was measured by Doppler ultrasound in eight healthy subjects (age 21-26 years, mean=25.8) submitted to incremental exercise. As cardiovascular responses change above the point at which blood lactate starts to accumulate, a protocol was designed to determine the velocity profile and mesenteric artery flow redistribution along incremental exercise. On the first part of the protocol all individuals were submitted to determinations of lactate thresholds by the enzimatic method modified by Ribeiro et al (1986). On the second test mesenteric artery blood flow and sistolic, reverse and diastolic velocities were measured at rest and immediately after 30 Watts, first lactate threshold, second lactate threshold and at peak exercise. In this way exercise intensities were adjusted for each individual independently of training and physical conditions. Total mesenteric artery blood flow was calculated using planimetric measurement of the velocities waves and area determinations. The Friedman test was used to analise de data. There was no significant change of sistolic velocities during incremental exercise. In the other hand there was a marked decrease of diastolic velocities; a linear decrease of initial diastolic velocities and an abrupt decrease of end-diastolic velocities after the first lactate threshold. At peak exercise a redution of 77% in end-diastolic velocities was observed. A linear reduction of mesenteric artery blood flow was observed and there was no correlation with lactate thresholds; at peak exercise a decrease of 34% was detected. Resting mesenteric blood flow was 1.034± 112 (SE), at 30 Watts 1.002± 124 (SE), at the first lactate threshold 869± 122 (SE), at the second lactate threshold 866± 127 (SE) and at peak exercise 689± 104 (SE).

Doppler ultrasound; Anaerobic threshold; Superior mesenteric artery; Mesenteric ischemie


ARTIGOS ORIGINAIS

Avaliação do fluxo arterial mesentérico em humanos durante o exercício

Mesenteric artery blood flow avaliation in humans during exercice

Adamastor Humberto Pereira, TCBC-RSI; Júlio Lewis Nectoux FilhoII; Emil BurihanIII; Jorge Pinto RibeiroIV; Marcos Braun BurgerV; Sérgio Ricardo Araújo de MoraesV

IProfessor Adjunto do Departamento de Cirurgia da Faculdade de Medicina da UFRGS. Chefe do Serviço de Cirurgia Vascular do Hospital de Clínicas de Porto Alegre

IIMédico do Serviço de Cirurgia Vascular do Hospital de Clínicas de Porto Alegre

IIIProfessor Titular do Departamento de Cirurgia da Faculdade de Medicina da EPM. Chefe do Serviço de Cirurgia Vascular da EPM

IVProfessor Adjunto do Departamento de Medicina Interna da Faculdade de Medicina da UFRGS

VDoutorando da Faculdade de Medicina da UFRGS

Endereço para correspondência Endereço para correspondência: Prof. Adamastor Humberto Pereira Hospital de Clínicas de Porto Alegre Serviço de Cir. Geral e Especialidades-Cir. Vascular Rua Ramiro Barcelos 2350 - 6 0 andar 90035-007 - Porto Alegre - RS

RESUMO

O aumento da atividade simpática durante o exercício dinâmico progressivo associa-se à resposta da concentração de lactato sangüíneo. Com o objetivo de testar a hipótese de que a diminuição do fluxo da artéria mesentérica superior também tenha relação com a lactiacidemia, oito indivíduos saudáveis (idade de 21-26 anos) foram submetidos a exercício com incremento progressivo de cargas ajustadas para os limiares de lactato, sendo o fluxo da artéria mesentérica superior medido pelo EcoDoppler. O fluxo na artéria mesentérica superior, calculado por medidas planimétricas das velocidades e medidas da área de secção, foi avaliado em repouso, após carga de 30 Watts, no primeiro e segundo limiares de lactato e esforço máximo, O fluxo (média ± EP) no repouso foi de 1.034 ± 112 ml/min, de 1.002 ± 124 na carga de 30 Watts, de 869 ± 122 ml/min no primeiro limiar de lactato, de 866 ± 127 ml/min no segundo limiar de lactato e de 689 ± 104 ml/min logo após o esforço máximo, Ocorreu uma redução linear, sendo a redução média na carga máxima de 34% do fluxo de repouso, não havendo correlação com os limiares de lactato. Portanto, a redução do fluxo da artéria mesentérica superior apresenta uma resposta linear ao exercício progressivo.

Unitermos: EcoDoppler; Limiar aeróbico; Artéria mesentérica superior; Isquemia mesentérica.

ABSTRACT

Mesenteric artery blood flow was measured by Doppler ultrasound in eight healthy subjects (age 21-26 years, mean=25.8) submitted to incremental exercise. As cardiovascular responses change above the point at which blood lactate starts to accumulate, a protocol was designed to determine the velocity profile and mesenteric artery flow redistribution along incremental exercise. On the first part of the protocol all individuals were submitted to determinations of lactate thresholds by the enzimatic method modified by Ribeiro et al (1986). On the second test mesenteric artery blood flow and sistolic, reverse and diastolic velocities were measured at rest and immediately after 30 Watts, first lactate threshold, second lactate threshold and at peak exercise. In this way exercise intensities were adjusted for each individual independently of training and physical conditions. Total mesenteric artery blood flow was calculated using planimetric measurement of the velocities waves and area determinations. The Friedman test was used to analise de data. There was no significant change of sistolic velocities during incremental exercise. In the other hand there was a marked decrease of diastolic velocities; a linear decrease of initial diastolic velocities and an abrupt decrease of end-diastolic velocities after the first lactate threshold. At peak exercise a redution of 77% in end-diastolic velocities was observed. A linear reduction of mesenteric artery blood flow was observed and there was no correlation with lactate thresholds; at peak exercise a decrease of 34% was detected. Resting mesenteric blood flow was 1.034± 112 (SE), at 30 Watts 1.002± 124 (SE), at the first lactate threshold 869± 122 (SE), at the second lactate threshold 866± 127 (SE) and at peak exercise 689± 104 (SE).

Key words: Doppler ultrasound; Anaerobic threshold; Superior mesenteric artery; Mesenteric ischemie.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

REFERÊNCIAS

1. Chapman CB, Henschel A, Minckler J, et al. The effect of exercise on renal plasma flow in normal male subjects. J Clin Invest 1948/2; 27;639-644.

2. Wade OL, Combes B, Childs A, et al. The effect of exercise on splancnic blood flow and splancnic blood volume in normal man. Clin Sci 1956;25:457-463.

3. Rowell LB, Blachmon JR, Bruce RA. Indocyanine green clearance and estimated hepatic blood flow during mild to maximal exercise in upright man. J Clin Invest 1964; 43(8):1677-1690.

4. Hopkinson BR, Schenk WG. The eletromagnetic measurement of liver blood flow and cardiac output in conscious dogs during feeding and exercise. Surgery 1968;63(6):970-975.

5. Van Citters RL, Franklin DL. Cardiovascular performance of Alaska sled dogs during exercise. Circulation Res 1969;33-42.

6. Burns GP, Schenk WG. Effect of digestion and exercise on intestinal blood flow and cardiac output. Arch Surg 1969/2;98:790-794.

7. Millard RW, Higgins CB, Franklin D, et al. Regulation of renal circulation during severe exercise in normal dogs and dogs with experimental heart failure. Circulation Res 1972;31 :881-888.

8. Valner SF, Higgins CB, Millard RW, et al. Role of spleen in the peripheral vascular response to severe exercise in untethered dogs. Cardiovascular Res 1974;8:276-282.

9. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress Physiol Reviews 1974;54:75-159.

10. Clausen JP. Effect of physical training on cardiovascular adjustment to exercise in man. Physiol Rev 1977;57:779-815.

11. Hansen JF, Hesse B, Christensen NJ. Enhanced sympathetic nervous activity after intravenous propranolol in ischaemic heart disease: plasma noradrenaline, splanchnic blood flow and mixed venous oxygen saturation at rest and during exercise. Eur J Clin lnvest 1978; 8:31-36.

12. Lehman MJ, Keul J, Huber G, Da Prada M. Plasma catecholamines in trained and untrained volunteers during graduated exercise. Int J Sports Med 1981;2:143-147.

13. Ribeiro JP, Fielding RA, Hughes V, et al. Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 6:220-224,1985.

14. Ribeiro JP, Hughes V, Fielding R, et al. Metabolic and ventilatory responses to steady state exercise relative to lactate thresholds. Eur J Appl PhysioI55:215-221,1986.

15. Bertoluci M, Friedman G, Schaan BD, et al. Intensity-related exercise albuminuria in insulin dependent diabetic patients. Diabetes Res Clin Practice 1993;19:217-225.

16. Clausell N, Ludwig E, Narro F, Ribeiro JP. Response of left ventricular diastolic filling to graded exercise relative to the lactate threshold. Eur J Appl Physiol 1993;67:222-225.

17. Ribeiro JP, Cadavid E, Baena J, et al. Metabolic predictors of middledistance swimming performance. British Journal of Sports Medicine 1990;24:196-200.

18. Qamar MI, Read AE. Effects of exercise on mesenteric blood flow in mano Gut 1987;28:583-587.

19. Qamar MI, Read AE, Skidmore R, et al. Transcutaneous Doppler ultrasound measurements of superior mesenteric artery blood flow in man. Gut 1986;27:100-105.

20. Lanz M, Link D, Holcroft J. Forester Video dilution technique: angiographic determination of splacnic blood flow. In: Granger D, Bulley G: Measurement of splancnic blood flow in applications to the splacnic circulation. 1a Edição. Baltimore: Williams & Wilkins, 1981:425-437

21. Kissouras V. Heretability of adaptive variation. J Appl Physiol 1971; 31 :338-344.

22. Ostil D. Metabolic response during distance running. J Appl Physiol 1970;28:251- 255.

23. Londeree BR, Ames SA. Maximal steady state versos of conditioning. Eur J Appl Physiol 1975;34:269-278.

24. Daniel WW. Applied Nonparametric Statistics. Houghton-Miff1in, Boston, 1978.

Recebido em 9/6/97

Aceito para publicação em 15/9/97

Trabalho realizado nos Serviços de Cirurgia Vascular e Cardiologia do Hospital de Clínicas de Porto Alegre; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul- Porto Alegre - RS.

  • 1. Chapman CB, Henschel A, Minckler J, et al. The effect of exercise on renal plasma flow in normal male subjects. J Clin Invest 1948/2; 27;639-644.
  • 2. Wade OL, Combes B, Childs A, et al. The effect of exercise on splancnic blood flow and splancnic blood volume in normal man. Clin Sci 1956;25:457-463.
  • 3. Rowell LB, Blachmon JR, Bruce RA. Indocyanine green clearance and estimated hepatic blood flow during mild to maximal exercise in upright man. J Clin Invest 1964; 43(8):1677-1690.
  • 4. Hopkinson BR, Schenk WG. The eletromagnetic measurement of liver blood flow and cardiac output in conscious dogs during feeding and exercise. Surgery 1968;63(6):970-975.
  • 5. Van Citters RL, Franklin DL. Cardiovascular performance of Alaska sled dogs during exercise. Circulation Res 1969;33-42.
  • 6. Burns GP, Schenk WG. Effect of digestion and exercise on intestinal blood flow and cardiac output. Arch Surg 1969/2;98:790-794.
  • 7. Millard RW, Higgins CB, Franklin D, et al. Regulation of renal circulation during severe exercise in normal dogs and dogs with experimental heart failure. Circulation Res 1972;31 :881-888.
  • 8. Valner SF, Higgins CB, Millard RW, et al. Role of spleen in the peripheral vascular response to severe exercise in untethered dogs. Cardiovascular Res 1974;8:276-282.
  • 9. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress Physiol Reviews 1974;54:75-159.
  • 10. Clausen JP. Effect of physical training on cardiovascular adjustment to exercise in man. Physiol Rev 1977;57:779-815.
  • 11. Hansen JF, Hesse B, Christensen NJ. Enhanced sympathetic nervous activity after intravenous propranolol in ischaemic heart disease: plasma noradrenaline, splanchnic blood flow and mixed venous oxygen saturation at rest and during exercise. Eur J Clin lnvest 1978; 8:31-36.
  • 12. Lehman MJ, Keul J, Huber G, Da Prada M. Plasma catecholamines in trained and untrained volunteers during graduated exercise. Int J Sports Med 1981;2:143-147.
  • 13. Ribeiro JP, Fielding RA, Hughes V, et al. Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 6:220-224,1985.
  • 14
    Ribeiro JP, Hughes V, Fielding R, et al. Metabolic and ventilatory responses to steady state exercise relative to lactate thresholds. Eur J Appl PhysioI55:215-221,1986.
  • 15. Bertoluci M, Friedman G, Schaan BD, et al. Intensity-related exercise albuminuria in insulin dependent diabetic patients. Diabetes Res Clin Practice 1993;19:217-225.
  • 16. Clausell N, Ludwig E, Narro F, Ribeiro JP. Response of left ventricular diastolic filling to graded exercise relative to the lactate threshold. Eur J Appl Physiol 1993;67:222-225.
  • 17. Ribeiro JP, Cadavid E, Baena J, et al. Metabolic predictors of middledistance swimming performance. British Journal of Sports Medicine 1990;24:196-200.
  • 18. Qamar MI, Read AE. Effects of exercise on mesenteric blood flow in mano Gut 1987;28:583-587.
  • 19. Qamar MI, Read AE, Skidmore R, et al. Transcutaneous Doppler ultrasound measurements of superior mesenteric artery blood flow in man. Gut 1986;27:100-105.
  • 20. Lanz M, Link D, Holcroft J. Forester Video dilution technique: angiographic determination of splacnic blood flow. In: Granger D, Bulley G: Measurement of splancnic blood flow in applications to the splacnic circulation. 1a Edição. Baltimore: Williams & Wilkins, 1981:425-437
  • 21. Kissouras V. Heretability of adaptive variation. J Appl Physiol 1971; 31 :338-344.
  • 22. Ostil D. Metabolic response during distance running. J Appl Physiol 1970;28:251- 255.
  • 23. Londeree BR, Ames SA. Maximal steady state versos of conditioning. Eur J Appl Physiol 1975;34:269-278.
  • 24
    Daniel WW. Applied Nonparametric Statistics. Houghton-Miff1in, Boston, 1978.
  • Endereço para correspondência:

    Prof. Adamastor Humberto Pereira
    Hospital de Clínicas de Porto Alegre
    Serviço de Cir. Geral e Especialidades-Cir. Vascular
    Rua Ramiro Barcelos 2350 - 6
    0 andar
    90035-007 - Porto Alegre - RS
  • Datas de Publicação

    • Publicação nesta coleção
      27 Jul 2010
    • Data do Fascículo
      Fev 1998

    Histórico

    • Aceito
      15 Set 1997
    • Recebido
      09 Jun 1997
    Colégio Brasileiro de Cirurgiões Rua Visconde de Silva, 52 - 3º andar, 22271- 090 Rio de Janeiro - RJ, Tel.: +55 21 2138-0659, Fax: (55 21) 2286-2595 - Rio de Janeiro - RJ - Brazil
    E-mail: revista@cbc.org.br