Acessibilidade / Reportar erro

TRANSFORMAÇÃO GENÉTICA EM ESPÉCIES FLORESTAIS

GENETIC TRANSFORMATION OF FOREST SPECIES

RESUMO

A transformação genética, que compreende a introdução de genes exógenos de forma controlada no genoma de uma célula vegetal e posterior regeneração da planta transgênica, tem contribuído com os programas de melhoramento genético de plantas pela obtenção de genótipos com novas características de interesse. O melhoramento de espécies florestais é limitado por características intrínsecas a tais espécies, como a altura dos indivíduos e o ciclo longo de vida. A transformação genética constitui, portanto, uma alternativa para a obtenção de espécies florestais com características desejáveis em um menor espaço de tempo. Plantas transgênicas com resistência a determinadas pragas, com melhor qualidade de madeira, maior produção de biomassa, tolerância a herbicidas, entre outras características de interesse, já foram obtidas para diferentes espécies florestais de importância econômica como álamo, eucalipto e pinheiros em geral. Este trabalho mostra a importância da transformação genética, associada a outras técnicas biotecnológicas no melhoramento de espécies florestais, as técnicas de transformação mais utilizadas e as características que já foram introduzidas nessas espécies pela transformação.

Palavras-chave:
biotecnologia; melhoramento

ABSTRACT

Breeding of forest species is limited by intrinsic characteristics such as individual’s height and long life cycle. Plant genetic transformation, the integration of known foreign genes into the plant genome, represents a less time consuming alternative for the recovery of forest species with desirable traits. This technology has contributed to plant breeding programs by facilitating the recovery of genotypes containing novel exciting traits of agricultural importance. Many of them including resistance to insect pests, improvement of wood quality and biomass production, and tolerance to herbicides have been introduced in forest species such as poplar, eucalyptus and pine trees using this technology. This review highlights current transformation methods, and illustrates the importance of finally defining the most important traits that have already been introduced into these valuable species.

Key words:
biotechnology; plant improvement

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

REFERÊNCIAS BIBLIOGÁFICAS

  • BAUCHER, M. et al. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiology, v. 112, p. 1479-1490, 1996.
  • BISHOP-HURLEY, S.L. et al. Conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Reports, v. 20, p. 235-243, 2001.
  • BORÉM, A. Escape gênico e transgênicos. Viçosa: UFV, 2001. 206 p.
  • BOUDET, A.M. A new view of lignification. Trends in Plant Science, v. 3, p. 67-71, 1998.
  • BOUDET, A.M.; LAPIERRE, C.; GRIMA-PETTENATI, J. Biochemistry and molecular biology of lignification. New Phytologist, v. 129, p. 203-236, 1995.
  • BOUDET, A.M.; GRIMA-PETTENATI, J. Lignin genetic engineering. Molecular Breeding, v. 2, p. 25-39, 1996.
  • BRASILEIRO, A.C.M. et al. Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants. Transgenic Research, v. 1, p. 133-141, 1992.
  • BRASILEIRO, A.C.M. Co-cultura com linhagens desarmadas de Agrobacterium In: BRASILEIRO, A.C.M.; CARNEIRO, V.T.C. (Eds.). Manual de transformação genética de plantas. Brasília: Embrapa-SPI/EmbrapaCenargen, 1998. p. 111-125.
  • BRASILEIRO, A.C.M.; DUSI, D.M.A. Transformação genética de plantas. In: TORRES, A.C.; CALDAS, L.S.; BUSO, J.A. (Eds.). Cultura de tecidos e transformação genética de plantas. Brasília: Embrapa-SPI/Embrapa-CNPH, 1999. p. 679-735.
  • BRASILEIRO, A.C.M.; LACORTE, C. Agrobacterium: um sistema natural de transferência de genes para plantas. Biotecnologia, Ciência e Desenvolvimento, v. 15, p. 12-15, 2000.
  • BRUKHIN, V. et al. Baste tolerance as a selectable and screening marker for transgenic plants of Norway spruce. Plant Cell Reports , v. 19, p. 899-903, 2000.
  • BRUNNER, A.M. et al. Genetic engineering of sexual sterility in shade trees. Journal of Arboriculture, v. 25, p. 263-273, 1998.
  • CAMPBELL, M.M.; SEDEROFF, R.R. Variation in lignin content and composition. Plant Physiology , v. 110, p. 3-13, 1996.
  • CHAREST, P.J.; DEVANTIER, Y.; LACHANCE, D. Stable genetic-transformation of Picea mariana (black spruce) via particle bombardment. In Vitro Cellular and Developmental Biology - Plant, v. 32, p. 91-99, 1996.
  • CHIANG, V.L.; FUNAOKA, M. The dissolution and condensation reactions of guaiacyl and syringyl units in residual lignin during kraft delignification of sweetgum. Holzforschung, v. 44, p. 147-156, 1990.
  • CLAPHAM, D. et al. Gene transfer by particle bombardment to embryogenic cultures of Picea abies and the production of transgenic plantlets. Scandinavian Journal of Forest Research, v. 15, p. 151-160, 2000.
  • CONFALONIERI, M. et al. Factors affecting Agrobacterium tumefaciensmediated transformation in several black poplar clones. Plant Cell Tissue and Organ Culture, v. 43, p. 215-222, 1995.
  • CONFALONIERI, M.; BALESTRAZZI, A.; CELLA, R. Genetic transformation of Populus deltoides and P. x euroamericana clones using Agrobacterium tumefaciens Plant Cell Tissue and Organ Culture , v. 48, p. 53-61, 1997.
  • CONFALONIERI, M. et al. Regeneration of Populus nigra transgenic plants expressing a Kunitz proteinase inhibitor (KTi3) gene. Molecular Breeding , v. 4, p. 137-145, 1998.
  • CONFALONIERI, M. et al. Transformation of elite white poplar (Populus alba L.) cv. 'Villafranca' and evaluation of herbicide resistance. Plant Cell Reports , v. 19, p. 978-982, 2000.
  • DANDEKAR, A.M.; MCGRANAHAN, G.H.; JAMES, D.J. Transgenic woody plants. In: KUNG, S.; WU, R. (Eds.). Transgenic plants. San Diego: Academic Press, 1993. p. 129-151.
  • DANIELL, H. et al. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nature Biotechnology, v. 16, p. 345-348, 1998.
  • DE BLOCK, M. Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiology , v. 93, p. 1110-1116, 1990.
  • DE LEO, F. et al. Effects of a mustard trypsin inhibitor expressed in different plant on three lepidopteran pests. Insect Biochemistry and Molecular Biology, v. 31, p. 593-602, 2001.
  • DELLEDONNE, M. et al. Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Molecular Breeding , v. 7, p. 35-42, 2001.
  • DUNWELL, J.M. Transgenic approaches to crop improvement. Journal of Experimental Botany, v. 51, p. 487-496, 2000.
  • ELKIND, Y. et al. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proceedings of the National Academy of Sciences of the USA, v. 87, p. 9057-9061, 1990.
  • ELLIS, D.D. et al. Stable transformation of Picea glauca by particle acceleration. Bio/Technology, v. 11, p. 84-89, 1993.
  • ERIKSSON, M.E. et al. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology , v. 18, p. 784-788, 2000.
  • FANG, Y.; HART, E.R. Effect of cottonwood leaf beetle (Coleoptera: Chrysomelidae) larval population levels on Populus terminal damage. Environmental Entomology, v. 29, p. 43-48, 2000.
  • FILLATTI, J.J et al. Agrobacterium mediated transformation and regeneration of Populus Molecular and General Genetics, v. 206, p. 192-199, 1987.
  • FLECHTMANN, C.A.H.; OTTATI, A.L.T.; BERISFORD, C.W. Ambrosia and bark beetles (Scolytidae: Coleoptera) in pine and eucalypt stands in southern Brazil. Forest Ecology and Management, v. 142, p. 183-191, 2001.
  • GELVIN, S.B. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology, v. 51, p. 223-256, 2000.
  • GONZALES, E.R. et al. Production of transgenic Eucalyptus grandis x E. urophylla using the sonicationassisted Agrobacterium transformation (SAAT) system. Functional Plant Biology, v. 29, p. 97-102, 2002.
  • GRIMA-PETTENATI, J.; GOFFNER, D. Lignin genetic engineering revisited. Plant Science, v. 145, p. 51-65, 1999.
  • GROCHULSKI, P. et al. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. Journal of Molecular Biology, v. 254, p. 447-464, 1995.
  • HAINES, R. Biotechnology in forest tree improvement. Rome: FAO, 1994. 230 p.
  • HALPIN, C. et al. Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. The Plant Journal, v. 6, p. 339-350, 1994.
  • HAN, K.H.; MEILAN, R.; MA, C.; STRAUSS, S.H. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Reports , v. 19, p. 315-320, 2000.
  • HANSEN, G.; WRIGHT, M.S. Recent advances in the transformation of plants. Trends in Plant Science , v. 4, p. 226-231, 1999.
  • HARCOURT, R.L. et al. Insect- and herbicide-resistant transgenic eucalypts. Molecular Breeding , v. 6, p. 307-315, 2000.
  • HEATON, A.C.P. et al. Phytoremediation of mercury- and methylmercurypolluted soils using genetically engineered plants. Journal of Soil Contamination, v. 7, p. 497-509 , 1998.
  • HO, C.K. et al. Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Reports , v. 17, p. 675-680, 1998.
  • HUANG, Y.; DINER, A.M.; KARNOSKY, D.F. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua In Vitro Cellular and Developmental Biology, v. 27, p. 201-207, 1991.
  • JAMES, R.R. et al. Environmental effects of genetically engineered woody biomass crops. Biomass and Bioenergy, v. 14, p. 403-414, 1998.
  • JOUANIN, L. et al. Genetic transformation: a short review of methods and their applications, results and perspectives for forest trees. Annuales des Sciences Forestières, v. 50, p. 325-336, 1993.
  • KLEIN, T.M. et al. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature, v. 327, p. 70-73, 1987.
  • KLIMASZEWSKA, K. et al. Larix laricina (tamarack) somatic embryogenesis and genetic transformation. Canadian Journal of Forest Research, v. 27, p. 538-550, 1997.
  • KRÄMER, U.; CHARDONNENS, A.N. The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Applied Microbiology and Biotechnology, v. 55, p. 661-672, 2001.
  • LAPIERRE, C. et al. Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid o-methyltranferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiology , v. 119, p. 153-163, 1999.
  • LEVEE, V.; GARIN, E.; KLIMASZEWSKA, K.; SEGUIN, A. Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embriogenic tissues with Agrobacterium tumefaciens Molecular Breeding , v. 5, p. 429-440, 1999.
  • LEWIS, N.G.; YAMAMOTO, E. Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology, v. 41, p. 455-496, 1990.
  • LÓPEZ, M. et al. Factors involved in Agrobacterium tumefaciensmediated gene transfer into Pinus nigra Arn. ssp. salzmannii (Dunal) Franco. Euphytica, v. 114, p. 195-203, 2000.
  • MANDERS, G.; DAVEY, M.R.; POWER, J.B. New genes for old trees. Journal of Experimental Botany , v. 43, p. 1181-1190, 1992.
  • MAQBOOL, S.B. et al. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Molecular Breeding , v. 7, p. 85-93, 2001.
  • MARIANI, C. et al. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature , v. 347, p. 737-741, 1990.
  • MAZUR, B.J.; FALCO, S.C. The development of herbicide resistant crops. Annual Review of Plant Physiology , v. 40, p. 441-470, 1989.
  • MCGRANAHAN, G.H. et al. Agrobacteriummediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology , v. 6, p. 800-804, 1988.
  • MILLER, F.; WARE, G.; JACKSON, J. Preference of temperate chinese elms (Ulmus spp.) for the adult japanese beetle (Coleoptera: Scarabaeidae). Journal of Economic Entomology, v. 94, p. 445-448, 2001.
  • MORA, A.L.; GARCIA, C.H. Eucalypt cultivation in Brazil. São Paulo: Sociedade Brasileira de Silvicultura, 2000, 112 p.
  • MORALEJO, M. et al. Generation of transgenic Eucalyptus globulus plantlets through Agrobacterium tumefaciens mediated transformation. Australian Journal of Plant Physiology , v. 25, p. 207-212, 1998.
  • NAINA, N.S.; GUPTA, P.K.; MASCARENHAS, A.F. Genetic transformation and regeneration of transgenic neem (Azadirachta indica) plants using Agrobacterium tumefaciens Current Science, v. 58, p. 184-187, 1989.
  • NEWELL, C.A. Plant transformation technology. Molecular Biotechnology, v. 16, p. 53-65, 2000.
  • OWUSU, R.A. GM technology in the forest sector: a scoping study for WWF. WWF: UK, 1999. 34p. Disponível em: <http://wrm.org.uy/oldsite/subjects/GMTrees/Scoping_Stydy_wwf.pdf>.
    » http://wrm.org.uy/oldsite/subjects/GMTrees/Scoping_Stydy_wwf.pdf
  • PHELEP, M. et al. Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Bio/Technology , v. 9, p. 461-466, 1991.
  • RAFFA, K.F. Genetic engineering of trees to enhance resistance to insects. BioScience, v. 39, p. 524-534, 1989.
  • RASKIN, I. Plant genetic engineering may help with environmental cleanup. Proceedings of the National Academy of Sciences of the USA , v. 93, p. 3164-3166, 1996.
  • RAUTNER, M. Designer trees. Biotechnology and Development Monitor, v. 44/45, p. 2-7, 2001.
  • RECH, E.L.; ARAGÃO, F.J.L. Biobalística. In: BRASILEIRO, A.C.M.; CARNEIRO, V.T.C (Eds.). Manual de transformação genética de plantas . Brasília: Embrapa-SPI/Embrapa-Cenargen, 1998. p. 51-64.
  • RISHI, A.S.; NELSON, N.D.; GOYAL, A. Genetic modification for improvement of Populus Physiology and Molecular Biology of Plants, v. 7, p. 7-21, 2001.
  • RUGH, C.L. et al. Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnology , v. 16, p. 925-928, 1998.
  • SANFORD, J.C. et al. Delivery of substances into cells and tissues using a particle bombardment process. Journal of Particle Science Technology, v. 5, p. 27-37, 1987.
  • SCHNEPF, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Review, v. 62, p. 775-806, 1998.
  • SINGH, A.P. Relative natural resistance of Populus deltoides clones against defoliator Clostera cupreata (Lepidoptera: Notodontidae) in northern India. Agroforestry Systems, v. 49, p. 319-326, 2000.
  • STAFFORD, H.A. Crown gall disease and Agrobacterium tumefaciens: a study of the history, present knowledge, missing information, and impact on molecular genetics. The Botanical Review, v. 66, p. 99-118, 2000.
  • STRAUSS, S.T. et al. Genetic engineering of reproductive sterility in forest trees. Molecular Breeding , v. 1, p. 5-26, 1995.
  • TIAN, L.N. et al. Hygromycin resistance is an effective selectable marker for biolistic transformation of black spruce (Picea mariana). Plant Cell Reports , v. 19, p. 358-362, 2000.
  • TZFIRA, T. et al. Highly efficient transformation and regeneration of aspen plants through shoot-bud formation in root culture. Plant Cell Reports , v. 15, p. 566-571, 1996.
  • TZFIRA, T. et al. Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Molecular Biology Reports, v. 15, p. 219-235, 1997.
  • TZFIRA, T.; ZUKER, A.; ALTMAN, A. Forest-tree biotecnology: genetic transformation and its application to future forests. Trends in Biotechnology, v. 16, p. 439-446, 1998.
  • TZFIRA, T.; CITOVSKY, V. From host recognition to T-DNA integration: the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Molecular Plant Pathology, v. 1, p. 201-212, 2000.
  • VENETTE, R.; HUTCHINSON, W.D.; ANDOW, D.A. An field screen for early detection and monitoring of insect resistance to Bacillus thuringiensis in transgenic crops. Journal of Economic Entomology , v. 93, p. 1055-1064, 2000.
  • WALTER, C. et al. An efficient Biolistic transformation protocol for Picea abies embriogenic tissue and regeneration of transgenic plants. Canadian Journal of Forest Research , v. 29, p. 1539-1546, 1999.
  • WALTER, C. et al. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Reports , v. 17, p. 460-468, 1998.
  • WANG, G. et al. Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Research , v. 5, p. 289-301, 1996.
  • WEIGEL, D.; NILSSON, O. A developmental switch sufficient for flower initiation in diverse plants. Nature , v. 377, p. 495-500, 1995.
  • WENCK, A.R. et al. High efficiency Agrobacteriummediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Molecular Biology, v. 39, p. 407-416, 1999.
  • WHETTEN, R.W.; MACKAY, J.J.; SEDEROFF, R.R. Recent advances in understanding lignin biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology , v. 49, p. 585-609, 1998.
  • WORRALL, D. et al. Premature dissolution of microsporocyte callose wall causes male sterility in transgenic tobacco. The Plant Cell, v. 4, p. 759-771, 1992.
  • ZUPAN, J. et al. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. The Plant Journal, v. 23, p. 11-28, 2000.

Datas de Publicação

  • Publicação nesta coleção
    Jan-Jun 2003

Histórico

  • Recebido
    22 Nov 2001
  • Aceito
    22 Jan 2003
Universidade Federal de Santa Maria Av. Roraima, 1.000, 97105-900 Santa Maria RS Brasil, Tel. : (55 55)3220-8444 r.37, Fax: (55 55)3220-8444 r.22 - Santa Maria - RS - Brazil
E-mail: cienciaflorestal@ufsm.br