Acessibilidade / Reportar erro

Efficient solid-phase synthesis of 1,2,3-benzotriazin-4-ones with SynPhaseTM Lanterns

Abstracts

We have developed a solid-phase synthesis of 1,2,3-benzotriazin-4-ones through cyclization of 2-aminobenzamides via diazotization. The development of an efficient synthesis is important from the viewpoint of drug discovery, considering the various bioactivities of these derivatives. The precursors of 1,2,3-benzotriazin-4-ones, 2-aminobenzamides, were prepared from solid-supported amines and 2-nitrobenzoic acids. Various 1,2,3-benzotriazin-4-ones were obtained with high purity using SynPhaseTM Lanterns.

solid-phase synthesis; drug; quinazoline; 1,2,3-benzotriazin-4-one; SynPhaseTM Lantern; diazotization


A síntese de 1,2,3-benzotriazin-4-onas em fase sólida através da ciclização de 2-aminobenzamidas é descrita. O desenvolvimento de um método de síntese eficiente é importante para o desenvolvimento de drogas em razão da atividade biológica variada desses compostos. Os precursores de 1,2,3-benzotriazin-4-onas, as 2-aminobenzamidas, foram preparadas a partir de aminas ligadas a suporte sólido e ácidos 2-nitrobenzóicos. Várias 1,2,3-benzotriazin-4-onas foram obtidas em alta pureza utilizando-se SynPhaseTM Lanterns."


SHORT REPORT

Efficient solid-phase synthesis of 1,2,3-benzotriazin-4-ones with SynPhaseTM Lanterns

Shingo Makino* * e-mail: shingo_makino@ajinomoto.com ; Eiji Nakanishi and Takashi Tsuji

Pharmaceutical Research Laboratories, Pharmaceutical Company, Ajinomoto Co., Inc. 1-1. Suzuki-cho. Kawasaki-ku. Kawasaki-shi. 210-8681 Japan

ABSTRACT

We have developed a solid-phase synthesis of 1,2,3-benzotriazin-4-ones through cyclization of 2-aminobenzamides via diazotization. The development of an efficient synthesis is important from the viewpoint of drug discovery, considering the various bioactivities of these derivatives. The precursors of 1,2,3-benzotriazin-4-ones, 2-aminobenzamides, were prepared from solid-supported amines and 2-nitrobenzoic acids. Various 1,2,3-benzotriazin-4-ones were obtained with high purity using SynPhaseTM Lanterns.

Keywords: solid-phase synthesis, drug, quinazoline, 1,2,3-benzotriazin-4-one, SynPhaseTM Lantern, diazotization

RESUMO

A síntese de 1,2,3-benzotriazin-4-onas em fase sólida através da ciclização de 2-aminobenzamidas é descrita. O desenvolvimento de um método de síntese eficiente é importante para o desenvolvimento de drogas em razão da atividade biológica variada desses compostos. Os precursores de 1,2,3-benzotriazin-4-onas, as 2-aminobenzamidas, foram preparadas a partir de aminas ligadas a suporte sólido e ácidos 2-nitrobenzóicos. Várias 1,2,3-benzotriazin-4-onas foram obtidas em alta pureza utilizando-se SynPhaseTM Lanterns."

Introduction

Solid-phase synthesis of small-sized, non-peptidic molecules has emerged as an important drug discovery tool.1 The synthesis of heterocyclic compounds on solid-support, in particular, has been a focus of intensive study because of their applications toward a variety of drug targets.2 Among various heterocycles, quinazolines are particularly attractive pharmacophores in view of their wide range of bioactivities.3 As a part of our project to develop an efficient synthetic protocol for quinazoline analogues on solid-support,4 we investigated the synthesis of 1,2,3-benzotriazin-4-ones. 1,2,3-Benzotriazin-4-ones have been known to possess various biological activities such as sedative,5 diuretic,6 anesthetic,7 antiarthritic8 and antitumor activity.9 In addition, numerous heterocycles such as quinazoline-2, 4-diones,4,10 4-quinazolinones,4,11 2-thioxoquinazolin-4-ones,4 3-(sulfanyl)-1,2,4-benzothiadiazine 1,1-dioxide,4 1,2,4-benzothiadiazin-3-one 1,1-dioxides,4 2,1,3-benzothiadiazin-4-one 2-oxides,4 benzimidazole,12 hydantoin13 and piperazinone14 have been prepared from the solid-supported amines. Therefore, the bioactivities of 1,2,3-benzotriazin-4-ones and these heterocycles can be efficiently compared if appropriate synthetic methods are developed. Here, we report the first solid-phase synthesis of 1,2,3-benzotriazin-4-ones.

Results and Discussion

Wang-type SynPhaseTM Lantern (1a)15 bearing a 3-aminobenzoic acid ester4 was reacted with 2-nitrobenzoyl chloride (2a)/2,6-lutidine to give 3a (Scheme 1). The derivatized Lantern 3a was treated with SnCl2 • 2H2O/EtOH /NMP to give 2-aminobenzamide (4a) with high purity. Next, the cyclization of 4a through diazotization was attempted. Diazotization of arylamines has been often performed with NaNO2 in highly acidic solvents such as TFA16 or concentrated HCl.5 However, compounds on Wang-type solid-supports are cleaved off when treated with these solvents. Therefore, numerous solvents were tested for the diazotization and AcOH/H2O (1/1) was found as the best solvent to give 6a with high purity (Table 1). Other 1,2,3-benzotriazin-4-ones (6b-d) were also synthesized using the solid-supported arylamines and 2-nitrobenzoyl chloride. This synthetic method was found to work with a solid-supported alkylamine and phenylalanine ester (6e). 1,2,3-Benzotriazin-4-ones with substitutions on the aromatic ring were also synthesized using substituted 2-nitrobenzoic acids. 2-Nitrobenzoic acids were coupled with 3-aminobenzoic acid ester using N,N'-diisopropylcarbodiimide (DIC)/1-hydroxy-7-azabenzotriazole (HOAt) to give 3f-h. The usage of HOAt was important as the acylation was not completed with HOBt. Following a similar reaction sequence, substituted 1,2,3-benzotriazin-4-ones (6f-h) were successfully synthesized with high purity. Yields of products ranged from 46 - 83% based on the theoretical loading weights of the target molecules.17 The structures of all the products in this manuscript were confirmed by 1H NMR and LC-MAS (ESI mass spectrometry).

In conclusion, the solid-phase synthesis of 1,2,3-benzotriazin-4-ones has been accomplished by cyclization of 2-aminobenzamides via diazotization from various solid-supported amines and 2-nitrobenzoic acids. Although the size of the library is not large due to the limited diversity points (two diversity points), the same solid-supported amines can be derivatized into various heterocycles as described above, making this library an addition to the larger heterocycle library.

Experimental

General

Commercial reagents were used without further purification. 1H NMR spectra were recorded on Varian VXR-300S (300 MHz) spectrometers using tetramethylsilane as an internal standard. Liquid chromatography was performed using symmetry C18 column with ESI/PDA detection on Micromass platform.

Representative procedure: synthesis of 3-(6-chloro-4-oxo-4H-benzo[d][1,2,3]triazin-3-yl)-benzoic acid (6f)

SynPhaseTM Lanterns bearing a 3-aminobenzoic acid ester (1f) were prepared according to the previous report.4 The Lantern was treated with 5-chloro-2-nitrobenzoic acid /HOAt/DIC/NMP (1.0 mg/1.0mg/25 mL/2 mL) for 16 h at 60 °C to give 3f. The Lanterns were washed with DMF (2 mL x 3) and CH2Cl2 (2 mL x 3) and dried under vacuum. After reduction of the nitro group with SnCl2 • 2H2O/NMP/EtOH (1.0 g/2.0 mL/0.1 mL) for 16 h, the lantern was washed with DMF (2 mL x 3) and CH2Cl2 (2 mL x 3), and dried under vacuum for 1h to give 4f. Acetic acid (1.0 mL) and H2O (1.0 mL) were added to the Lantern in a 2.5 mL syringe with a cap17, and immediately after adding solid NaNO2 (100 mg), the syringe was sealed and put into a 50 mL Falcon tube18 to prevent the syringe from opening. After shaking the tube for 16 h, the tube and the syringe cap were carefully removed and the lantern was washed with DMF (2 mL x 3) and CH2Cl2 (2 mL x 3) and dried under vacuum to give 5f. The lantern was treated with 95% TFA/H2O for 1 h and the solution was concentrated with a Genevac evaporater.19 The residue was dissolved with 50% CH3CN/H2O and lyophilized to give the product 6f (Entry f in Table 1) in 79% yield based on the theoretical loading weight of the target molecule.

3-(4-Oxo-4H-benzo[d][1,2,3]triazin-3-yl)-benzoic acid (6a).1H NMR (DMSO-d6) d 7.73 (dd, 1H, J 7.8, 7.8 Hz), 7.94 (ddd, 1H, J 1.2, 2.4, 8.1 Hz), 7.7-8.03 (m, 1H), 8.08-8.18 (m, 2H), 8.24 (dd, 1H, J 1.7, 1.8 Hz), 8.28-8.36 (m, 2H). MS m/z 268 (M + 1)+.

3-[2-(4-Oxo-4H-benzo[d][1,2,3]triazin-3-yl)-phenyl] -acrylic acid(6b).1H NMR (DMSO-d6) d 6.61 (d, 1H, J 16.0 Hz), 7.67 (d, 1H, J 16.0 Hz), 7.62-7.73 (m, 2H), 7.84-7.89 (m, 1H), 7.98-8.04 (m, 2H), 8.13-8.19 (m, 1H), 8.29-8.36 (m, 2H). MS m/z 294 (M + 1)+.

3-[3-(4-Oxo-4H-benzo[d][1,2,3]triazin-3-yl)-phenyl] -acrylic acid (6c).1H NMR (DMSO-d6) d 6.59 (d, 1H, J 15.9 Hz), 7.22 (d, 1H, J 15.9 Hz), 7.64-7.69 (m, 3H), 8.01-8.10 (m, 2H), 8.18-8.23 (m, 1H), 8.34 (d, 1H, J 1.5 Hz), 8.37 (d, 1H, J 1.2 Hz). MS m/z 294 (M + 1)+.

3-[4-(4-Oxo-4H-benzo[d][1,2,3]triazin-3-yl)-phenyl] -acrylic acid (6d).1H NMR (DMSO-d6) d 6.65 (d, 1H, J 1.6 Hz), 7.69 (d, 1H, J 1.6 Hz), 7.72 (d, 2H, J 8.7 Hz), 7.92 (d, 2H, J 8.7 Hz), 7.98-8.03 (m, 1H), 8.13-8.19 (m, 1H), 8.28-8.29 (m, 1H), 8.31-8.36 (m, 1H). MS m/z 294 (M + 1)+.

2-(4-Oxo-4H-benzo[d][1,2,3]triazin-3-yl)-3-phenyl -propionic acid(6e).1H NMR (DMSO-d6) d 3.53 (dd, 1H, J 11.0, 14.2 Hz), 3.65 (dd, 1H, J 5.1, 14.2 Hz), 7.08-7.16 (m, 5H), 7.91-7.96 (m, 1H), 8.07-8.13 (m, 1H), 8.17-8.23 (m, 2H). MS m/z 296 (M + 1)+.

3-(6-Chloro-4-oxo-4H-benzo[d][1,2,3]triazin-3-yl) -benzoic acid (6f).1H NMR (DMSO-d6) d 7.72-7.77 (m, 1H), 7.91-7.95 (m, 1H), 8.09-8.12 (m, 1H), 8.18-8.25 (m, 2H), 8.31-8.36 (m, 2H). MS m/z 302, 603 (M + 1)+.

3-(4-Oxo-7-trifluoromethyl-4H-benzo[d][1,2,3]triazin -3-yl)-benzoic acid (6g).1H NMR (DMSO-d6) d 7.76 (dd, 1H, J 7.8, 7.8 Hz), 7.95 (ddd, 1H, J 1.3, 2.2, 7.8 Hz), 8.12 (ddd, 1H, J 1.3, 1.4, 7.8 Hz), 8.26 (dd, 1H, J 2.2, 2.2 Hz), 8.30 (dd, 1H, J 1.4, 8.2 Hz), 8.53 (d, 1H, J 8.2 Hz), 8.73 (s, 1H). MS m/z 336 (M + 1)+.

3-(8-Methyl-4-oxo-4H-benzo[d][1,2,3]triazin-3-yl) -benzoic acid (6h).1H NMR (DMSO-d6) d 7.73 (dd, 1H, J 7.8, 7.8 Hz), 7.87 (dd, 1H, J 7.8, 7.8 Hz), 7.92-7.95 (m, 1H), 7.96-8.01 (m, 1H), 8.07-8.11 (m, 1H), 8.17 (dd, 1H, J 0.9, 7.5 Hz), 8.23 (dd, 1H, J 1.8 Hz). MS m/z 282 (M + 1)+.

Acknowledgment

We would like to thank Dr. Andrew Bray, at Mimotopes Pty.Ltd., for proof reading this manuscript.

References

1. Thompson, L. A.; Ellman, J.; A. Chem. Rev. 1996, 96, 555; Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C.; Tetrahedron 1998, 54, 15385.

2. Dressman, B. A.; Spangle, L. A.; Kaldor, S. W.; Tetrahedron Lett. 1996, 37, 937; Hanessian, S.; Yang, R. Y.; Tetrahedron Lett. 1996, 37, 5835; Bunin, B. A.; Ellman, J. A.; J. Am. Chem. Soc. 1992, 114, 1997; Buckman, B. O.; Mohan, R.; Tetrahedron Lett. 1996, 37, 4439; Gouilleux, L.; Fehrentz, J. -A.; Winternitz, F.; Martinez, J.; Tetrahedron Lett. 1996, 37, 7031; Shao, H.; Colucci, M.; Tong, S.; Zhang, H.; Castelhano, A. L.; Tetrahedron Lett. 1998, 39, 7235.

3. de Laszlo S. E.; Quagliato, C. S.; Greenlee, W. J.; Patchett, A. A.; Chang, R. S. L.; Lotti, V. J.; Chen, T. -B.; Scheck, S. A.; Faust, K. A.; Kivlighn, S. S.; Schorn, T. S.; Zingaro, G. J.; Siegl, P. K. S.; J. Med. Chem. 1993, 36, 3207; Hutchinson, J. H.; Cook, J. J.; Brashear, K. M.; Breslin, M. J.; Glass, J. D.; Gould, R. J.; Halczenko, W.; Holahan, M. A.; Lynch, R. J.; Sitko, G. R.; Stranieri, M. T.; Hartman, G. D.; J. Med. Chem. 1996, 39, 4583.

4. Makino, S.; Suzuki, N.; Nakanishi, E.; Tsuji, T.; Tetrahderon Lett. 2000, 41, 8333; Makino, S.; Suzuki, N.; Nakanishi, E.; Tsuji, T.; Synlett 2000, 1670; Makino, S.; Nakanishi, E.; Tsuji, T.; Tetrahderon Lett. 2001, 42, 1749; Makino, S.; Suzuki, N.; Nakanishi, E.; Tsuji, T.; Synlett 2001, 333; Makino, S.; Okuzumi, T.; Nakanishi, E.; Tsuji, T.; Tetrahderon Lett. 2002, 43, 8401; Makino, S.; Nakanishi, E.; Tsuji, T.; J. Combi. Chem. 2003, 5, 73; Makino, S.; Nakanishi, E.; Tsuji, T.; Bull. Korean Chem. Soc. 2003 in press.

5. Gadekar, S. M.; Ross, E.; J. Org. Chem., 1961, 26, 613.

6. Gadekar, S. M.; Frederick, J. L.; J. Org. Chem., 1962, 27, 1383.

7. Caliendo, G.; Fiorino, F.; Grieco, P.; Perissutti, E.; Santagada, V.; Meli, R.; Raso, G. M.; Zanesco, A.; Nucci, G. D.; Eur. J. Med. Chem. 1999, 34, 1043.

8. Zandt, V.; Michael, C.; PCT patent , WO9743239, 19xx.

9. Rosowsky, A.; PCT patent, WO9304051, 19xx.

10. Gordeev, M. F.; Hui, H. C.; Gordon, E. M.; Patel, D. V.; Tetrahedron Lett. 1997, 38, 1729; Gordeev, M. F.; Luehr, G. W. Hui, H. C.; Gordon, E. M. Patel, D. V.; Tetrahedron 1998, 54, 15879.

11. Mayer, J. P.; Lewis, G. S.; Curtis, M. J. Zhang, J. W.; Tetrahedron Lett. 1997, 38, 8445.

12. Tumelty, D.; Schwarz, M. K.; Cao, K.; Needels, M. C.; Tetrahedron Lett. 1999, 40, 6185.

13. Nefzi, A.; Ostresh, J. M.; Giulianotti, M. Houghten, R. A.; Tetrahedron Lett. 1998, 39, 8199; Xiao, X. Y.; Ngu, K.; Chao, C.; Patel, D. V.; J. Org. Chem. 1997, 62, 6968.

14. Mohamed, N.; Bhatt, U.; Just, G.; Tetrahedron Lett. 1998, 39, 8213.

15. SynPhaseTM Lanterns are available from Mimotopes (Clayton, Victoria, Australia). The type of Lantern used in this report was SP-PS-D-HMP (long chain hydroxymethyl phenoxy linker), loading 35 mmol / lantern.

16. Pinney, K. G.; Katzenellenbogen, J. A.; J. Org. Chem. 1991, 56, 3125.

17. Disposable polypropylene / polyethylene syringes are available from Aldrich (Milwaukee, WI).

18. FALCON, BLUE MAXTM 50-ml polypropylene conical tube available from Becton Dickinson Labware (Franklin Lakes, NJ. USA 07417-1886).

19. Genevac HT-8 available from Genevac Limited (Farthing Road, Ipswich, IP1 5AP, UK).

Received: December 11, 2001

Published on the web: April 7, 2003

  • 1. Thompson, L. A.; Ellman, J.; A. Chem. Rev. 1996, 96, 555;
  • Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C.; Tetrahedron 1998, 54, 15385.
  • 2. Dressman, B. A.; Spangle, L. A.; Kaldor, S. W.; Tetrahedron Lett. 1996, 37, 937;
  • Hanessian, S.; Yang, R. Y.; Tetrahedron Lett. 1996, 37, 5835;
  • Bunin, B. A.; Ellman, J. A.; J. Am. Chem. Soc. 1992, 114, 1997;
  • Buckman, B. O.; Mohan, R.; Tetrahedron Lett 1996, 37, 4439;
  • Gouilleux, L.; Fehrentz, J. -A.; Winternitz, F.; Martinez, J.; Tetrahedron Lett 1996, 37, 7031;
  • Shao, H.; Colucci, M.; Tong, S.; Zhang, H.; Castelhano, A. L.; Tetrahedron Lett 1998, 39, 7235.
  • 3. de Laszlo S. E.; Quagliato, C. S.; Greenlee, W. J.; Patchett, A. A.; Chang, R. S. L.; Lotti, V. J.; Chen, T. -B.; Scheck, S. A.; Faust, K. A.; Kivlighn, S. S.; Schorn, T. S.; Zingaro, G. J.; Siegl, P. K. S.; J. Med. Chem 1993, 36, 3207;
  • Hutchinson, J. H.; Cook, J. J.; Brashear, K. M.; Breslin, M. J.; Glass, J. D.; Gould, R. J.; Halczenko, W.; Holahan, M. A.; Lynch, R. J.; Sitko, G. R.; Stranieri, M. T.; Hartman, G. D.; J. Med. Chem 1996, 39, 4583.
  • 4. Makino, S.; Suzuki, N.; Nakanishi, E.; Tsuji, T.; Tetrahderon Lett. 2000, 41, 8333;
  • Makino, S.; Suzuki, N.; Nakanishi, E.; Tsuji, T.; Synlett 2000, 1670;
  • Makino, S.; Nakanishi, E.; Tsuji, T.; Tetrahderon Lett. 2001, 42, 1749;
  • Makino, S.; Suzuki, N.; Nakanishi, E.; Tsuji, T.; Synlett 2001, 333;
  • Makino, S.; Okuzumi, T.; Nakanishi, E.; Tsuji, T.; Tetrahderon Lett. 2002, 43, 8401;
  • Makino, S.; Nakanishi, E.; Tsuji, T.; J. Combi. Chem. 2003, 5, 73;
  • Makino, S.; Nakanishi, E.; Tsuji, T.; Bull. Korean Chem. Soc. 2003 in press.
  • 5. Gadekar, S. M.; Ross, E.; J. Org. Chem., 1961, 26, 613.
  • 6. Gadekar, S. M.; Frederick, J. L.; J. Org. Chem, 1962, 27, 1383.
  • 7. Caliendo, G.; Fiorino, F.; Grieco, P.; Perissutti, E.; Santagada, V.; Meli, R.; Raso, G. M.; Zanesco, A.; Nucci, G. D.; Eur. J. Med. Chem 1999, 34, 1043.
  • 8. Zandt, V.; Michael, C.; PCT patent , WO9743239, 19xx
  • 9. Rosowsky, A.; PCT patent, WO9304051, 19xx
  • 10. Gordeev, M. F.; Hui, H. C.; Gordon, E. M.; Patel, D. V.; Tetrahedron Lett 1997, 38, 1729;
  • Gordeev, M. F.; Luehr, G. W. Hui, H. C.; Gordon, E. M. Patel, D. V.; Tetrahedron 1998, 54, 15879.
  • 11. Mayer, J. P.; Lewis, G. S.; Curtis, M. J. Zhang, J. W.; Tetrahedron Lett 1997, 38, 8445.
  • 12. Tumelty, D.; Schwarz, M. K.; Cao, K.; Needels, M. C.; Tetrahedron Lett 1999, 40, 6185.
  • 13. Nefzi, A.; Ostresh, J. M.; Giulianotti, M. Houghten, R. A.; Tetrahedron Lett 1998, 39, 8199;
  • Xiao, X. Y.; Ngu, K.; Chao, C.; Patel, D. V.; J. Org. Chem 1997, 62, 6968.
  • 14. Mohamed, N.; Bhatt, U.; Just, G.; Tetrahedron Lett 1998, 39, 8213.
  • 16. Pinney, K. G.; Katzenellenbogen, J. A.; J. Org. Chem 1991, 56, 3125.
  • *
    e-mail:
  • Publication Dates

    • Publication in this collection
      18 June 2003
    • Date of issue
      May 2003

    History

    • Accepted
      07 Apr 2003
    • Received
      11 Dec 2001
    Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
    E-mail: office@jbcs.sbq.org.br