Acessibilidade / Reportar erro

Genetic variability in the neurobiology of nicotine dependence: effects on smoking behavior

A variabilidade genética na neurobiologia da adição à nicotina: reflexos no comportamento tabágico

Abstract

Background

Smoking dependence is a chronic disease and a public health problem. The neurobiology of nicotine addiction can explain smoking behavior. This system has genetic variability that has been associated with vulnerability to dependence. Genetic variability in the neurobiology of smoking can help to understand why individuals exposed to drugs may or may not become addicted.

Objective

This study aims to address genetic variability in the neurobiology of smoking addiction with a focus on polymorphic genes related to the nicotinic response and the dopaminergic reward pathway.

Method

This work involved a search of the main scientific research on genetic variability in the neurobiology of smoking and its effects on smoking behavior. One hundred and five studies were selected, most of which highlighted polymorphisms in the genes of nicotinic receptors, dopamine receptors, and nicotine metabolism.

Results

The majority of studies have focused on genes related to the activation of the dopaminergic reward system by nicotine. Combinations between different polymorphisms were also highlighted, showing that interactions can determine a genetic profile of predisposition to smoking addiction. Additionally, gender and ethnicity were identified as relevant factors.

Conclusion

Knowledge of the genetic bases involved in the individual response to smoking can enable a better understanding of inter-individual differences in smoking behavior, and contribute to improving the treatment of addiction.

Palavras-chave:
tabagismo; susceptibilidade genética; dependência nicotínica; comportamento tabágico; variabildade genética neurobiológica

Resumo

Introdução

A dependência nicotínica é uma doença crônica e um problema de saúde pública. O comportamento tabágico pode ser explicado pela neurobiologia da adição, cujas variações genéticas têm sido associadas à dependência. A variabilidade genética na neurobiologia do tabagismo pode ajudar a entender por que indivíduos expostos a drogas podem ou não se tornar viciados.

Objetivo

Este estudo tem como objetivo abordar a variabilidade genética na neurobiologia do tabagismo com foco em genes polimórficos relacionados à resposta nicotínica e à via de recompensa dopaminérgica.

Método

Uma pesquisa foi realizada nas principais bases de dados científicos sobre a variabilidade genética na neurobiologia do tabagismo e seus efeitos no comportamento do tabagismo. 105 estudos foram selecionados, em sua maioria destacando polimorfismos nos genes de receptores nicotínicos, receptores de dopamina e de metabolismo da nicotina.

Resultados

A maioria dos estudos concentrou-se em genes relacionados à ativação do sistema de recompensa dopaminérgico pela nicotina. Determinadas combinações entre genótipos de diferentes polimorfismos também se destacaram, mostrando que interações gênicas podem determinar um perfil genético de predisposição ao tabagismo. Além disso, gênero e etnia foram identificados como fatores relevantes.

Conclusão

O conhecimento das bases genéticas envolvidas na resposta individual ao tabagismo pode permitir uma melhor compreensão das diferenças interindividuais no comportamento tabágico e contribuir para melhoria dos tratamentos disponíveis para a dependência.

Palavras-chave:
tabagismo; susceptibilidade genética; dependência nicotínica; comportamento tabágico; variabildade genética neurobiológica

INTRODUCTION

Tobacco smoking is a public health problem internationally recognized as a chemical dependency, with industrial cigarettes being considered the most important form of consumption11 World Health Organization. WHO report on the global tobacco epidemic 2019: offer help to quit tobacco use. Geneva: World Health Organization; 2019.,22 Drope J, Schluger N, Cahn Z, Drope J, Hamill S, Islami F, et al. The tobacco atlas. Atlanta: American Cancer Society and Vital Strategies; 2018.. According to the Tobacco Atlas, 5.7 trillion cigarettes were consumed worldwide in 201622 Drope J, Schluger N, Cahn Z, Drope J, Hamill S, Islami F, et al. The tobacco atlas. Atlanta: American Cancer Society and Vital Strategies; 2018.. Tobacco and tobacco smoke contains more than 8 thousand substances, among which nicotine, a psychoactive substance, is responsible for the addictive effects33 Rodgman A, Perfetti TA. The chemical components of tobacco and tobacco smoke. Boca Raton: CRC Press; 2013.. The verification of this psychoactive role means smoking is classified, according to the Review of the International Classification of Diseases and Related Health Problems (ICD10), in the group of mental and behavioral disorders related to the use of psychoactive substances44 World Health Organization. International statistical classification of diseases and related health problems (ICD 10), 10th revision. Geneva: World Health Organization; 2011..

Tobacco smoke is the main cause of preventable mortality and morbidity in the world and accounts for the deaths of 8 million people per year. Of these, 1.2 million are non-smokers exposed to secondhand smoke11 World Health Organization. WHO report on the global tobacco epidemic 2019: offer help to quit tobacco use. Geneva: World Health Organization; 2019.. For instance, in 2017, smoking was associated with 12.6% of the total deaths in Brazil55 Pinto M, Bardac A, Palacios A, Bin A, Alcaraz A, Rodríguez B, et al. Carga de doença atribuível ao uso do tabaco no Brasil e potencial impacto do aumento de preços por meio de impostos. Rio de Janeiro: Instituto Nacional de Câncer; 2018.. According to data from Vigitel 2019, the total percentage of smokers aged 18 or over in Brazil was 9.8%, with 12.3% among men and 7.7% among women. Vigitel data points to a reduction in prevalence in both genders, although more pronounced in men66 Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise em Saúde e Vigilância de Doenças Não Transmissívei. Vigitel Brasil 2019: vigilância de fatores e risco e proteção para doenças crônicas por inquérito telefônico. Brasília: Ministério da Saúde; 2020.. This data indicates a new public health concern regarding the damage to women's health and an increase in tobacco-related diseases11 World Health Organization. WHO report on the global tobacco epidemic 2019: offer help to quit tobacco use. Geneva: World Health Organization; 2019.. Although overall consumption has declined in recent years, the future path of global tobacco control is still uncertain and future projections are worrying. It is estimated that by the end of 2020, more than 10 million people will die from cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer caused by tobacco use. Half of these deaths will occur during the productive years, with an individual loss of 10 to 20 years of life. In 2030, 80% of consumption-related deaths will occur in developing countries77 World Health Organization. WHO report on the global tobacco epidemic, 2011: warning about the dangers of tobacco. Geneva: World Health Organization; 2011..

Despite knowledge of these adverse health effects, smoking addiction explains why about 70% of smokers want to quit smoking, but have not succeeded. Of these, about a third are successful for just one day and less than 10% are abstinent for twelve months88 Chatkin JM. The influence of genetics on nicotine dependence and the role of pharmacogenetics in treating the smoking habit. J Bras Pneumol. 2006;32(6):573-9. http://dx.doi.org/10.1590/S1806-37132006000600016. PMid:17435909.
http://dx.doi.org/10.1590/S1806-37132006...
, with cessation treatment being successful in only 35% of cases99 Gu Z, Feng X, Dong X, Chan P. Smoking, genes encoding dopamine pathway and risk for Parkinson’s disease. Neurosci Lett. 2010;482(1):31-4. http://dx.doi.org/10.1016/j.neulet.2010.06.085. PMid:20603187.
http://dx.doi.org/10.1016/j.neulet.2010....
. Smoking behavior is complex and multifactorial, determined by a combination of biological, psychological, and environmental factors88 Chatkin JM. The influence of genetics on nicotine dependence and the role of pharmacogenetics in treating the smoking habit. J Bras Pneumol. 2006;32(6):573-9. http://dx.doi.org/10.1590/S1806-37132006000600016. PMid:17435909.
http://dx.doi.org/10.1590/S1806-37132006...
. Heredity is a strong component of tobacco use and its influence on dependence is at least 50%1010 Hardie TL, Moss HB, Lynch KG. Genetic correlations between smoking initiation and smoking behaviors in a twin sample. Addict Behav. 2006;31(11):2030-7. http://dx.doi.org/10.1016/j.addbeh.2006.02.010. PMid:16675152.
http://dx.doi.org/10.1016/j.addbeh.2006....
. Genetic variations can influence up to 80% of characteristics of smoking behavior, such as initiation, persistence in smoking, and successful cessation1111 Munafò M, Clark T, Johnstone E, Murphy M, Walton R. The genetic basis for smoking behavior: a systematic review and meta-analysis. Nicotine Tob Res. 2004;6(4):583-97. http://dx.doi.org/10.1080/14622200410001734030. PMid:15370155.
http://dx.doi.org/10.1080/14622200410001...
.

Genetic variability in the neurobiology of smoking and other addictions can help to understand why individuals exposed to drugs may or may not become addicted. In addition, knowledge of the genetic bases involved in the individual response to smoking can contribute to improving the treatment of addiction1212 Salloum NC, Buchalter EL, Chanani S, Espejo G, Ismail MS, Laine RO, et al. From genes to treatments: a systematic review of the pharmacogenetics in smoking cessation. Pharmacogenomics. 2018;19(10):861-71. http://dx.doi.org/10.2217/pgs-2018-0023. PMid:29914292.
http://dx.doi.org/10.2217/pgs-2018-0023...
. In this sense, this study aims to address genetic variability in the neurobiology of smoking addiction, focusing on polymorphic genes related to the nicotinic response and the dopaminergic reward pathway.

METHOD

This work involved a search of the main scientific research on genetic variability in the neurobiology of smoking and its effects on smoking behavior. Bibliographic searches were carried out between 2017 and 2020 in the PubMed, Scielo, and Medline databases. The following terms were used: genetic susceptibility, polymorphic genes, smoking, and nicotine addiction. Articles in Portuguese and English published between 2000 and 2020 were selected and qualified, according to their abstracts, as possible candidates to provide technical-scientific bases for this paper. At the end of the search, duplicate references and unavailable full studies were excluded. Two researchers analyzed and classified each abstract as being outside or within the scope.

RESULTS AND DISCUSSION

The search selected 105 articles that were used as a theoretical basis for the preparation of this work. Figure 1 presents the flowchart of the stages of the identification, selection, and inclusion of scientific articles.

Figure 1
Flowchart of the identification, selection, and inclusion of scientific articles

Neurobiology of tobacco dependence

The neurobiology of smoking explains the molecular mechanism of the development of addiction based on the psychoactive character of nicotine. Inhaled nicotine is absorbed in the lungs from cigarette smoke and reaches the brain in 10 to 60 seconds, where it binds to nicotinic acetylcholine receptors (nAChR) in the mesolimbic system, producing the addictive effects of strengthening the smoking habit through activation of the dopaminergic reward system1313 Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362(24):2295-303. http://dx.doi.org/10.1056/NEJMra0809890. PMid:20554984.
http://dx.doi.org/10.1056/NEJMra0809890...
,1414 Lewis A, Miller JH, Lea RA. Monoamine oxidase and tobacco dependence. Neurotoxicology. 2007;28(1):182-95. http://dx.doi.org/10.1016/j.neuro.2006.05.019. PMid:16859748.
http://dx.doi.org/10.1016/j.neuro.2006.0...
.

In the presence of nicotine, the flow of dopamine increases in the mesolimbic system, activating brain circuits to regulate feelings of pleasure and reward. The mesolimbic dopaminergic system is the main neurobiological structure associated with addiction to smoking and plays a crucial role in reinforcement1515 Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445-9. http://dx.doi.org/10.1038/nn1578. PMid:16251986.
http://dx.doi.org/10.1038/nn1578...
. This system is mainly composed of the ventral tegmental area and the accumbens nucleus. These regions are related to the mechanisms of addiction to nicotine, such as craving, memory, emotions related to use, tolerance, and dysphoria due to abstinence. In addition to dopaminergic hyperactivity, serotonin is released in the acute phase of nicotine consumption. Additionally, prolonged exposure desensitizes the gamma-aminobutyric acid system (GABAergic), an inhibitor of brain systems, which reinforces the behavior of compulsive use of nicotine1313 Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362(24):2295-303. http://dx.doi.org/10.1056/NEJMra0809890. PMid:20554984.
http://dx.doi.org/10.1056/NEJMra0809890...
,1414 Lewis A, Miller JH, Lea RA. Monoamine oxidase and tobacco dependence. Neurotoxicology. 2007;28(1):182-95. http://dx.doi.org/10.1016/j.neuro.2006.05.019. PMid:16859748.
http://dx.doi.org/10.1016/j.neuro.2006.0...
.

The mechanism of activation of the dopaminergic reward system by nicotine occurs by binding nicotine to the nicotinic receptors of presynaptic neurons (nAChRs), thereby opening cationic channels and, consequently, causing neuronal depolarization. Under these circumstances, dopamine and other neurotransmitters are released in the synaptic cleft and bind to dopamine receptors (DRDs) in post-synaptic neurons, transmitting the signal between neurons. Dopamine is released from the synaptic neurons and some of it is captured by dopamine transporters (DAT) in the presynaptic neurons. After reuptake, dopamine can then be repackaged into vesicles for use in future neurotransmissions or can be degraded by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT)1414 Lewis A, Miller JH, Lea RA. Monoamine oxidase and tobacco dependence. Neurotoxicology. 2007;28(1):182-95. http://dx.doi.org/10.1016/j.neuro.2006.05.019. PMid:16859748.
http://dx.doi.org/10.1016/j.neuro.2006.0...
(Figure 2).

Figure 2
Activation of the dopaminergic reward system by nicotine (nAChRs: Nicotinic acetylcholine receptors; DRDs: Dopamine receptors; DATs: Dopamine transporters; MAO: Monoamine oxidase; COMT: Catechol-O-methyltransferase; NRT: Nicotine Replacement Therapy).

The genes involved in the neurobiology of smoking behavior have been investigated as candidates for individual susceptibility to smoking. Among these, special attention has been paid to those related to the nicotinic response and the neurotransmitter dopamine, considered the key to substance addiction and abuse88 Chatkin JM. The influence of genetics on nicotine dependence and the role of pharmacogenetics in treating the smoking habit. J Bras Pneumol. 2006;32(6):573-9. http://dx.doi.org/10.1590/S1806-37132006000600016. PMid:17435909.
http://dx.doi.org/10.1590/S1806-37132006...
,1515 Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445-9. http://dx.doi.org/10.1038/nn1578. PMid:16251986.
http://dx.doi.org/10.1038/nn1578...
.

The first group of genes addressed in this study is directly related to the nicotinic response and is represented by the CYP2A6 metabolism gene (Cytochrome P4502A6) and by the genes encoding the nicotinic acetylcholine receptors, CHRN88 Chatkin JM. The influence of genetics on nicotine dependence and the role of pharmacogenetics in treating the smoking habit. J Bras Pneumol. 2006;32(6):573-9. http://dx.doi.org/10.1590/S1806-37132006000600016. PMid:17435909.
http://dx.doi.org/10.1590/S1806-37132006...
,1616 López-Flores LA, Pérez-Rubio G, Falfán-Valencia R. Distribution of polymorphic variants of CYP2A6 and their involvement in nicotine addiction. EXCLI J. 2017;16:174-96. PMid:28507465.. The second group includes the genes involved in the dopaminergic pathway, which are capable of interfering with the concentration of dopamine in the synaptic cleft. These are the dopaminergic receptor genes DRD2/ANKK1 and DRD4, the carrier gene of dopamine transporters (SLC6A3), and the genes of metabolism Dopamine B-hydroxylase (DBH), Catechol O-methyl transferase (COMT) and Monoamine oxidase (MAO)1313 Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362(24):2295-303. http://dx.doi.org/10.1056/NEJMra0809890. PMid:20554984.
http://dx.doi.org/10.1056/NEJMra0809890...
,1515 Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445-9. http://dx.doi.org/10.1038/nn1578. PMid:16251986.
http://dx.doi.org/10.1038/nn1578...
. Table 1 presents the main characteristics of the genes studied in this work.

Table 1
Neurobiological genetic polymorphisms associated with smoking behavior

GENE VARIABILITY RELATED TO NICOTINIC RESPONSE

Polymorphism of CYP2A6

Approximately 80% of nicotine is converted into cotinine by the action of the enzyme expressed by the Cytochrome P4502A6 gene (CYP2A6). Thus, variations in this gene may alter the enzymatic activity, interfering with the concentration of nicotine that reaches the target sites1616 López-Flores LA, Pérez-Rubio G, Falfán-Valencia R. Distribution of polymorphic variants of CYP2A6 and their involvement in nicotine addiction. EXCLI J. 2017;16:174-96. PMid:28507465.. Apparently, CYP2A6 functional polymorphisms, in addition to affecting smoking behavior, are also associated with an increased risk of lung cancer1717 Akrodou YM. CYP2A6 polymorphisms may strengthen individualized treatment for nicotine dependence. Scientifica. 2015;2015:491514. http://dx.doi.org/10.1155/2015/491514. PMid:26060595.
http://dx.doi.org/10.1155/2015/491514...
.

An association between CYP2A6 genotypes and nicotine dependence has been reported using the Fagerström Test for Nicotine Dependence (FTND) to verify the degree of nicotine dependence. Carriers of the wild allele CYP2A6*1, called normal metabolizers, are the most susceptible to tobacco dependence due to needing to consume a greater number of cigarettes to maintain satisfactory levels of nicotine in the blood1818 Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst. 2011;103(17):1342-6. http://dx.doi.org/10.1093/jnci/djr237. PMid:21747048.
http://dx.doi.org/10.1093/jnci/djr237...
. Other polymorphic variants of the CYP2A6 gene, such as the CYP2A6*9 and CYP2A6*12, have smaller enzymatic activity, and the CYP2A6*2 and CYP2A6*4 variants are associated with a total loss of activity. So, depending on the gene variant carried, an individual is categorized as a normal, intermediate, or slow metabolizer, with 100%, less than 75%, or less than 50% enzymatic efficiency, respectively1616 López-Flores LA, Pérez-Rubio G, Falfán-Valencia R. Distribution of polymorphic variants of CYP2A6 and their involvement in nicotine addiction. EXCLI J. 2017;16:174-96. PMid:28507465.,1818 Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst. 2011;103(17):1342-6. http://dx.doi.org/10.1093/jnci/djr237. PMid:21747048.
http://dx.doi.org/10.1093/jnci/djr237...
.

Wassenaar et al.1818 Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst. 2011;103(17):1342-6. http://dx.doi.org/10.1093/jnci/djr237. PMid:21747048.
http://dx.doi.org/10.1093/jnci/djr237...
observed a higher quantity of cigarettes consumed per day by individuals possessing normal metabolizer genes in comparison with those having slow metabolizers. Although other studies have not reported the same association7474 Tomaz PRX, Kajita MS, Santos JR, Scholz J, Abe TO, Gaya PV, et al. Cytochrome P450 2A6 and 2B6 polymorphisms and smoking cessation success in patients treated with varenicline. Eur J Clin Pharmacol. 2019;75(11):1541-5. http://dx.doi.org/10.1007/s00228-019-02731-z. PMid:31402421.
http://dx.doi.org/10.1007/s00228-019-027...
or even divergent results7575 Chenoweth MJ, Sylvestre M-P, Contreras G, Novalen M, O’Loughlin J, Tyndale RF. Variation in CYP2A6 and tobacco dependence throughout adolescence and in young adult smokers. Drug Alcohol Depend. 2016;158:139-46. http://dx.doi.org/10.1016/j.drugalcdep.2015.11.017. PMid:26644138.
http://dx.doi.org/10.1016/j.drugalcdep.2...
,7676 Olfson E, Bloom J, Bertelsen S, Budde JP, Breslau N, Brooks A, et al. CYP2A6 metabolism in the development of smoking behaviors in young adults. Addict Biol. 2018;23(1):437-47. http://dx.doi.org/10.1111/adb.12477. PMid:28032407.
http://dx.doi.org/10.1111/adb.12477...
, several works have shown a direct association between the CYP2A6 genotype of lower enzyme activity and the lower risk of becoming a smoker, less nicotine dependence, fewer cigarettes consumed and greater success in cessation1717 Akrodou YM. CYP2A6 polymorphisms may strengthen individualized treatment for nicotine dependence. Scientifica. 2015;2015:491514. http://dx.doi.org/10.1155/2015/491514. PMid:26060595.
http://dx.doi.org/10.1155/2015/491514...

18 Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst. 2011;103(17):1342-6. http://dx.doi.org/10.1093/jnci/djr237. PMid:21747048.
http://dx.doi.org/10.1093/jnci/djr237...

19 Gu F, Zhao C, Jiang T, Li X, Mao Y, Zhou C. Association between nicotine-dependent gene polymorphism and smoking cessation in patients with lung cancer. Clin Lung Cancer. 2020;21(2):171-6. http://dx.doi.org/10.1016/j.cllc.2019.07.002. PMid:31402126.
http://dx.doi.org/10.1016/j.cllc.2019.07...

20 Ito T, Tsuji M, Mori Y, Kanda H, Hidaka T, Kakamu T, et al. Effect of CYP2A6*4 genetic polymorphisms on smoking behaviors and nicotine dependence in a general population of Japanese men. Fukushima J Med Sci. 2015;61(2):125-30. http://dx.doi.org/10.5387/fms.2015-14. PMid:26370685.
http://dx.doi.org/10.5387/fms.2015-14...
-2121 Lerman C, Tyndale R, Patterson F, Wileyto E, Shields P, Pinto A, et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther. 2006;79(6):600-8. http://dx.doi.org/10.1016/j.clpt.2006.02.006. PMid:16765148.
http://dx.doi.org/10.1016/j.clpt.2006.02...
.

CHRN gene polymorphisms

The binding of nicotine to nicotinic acetylcholine receptors (nAChR) increases the concentration of dopamine and other neurotransmitters, promoting the activation of reward mechanisms, which is crucial for smoking behavior. Some variations found in the clusters of genes encoding nAChR in dopaminergic neurons are involved in the development of addiction. Special attention has been given to polymorphisms in the CHRNA4/CHRNB2, CHRNB3/CHRNA6, and CHRNA5/CHRNA3/CHRNB4 gene clusters2222 Buczkowski K, Sieminska A, Linkowska K, Czachowski S, Przybylski G, Jassem E, et al. Association between genetic variants on chromosome 15q25 locus and several nicotine dependence traits in Polish population: a case-control study. BioMed Res Int. 2015;2015:350348. http://dx.doi.org/10.1155/2015/350348. PMid:25632390.
http://dx.doi.org/10.1155/2015/350348...
,2323 Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PAF, et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet. 2007;16(1):36-49. http://dx.doi.org/10.1093/hmg/ddl438. PMid:17135278.
http://dx.doi.org/10.1093/hmg/ddl438...
.

In 2007, an analysis of 3713 Single Nucleotides Polymorphisms (SNP) polymorphisms was published, highlighting the association of SNPs CHRNA3 (rs578776 C>T; rs1051730 C>T) and CHRNA5 (rs16969968 G>A) with smoking2121 Lerman C, Tyndale R, Patterson F, Wileyto E, Shields P, Pinto A, et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther. 2006;79(6):600-8. http://dx.doi.org/10.1016/j.clpt.2006.02.006. PMid:16765148.
http://dx.doi.org/10.1016/j.clpt.2006.02...
. Based on this, several other studies have reported the association of gene variants of nicotinic acetylcholine receptors with nicotinic dependence in different groups, though very few have focused on the Brazilian population 2424 Silva MR, Gattás GJF, Antonio J, Firigato I, Curioni OA, Gonçalves FT. Polymorphisms of CHRNA3 and CHRNA5: head and neck cancer and cigarette consumption intensity in a Brazilian population. Mol Genet Genomic Med. 2019;7(12):e998. http://dx.doi.org/10.1002/mgg3.998. PMid:31599127.
http://dx.doi.org/10.1002/mgg3.998...
,7777 Tomaz PRX, Santos JR, Scholz J, Abe TO, Gaya PV, Negrão AB, et al. Cholinergic receptor nicotinic alpha 5 subunit polymorphisms are associated with smoking cessation success in women. BMC Med Genet. 2018;19(1):55. http://dx.doi.org/10.1186/s12881-018-0571-3. PMid:29621993.
http://dx.doi.org/10.1186/s12881-018-057...
.

Several authors have found associations between the variant alleles of rs578776, rs1051730, and rs16969968 with characteristics of smoking behavior, such as the risk for smoking, the number of cigarettes consumed, and the degree of dependence1717 Akrodou YM. CYP2A6 polymorphisms may strengthen individualized treatment for nicotine dependence. Scientifica. 2015;2015:491514. http://dx.doi.org/10.1155/2015/491514. PMid:26060595.
http://dx.doi.org/10.1155/2015/491514...
,2222 Buczkowski K, Sieminska A, Linkowska K, Czachowski S, Przybylski G, Jassem E, et al. Association between genetic variants on chromosome 15q25 locus and several nicotine dependence traits in Polish population: a case-control study. BioMed Res Int. 2015;2015:350348. http://dx.doi.org/10.1155/2015/350348. PMid:25632390.
http://dx.doi.org/10.1155/2015/350348...
,2424 Silva MR, Gattás GJF, Antonio J, Firigato I, Curioni OA, Gonçalves FT. Polymorphisms of CHRNA3 and CHRNA5: head and neck cancer and cigarette consumption intensity in a Brazilian population. Mol Genet Genomic Med. 2019;7(12):e998. http://dx.doi.org/10.1002/mgg3.998. PMid:31599127.
http://dx.doi.org/10.1002/mgg3.998...

25 Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, et al. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry. 2008;165(9):1163-71. http://dx.doi.org/10.1176/appi.ajp.2008.07111711. PMid:18519524.
http://dx.doi.org/10.1176/appi.ajp.2008....

26 Lee S-H, Ahn W-Y, Seweryn M, Sadee W. Combined genetic influence of the nicotinic receptor gene cluster CHRNA5/A3/B4 on nicotine dependence. BMC Genomics. 2018;19(1):826. http://dx.doi.org/10.1186/s12864-018-5219-3. PMid:30453884.
http://dx.doi.org/10.1186/s12864-018-521...

27 Saccone NL, Wang JC, Breslau N, Johnson EO, Hatsukami D, Saccone SF, et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res. 2009;69(17):6848-56. http://dx.doi.org/10.1158/0008-5472.CAN-09-0786. PMid:19706762.
http://dx.doi.org/10.1158/0008-5472.CAN-...
-2828 Mota CL, Mitri S, Barata-Silva C, Moreira JC. CHRNA5/CHRNA3 polymorphisms and tobacco smoking risk in a Brazilian population sample. GSC Biol and Pharm Sci. 2020;12(2):143-52. http://dx.doi.org/10.30574/gscbps.2020.12.2.0253.
http://dx.doi.org/10.30574/gscbps.2020.1...
,3030 Ruyck K, Nackaerts K, Beels L, Werbrouck J, Volder A, Meysman M. Genetic variation in three candidate genes and nicotine dependence, withdrawal and smoking cessation in hospitalized patients. Pharmacogenomics. 2010;11(8):1053-63. http://dx.doi.org/10.2217/pgs.10.75. PMid:20712524.
http://dx.doi.org/10.2217/pgs.10.75...
,3131 Mbarek H, van Beijsterveldt CEM, Hottenga JJ, Dolan CV, Boomsma DI, Willemsen G, et al. Association between rs1051730 and smoking during pregnancy in Dutch women. Nicotine Tob Res. 2019;21(6):835-40. http://dx.doi.org/10.1093/ntr/ntx267. PMid:29228387.
http://dx.doi.org/10.1093/ntr/ntx267...
. These SNPs have also been associated with smoking cessation, but with inconsistent results. In general, studies have shown a significant association between the T allele of rs1051730 and the A allele of rs16969968 with a lower probability of cessation and, inversely, between the T allele of rs57877rs and a greater chance of cessation2929 Chen L-S, Hung RJ, Baker T, Horton A, Culverhouse R, Saccone N, et al. CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis—a meta-analysis. J Natl Cancer Inst. 2015;107(5):djv100. http://dx.doi.org/10.1093/jnci/djv100. PMid:25873736.
http://dx.doi.org/10.1093/jnci/djv100...
,3232 Chen J, Kettermann A, Rostron BL, Day HR. Biomarkers of exposure among U.S. cigar smokers: an analysis of 1999-2012 National Health and Nutrition Examination Survey (NHANES) data. Cancer Epidemiol Biomarkers Prev. 2014;23(12):2906-15. http://dx.doi.org/10.1158/1055-9965.EPI-14-0849. PMid:25380733.
http://dx.doi.org/10.1158/1055-9965.EPI-...

33 Munafò MR, Johnstone EC, Walther D, Uhl GR, Murphy MFG, Aveyard P. CHRNA3 rs1051730 genotype and short-term smoking cessation. Nicotine Tob Res. 2011;13(10):982-8. http://dx.doi.org/10.1093/ntr/ntr106. PMid:21690317.
http://dx.doi.org/10.1093/ntr/ntr106...
-3434 Wang Q, Li S, Pan L, Li H, Yang X, Jiang F, et al. Association between variants in nicotinic acetylcholine receptor genes and smoking cessation in a Chinese rural population. Am J Addict. 2016;25(4):297-300. http://dx.doi.org/10.1111/ajad.12383. PMid:27197960.
http://dx.doi.org/10.1111/ajad.12383...
. But there are contradictory findings1919 Gu F, Zhao C, Jiang T, Li X, Mao Y, Zhou C. Association between nicotine-dependent gene polymorphism and smoking cessation in patients with lung cancer. Clin Lung Cancer. 2020;21(2):171-6. http://dx.doi.org/10.1016/j.cllc.2019.07.002. PMid:31402126.
http://dx.doi.org/10.1016/j.cllc.2019.07...
,7777 Tomaz PRX, Santos JR, Scholz J, Abe TO, Gaya PV, Negrão AB, et al. Cholinergic receptor nicotinic alpha 5 subunit polymorphisms are associated with smoking cessation success in women. BMC Med Genet. 2018;19(1):55. http://dx.doi.org/10.1186/s12881-018-0571-3. PMid:29621993.
http://dx.doi.org/10.1186/s12881-018-057...
,7878 Chuang Y-H, Paul KC, Sinsheimer JS, Bronstein JM, Bordelon YM, Ritz B. Genetic variants in nicotinic receptors and smoking cessation in Parkinson’s disease. Parkinsonism Relat Disord. 2019;62:57-61. http://dx.doi.org/10.1016/j.parkreldis.2019.01.031. PMid:30777653.
http://dx.doi.org/10.1016/j.parkreldis.2...
. Genetic variations in CHRNB2 and CHRNA4 also seem to interfere with individuals’ responses to drug treatments for smoking cessation. An example is the lower incidence of abstinence symptoms related to polymorphisms in CHRNB2 and CHRNA4 in individuals using the drug varenicline, which acts on neuronal nicotinic cholinergic receptors by stimulating the release of dopamine3535 Santos JR, Tomaz PRX, Issa JS, Abe TO, Krieger JE, Pereira AC, et al. CHRNA4 rs1044396 is associated with smoking cessation in varenicline therapy. Front Genet. 2015;6:46. http://dx.doi.org/10.3389/fgene.2015.00046. PMid:25774163.
http://dx.doi.org/10.3389/fgene.2015.000...
,4040 Swan GE, Javitz HS, Jack LM, Wessel J, Michel M, Hinds DA, et al. Varenicline for smoking cessation: nausea severity and variation in nicotinic receptor genes. Pharmacogenomics J. 2012;12(4):349-58. http://dx.doi.org/10.1038/tpj.2011.19. PMid:21606948.
http://dx.doi.org/10.1038/tpj.2011.19...
. A recent study highlights the contribution of CHRNA4 (rs1044396 C> T) polymorphism in the choice of the best drug for anti-smoking treatment. According to this study, the effectiveness of varenicline is higher for patients with a CT or TT genotype than for those with CC3636 Gaya PV, Scholz J, Santos JR, Tomaz PRX, Abe TMO, Nassif M Jr, et al. Could be applied genetic markers to smoking cessation treatment? Tob Induc Dis. 2018;16(Suppl 1):A854. http://dx.doi.org/10.18332/tid/84277.
http://dx.doi.org/10.18332/tid/84277...
.

Swan et al.4040 Swan GE, Javitz HS, Jack LM, Wessel J, Michel M, Hinds DA, et al. Varenicline for smoking cessation: nausea severity and variation in nicotinic receptor genes. Pharmacogenomics J. 2012;12(4):349-58. http://dx.doi.org/10.1038/tpj.2011.19. PMid:21606948.
http://dx.doi.org/10.1038/tpj.2011.19...
showed an association of variant A of the CHRNB2 polymorphism (rs2072661 G> A) with nausea, an important adverse effect when discontinuing the use of varenicline4040 Swan GE, Javitz HS, Jack LM, Wessel J, Michel M, Hinds DA, et al. Varenicline for smoking cessation: nausea severity and variation in nicotinic receptor genes. Pharmacogenomics J. 2012;12(4):349-58. http://dx.doi.org/10.1038/tpj.2011.19. PMid:21606948.
http://dx.doi.org/10.1038/tpj.2011.19...
. Additional studies have reinforced the association of the variant T allele of rs1044396 (CHRNA4) and the wild G allele of rs2072661 (CHRNB2) with a greater possibility of quitting, lower risk of becoming a smoker, less dependence, and lower cotinine levels1919 Gu F, Zhao C, Jiang T, Li X, Mao Y, Zhou C. Association between nicotine-dependent gene polymorphism and smoking cessation in patients with lung cancer. Clin Lung Cancer. 2020;21(2):171-6. http://dx.doi.org/10.1016/j.cllc.2019.07.002. PMid:31402126.
http://dx.doi.org/10.1016/j.cllc.2019.07...
,3535 Santos JR, Tomaz PRX, Issa JS, Abe TO, Krieger JE, Pereira AC, et al. CHRNA4 rs1044396 is associated with smoking cessation in varenicline therapy. Front Genet. 2015;6:46. http://dx.doi.org/10.3389/fgene.2015.00046. PMid:25774163.
http://dx.doi.org/10.3389/fgene.2015.000...
,3737 Breitling LP, Dahmen N, Mittelstraß K, Rujescu D, Gallinat J, Fehr C, et al. Association of nicotinic acetylcholine receptor subunit α4 polymorphisms with nicotine dependence in 5500 Germans. Pharmacogenomics J. 2009;9(4):219-24. http://dx.doi.org/10.1038/tpj.2009.6. PMid:19290018.
http://dx.doi.org/10.1038/tpj.2009.6...

38 Etter J-F, Hoda J-C, Perroud N, Munafò M, Buresi C, Duret C, et al. Association of genes coding for the α-4, α-5, β-2 and β-3 subunits of nicotinic receptors with cigarette smoking and nicotine dependence. Addict Behav. 2009;34(9):772-5. http://dx.doi.org/10.1016/j.addbeh.2009.05.010. PMid:19482438.
http://dx.doi.org/10.1016/j.addbeh.2009....

39 Li MD, Beuten J, Ma JZ, Payne TJ, Lou X-Y, Garcia V, et al. Ethnic- and gender-specific association of the nicotinic acetylcholine receptor α4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet. 2005;14(9):1211-9. http://dx.doi.org/10.1093/hmg/ddi132. PMid:15790597.
http://dx.doi.org/10.1093/hmg/ddi132...

40 Swan GE, Javitz HS, Jack LM, Wessel J, Michel M, Hinds DA, et al. Varenicline for smoking cessation: nausea severity and variation in nicotinic receptor genes. Pharmacogenomics J. 2012;12(4):349-58. http://dx.doi.org/10.1038/tpj.2011.19. PMid:21606948.
http://dx.doi.org/10.1038/tpj.2011.19...

41 Perkins KA, Lerman C, Mercincavage M, Fonte CA, Briski JL. Nicotinic acetylcholine receptor 2 subunit (CHRNB2) gene and short-term ability to quit smoking in response to nicotine patch. Cancer Epidemiol Biomarkers Prev. 2009;18(10):2608-12. http://dx.doi.org/10.1158/1055-9965.EPI-09-0166. PMid:19755656.
http://dx.doi.org/10.1158/1055-9965.EPI-...
-4242 Wessel J, McDonald SM, Hinds DA, Stokowski RP, Javitz HS, Kennemer M, et al. Resequencing of nicotinic acetylcholine receptor genes and association of common and rare variants with the Fagerström test for nicotine dependence. Neuropsychopharmacology. 2010;35(12):2392-402. http://dx.doi.org/10.1038/npp.2010.120. PMid:20736995.
http://dx.doi.org/10.1038/npp.2010.120...
.

GENE VARIABILITY OF THE DOPAMINERGIC PATHWAY

Polymorphisms of the DRD2 and DRD4 genes

Some functional variations have been found in the genes encoding dopamine receptors (DRDs) related to smoking. However, the most studied, for their association with smoking, are the polymorphs DRD2 rs1800497 and DRD4-VNTR5050 Das D, Tan X, Easteal S. Effect of model choice in genetic association studies: DRD4 exon III VNTR and cigarette use in young adults. Am J Med Genet. 2011;156(3):346-51. http://dx.doi.org/10.1002/ajmg.b.31169. PMid:21438142.
http://dx.doi.org/10.1002/ajmg.b.31169...
,7979 Gordiev M, Engstrom PF, Khasanov R, Moroshek A, Sitdikov R, Dgavoronkov V, et al. Genetic analysis of polymorphisms in dopamine receptor and transporter genes for association with smoking among cancer patients. Eur Addict Res. 2013;19(2):105-11. http://dx.doi.org/10.1159/000341711. PMid:23128675.
http://dx.doi.org/10.1159/000341711...
. Historically referred to as DRD2 Taq1A, the polymorph Taq1A (rs1800497 C> T) is a variation of the ANKK1 gene (Ankyrin Repeat And Kinase Domain Containing 1), where the presence of the A1 (T) allele is related to lower expression of the DRD2 dopamine receptor, which may interfere with the synaptic concentrations of the neurotransmitter. So, individuals with the A1 allele of this gene have a higher risk of being a smoker8080 Verde Z, Santiago C, González-Moro JMR, Ramos PL, Martín SL, Bandrés F, et al. ‘Smoking genes’: a genetic association study. PLoS One. 2011;6(10):e26668. http://dx.doi.org/10.1371/journal.pone.0026668. PMid:22046326.
http://dx.doi.org/10.1371/journal.pone.0...
, starting smoking at a lower age, have a higher degree of dependence, smoke more cigarettes, have shorter periods of abstinence, and make fewer attempts to quit smoking3030 Ruyck K, Nackaerts K, Beels L, Werbrouck J, Volder A, Meysman M. Genetic variation in three candidate genes and nicotine dependence, withdrawal and smoking cessation in hospitalized patients. Pharmacogenomics. 2010;11(8):1053-63. http://dx.doi.org/10.2217/pgs.10.75. PMid:20712524.
http://dx.doi.org/10.2217/pgs.10.75...
,4343 Clague J, Cinciripini P, Blalock J, Wu X, Hudmon KS. The D2 dopamine receptor gene and nicotine dependence among bladder cancer patients and controls. Behav Genet. 2010;40(1):49-58. http://dx.doi.org/10.1007/s10519-009-9301-0. PMid:19842028.
http://dx.doi.org/10.1007/s10519-009-930...
,4444 Radwan GN, El-Setouhy M, Mohamed MK, Hamid MA, Azem SA, Kamel O, et al. DRD2/ANKK1 TaqI polymorphism and smoking behavior of Egyptian male cigarette smokers. Nicotine Tob Res. 2007;9(12):1325-9. http://dx.doi.org/10.1080/14622200701704889. PMid:18058350.
http://dx.doi.org/10.1080/14622200701704...
. However, no association has been found in other studies8181 Batra A, Gelfort G, Bartels M, Smoltczyk H, Buchkremer G, Riess O, et al. The dopamine D2 receptor (DRD2) gene? A genetic risk factor in heavy smoking? Addict Biol. 2000;5(4):429-36. http://dx.doi.org/10.1111/j.1369-1600.2000.tb00212.x. PMid:20575861.
http://dx.doi.org/10.1111/j.1369-1600.20...
,8282 Huang C-L, Ou W-C, Chen P-L, Liu C-N, Chen M-C, Lu C-C, et al. Effects of interaction between dopamine D2 receptor and monoamine oxidase a genes on smoking status in young men. Biol Res Nurs. 2015;17(4):422-8. http://dx.doi.org/10.1177/1099800415589366. PMid:26015071.
http://dx.doi.org/10.1177/10998004155893...
. Additionally, the A2 (C) allele may represent a risk in relation to the characteristics of smoking behavior5959 Johnstone EC, Yudkin PL, Hey K, Roberts SJ, Welch SJ, Murphy MF, et al. Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch. Pharmacogenetics. 2004;14(2):83-90. http://dx.doi.org/10.1097/00008571-200402000-00002. PMid:15077009.
http://dx.doi.org/10.1097/00008571-20040...
,7979 Gordiev M, Engstrom PF, Khasanov R, Moroshek A, Sitdikov R, Dgavoronkov V, et al. Genetic analysis of polymorphisms in dopamine receptor and transporter genes for association with smoking among cancer patients. Eur Addict Res. 2013;19(2):105-11. http://dx.doi.org/10.1159/000341711. PMid:23128675.
http://dx.doi.org/10.1159/000341711...
.

The SNP can also interfere with the response to pharmacological therapies for cessation. David et al.4545 David SP, Strong DR, Munafò MR, Brown RA, Lloyd-Richardson EE, Wileyto PE, et al. Bupropion efficacy for smoking cessation is influenced by the DRD2 Taq1A polymorphism: analysis of pooled data from two clinical trials. Nicotine Tob Res. 2007;9(12):1251-7. http://dx.doi.org/10.1080/14622200701705027. PMid:18058343.
http://dx.doi.org/10.1080/14622200701705...
found that the drug bupropion was effective only in smokers with the A2/A2 (CC) genotype4545 David SP, Strong DR, Munafò MR, Brown RA, Lloyd-Richardson EE, Wileyto PE, et al. Bupropion efficacy for smoking cessation is influenced by the DRD2 Taq1A polymorphism: analysis of pooled data from two clinical trials. Nicotine Tob Res. 2007;9(12):1251-7. http://dx.doi.org/10.1080/14622200701705027. PMid:18058343.
http://dx.doi.org/10.1080/14622200701705...
. Swan et al.4646 Swan GE, Valdes AM, Ring HZ, Khroyan TV, Jack LM, Ton CC, et al. Dopamine receptor DRD2 genotype and smoking cessation outcome following treatment with bupropion SR. Pharmacogenomics J. 2005;5(1):21-9. http://dx.doi.org/10.1038/sj.tpj.6500281. PMid:15492764.
http://dx.doi.org/10.1038/sj.tpj.6500281...
also observed that A2/A2 women were less likely to stop treatment with bupropion; however, the same associations were not observed in men4646 Swan GE, Valdes AM, Ring HZ, Khroyan TV, Jack LM, Ton CC, et al. Dopamine receptor DRD2 genotype and smoking cessation outcome following treatment with bupropion SR. Pharmacogenomics J. 2005;5(1):21-9. http://dx.doi.org/10.1038/sj.tpj.6500281. PMid:15492764.
http://dx.doi.org/10.1038/sj.tpj.6500281...
. An identical effect was also observed in the females for Nicotine Replacement Therapy (NRT)4747 Munafò MR, Johnstone EC, Murphy MFG, Aveyard P. Lack of association of DRD2 rs1800497 (Taq1A) polymorphism with smoking cessation in a nicotine replacement therapy randomized trial. Nicotine Tob Res. 2009;11(4):404-7. http://dx.doi.org/10.1093/ntr/ntp007. PMid:19273465.
http://dx.doi.org/10.1093/ntr/ntp007...
. Other studies have reported an association between the A2 allele and a higher chance of abstinence and success in cessation4545 David SP, Strong DR, Munafò MR, Brown RA, Lloyd-Richardson EE, Wileyto PE, et al. Bupropion efficacy for smoking cessation is influenced by the DRD2 Taq1A polymorphism: analysis of pooled data from two clinical trials. Nicotine Tob Res. 2007;9(12):1251-7. http://dx.doi.org/10.1080/14622200701705027. PMid:18058343.
http://dx.doi.org/10.1080/14622200701705...
,4848 Breitling LP, Twardella D, Hoffmann MM, Witt SH, Treutlein J, Brenner H. Prospective association of dopamine-related polymorphisms with smoking cessation in general care. Pharmacogenomics. 2010;11(4):527-36. http://dx.doi.org/10.2217/pgs.10.1. PMid:20350135.
http://dx.doi.org/10.2217/pgs.10.1...
,4949 Cinciripini P, Wetter D, Tomlinson G, Tsoh J, Moor C, Cinciripini L, et al. The effects of the DRD2 polymorphism on smoking cessation and negative affect: evidence for a pharmacogenetic effect on mood. Nicotine Tob Res. 2004;6(2):229-39. http://dx.doi.org/10.1080/14622200410001676396. PMid:15203796.
http://dx.doi.org/10.1080/14622200410001...
. However, this is not a unanimous result5959 Johnstone EC, Yudkin PL, Hey K, Roberts SJ, Welch SJ, Murphy MF, et al. Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch. Pharmacogenetics. 2004;14(2):83-90. http://dx.doi.org/10.1097/00008571-200402000-00002. PMid:15077009.
http://dx.doi.org/10.1097/00008571-20040...
.

A polymorphism of variable numerical repetition (VNTR) in the gene encoding the D4 receptor, DRD4, has also been investigated as a candidate for susceptibility to smoking addiction. Most studies have grouped the alleles into “long” (7 or more repetitions) or “short” (6 or less)8383 Leventhal AM, David SP, Brightman M, Strong D, McGeary JE, Brown RA, et al. Dopamine D4 receptor gene variation moderates the efficacy of bupropion for smoking cessation. Pharmacogenomics J. 2012;12(1):86-92. http://dx.doi.org/10.1038/tpj.2010.64. PMid:20661272.
http://dx.doi.org/10.1038/tpj.2010.64...
. Long alleles have been associated with lower expression of the gene in comparison with the short alleles8484 Preedy VR. Neuroscience of nicotine: mechanisms and treatment. Cambridge: Elsevier; 2019.. The long allele of this polymorphism has been associated with an increased risk of smoking, greater cigarette consumption, a greater risk of initiation, and a greater degree of dependence5050 Das D, Tan X, Easteal S. Effect of model choice in genetic association studies: DRD4 exon III VNTR and cigarette use in young adults. Am J Med Genet. 2011;156(3):346-51. http://dx.doi.org/10.1002/ajmg.b.31169. PMid:21438142.
http://dx.doi.org/10.1002/ajmg.b.31169...

51 David SP, Munafò MR. Genetic variation in the dopamine pathway and smoking cessation. Pharmacogenomics. 2008;9(9):1307-21. http://dx.doi.org/10.2217/14622416.9.9.1307. PMid:18781857.
http://dx.doi.org/10.2217/14622416.9.9.1...

52 Laucht M, Becker K, El-Faddagh M, Hohm E, Schmidt MH. Association of the DRD4 exon III polymorphism with smoking in fifteen-year-olds: a mediating role for novelty seeking? J Am Acad Child Adolesc Psychiatry. 2005;44(5):477-84. http://dx.doi.org/10.1097/01.chi.0000155980.01792.7f. PMid:15843770.
http://dx.doi.org/10.1097/01.chi.0000155...
-5353 Laucht M, Becker K, Frank J, Schmidt MH, Esser G, Treutlein J, et al. Genetic variation in dopamine pathways differentially associated with smoking progression in adolescence. J Am Acad Child Adolesc Psychiatry. 2008;47(6):673-81. http://dx.doi.org/10.1097/CHI.0b013e31816bff77. PMid:18434921.
http://dx.doi.org/10.1097/CHI.0b013e3181...
. The relationship between smoking cessation and these groups has also been studied by several authors, but with divergent results. Leventhal et al.8383 Leventhal AM, David SP, Brightman M, Strong D, McGeary JE, Brown RA, et al. Dopamine D4 receptor gene variation moderates the efficacy of bupropion for smoking cessation. Pharmacogenomics J. 2012;12(1):86-92. http://dx.doi.org/10.1038/tpj.2010.64. PMid:20661272.
http://dx.doi.org/10.1038/tpj.2010.64...
found that European individuals with the long allele group treated with bupropion have a greater chance of abstinence compared with a placebo group8383 Leventhal AM, David SP, Brightman M, Strong D, McGeary JE, Brown RA, et al. Dopamine D4 receptor gene variation moderates the efficacy of bupropion for smoking cessation. Pharmacogenomics J. 2012;12(1):86-92. http://dx.doi.org/10.1038/tpj.2010.64. PMid:20661272.
http://dx.doi.org/10.1038/tpj.2010.64...
. However, this result was not confirmed in other studies8585 Bergen AW, Javitz HS, Krasnow R, Nishita D, Michel M, Conti DV, et al. Nicotinic acetylcholine receptor variation and response to smoking cessation therapies. Pharmacogenet Genomics. 2013;23(2):94-103. http://dx.doi.org/10.1097/FPC.0b013e32835cdabd. PMid:23249876.
http://dx.doi.org/10.1097/FPC.0b013e3283...
. The influence of polymorphism was also studied for Nicotine Replacement Therapy (NRT) in individuals with European ancestors; this study showed that those possessing long alleles had a reduced probability of cessation5151 David SP, Munafò MR. Genetic variation in the dopamine pathway and smoking cessation. Pharmacogenomics. 2008;9(9):1307-21. http://dx.doi.org/10.2217/14622416.9.9.1307. PMid:18781857.
http://dx.doi.org/10.2217/14622416.9.9.1...
. Other studies have not confirmed the association between DRD4 VNTR and smoking behavior8686 Babic M, Nedic G, Muck-Seler D, Borovecki F, Pivac N. Lack of association between dopamine receptor D4 variable numbers of tandem repeats gene polymorphism and smoking. Neurosci Lett. 2012;520(1):67-70. http://dx.doi.org/10.1016/j.neulet.2012.05.032. PMid:22609848.
http://dx.doi.org/10.1016/j.neulet.2012....
,8787 Luciano M, Zhu G, Kirk KM, Whitfield JB, Butler R, Heath AC, et al. Effects of dopamine receptor D4 variation on alcohol and tobacco use and on novelty seeking: multivariate linkage and association analysis. Am J Med Genet. 2004;124B(1):113-23. http://dx.doi.org/10.1002/ajmg.b.20077. PMid:14681925.
http://dx.doi.org/10.1002/ajmg.b.20077...
. These differences in findings reinforce the complexity of nicotine addiction and the need for future studies.

Polymorphism of the SLC6A3 gene

The dopamine transporter (DAT), which is encoded by the SLC6A3 gene, mediates the active reuptake of dopamine from the synapse. Polymorphism of the SLC6A3 gene is linked to dopamine transport in the synaptic cleft. It is formed by the repetition of a 40-base pair sequence, which can interfere with the expression of the SLC6A3 gene that encodes the dopamine transport protein (D28). Alleles containing 10 and 9 repeats are the most frequent. The 10-repeats allele is associated with a higher rate of gene transcription and, therefore, with higher levels of the carrier protein8888 Choi HD, Shin WG. Meta-analysis update of association between dopamine transporter SLC6A3 gene polymorphism and smoking cessation. J Health Psychol. 2018;23(9):1250-7. http://dx.doi.org/10.1177/1359105316648479. PMid:27287604.
http://dx.doi.org/10.1177/13591053166484...
. Studies have shown that individuals with the 9-repeats allele are less likely to start smoking before the age of 16, have a shorter smoking time, longer periods of abstinence, and are more likely to quit smoking5454 Erblich J, Lerman C, Self DW, Diaz GA, Bovbjerg DH. Effects of dopamine D2 receptor (DRD2) and transporter (SLC6A3) polymorphisms on smoking cue-induced cigarette craving among African-American smokers. Mol Psychiatry. 2005;10(4):407-14. http://dx.doi.org/10.1038/sj.mp.4001588. PMid:15381926.
http://dx.doi.org/10.1038/sj.mp.4001588...

55 Lerman C, Shields PG, Wileyto EP, Audrain J, Hawk LH Jr, Pinto A, et al. Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial. Health Psychol. 2003;22(5):541-8. http://dx.doi.org/10.1037/0278-6133.22.5.541. PMid:14570538.
http://dx.doi.org/10.1037/0278-6133.22.5...

56 Ma Y, Yuan W, Cui W, Li MD. Meta-analysis reveals significant association of 3′-UTR VNTR in SLC6A3 with smoking cessation in Caucasian populations. Pharmacogenomics J. 2016;16(1):10-7. http://dx.doi.org/10.1038/tpj.2015.44. PMid:26149737.
http://dx.doi.org/10.1038/tpj.2015.44...

57 O’Gara C, Stapleton J, Sutherland G, Guindalini C, Neale B, Breen G, et al. Dopamine transporter polymorphisms are associated with short-term response to smoking cessation treatment. Pharmacogenet Genomics. 2007;17(1):61-7. http://dx.doi.org/10.1097/01.fpc.0000236328.18928.4c. PMid:17264803.
http://dx.doi.org/10.1097/01.fpc.0000236...
-5858 Schmid B, Blomeyer D, Becker K, Treutlein J, Zimmermann US, Buchmann AF, et al. The interaction between the dopamine transporter gene and age at onset in relation to tobacco and alcohol use among 19-year-olds. Addict Biol. 2009;14(4):489-99. http://dx.doi.org/10.1111/j.1369-1600.2009.00171.x. PMid:19740369.
http://dx.doi.org/10.1111/j.1369-1600.20...
. However, controversial results89 and a89 Vandenbergh DJ, Bennett CJ, Grant MD, Strasser AA, O’Connor R, Stauffer RL, et al. Smoking status and the human dopamine transporter variable number of tandem repeats (VNTR) polymorphism: failure to replicate and finding that never-smokers may be different. Nicotine Tob Res. 2002;4(3):333-40. http://dx.doi.org/10.1080/14622200210142689. PMid:12215242.
http://dx.doi.org/10.1080/14622200210142...
lack of significant association9090 Ton TG, Rossing M, Bowen DJ, Srinouanprachan S, Wicklund K, Farin FM. Genetic polymorphisms in dopamine-related genes and smoking cessation in women: a prospective cohort study. Behav Brain Funct. 2007;3(1):22. http://dx.doi.org/10.1186/1744-9081-3-22. PMid:17466074.
http://dx.doi.org/10.1186/1744-9081-3-22...
demonstrate the need for further studies on this subject.

A meta-analysis study showed that, although the genetic variations of SLC6A3 are related to dopamine regulation, there is a lack of evidence on their influence on smoking cessation, given the multifactorial nature of smoking8888 Choi HD, Shin WG. Meta-analysis update of association between dopamine transporter SLC6A3 gene polymorphism and smoking cessation. J Health Psychol. 2018;23(9):1250-7. http://dx.doi.org/10.1177/1359105316648479. PMid:27287604.
http://dx.doi.org/10.1177/13591053166484...
. However, this study reinforced the importance of gene interaction in susceptibility to smoking and showed that the interaction between the DRD2 Taq1A and SLC6A3 genes prolongs abstinence time and influences smoking cessation with the use of bupropion5555 Lerman C, Shields PG, Wileyto EP, Audrain J, Hawk LH Jr, Pinto A, et al. Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial. Health Psychol. 2003;22(5):541-8. http://dx.doi.org/10.1037/0278-6133.22.5.541. PMid:14570538.
http://dx.doi.org/10.1037/0278-6133.22.5...
. The results showed the role of gene-gene interaction in the probability of relapse: smokers possessing the A2 allele of DRD2 Taq1A and SLC6A3-9 had significantly higher rates of abstinence at the end of treatment and a longer latency period for relapse5555 Lerman C, Shields PG, Wileyto EP, Audrain J, Hawk LH Jr, Pinto A, et al. Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial. Health Psychol. 2003;22(5):541-8. http://dx.doi.org/10.1037/0278-6133.22.5.541. PMid:14570538.
http://dx.doi.org/10.1037/0278-6133.22.5...
.

Polymorphisms of the DBH gene

The DBH gene encodes the enzyme of the same name, which converts dopamine to norepinephrine; this means that lower levels of transcription or activity may result in higher concentrations of dopamine5151 David SP, Munafò MR. Genetic variation in the dopamine pathway and smoking cessation. Pharmacogenomics. 2008;9(9):1307-21. http://dx.doi.org/10.2217/14622416.9.9.1307. PMid:18781857.
http://dx.doi.org/10.2217/14622416.9.9.1...
. Several studies have reported functional polymorphisms in this gene related to smoking behavior9191 Freire MTMV, Marques FZC, Hutz MH, Bau CHD. Polymorphisms in the DBH and DRD2 gene regions and smoking behavior. Eur Arch Psychiatry Clin Neurosci. 2006;256(2):93-7. http://dx.doi.org/10.1007/s00406-005-0610-x. PMid:16032443.
http://dx.doi.org/10.1007/s00406-005-061...
,9292 McKinney EF, Walton RT, Yudkin P, Fuller A, Haldar NA, Mant D, et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics. 2000;10(6):483-91. http://dx.doi.org/10.1097/00008571-200008000-00001. PMid:10975602.
http://dx.doi.org/10.1097/00008571-20000...
. The literature shows an association between rs77905 (A> G) polymorphism and nicotine dependence5959 Johnstone EC, Yudkin PL, Hey K, Roberts SJ, Welch SJ, Murphy MF, et al. Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch. Pharmacogenetics. 2004;14(2):83-90. http://dx.doi.org/10.1097/00008571-200402000-00002. PMid:15077009.
http://dx.doi.org/10.1097/00008571-20040...
,6060 Shiels MS, Huang HY, Hoffman SC, Shugart YY, Bolton JH, Platz EA, et al. A community-based study of cigarette smoking behavior in relation to variation in three genes involved in dopamine metabolism: Catechol-O-methyltransferase (COMT), dopamine beta-hydroxylase (DBH) and monoamine oxidase-A (MAO-A). Prev Med. 2008;47(1):116-22. http://dx.doi.org/10.1016/j.ypmed.2008.03.013. PMid:18486967.
http://dx.doi.org/10.1016/j.ypmed.2008.0...
,9292 McKinney EF, Walton RT, Yudkin P, Fuller A, Haldar NA, Mant D, et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics. 2000;10(6):483-91. http://dx.doi.org/10.1097/00008571-200008000-00001. PMid:10975602.
http://dx.doi.org/10.1097/00008571-20000...
. Johnstone et al.5959 Johnstone EC, Yudkin PL, Hey K, Roberts SJ, Welch SJ, Murphy MF, et al. Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch. Pharmacogenetics. 2004;14(2):83-90. http://dx.doi.org/10.1097/00008571-200402000-00002. PMid:15077009.
http://dx.doi.org/10.1097/00008571-20040...
reported an association between individuals with the GG genotype, in interaction with the A2/A2 genotype of the DRD2 Taq1A polymorphism, and greater persistence of smoking, as well as less effectiveness of cessation due to transdermal nicotine replacement5959 Johnstone EC, Yudkin PL, Hey K, Roberts SJ, Welch SJ, Murphy MF, et al. Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch. Pharmacogenetics. 2004;14(2):83-90. http://dx.doi.org/10.1097/00008571-200402000-00002. PMid:15077009.
http://dx.doi.org/10.1097/00008571-20040...
. However, McKinney et al.9292 McKinney EF, Walton RT, Yudkin P, Fuller A, Haldar NA, Mant D, et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics. 2000;10(6):483-91. http://dx.doi.org/10.1097/00008571-200008000-00001. PMid:10975602.
http://dx.doi.org/10.1097/00008571-20000...
observed that homozygous smokers of the G allele smoked fewer cigarettes than smokers with the A allele9292 McKinney EF, Walton RT, Yudkin P, Fuller A, Haldar NA, Mant D, et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics. 2000;10(6):483-91. http://dx.doi.org/10.1097/00008571-200008000-00001. PMid:10975602.
http://dx.doi.org/10.1097/00008571-20000...
. Some studies found no significant association between this SNP and smoking9393 Huang S, Cook DG, Hinks LJ, Chen X-H, Ye S, Gilg JA, et al. CYP2A6, MAOA, DBH, DRD4, and 5HT2A genotypes, smoking behaviour and cotinine levels in 1518 UK adolescents. Pharmacogenet Genomics. 2005;15(12):839-50. http://dx.doi.org/10.1097/01213011-200512000-00002. PMid:16272956.
http://dx.doi.org/10.1097/01213011-20051...
. For instance, according to some authors, the SNP rs3025343 (G> A) is associated with smoking behavior, especially the G allele, which is related to smoking cessation6161 Siedlinski M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W, et al. Genome-wide association study of smoking behaviours in patients with COPD. Thorax. 2011;66(10):894-902. http://dx.doi.org/10.1136/thoraxjnl-2011-200154. PMid:21685187.
http://dx.doi.org/10.1136/thoraxjnl-2011...
,6262 The Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42(5):441-7. http://dx.doi.org/10.1038/ng.571. PMid:20418890.
http://dx.doi.org/10.1038/ng.571...
, but this is still controversial because other studies haven’t confirmed this association9494 Hirvonen K, Korhonen T, Salomaa V, Männistö S, Kaprio J. Association of the DBH polymorphism rs3025343 with smoking cessation in a large population-based sample. Nicotine Tob Res. 2017;19(9):1112-5. http://dx.doi.org/10.1093/ntr/ntx066. PMid:28371857.
http://dx.doi.org/10.1093/ntr/ntx066...
.

Polymorphism of the COMT gene

Some functional polymorphisms of the COMT gene involved in dopamine degradation linked to smoking have already been identified6363 Enoch M-A, Waheed JF, Harris CR, Albaugh B, Goldman D. Sex differences in the influence of COMT Val158Met on alcoholism and smoking in plains American indians. Alcohol Clin Exp Res. 2006;30(3):399-406. http://dx.doi.org/10.1111/j.1530-0277.2006.00045.x. PMid:16499480.
http://dx.doi.org/10.1111/j.1530-0277.20...
. The rs4680 G>A variation (Val158/108Met) resulted in less enzyme activity. Therefore, the Val allele carriers showed a low level of the neurotransmitter dopamine and increased COMT activity in comparison with the Met allele6464 Nedic G, Nikolac M, Borovecki F, Hajnsek S, Muck-Seler D, Pivac N. Association study of a functional catechol-o-methyltransferase polymorphism and smoking in healthy Caucasian subjects. Neurosci Lett. 2010;473(3):216-9. http://dx.doi.org/10.1016/j.neulet.2010.02.050. PMid:20188797.
http://dx.doi.org/10.1016/j.neulet.2010....
.

Several studies have shown an association between the Val allele and characteristics of smoking dependence, such as the risk of smoking initiation, a greater degree of dependence, and persistence6565 Beuten J, Payne TJ, Ma JZ, Li MD. Significant association of Catechol-O-Methyltransferase (COMT) haplotypes with nicotine dependence in male and female smokers of two ethnic populations. Neuropsychopharmacology. 2006;31(3):675-84. http://dx.doi.org/10.1038/sj.npp.1300997. PMid:16395295.
http://dx.doi.org/10.1038/sj.npp.1300997...
,6666 Tochigi M, Suzuki K, Kato C, Otowa T, Hibino H, Umekage T, et al. Association study of monoamine oxidase and catechol-O-methyltransferase genes with smoking behavior. Pharmacogenet Genomics. 2007;17(10):867-72. http://dx.doi.org/10.1097/FPC.0b013e3282e9a51e. PMid:17885625.
http://dx.doi.org/10.1097/FPC.0b013e3282...
. Enoch et al.6363 Enoch M-A, Waheed JF, Harris CR, Albaugh B, Goldman D. Sex differences in the influence of COMT Val158Met on alcoholism and smoking in plains American indians. Alcohol Clin Exp Res. 2006;30(3):399-406. http://dx.doi.org/10.1111/j.1530-0277.2006.00045.x. PMid:16499480.
http://dx.doi.org/10.1111/j.1530-0277.20...
, analyzing a sample of 342 individuals, observed this association in female smokers6363 Enoch M-A, Waheed JF, Harris CR, Albaugh B, Goldman D. Sex differences in the influence of COMT Val158Met on alcoholism and smoking in plains American indians. Alcohol Clin Exp Res. 2006;30(3):399-406. http://dx.doi.org/10.1111/j.1530-0277.2006.00045.x. PMid:16499480.
http://dx.doi.org/10.1111/j.1530-0277.20...
. A similar result was found by Nedic et al.6464 Nedic G, Nikolac M, Borovecki F, Hajnsek S, Muck-Seler D, Pivac N. Association study of a functional catechol-o-methyltransferase polymorphism and smoking in healthy Caucasian subjects. Neurosci Lett. 2010;473(3):216-9. http://dx.doi.org/10.1016/j.neulet.2010.02.050. PMid:20188797.
http://dx.doi.org/10.1016/j.neulet.2010....
in a study with 657 Caucasian men6464 Nedic G, Nikolac M, Borovecki F, Hajnsek S, Muck-Seler D, Pivac N. Association study of a functional catechol-o-methyltransferase polymorphism and smoking in healthy Caucasian subjects. Neurosci Lett. 2010;473(3):216-9. http://dx.doi.org/10.1016/j.neulet.2010.02.050. PMid:20188797.
http://dx.doi.org/10.1016/j.neulet.2010....
. Additionally, an association between the Met/Met genotype and greater success in cessation has been reported6767 Guo S, Chen DF, Zhou DF, Sun HQ, Wu GY, Haile CN, et al. Association of functional catechol O-methyl transferase (COMT) Val108Met polymorphism with smoking severity and age of smoking initiation in Chinese male smokers. Psychopharmacology. 2007;190(4):449-56. http://dx.doi.org/10.1007/s00213-006-0628-4. PMid:17206495.
http://dx.doi.org/10.1007/s00213-006-062...
. A survey by Colilla et al.9595 Colilla S, Lerman C, Shields PG, Jepson C, Rukstalis M, Berlin J, et al. Association of catechol-O-methyltransferase with smoking cessation in two independent studies of women. Pharmacogenet Genomics. 2005;15(6):393-8. http://dx.doi.org/10.1097/01213011-200506000-00004. PMid:15900212.
http://dx.doi.org/10.1097/01213011-20050...
, with a sample of 290 women, reported the success of NRT in smokers of Caucasian ethnicity with the homozygous genotype Met/Met in comparison with those with the Val/Val genotype. Another study of 749 Caucasians found that the Met/Met genotype is associated with higher abstinence rates6969 Munafò MR, Johnstone EC, Guo B, Murphy MFG, Aveyard P. Association of COMT Val108/158Met genotype with smoking cessation. Pharmacogenet Genomics. 2008;18(2):121-8. http://dx.doi.org/10.1097/FPC.0b013e3282f44daa. PMid:18192898.
http://dx.doi.org/10.1097/FPC.0b013e3282...
. However, some authors have reported different results9595 Colilla S, Lerman C, Shields PG, Jepson C, Rukstalis M, Berlin J, et al. Association of catechol-O-methyltransferase with smoking cessation in two independent studies of women. Pharmacogenet Genomics. 2005;15(6):393-8. http://dx.doi.org/10.1097/01213011-200506000-00004. PMid:15900212.
http://dx.doi.org/10.1097/01213011-20050...

96 Johnstone EC, Elliot KM, David SP, Murphy MFG, Walton RT, Munafo MR. Association of COMT Val108/158Met genotype with smoking cessation in a nicotine replacement therapy randomized trial. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1065-9. http://dx.doi.org/10.1158/1055-9965.EPI-06-0936. PMid:17548664.
http://dx.doi.org/10.1158/1055-9965.EPI-...

97 Han D-H, Joe K-H, Na C, Lee Y-S. Effect of genetic polymorphisms on smoking cessation: a trial of bupropion in Korean male smokers. Psychiatr Genet. 2008;18(1):11-6. http://dx.doi.org/10.1097/YPG.0b013e3282df0939. PMid:18197080.
http://dx.doi.org/10.1097/YPG.0b013e3282...

98 Omidvar M, Stolk L, Uitterlinden AG, Hofman A, Van Duijn CM, Tiemeier H. The effect of catechol-O-methyltransferase Met/Val functional polymorphism on smoking cessation: retrospective and prospective analyses in a cohort study. Pharmacogenet Genomics. 2009;19(1):45-51. http://dx.doi.org/10.1097/FPC.0b013e328317f3f8. PMid:19160592.
http://dx.doi.org/10.1097/FPC.0b013e3283...
-9999 Sun H, Guo S, Chen D, Yang F, Zou Y, Di X, et al. Association of functional COMT Val108/Met polymorphism with smoking cessation in a nicotine replacement therapy. J Neural Transm. 2012;119(12):1491-8. http://dx.doi.org/10.1007/s00702-012-0841-8. PMid:22695756.
http://dx.doi.org/10.1007/s00702-012-084...
.

Polymorphisms of the MAOA and MAOB genes

Relevant variations for smoking in both monoamine oxidase genes, MAOA and MAOB, have been reported, since both are involved in the degradation of some neurotransmitters, such as dopamine100100 Ducci F, Goldman D. The genetic basis of addictive disorders. Psychiatr Clin North Am. 2012;35(2):495-519. http://dx.doi.org/10.1016/j.psc.2012.03.010. PMid:22640768.
http://dx.doi.org/10.1016/j.psc.2012.03....
,101101 Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11(1):34. http://dx.doi.org/10.1186/1478-811X-11-34. PMid:23683503.
http://dx.doi.org/10.1186/1478-811X-11-3...
. As for the variability of the MAOA gene, research has focused on polymorphisms that affect smoking. One repetition polymorphism, the MAOA VNTR of the promoter region of the gene, which consists of 2 to 5 repetitions of a sequence of 30 base pairs, is related to smoking. Two alleles containing 3 and 4-repeats are most common6060 Shiels MS, Huang HY, Hoffman SC, Shugart YY, Bolton JH, Platz EA, et al. A community-based study of cigarette smoking behavior in relation to variation in three genes involved in dopamine metabolism: Catechol-O-methyltransferase (COMT), dopamine beta-hydroxylase (DBH) and monoamine oxidase-A (MAO-A). Prev Med. 2008;47(1):116-22. http://dx.doi.org/10.1016/j.ypmed.2008.03.013. PMid:18486967.
http://dx.doi.org/10.1016/j.ypmed.2008.0...
,6666 Tochigi M, Suzuki K, Kato C, Otowa T, Hibino H, Umekage T, et al. Association study of monoamine oxidase and catechol-O-methyltransferase genes with smoking behavior. Pharmacogenet Genomics. 2007;17(10):867-72. http://dx.doi.org/10.1097/FPC.0b013e3282e9a51e. PMid:17885625.
http://dx.doi.org/10.1097/FPC.0b013e3282...
,7070 Ito H, Hamajima N, Matsuo K, Okuma K, Sato S, Ueda R, et al. Monoamine oxidase polymorphisms and smoking behaviour in Japanese. Pharmacogenetics. 2003;13(2):73-9. http://dx.doi.org/10.1097/00008571-200302000-00003. PMid:12563176.
http://dx.doi.org/10.1097/00008571-20030...
,7171 Wiesbeck GA, Wodarz N, Weijers H-G, Dursteler-MacFarland KM, Wurst F-M, Walter M, et al. A functional polymorphism in the promoter region of the monoamine oxidase A gene is associated with the cigarette smoking quantity in alcohol-dependent heavy smokers. Neuropsychobiology. 2006;53(4):181-5. http://dx.doi.org/10.1159/000093782. PMid:16763378.
http://dx.doi.org/10.1159/000093782...
,9393 Huang S, Cook DG, Hinks LJ, Chen X-H, Ye S, Gilg JA, et al. CYP2A6, MAOA, DBH, DRD4, and 5HT2A genotypes, smoking behaviour and cotinine levels in 1518 UK adolescents. Pharmacogenet Genomics. 2005;15(12):839-50. http://dx.doi.org/10.1097/01213011-200512000-00002. PMid:16272956.
http://dx.doi.org/10.1097/01213011-20051...
,102102 Jin Y, Chen D, Hu Y, Guo S, Sun H, Lu A, et al. Association between monoamine oxidase gene polymorphisms and smoking behaviour in Chinese males. Int J Neuropsychopharmacol. 2006;9(5):557-64. http://dx.doi.org/10.1017/S1461145705006218. PMid:16207390.
http://dx.doi.org/10.1017/S1461145705006...
,103103 Mota C, Nogueira SM, Barata-Silva C, Pavesi T, Moreira JC. The MAOA VNTR polymorphism and smoking behavior in Brazilian males. Biomed Genet Genom. 2017;2(2):1-5.. The 4-repeats allele has been associated with a greater number of cigarettes consumed, compared to the 3-repeats allele, in Caucasian men with alcohol and tobacco dependence7171 Wiesbeck GA, Wodarz N, Weijers H-G, Dursteler-MacFarland KM, Wurst F-M, Walter M, et al. A functional polymorphism in the promoter region of the monoamine oxidase A gene is associated with the cigarette smoking quantity in alcohol-dependent heavy smokers. Neuropsychobiology. 2006;53(4):181-5. http://dx.doi.org/10.1159/000093782. PMid:16763378.
http://dx.doi.org/10.1159/000093782...
. Similarly, the 4-repeats allele has been associated with higher FTND scores and a higher degree of dependence in women7070 Ito H, Hamajima N, Matsuo K, Okuma K, Sato S, Ueda R, et al. Monoamine oxidase polymorphisms and smoking behaviour in Japanese. Pharmacogenetics. 2003;13(2):73-9. http://dx.doi.org/10.1097/00008571-200302000-00003. PMid:12563176.
http://dx.doi.org/10.1097/00008571-20030...
. However, the data are not conclusive, since these findings have not been confirmed by other studies6666 Tochigi M, Suzuki K, Kato C, Otowa T, Hibino H, Umekage T, et al. Association study of monoamine oxidase and catechol-O-methyltransferase genes with smoking behavior. Pharmacogenet Genomics. 2007;17(10):867-72. http://dx.doi.org/10.1097/FPC.0b013e3282e9a51e. PMid:17885625.
http://dx.doi.org/10.1097/FPC.0b013e3282...
,9393 Huang S, Cook DG, Hinks LJ, Chen X-H, Ye S, Gilg JA, et al. CYP2A6, MAOA, DBH, DRD4, and 5HT2A genotypes, smoking behaviour and cotinine levels in 1518 UK adolescents. Pharmacogenet Genomics. 2005;15(12):839-50. http://dx.doi.org/10.1097/01213011-200512000-00002. PMid:16272956.
http://dx.doi.org/10.1097/01213011-20051...
,103103 Mota C, Nogueira SM, Barata-Silva C, Pavesi T, Moreira JC. The MAOA VNTR polymorphism and smoking behavior in Brazilian males. Biomed Genet Genom. 2017;2(2):1-5..

Another polymorphism in the MAOA gene, called EcoRV rs1137070 1460C> T, is capable of altering the transcriptional activity of this gene8282 Huang C-L, Ou W-C, Chen P-L, Liu C-N, Chen M-C, Lu C-C, et al. Effects of interaction between dopamine D2 receptor and monoamine oxidase a genes on smoking status in young men. Biol Res Nurs. 2015;17(4):422-8. http://dx.doi.org/10.1177/1099800415589366. PMid:26015071.
http://dx.doi.org/10.1177/10998004155893...
,104104 Shen Z, Huang P, Wang C, Qian W, Luo X, Gu Q, et al. Interactions between monoamine oxidase A rs1137070 and smoking on brain structure and function in male smokers. Eur J Neurosci. 2019;50(3):2201-10. http://dx.doi.org/10.1111/ejn.14282. PMid:30456877.
http://dx.doi.org/10.1111/ejn.14282...
. In this case, the presence of the T variant reduces the risk of smoking, especially in Caucasians7272 Yang J, Wang S, Yang Z, Hodgkinson CA, Iarikova P, Ma JZ, et al. The contribution of rare and common variants in 30 genes to risk nicotine dependence. Mol Psychiatry. 2015;20(11):1467-78. http://dx.doi.org/10.1038/mp.2014.156. PMid:25450229.
http://dx.doi.org/10.1038/mp.2014.156...
, and in women6060 Shiels MS, Huang HY, Hoffman SC, Shugart YY, Bolton JH, Platz EA, et al. A community-based study of cigarette smoking behavior in relation to variation in three genes involved in dopamine metabolism: Catechol-O-methyltransferase (COMT), dopamine beta-hydroxylase (DBH) and monoamine oxidase-A (MAO-A). Prev Med. 2008;47(1):116-22. http://dx.doi.org/10.1016/j.ypmed.2008.03.013. PMid:18486967.
http://dx.doi.org/10.1016/j.ypmed.2008.0...
. However, some studies have found otherwise6666 Tochigi M, Suzuki K, Kato C, Otowa T, Hibino H, Umekage T, et al. Association study of monoamine oxidase and catechol-O-methyltransferase genes with smoking behavior. Pharmacogenet Genomics. 2007;17(10):867-72. http://dx.doi.org/10.1097/FPC.0b013e3282e9a51e. PMid:17885625.
http://dx.doi.org/10.1097/FPC.0b013e3282...
,102102 Jin Y, Chen D, Hu Y, Guo S, Sun H, Lu A, et al. Association between monoamine oxidase gene polymorphisms and smoking behaviour in Chinese males. Int J Neuropsychopharmacol. 2006;9(5):557-64. http://dx.doi.org/10.1017/S1461145705006218. PMid:16207390.
http://dx.doi.org/10.1017/S1461145705006...
.

Regarding variations in the MAOB gene, the A allele of the MAOB rs1799836 polymorphism (A> G) is associated with a lower risk of heavy smoking in men7272 Yang J, Wang S, Yang Z, Hodgkinson CA, Iarikova P, Ma JZ, et al. The contribution of rare and common variants in 30 genes to risk nicotine dependence. Mol Psychiatry. 2015;20(11):1467-78. http://dx.doi.org/10.1038/mp.2014.156. PMid:25450229.
http://dx.doi.org/10.1038/mp.2014.156...
. However, this association is contradicted by other studies6666 Tochigi M, Suzuki K, Kato C, Otowa T, Hibino H, Umekage T, et al. Association study of monoamine oxidase and catechol-O-methyltransferase genes with smoking behavior. Pharmacogenet Genomics. 2007;17(10):867-72. http://dx.doi.org/10.1097/FPC.0b013e3282e9a51e. PMid:17885625.
http://dx.doi.org/10.1097/FPC.0b013e3282...
,105105 Pehlivan S, Aydin PC, Uysal MA, Ciftci HS, Sever U, Yavuz FK, et al. Effect of monoamine oxidase B A644G variant on nicotine dependence and/or schizophrenia risk. Arch Clin Psychiatry. 2019;46(1):21-4. http://dx.doi.org/10.1590/0101-60830000000186.
http://dx.doi.org/10.1590/0101-608300000...
. Interactions between this SNP with other polymorphisms seem to interfere with the risk of smoking7070 Ito H, Hamajima N, Matsuo K, Okuma K, Sato S, Ueda R, et al. Monoamine oxidase polymorphisms and smoking behaviour in Japanese. Pharmacogenetics. 2003;13(2):73-9. http://dx.doi.org/10.1097/00008571-200302000-00003. PMid:12563176.
http://dx.doi.org/10.1097/00008571-20030...
,7373 Costa-Mallen P, Costa LG, Checkoway H. Genotype combinations for monoamine oxidase-B intron 13 polymorphism and dopamine D2 receptor TaqIB polymorphism are associated with ever-smoking status among men. Neurosci Lett. 2005;385(2):158-62. http://dx.doi.org/10.1016/j.neulet.2005.05.035. PMid:15955630.
http://dx.doi.org/10.1016/j.neulet.2005....
. The association of the A allele with smoking risk was found only in association with the B12 genotype of a polymorphism known as the TaqIB of the DRD2 gene7373 Costa-Mallen P, Costa LG, Checkoway H. Genotype combinations for monoamine oxidase-B intron 13 polymorphism and dopamine D2 receptor TaqIB polymorphism are associated with ever-smoking status among men. Neurosci Lett. 2005;385(2):158-62. http://dx.doi.org/10.1016/j.neulet.2005.05.035. PMid:15955630.
http://dx.doi.org/10.1016/j.neulet.2005....
. Other studies have shown that Japanese men with a combination of the MAOB rs1799836 G allele and the 3-repeats genotype of the VNTR MAOA started smoking later than those with other genotypic combinations7070 Ito H, Hamajima N, Matsuo K, Okuma K, Sato S, Ueda R, et al. Monoamine oxidase polymorphisms and smoking behaviour in Japanese. Pharmacogenetics. 2003;13(2):73-9. http://dx.doi.org/10.1097/00008571-200302000-00003. PMid:12563176.
http://dx.doi.org/10.1097/00008571-20030...
.

CONCLUSION

There are many genes involved in the neurobiology of smoking. Several are polymorphic and, admittedly, some of these variations can affect smoking behavior.

The majority of studies have focused on genes related to the activation of the dopaminergic reward system by nicotine present in cigarettes as candidates for susceptibility to addiction. Due to their association with a higher risk of smoking, the polymorphisms found in the genes CYP2A6, CHRNA3, CHRNA5, CHRNA4, CHRNB2, DRD2, DRD4, SLC6A3, DBH, COMT, MAOA, and MAOB were addressed. Among these, the SNPs CYP2A6 *1, CHRNA3 rs578776, CHRNA5 rs16969968, CHRNA4 rs1044396, CHRNB2 rs2072661, and DRD2 Taq1A seem to most influence the development of addiction and the worsening of specific characteristics of smoking behavior, such as the number of cigarettes consumed, the age of initiation, the efficiency of drug therapy and cessation.

The relevance of genotypic combinations between different polymorphisms reinforces that interactions between genes can determine a genetic profile of predisposition to addiction. In addition, the sex and ethnicity of the studied populations proved to be important factors in the investigations, especially in the context of a diverse and mixed population. The effects of genetic variability on smoking have received great attention. Advances in the field of pharmacogenetics have enabled a greater understanding of individuality in responses to drug therapies, both in terms of efficacy and adverse effects. Knowledge of the genetic variability of the neurobiology of smoking can help elucidate the issues inherent to smoking addiction and contribute to the development of more personalized and effective forms of treatment. However, the great variability of obtained results shows that this task is not simple. Apparently, it involves several factors. Therefore, more research is needed on this topic, especially considering population differences, the interference of environmental factors, and interactions between different polymorphisms.

  • How to cite: Mota CL, Barata-Silva C, Moreira JC, Mitri S. Genetic variability in the neurobiology of nicotine dependence: effects on smoking behavior. Cad. Saúde Colet., 2023; 31(1):e31010250. https://doi.org/10.1590/1414-462X202331010250
  • Study carry out at: Rio de Janeiro (RJ), Brazil.
  • Financial support: This study was supported by Sergio Arouca National School of Public Health/Oswaldo Cruz Foundation (ENSP/FIOCRUZ) (ENSP-018-FIO-17) and the Research Support Foundation of the State of Rio de Janeiro (FAPERJ) (E-26/200.618/2018), Brazil.

REFERENCES

  • 1
    World Health Organization. WHO report on the global tobacco epidemic 2019: offer help to quit tobacco use. Geneva: World Health Organization; 2019.
  • 2
    Drope J, Schluger N, Cahn Z, Drope J, Hamill S, Islami F, et al. The tobacco atlas. Atlanta: American Cancer Society and Vital Strategies; 2018.
  • 3
    Rodgman A, Perfetti TA. The chemical components of tobacco and tobacco smoke. Boca Raton: CRC Press; 2013.
  • 4
    World Health Organization. International statistical classification of diseases and related health problems (ICD 10), 10th revision. Geneva: World Health Organization; 2011.
  • 5
    Pinto M, Bardac A, Palacios A, Bin A, Alcaraz A, Rodríguez B, et al. Carga de doença atribuível ao uso do tabaco no Brasil e potencial impacto do aumento de preços por meio de impostos. Rio de Janeiro: Instituto Nacional de Câncer; 2018.
  • 6
    Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise em Saúde e Vigilância de Doenças Não Transmissívei. Vigitel Brasil 2019: vigilância de fatores e risco e proteção para doenças crônicas por inquérito telefônico. Brasília: Ministério da Saúde; 2020.
  • 7
    World Health Organization. WHO report on the global tobacco epidemic, 2011: warning about the dangers of tobacco. Geneva: World Health Organization; 2011.
  • 8
    Chatkin JM. The influence of genetics on nicotine dependence and the role of pharmacogenetics in treating the smoking habit. J Bras Pneumol. 2006;32(6):573-9. http://dx.doi.org/10.1590/S1806-37132006000600016 PMid:17435909.
    » http://dx.doi.org/10.1590/S1806-37132006000600016
  • 9
    Gu Z, Feng X, Dong X, Chan P. Smoking, genes encoding dopamine pathway and risk for Parkinson’s disease. Neurosci Lett. 2010;482(1):31-4. http://dx.doi.org/10.1016/j.neulet.2010.06.085 PMid:20603187.
    » http://dx.doi.org/10.1016/j.neulet.2010.06.085
  • 10
    Hardie TL, Moss HB, Lynch KG. Genetic correlations between smoking initiation and smoking behaviors in a twin sample. Addict Behav. 2006;31(11):2030-7. http://dx.doi.org/10.1016/j.addbeh.2006.02.010 PMid:16675152.
    » http://dx.doi.org/10.1016/j.addbeh.2006.02.010
  • 11
    Munafò M, Clark T, Johnstone E, Murphy M, Walton R. The genetic basis for smoking behavior: a systematic review and meta-analysis. Nicotine Tob Res. 2004;6(4):583-97. http://dx.doi.org/10.1080/14622200410001734030 PMid:15370155.
    » http://dx.doi.org/10.1080/14622200410001734030
  • 12
    Salloum NC, Buchalter EL, Chanani S, Espejo G, Ismail MS, Laine RO, et al. From genes to treatments: a systematic review of the pharmacogenetics in smoking cessation. Pharmacogenomics. 2018;19(10):861-71. http://dx.doi.org/10.2217/pgs-2018-0023 PMid:29914292.
    » http://dx.doi.org/10.2217/pgs-2018-0023
  • 13
    Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362(24):2295-303. http://dx.doi.org/10.1056/NEJMra0809890 PMid:20554984.
    » http://dx.doi.org/10.1056/NEJMra0809890
  • 14
    Lewis A, Miller JH, Lea RA. Monoamine oxidase and tobacco dependence. Neurotoxicology. 2007;28(1):182-95. http://dx.doi.org/10.1016/j.neuro.2006.05.019 PMid:16859748.
    » http://dx.doi.org/10.1016/j.neuro.2006.05.019
  • 15
    Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445-9. http://dx.doi.org/10.1038/nn1578 PMid:16251986.
    » http://dx.doi.org/10.1038/nn1578
  • 16
    López-Flores LA, Pérez-Rubio G, Falfán-Valencia R. Distribution of polymorphic variants of CYP2A6 and their involvement in nicotine addiction. EXCLI J. 2017;16:174-96. PMid:28507465.
  • 17
    Akrodou YM. CYP2A6 polymorphisms may strengthen individualized treatment for nicotine dependence. Scientifica. 2015;2015:491514. http://dx.doi.org/10.1155/2015/491514 PMid:26060595.
    » http://dx.doi.org/10.1155/2015/491514
  • 18
    Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst. 2011;103(17):1342-6. http://dx.doi.org/10.1093/jnci/djr237 PMid:21747048.
    » http://dx.doi.org/10.1093/jnci/djr237
  • 19
    Gu F, Zhao C, Jiang T, Li X, Mao Y, Zhou C. Association between nicotine-dependent gene polymorphism and smoking cessation in patients with lung cancer. Clin Lung Cancer. 2020;21(2):171-6. http://dx.doi.org/10.1016/j.cllc.2019.07.002 PMid:31402126.
    » http://dx.doi.org/10.1016/j.cllc.2019.07.002
  • 20
    Ito T, Tsuji M, Mori Y, Kanda H, Hidaka T, Kakamu T, et al. Effect of CYP2A6*4 genetic polymorphisms on smoking behaviors and nicotine dependence in a general population of Japanese men. Fukushima J Med Sci. 2015;61(2):125-30. http://dx.doi.org/10.5387/fms.2015-14 PMid:26370685.
    » http://dx.doi.org/10.5387/fms.2015-14
  • 21
    Lerman C, Tyndale R, Patterson F, Wileyto E, Shields P, Pinto A, et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther. 2006;79(6):600-8. http://dx.doi.org/10.1016/j.clpt.2006.02.006 PMid:16765148.
    » http://dx.doi.org/10.1016/j.clpt.2006.02.006
  • 22
    Buczkowski K, Sieminska A, Linkowska K, Czachowski S, Przybylski G, Jassem E, et al. Association between genetic variants on chromosome 15q25 locus and several nicotine dependence traits in Polish population: a case-control study. BioMed Res Int. 2015;2015:350348. http://dx.doi.org/10.1155/2015/350348 PMid:25632390.
    » http://dx.doi.org/10.1155/2015/350348
  • 23
    Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PAF, et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet. 2007;16(1):36-49. http://dx.doi.org/10.1093/hmg/ddl438 PMid:17135278.
    » http://dx.doi.org/10.1093/hmg/ddl438
  • 24
    Silva MR, Gattás GJF, Antonio J, Firigato I, Curioni OA, Gonçalves FT. Polymorphisms of CHRNA3 and CHRNA5: head and neck cancer and cigarette consumption intensity in a Brazilian population. Mol Genet Genomic Med. 2019;7(12):e998. http://dx.doi.org/10.1002/mgg3.998 PMid:31599127.
    » http://dx.doi.org/10.1002/mgg3.998
  • 25
    Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, et al. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry. 2008;165(9):1163-71. http://dx.doi.org/10.1176/appi.ajp.2008.07111711 PMid:18519524.
    » http://dx.doi.org/10.1176/appi.ajp.2008.07111711
  • 26
    Lee S-H, Ahn W-Y, Seweryn M, Sadee W. Combined genetic influence of the nicotinic receptor gene cluster CHRNA5/A3/B4 on nicotine dependence. BMC Genomics. 2018;19(1):826. http://dx.doi.org/10.1186/s12864-018-5219-3 PMid:30453884.
    » http://dx.doi.org/10.1186/s12864-018-5219-3
  • 27
    Saccone NL, Wang JC, Breslau N, Johnson EO, Hatsukami D, Saccone SF, et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res. 2009;69(17):6848-56. http://dx.doi.org/10.1158/0008-5472.CAN-09-0786 PMid:19706762.
    » http://dx.doi.org/10.1158/0008-5472.CAN-09-0786
  • 28
    Mota CL, Mitri S, Barata-Silva C, Moreira JC. CHRNA5/CHRNA3 polymorphisms and tobacco smoking risk in a Brazilian population sample. GSC Biol and Pharm Sci. 2020;12(2):143-52. http://dx.doi.org/10.30574/gscbps.2020.12.2.0253
    » http://dx.doi.org/10.30574/gscbps.2020.12.2.0253
  • 29
    Chen L-S, Hung RJ, Baker T, Horton A, Culverhouse R, Saccone N, et al. CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis—a meta-analysis. J Natl Cancer Inst. 2015;107(5):djv100. http://dx.doi.org/10.1093/jnci/djv100 PMid:25873736.
    » http://dx.doi.org/10.1093/jnci/djv100
  • 30
    Ruyck K, Nackaerts K, Beels L, Werbrouck J, Volder A, Meysman M. Genetic variation in three candidate genes and nicotine dependence, withdrawal and smoking cessation in hospitalized patients. Pharmacogenomics. 2010;11(8):1053-63. http://dx.doi.org/10.2217/pgs.10.75 PMid:20712524.
    » http://dx.doi.org/10.2217/pgs.10.75
  • 31
    Mbarek H, van Beijsterveldt CEM, Hottenga JJ, Dolan CV, Boomsma DI, Willemsen G, et al. Association between rs1051730 and smoking during pregnancy in Dutch women. Nicotine Tob Res. 2019;21(6):835-40. http://dx.doi.org/10.1093/ntr/ntx267 PMid:29228387.
    » http://dx.doi.org/10.1093/ntr/ntx267
  • 32
    Chen J, Kettermann A, Rostron BL, Day HR. Biomarkers of exposure among U.S. cigar smokers: an analysis of 1999-2012 National Health and Nutrition Examination Survey (NHANES) data. Cancer Epidemiol Biomarkers Prev. 2014;23(12):2906-15. http://dx.doi.org/10.1158/1055-9965.EPI-14-0849 PMid:25380733.
    » http://dx.doi.org/10.1158/1055-9965.EPI-14-0849
  • 33
    Munafò MR, Johnstone EC, Walther D, Uhl GR, Murphy MFG, Aveyard P. CHRNA3 rs1051730 genotype and short-term smoking cessation. Nicotine Tob Res. 2011;13(10):982-8. http://dx.doi.org/10.1093/ntr/ntr106 PMid:21690317.
    » http://dx.doi.org/10.1093/ntr/ntr106
  • 34
    Wang Q, Li S, Pan L, Li H, Yang X, Jiang F, et al. Association between variants in nicotinic acetylcholine receptor genes and smoking cessation in a Chinese rural population. Am J Addict. 2016;25(4):297-300. http://dx.doi.org/10.1111/ajad.12383 PMid:27197960.
    » http://dx.doi.org/10.1111/ajad.12383
  • 35
    Santos JR, Tomaz PRX, Issa JS, Abe TO, Krieger JE, Pereira AC, et al. CHRNA4 rs1044396 is associated with smoking cessation in varenicline therapy. Front Genet. 2015;6:46. http://dx.doi.org/10.3389/fgene.2015.00046 PMid:25774163.
    » http://dx.doi.org/10.3389/fgene.2015.00046
  • 36
    Gaya PV, Scholz J, Santos JR, Tomaz PRX, Abe TMO, Nassif M Jr, et al. Could be applied genetic markers to smoking cessation treatment? Tob Induc Dis. 2018;16(Suppl 1):A854. http://dx.doi.org/10.18332/tid/84277
    » http://dx.doi.org/10.18332/tid/84277
  • 37
    Breitling LP, Dahmen N, Mittelstraß K, Rujescu D, Gallinat J, Fehr C, et al. Association of nicotinic acetylcholine receptor subunit α4 polymorphisms with nicotine dependence in 5500 Germans. Pharmacogenomics J. 2009;9(4):219-24. http://dx.doi.org/10.1038/tpj.2009.6 PMid:19290018.
    » http://dx.doi.org/10.1038/tpj.2009.6
  • 38
    Etter J-F, Hoda J-C, Perroud N, Munafò M, Buresi C, Duret C, et al. Association of genes coding for the α-4, α-5, β-2 and β-3 subunits of nicotinic receptors with cigarette smoking and nicotine dependence. Addict Behav. 2009;34(9):772-5. http://dx.doi.org/10.1016/j.addbeh.2009.05.010 PMid:19482438.
    » http://dx.doi.org/10.1016/j.addbeh.2009.05.010
  • 39
    Li MD, Beuten J, Ma JZ, Payne TJ, Lou X-Y, Garcia V, et al. Ethnic- and gender-specific association of the nicotinic acetylcholine receptor α4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet. 2005;14(9):1211-9. http://dx.doi.org/10.1093/hmg/ddi132 PMid:15790597.
    » http://dx.doi.org/10.1093/hmg/ddi132
  • 40
    Swan GE, Javitz HS, Jack LM, Wessel J, Michel M, Hinds DA, et al. Varenicline for smoking cessation: nausea severity and variation in nicotinic receptor genes. Pharmacogenomics J. 2012;12(4):349-58. http://dx.doi.org/10.1038/tpj.2011.19 PMid:21606948.
    » http://dx.doi.org/10.1038/tpj.2011.19
  • 41
    Perkins KA, Lerman C, Mercincavage M, Fonte CA, Briski JL. Nicotinic acetylcholine receptor 2 subunit (CHRNB2) gene and short-term ability to quit smoking in response to nicotine patch. Cancer Epidemiol Biomarkers Prev. 2009;18(10):2608-12. http://dx.doi.org/10.1158/1055-9965.EPI-09-0166 PMid:19755656.
    » http://dx.doi.org/10.1158/1055-9965.EPI-09-0166
  • 42
    Wessel J, McDonald SM, Hinds DA, Stokowski RP, Javitz HS, Kennemer M, et al. Resequencing of nicotinic acetylcholine receptor genes and association of common and rare variants with the Fagerström test for nicotine dependence. Neuropsychopharmacology. 2010;35(12):2392-402. http://dx.doi.org/10.1038/npp.2010.120 PMid:20736995.
    » http://dx.doi.org/10.1038/npp.2010.120
  • 43
    Clague J, Cinciripini P, Blalock J, Wu X, Hudmon KS. The D2 dopamine receptor gene and nicotine dependence among bladder cancer patients and controls. Behav Genet. 2010;40(1):49-58. http://dx.doi.org/10.1007/s10519-009-9301-0 PMid:19842028.
    » http://dx.doi.org/10.1007/s10519-009-9301-0
  • 44
    Radwan GN, El-Setouhy M, Mohamed MK, Hamid MA, Azem SA, Kamel O, et al. DRD2/ANKK1 TaqI polymorphism and smoking behavior of Egyptian male cigarette smokers. Nicotine Tob Res. 2007;9(12):1325-9. http://dx.doi.org/10.1080/14622200701704889 PMid:18058350.
    » http://dx.doi.org/10.1080/14622200701704889
  • 45
    David SP, Strong DR, Munafò MR, Brown RA, Lloyd-Richardson EE, Wileyto PE, et al. Bupropion efficacy for smoking cessation is influenced by the DRD2 Taq1A polymorphism: analysis of pooled data from two clinical trials. Nicotine Tob Res. 2007;9(12):1251-7. http://dx.doi.org/10.1080/14622200701705027 PMid:18058343.
    » http://dx.doi.org/10.1080/14622200701705027
  • 46
    Swan GE, Valdes AM, Ring HZ, Khroyan TV, Jack LM, Ton CC, et al. Dopamine receptor DRD2 genotype and smoking cessation outcome following treatment with bupropion SR. Pharmacogenomics J. 2005;5(1):21-9. http://dx.doi.org/10.1038/sj.tpj.6500281 PMid:15492764.
    » http://dx.doi.org/10.1038/sj.tpj.6500281
  • 47
    Munafò MR, Johnstone EC, Murphy MFG, Aveyard P. Lack of association of DRD2 rs1800497 (Taq1A) polymorphism with smoking cessation in a nicotine replacement therapy randomized trial. Nicotine Tob Res. 2009;11(4):404-7. http://dx.doi.org/10.1093/ntr/ntp007 PMid:19273465.
    » http://dx.doi.org/10.1093/ntr/ntp007
  • 48
    Breitling LP, Twardella D, Hoffmann MM, Witt SH, Treutlein J, Brenner H. Prospective association of dopamine-related polymorphisms with smoking cessation in general care. Pharmacogenomics. 2010;11(4):527-36. http://dx.doi.org/10.2217/pgs.10.1 PMid:20350135.
    » http://dx.doi.org/10.2217/pgs.10.1
  • 49
    Cinciripini P, Wetter D, Tomlinson G, Tsoh J, Moor C, Cinciripini L, et al. The effects of the DRD2 polymorphism on smoking cessation and negative affect: evidence for a pharmacogenetic effect on mood. Nicotine Tob Res. 2004;6(2):229-39. http://dx.doi.org/10.1080/14622200410001676396 PMid:15203796.
    » http://dx.doi.org/10.1080/14622200410001676396
  • 50
    Das D, Tan X, Easteal S. Effect of model choice in genetic association studies: DRD4 exon III VNTR and cigarette use in young adults. Am J Med Genet. 2011;156(3):346-51. http://dx.doi.org/10.1002/ajmg.b.31169 PMid:21438142.
    » http://dx.doi.org/10.1002/ajmg.b.31169
  • 51
    David SP, Munafò MR. Genetic variation in the dopamine pathway and smoking cessation. Pharmacogenomics. 2008;9(9):1307-21. http://dx.doi.org/10.2217/14622416.9.9.1307 PMid:18781857.
    » http://dx.doi.org/10.2217/14622416.9.9.1307
  • 52
    Laucht M, Becker K, El-Faddagh M, Hohm E, Schmidt MH. Association of the DRD4 exon III polymorphism with smoking in fifteen-year-olds: a mediating role for novelty seeking? J Am Acad Child Adolesc Psychiatry. 2005;44(5):477-84. http://dx.doi.org/10.1097/01.chi.0000155980.01792.7f PMid:15843770.
    » http://dx.doi.org/10.1097/01.chi.0000155980.01792.7f
  • 53
    Laucht M, Becker K, Frank J, Schmidt MH, Esser G, Treutlein J, et al. Genetic variation in dopamine pathways differentially associated with smoking progression in adolescence. J Am Acad Child Adolesc Psychiatry. 2008;47(6):673-81. http://dx.doi.org/10.1097/CHI.0b013e31816bff77 PMid:18434921.
    » http://dx.doi.org/10.1097/CHI.0b013e31816bff77
  • 54
    Erblich J, Lerman C, Self DW, Diaz GA, Bovbjerg DH. Effects of dopamine D2 receptor (DRD2) and transporter (SLC6A3) polymorphisms on smoking cue-induced cigarette craving among African-American smokers. Mol Psychiatry. 2005;10(4):407-14. http://dx.doi.org/10.1038/sj.mp.4001588 PMid:15381926.
    » http://dx.doi.org/10.1038/sj.mp.4001588
  • 55
    Lerman C, Shields PG, Wileyto EP, Audrain J, Hawk LH Jr, Pinto A, et al. Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial. Health Psychol. 2003;22(5):541-8. http://dx.doi.org/10.1037/0278-6133.22.5.541 PMid:14570538.
    » http://dx.doi.org/10.1037/0278-6133.22.5.541
  • 56
    Ma Y, Yuan W, Cui W, Li MD. Meta-analysis reveals significant association of 3′-UTR VNTR in SLC6A3 with smoking cessation in Caucasian populations. Pharmacogenomics J. 2016;16(1):10-7. http://dx.doi.org/10.1038/tpj.2015.44 PMid:26149737.
    » http://dx.doi.org/10.1038/tpj.2015.44
  • 57
    O’Gara C, Stapleton J, Sutherland G, Guindalini C, Neale B, Breen G, et al. Dopamine transporter polymorphisms are associated with short-term response to smoking cessation treatment. Pharmacogenet Genomics. 2007;17(1):61-7. http://dx.doi.org/10.1097/01.fpc.0000236328.18928.4c PMid:17264803.
    » http://dx.doi.org/10.1097/01.fpc.0000236328.18928.4c
  • 58
    Schmid B, Blomeyer D, Becker K, Treutlein J, Zimmermann US, Buchmann AF, et al. The interaction between the dopamine transporter gene and age at onset in relation to tobacco and alcohol use among 19-year-olds. Addict Biol. 2009;14(4):489-99. http://dx.doi.org/10.1111/j.1369-1600.2009.00171.x PMid:19740369.
    » http://dx.doi.org/10.1111/j.1369-1600.2009.00171.x
  • 59
    Johnstone EC, Yudkin PL, Hey K, Roberts SJ, Welch SJ, Murphy MF, et al. Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch. Pharmacogenetics. 2004;14(2):83-90. http://dx.doi.org/10.1097/00008571-200402000-00002 PMid:15077009.
    » http://dx.doi.org/10.1097/00008571-200402000-00002
  • 60
    Shiels MS, Huang HY, Hoffman SC, Shugart YY, Bolton JH, Platz EA, et al. A community-based study of cigarette smoking behavior in relation to variation in three genes involved in dopamine metabolism: Catechol-O-methyltransferase (COMT), dopamine beta-hydroxylase (DBH) and monoamine oxidase-A (MAO-A). Prev Med. 2008;47(1):116-22. http://dx.doi.org/10.1016/j.ypmed.2008.03.013 PMid:18486967.
    » http://dx.doi.org/10.1016/j.ypmed.2008.03.013
  • 61
    Siedlinski M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W, et al. Genome-wide association study of smoking behaviours in patients with COPD. Thorax. 2011;66(10):894-902. http://dx.doi.org/10.1136/thoraxjnl-2011-200154 PMid:21685187.
    » http://dx.doi.org/10.1136/thoraxjnl-2011-200154
  • 62
    The Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42(5):441-7. http://dx.doi.org/10.1038/ng.571 PMid:20418890.
    » http://dx.doi.org/10.1038/ng.571
  • 63
    Enoch M-A, Waheed JF, Harris CR, Albaugh B, Goldman D. Sex differences in the influence of COMT Val158Met on alcoholism and smoking in plains American indians. Alcohol Clin Exp Res. 2006;30(3):399-406. http://dx.doi.org/10.1111/j.1530-0277.2006.00045.x PMid:16499480.
    » http://dx.doi.org/10.1111/j.1530-0277.2006.00045.x
  • 64
    Nedic G, Nikolac M, Borovecki F, Hajnsek S, Muck-Seler D, Pivac N. Association study of a functional catechol-o-methyltransferase polymorphism and smoking in healthy Caucasian subjects. Neurosci Lett. 2010;473(3):216-9. http://dx.doi.org/10.1016/j.neulet.2010.02.050 PMid:20188797.
    » http://dx.doi.org/10.1016/j.neulet.2010.02.050
  • 65
    Beuten J, Payne TJ, Ma JZ, Li MD. Significant association of Catechol-O-Methyltransferase (COMT) haplotypes with nicotine dependence in male and female smokers of two ethnic populations. Neuropsychopharmacology. 2006;31(3):675-84. http://dx.doi.org/10.1038/sj.npp.1300997 PMid:16395295.
    » http://dx.doi.org/10.1038/sj.npp.1300997
  • 66
    Tochigi M, Suzuki K, Kato C, Otowa T, Hibino H, Umekage T, et al. Association study of monoamine oxidase and catechol-O-methyltransferase genes with smoking behavior. Pharmacogenet Genomics. 2007;17(10):867-72. http://dx.doi.org/10.1097/FPC.0b013e3282e9a51e PMid:17885625.
    » http://dx.doi.org/10.1097/FPC.0b013e3282e9a51e
  • 67
    Guo S, Chen DF, Zhou DF, Sun HQ, Wu GY, Haile CN, et al. Association of functional catechol O-methyl transferase (COMT) Val108Met polymorphism with smoking severity and age of smoking initiation in Chinese male smokers. Psychopharmacology. 2007;190(4):449-56. http://dx.doi.org/10.1007/s00213-006-0628-4 PMid:17206495.
    » http://dx.doi.org/10.1007/s00213-006-0628-4
  • 68
    Munafò MR, Freathy RM, Ring SM, Pourcain BS, Smith GD. Association of COMT Val108/158Met genotype and cigarette smoking in pregnant women. Nicotine Tob Res. 2011;13(2):55-63. http://dx.doi.org/10.1093/ntr/ntq209 PMid:21106664.
    » http://dx.doi.org/10.1093/ntr/ntq209
  • 69
    Munafò MR, Johnstone EC, Guo B, Murphy MFG, Aveyard P. Association of COMT Val108/158Met genotype with smoking cessation. Pharmacogenet Genomics. 2008;18(2):121-8. http://dx.doi.org/10.1097/FPC.0b013e3282f44daa PMid:18192898.
    » http://dx.doi.org/10.1097/FPC.0b013e3282f44daa
  • 70
    Ito H, Hamajima N, Matsuo K, Okuma K, Sato S, Ueda R, et al. Monoamine oxidase polymorphisms and smoking behaviour in Japanese. Pharmacogenetics. 2003;13(2):73-9. http://dx.doi.org/10.1097/00008571-200302000-00003 PMid:12563176.
    » http://dx.doi.org/10.1097/00008571-200302000-00003
  • 71
    Wiesbeck GA, Wodarz N, Weijers H-G, Dursteler-MacFarland KM, Wurst F-M, Walter M, et al. A functional polymorphism in the promoter region of the monoamine oxidase A gene is associated with the cigarette smoking quantity in alcohol-dependent heavy smokers. Neuropsychobiology. 2006;53(4):181-5. http://dx.doi.org/10.1159/000093782 PMid:16763378.
    » http://dx.doi.org/10.1159/000093782
  • 72
    Yang J, Wang S, Yang Z, Hodgkinson CA, Iarikova P, Ma JZ, et al. The contribution of rare and common variants in 30 genes to risk nicotine dependence. Mol Psychiatry. 2015;20(11):1467-78. http://dx.doi.org/10.1038/mp.2014.156 PMid:25450229.
    » http://dx.doi.org/10.1038/mp.2014.156
  • 73
    Costa-Mallen P, Costa LG, Checkoway H. Genotype combinations for monoamine oxidase-B intron 13 polymorphism and dopamine D2 receptor TaqIB polymorphism are associated with ever-smoking status among men. Neurosci Lett. 2005;385(2):158-62. http://dx.doi.org/10.1016/j.neulet.2005.05.035 PMid:15955630.
    » http://dx.doi.org/10.1016/j.neulet.2005.05.035
  • 74
    Tomaz PRX, Kajita MS, Santos JR, Scholz J, Abe TO, Gaya PV, et al. Cytochrome P450 2A6 and 2B6 polymorphisms and smoking cessation success in patients treated with varenicline. Eur J Clin Pharmacol. 2019;75(11):1541-5. http://dx.doi.org/10.1007/s00228-019-02731-z PMid:31402421.
    » http://dx.doi.org/10.1007/s00228-019-02731-z
  • 75
    Chenoweth MJ, Sylvestre M-P, Contreras G, Novalen M, O’Loughlin J, Tyndale RF. Variation in CYP2A6 and tobacco dependence throughout adolescence and in young adult smokers. Drug Alcohol Depend. 2016;158:139-46. http://dx.doi.org/10.1016/j.drugalcdep.2015.11.017 PMid:26644138.
    » http://dx.doi.org/10.1016/j.drugalcdep.2015.11.017
  • 76
    Olfson E, Bloom J, Bertelsen S, Budde JP, Breslau N, Brooks A, et al. CYP2A6 metabolism in the development of smoking behaviors in young adults. Addict Biol. 2018;23(1):437-47. http://dx.doi.org/10.1111/adb.12477 PMid:28032407.
    » http://dx.doi.org/10.1111/adb.12477
  • 77
    Tomaz PRX, Santos JR, Scholz J, Abe TO, Gaya PV, Negrão AB, et al. Cholinergic receptor nicotinic alpha 5 subunit polymorphisms are associated with smoking cessation success in women. BMC Med Genet. 2018;19(1):55. http://dx.doi.org/10.1186/s12881-018-0571-3 PMid:29621993.
    » http://dx.doi.org/10.1186/s12881-018-0571-3
  • 78
    Chuang Y-H, Paul KC, Sinsheimer JS, Bronstein JM, Bordelon YM, Ritz B. Genetic variants in nicotinic receptors and smoking cessation in Parkinson’s disease. Parkinsonism Relat Disord. 2019;62:57-61. http://dx.doi.org/10.1016/j.parkreldis.2019.01.031 PMid:30777653.
    » http://dx.doi.org/10.1016/j.parkreldis.2019.01.031
  • 79
    Gordiev M, Engstrom PF, Khasanov R, Moroshek A, Sitdikov R, Dgavoronkov V, et al. Genetic analysis of polymorphisms in dopamine receptor and transporter genes for association with smoking among cancer patients. Eur Addict Res. 2013;19(2):105-11. http://dx.doi.org/10.1159/000341711 PMid:23128675.
    » http://dx.doi.org/10.1159/000341711
  • 80
    Verde Z, Santiago C, González-Moro JMR, Ramos PL, Martín SL, Bandrés F, et al. ‘Smoking genes’: a genetic association study. PLoS One. 2011;6(10):e26668. http://dx.doi.org/10.1371/journal.pone.0026668 PMid:22046326.
    » http://dx.doi.org/10.1371/journal.pone.0026668
  • 81
    Batra A, Gelfort G, Bartels M, Smoltczyk H, Buchkremer G, Riess O, et al. The dopamine D2 receptor (DRD2) gene? A genetic risk factor in heavy smoking? Addict Biol. 2000;5(4):429-36. http://dx.doi.org/10.1111/j.1369-1600.2000.tb00212.x PMid:20575861.
    » http://dx.doi.org/10.1111/j.1369-1600.2000.tb00212.x
  • 82
    Huang C-L, Ou W-C, Chen P-L, Liu C-N, Chen M-C, Lu C-C, et al. Effects of interaction between dopamine D2 receptor and monoamine oxidase a genes on smoking status in young men. Biol Res Nurs. 2015;17(4):422-8. http://dx.doi.org/10.1177/1099800415589366 PMid:26015071.
    » http://dx.doi.org/10.1177/1099800415589366
  • 83
    Leventhal AM, David SP, Brightman M, Strong D, McGeary JE, Brown RA, et al. Dopamine D4 receptor gene variation moderates the efficacy of bupropion for smoking cessation. Pharmacogenomics J. 2012;12(1):86-92. http://dx.doi.org/10.1038/tpj.2010.64 PMid:20661272.
    » http://dx.doi.org/10.1038/tpj.2010.64
  • 84
    Preedy VR. Neuroscience of nicotine: mechanisms and treatment. Cambridge: Elsevier; 2019.
  • 85
    Bergen AW, Javitz HS, Krasnow R, Nishita D, Michel M, Conti DV, et al. Nicotinic acetylcholine receptor variation and response to smoking cessation therapies. Pharmacogenet Genomics. 2013;23(2):94-103. http://dx.doi.org/10.1097/FPC.0b013e32835cdabd PMid:23249876.
    » http://dx.doi.org/10.1097/FPC.0b013e32835cdabd
  • 86
    Babic M, Nedic G, Muck-Seler D, Borovecki F, Pivac N. Lack of association between dopamine receptor D4 variable numbers of tandem repeats gene polymorphism and smoking. Neurosci Lett. 2012;520(1):67-70. http://dx.doi.org/10.1016/j.neulet.2012.05.032 PMid:22609848.
    » http://dx.doi.org/10.1016/j.neulet.2012.05.032
  • 87
    Luciano M, Zhu G, Kirk KM, Whitfield JB, Butler R, Heath AC, et al. Effects of dopamine receptor D4 variation on alcohol and tobacco use and on novelty seeking: multivariate linkage and association analysis. Am J Med Genet. 2004;124B(1):113-23. http://dx.doi.org/10.1002/ajmg.b.20077 PMid:14681925.
    » http://dx.doi.org/10.1002/ajmg.b.20077
  • 88
    Choi HD, Shin WG. Meta-analysis update of association between dopamine transporter SLC6A3 gene polymorphism and smoking cessation. J Health Psychol. 2018;23(9):1250-7. http://dx.doi.org/10.1177/1359105316648479 PMid:27287604.
    » http://dx.doi.org/10.1177/1359105316648479
  • 89
    Vandenbergh DJ, Bennett CJ, Grant MD, Strasser AA, O’Connor R, Stauffer RL, et al. Smoking status and the human dopamine transporter variable number of tandem repeats (VNTR) polymorphism: failure to replicate and finding that never-smokers may be different. Nicotine Tob Res. 2002;4(3):333-40. http://dx.doi.org/10.1080/14622200210142689 PMid:12215242.
    » http://dx.doi.org/10.1080/14622200210142689
  • 90
    Ton TG, Rossing M, Bowen DJ, Srinouanprachan S, Wicklund K, Farin FM. Genetic polymorphisms in dopamine-related genes and smoking cessation in women: a prospective cohort study. Behav Brain Funct. 2007;3(1):22. http://dx.doi.org/10.1186/1744-9081-3-22 PMid:17466074.
    » http://dx.doi.org/10.1186/1744-9081-3-22
  • 91
    Freire MTMV, Marques FZC, Hutz MH, Bau CHD. Polymorphisms in the DBH and DRD2 gene regions and smoking behavior. Eur Arch Psychiatry Clin Neurosci. 2006;256(2):93-7. http://dx.doi.org/10.1007/s00406-005-0610-x PMid:16032443.
    » http://dx.doi.org/10.1007/s00406-005-0610-x
  • 92
    McKinney EF, Walton RT, Yudkin P, Fuller A, Haldar NA, Mant D, et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics. 2000;10(6):483-91. http://dx.doi.org/10.1097/00008571-200008000-00001 PMid:10975602.
    » http://dx.doi.org/10.1097/00008571-200008000-00001
  • 93
    Huang S, Cook DG, Hinks LJ, Chen X-H, Ye S, Gilg JA, et al. CYP2A6, MAOA, DBH, DRD4, and 5HT2A genotypes, smoking behaviour and cotinine levels in 1518 UK adolescents. Pharmacogenet Genomics. 2005;15(12):839-50. http://dx.doi.org/10.1097/01213011-200512000-00002 PMid:16272956.
    » http://dx.doi.org/10.1097/01213011-200512000-00002
  • 94
    Hirvonen K, Korhonen T, Salomaa V, Männistö S, Kaprio J. Association of the DBH polymorphism rs3025343 with smoking cessation in a large population-based sample. Nicotine Tob Res. 2017;19(9):1112-5. http://dx.doi.org/10.1093/ntr/ntx066 PMid:28371857.
    » http://dx.doi.org/10.1093/ntr/ntx066
  • 95
    Colilla S, Lerman C, Shields PG, Jepson C, Rukstalis M, Berlin J, et al. Association of catechol-O-methyltransferase with smoking cessation in two independent studies of women. Pharmacogenet Genomics. 2005;15(6):393-8. http://dx.doi.org/10.1097/01213011-200506000-00004 PMid:15900212.
    » http://dx.doi.org/10.1097/01213011-200506000-00004
  • 96
    Johnstone EC, Elliot KM, David SP, Murphy MFG, Walton RT, Munafo MR. Association of COMT Val108/158Met genotype with smoking cessation in a nicotine replacement therapy randomized trial. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1065-9. http://dx.doi.org/10.1158/1055-9965.EPI-06-0936 PMid:17548664.
    » http://dx.doi.org/10.1158/1055-9965.EPI-06-0936
  • 97
    Han D-H, Joe K-H, Na C, Lee Y-S. Effect of genetic polymorphisms on smoking cessation: a trial of bupropion in Korean male smokers. Psychiatr Genet. 2008;18(1):11-6. http://dx.doi.org/10.1097/YPG.0b013e3282df0939 PMid:18197080.
    » http://dx.doi.org/10.1097/YPG.0b013e3282df0939
  • 98
    Omidvar M, Stolk L, Uitterlinden AG, Hofman A, Van Duijn CM, Tiemeier H. The effect of catechol-O-methyltransferase Met/Val functional polymorphism on smoking cessation: retrospective and prospective analyses in a cohort study. Pharmacogenet Genomics. 2009;19(1):45-51. http://dx.doi.org/10.1097/FPC.0b013e328317f3f8 PMid:19160592.
    » http://dx.doi.org/10.1097/FPC.0b013e328317f3f8
  • 99
    Sun H, Guo S, Chen D, Yang F, Zou Y, Di X, et al. Association of functional COMT Val108/Met polymorphism with smoking cessation in a nicotine replacement therapy. J Neural Transm. 2012;119(12):1491-8. http://dx.doi.org/10.1007/s00702-012-0841-8 PMid:22695756.
    » http://dx.doi.org/10.1007/s00702-012-0841-8
  • 100
    Ducci F, Goldman D. The genetic basis of addictive disorders. Psychiatr Clin North Am. 2012;35(2):495-519. http://dx.doi.org/10.1016/j.psc.2012.03.010 PMid:22640768.
    » http://dx.doi.org/10.1016/j.psc.2012.03.010
  • 101
    Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11(1):34. http://dx.doi.org/10.1186/1478-811X-11-34 PMid:23683503.
    » http://dx.doi.org/10.1186/1478-811X-11-34
  • 102
    Jin Y, Chen D, Hu Y, Guo S, Sun H, Lu A, et al. Association between monoamine oxidase gene polymorphisms and smoking behaviour in Chinese males. Int J Neuropsychopharmacol. 2006;9(5):557-64. http://dx.doi.org/10.1017/S1461145705006218 PMid:16207390.
    » http://dx.doi.org/10.1017/S1461145705006218
  • 103
    Mota C, Nogueira SM, Barata-Silva C, Pavesi T, Moreira JC. The MAOA VNTR polymorphism and smoking behavior in Brazilian males. Biomed Genet Genom. 2017;2(2):1-5.
  • 104
    Shen Z, Huang P, Wang C, Qian W, Luo X, Gu Q, et al. Interactions between monoamine oxidase A rs1137070 and smoking on brain structure and function in male smokers. Eur J Neurosci. 2019;50(3):2201-10. http://dx.doi.org/10.1111/ejn.14282 PMid:30456877.
    » http://dx.doi.org/10.1111/ejn.14282
  • 105
    Pehlivan S, Aydin PC, Uysal MA, Ciftci HS, Sever U, Yavuz FK, et al. Effect of monoamine oxidase B A644G variant on nicotine dependence and/or schizophrenia risk. Arch Clin Psychiatry. 2019;46(1):21-4. http://dx.doi.org/10.1590/0101-60830000000186
    » http://dx.doi.org/10.1590/0101-60830000000186

Publication Dates

  • Publication in this collection
    14 Apr 2023
  • Date of issue
    2023

History

  • Received
    04 June 2020
  • Accepted
    03 Feb 2021
Instituto de Estudos em Saúde Coletiva da Universidade Federal do Rio de Janeiro Avenida Horácio Macedo, S/N, CEP: 21941-598, Tel.: (55 21) 3938 9494 - Rio de Janeiro - RJ - Brazil
E-mail: cadernos@iesc.ufrj.br