Acessibilidade / Reportar erro

Comparison of human brain metabolite levels using 1H MRS at 1.5T and 3.0T

Comparação dos Níveis de Metabólitos Cerebrais Utilizando Espectroscopia de Prótons por Ressonância Magnética em 1.5T e 3.0T.

ABSTRACT

Proton magnetic resonance spectroscopy (MRS) of the human brain has proven to be a useful technique in several neurological and psychiatric disorders and benefits from higher field scanners as signal intensity and spectral resolution are proportional to the magnetic field strength. Objective: To investigate the effects of the magnetic field on the measurement of brain metabolites in a typical routine clinical setting. Methods: Single voxel spectra were acquired from the posterior cingulate cortex in 26 healthy subjects. Each subject was scanned consecutively at 1.5T and 3.0T in a randomly distributed order. Results: SNR and peak width improvements were observed at higher fields. However, SNR improvement was lower than the theoretical two-fold improvement. Other than the values obtained for creatine (Cre) and myo-Inositol (mI), which were both higher at 3.0T, all metabolite concentrations obtained were roughly the same at both field strengths. All the metabolite concentrations were estimated with a Cramer Rao lower bounds (CRLB) lower than 15% of the calculated concentrations. Conclusions: Even though the present study supports the expected benefits of higher field strength for MRS, there are several factors that can lead to different quantitative results when comparing 1.5T to 3.0T MRS. Future comparative studies are necessary to refine the metabolite thresholds for early detection and quantification of distinct neurological and psychiatric disorders using 3.0T MRS.

Key words:
brain; magnetic resonance spectroscopy; 1.5T; 3.0T

RESUMO

Espectroscopia de prótons por ressonância magnética (MRS) tem se mostrado uma técnica bastante útil em diversas doenças neurológicas e psiquiátricas. A utilização de sistemas de mais alto campo magnético favorece essa técnica uma vez que a intensidade do sinal e a resolução espectral são proporcionais à intensidade do campo. Objetivo: Avaliar o efeito do campo magnético sobre a medida dos níveis dos metabólitos cerebrais em uma típica rotina clínica. Métodos: Os dados foram obtidos em 26 indivíduos saudáveis nos sistemas de 1.5T e 3.0T. As aquisições foram feitas sequencialmente e a ordem foi distribuida randomicamente. Resultados: Foram observadas melhoras na relação sinal-ruído (SNR) e na largura de linha dos picos nos dados obtidos em campo maior. No entanto, a melhoria na SNR foi menor que o esperado teoricamente que seria o dobro da obtida em 1.5T. Exceto pelos valores obtidos para creatina e mio-inositol, que foram maiores em 3.0T, todas as concentrações de metabólitos obtidas foram aproximadamente a mesmo em ambos os campos. Todas as concentrações de metabólitos foram estimadas com Cramer Rao lower bounds (CRLB) inferior a 15% das concentrações calculadas. Conclusões: Apesar de o presente estudo dar suporte aos benefícios gerados pelo aumento do campo para a técnica de MRS, existem fatores que podem levar a diferentes resultados quantitativos quando se compara espectroscopia em 1.5T e 3.0T. Estudos comparativos serão necessários para refinar os limiares dos níveis de metabólitos para melhorar a acurácia da detecção de doenças neurológicas utilizando espectroscopia em 3.0T.

Palavras-chave:
cérebro; espectroscopia por ressonância magnética; 1.5T; 3.0T.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

REFERENCES

  • Arnold DL, De Stefano N. Magnetic resonance spectroscopy in vivo: applications in neurological disorders. Ital J Neurol Sci 1997;18:321-329.
  • Castillo M, Kwock L, Mukherji SK. Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol 1996;17:1-15.
  • Inglese M, Liu S, Babb JS, Mannon LJ, Grossman RI, Gonen O. Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing-remitting MS. Neurology 2004;63:170-172.
  • Gruetter R, Weisdorf SA, Rajanayagan V, et al. Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson 1998;135:260-264.
  • Hetherington HP, Pan JW, Chu WJ, Mason GF, Newcomer BR. Biological and clinical MRS at ultra-high field. NMR Biomed 1997;10:360-371.
  • Sauter R, Loeffler W, Bruhn H, Frahm J. The human brain: localized H-1 MR spectroscopy at 1.0 T. Radiology 1990;176:221-224.
  • Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 1989; 9:79-93.
  • Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 1993;187:219-227.
  • Gruetter R, Garwood M, Ugurbil K, Seaquist ER. Observation of resolved glucose signals in 1H NMR spectra of the human brain at 4 Tesla. Magn Reson Med1996;36:1-6.
  • Barker PB, Hearshen DO, Boska MD. Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med2001;45:765-769.
  • Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med1993;30:672-679.
  • Manton DJ, Lowry M, Blackband SJ, Horsman A. Determination of proton metabolite concentrations and relaxation parameters in normal human brain and intracranial tumours. NMR Biomed1995;8:104-112.
  • Barker PB, Soher BJ, Blackband SJ, Chatham JC, Mathews VP, Bryan RN. Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed1993;6:89-94.
  • Hennig J, Pfister H, Ernst T, Ott D. Direct absolute quantification of metabolites in the human brain with in vivo localized proton spectroscopy. NMR Biomed1992;5:193-199.
  • Mlynarik V, Gruber S, Moser E. Proton T (1) and T (2) relaxation times of human brain metabolites at 3 Tesla. NMR Biomed2001;14:325-331.
  • Choi CG, Frahm J. Localized proton MRS of the human hippocampus: metabolite concentrations and relaxation times. Magn Reson Med1999;41: 204-207.
  • Malucelli E, Manners DN, Testa C, et al. Pitfalls and advantages of different strategies for the absolute quantification of N-acetyl aspartate, creatine and choline in white and grey matter by 1H-MRS. NMR Biomed2009; 22:1003-1013.
  • Zaaraoui W, Fleysher L, Fleysher R, Liu S, Soher BJ, Gonen O. Human brain-structure resolved T(2) relaxation times of proton metabolites at 3 Tesla. Magn Reson Med2007;57:983-989.
  • Gasparovic C, Neeb H, Feis DL, et al. Quantitative spectroscopic imaging with in situ measurements of tissue water T1, T2, and density. Magn Reson Med2009;62:583-590.
  • Piechnik SK, Evans J, Bary LH, Wise RG, Jezzard P. Functional changes in CSF volume estimated using measurement of water T2 relaxation. Magn Reson Med2009;61:579-586.
  • Cheng KH. In vivo tissue characterization of human brain by chisquares parameter maps: multiparameter proton T2-relaxation analysis. Magn Reson Imaging 1994;12:1099-1109.
  • Traber F, Block W, Lamerichs R, Gieseke J, Schild HH. 1H metabolite relaxation times at 3.0 tesla: Measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation. J Magn Reson Imaging 2004;19:537-545.
  • Hetherington HP, Mason GF, Pan JW, et al. Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1T. Magn Reson Med1994;32:565-571.
  • Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med1989;11:47-63.
  • Posse S, Cuenod CA, Risinger R, LeBihan D, Balaban RS. Anomalous transverse relaxation in 1H spectroscopy in human brain at 4 Tesla. Magn Reson Med1995;33:246-252.
  • Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed2000;13:129-153.
  • Brooks WM, Friedman SD, Stidley CA. Reproducibility of 1H-MRS in vivo. Magn Reson Med 1999;41:193-197.
  • Okada T, Sakamoto S, Nakamoto Y, Kohara N, Senda M. Reproducibility of magnetic resonance spectroscopy in correlation with signal-to-noise ratio. Psychiatry Res 2007;156:169-174.

Publication Dates

  • Publication in this collection
    Apr-Jun 2013

History

  • Received
    04 Jan 2012
  • Accepted
    15 Mar 2013
Academia Brasileira de Neurologia, Departamento de Neurologia Cognitiva e Envelhecimento R. Vergueiro, 1353 sl.1404 - Ed. Top Towers Offices, Torre Norte, São Paulo, SP, Brazil, CEP 04101-000, Tel.: +55 11 5084-9463 | +55 11 5083-3876 - São Paulo - SP - Brazil
E-mail: revistadementia@abneuro.org.br | demneuropsy@uol.com.br