Acessibilidade / Reportar erro

A botanical census on pyrrolizidine alkaloid-producing species in Brazilian herbaria: data set for a potential health risk indication

Abstract

This study accessed the informational potential of herbaria collections as a tool for establishing an indication of the distribution of species that produce pyrrolizidine alkaloids (PAs), which are considered natural toxins, in Brazil. A total of 55,480 registered exsiccates were recorded, comprising species belonging to 17 genera, including Ipomoea (33.2%) (Convolvulaceae), Crotalaria (23.8%) (Fabaceae), Eupatorium (16.4%), Senecio (13.4%), Erechtites (3.97%) (Asteraceae) and Pleurothallis (8.28%) (Orchidaceae). These records were more densely distributed in the herbaria of the southeastern (30%), southern (28%) and northeastern (24%) Brazilian states. PAs are toxic to animals in general and display high potential for contamination of human food-production chains. A qualitative relationship was evidenced when carrying out a simultaneous compilation of cases of livestock intoxicated by the ingestion of these species, evidencing risks associated with PA-contaminated foodstuffs such as cereals, meats, milks and honey. The botanical census carried out herein is aimed at supporting a prospective study on the health risk presented by PA-producing species while bringing about indicators for their distribution in Brazil. This previously unpublished approach highlights the value of multidisciplinary information incorporated into herbaria botanical collections, with possible impacts on public health.

Key words:
Botanical census; pyrrolizidine alkaloids; Asteraceae; Ipomoea; Crotalaria

Resumo

Este estudo utilizou o potencial informacional das coleções dos herbários como base para estabelecer indicativos da distribuição, no Brasil, de espécies produtoras de alcaloides pirrolizidínicos (APs), que são considerados toxinas naturais. Foram detectadas 55.480 exsicatas registradas abrangendo espécies de 17 gêneros, entre os quais destacaram-se Ipomoea (33,2%) (Convolvulaceae), Crolataria (23,8%) (Fabaceae), Eupatorium (16,4%), Senecio (13,4%), Erechtites (3,97%) (Asteraceae) e Pleurothallis (8,28%) (Orchidaceae). As maiores densidades de registros foram encontradas em herbários dos estados do Sudeste (30%), Sul (28%) e Nordeste (24%). Os APs são tóxicos para animais em geral e possuem alto potencial de inserção nas cadeias produtivas de alimentos-base dos humanos. Uma relação qualitativa foi evidenciada na compilação simultânea de casos de intoxicação de diversos animais de criação pela ingestão destas espécies, deixando evidente o risco da contaminação por APs de alimentos diversos, como cereais, carnes, leites e mel. O censo botânico realizado visou alicerçar um estudo prospectivo sobre o potencial de risco sanitário representado pelas espécies com APs, pela inferência da distribuição delas no território nacional. Esta abordagem inédita ressalta valor das informações multidisciplinares incorporadas nas coleções botânicas dos herbários, com possível impacto na saúde pública.

Palavras-chave:
Censo botânico; alcaloides pirrolizidínicos; Asteraceae; Ipomoea; Crotalaria

Introduction

From the taxonomic documentation developed by European botanists from the seventeenth and nineteenth centuries, a period of eager interest regarding knowledge of the flora of new lands, herbaria gradually began to assume regional and even local importance, not only for the documentation of flora collections but also for corroborating the variability, or even the scarcity, of plant species by recording their distribution (Hicks & Hicks 1978Hicks AJ, & Hicks PM (1978) A selected bibliography of plant collection and herbarium curation. Taxon 27: 63-99.; Resende & Guimarães 2007Resende MLF, & Guimarães LL (2007) Inventários da biodiversidade do bioma Cerrado: biogeografia de plantas. Biblioteca IBGE, Rio de Janeiro, 14p. Available at <https://biblioteca.ibge.gov.br/visualizacao/livros/liv95776.pdf> Access on 19 April 2018.
https://biblioteca.ibge.gov.br/visualiza...
). By serving as a documentation center for plant categories (Peixoto & Maia 2013Peixoto AL, & Maia LC (2013) Manual de procedimentos para herbários. Editora Universitárida da Universidade Federal de Pernambuco (UFPE), Recife. 101p.), as well as their characteristics and distribution areas, materials deposited in herbaria were used mainly for future comparative studies, both historical and documentary, on certain flora (Resende & Guimarães 2007; Silva 2013Silva LAM (2013) Tópicos sobre técnicas de coleta de material botânico e manejo de herbário. EAD-UESC, Mod. Botânica I. Available at <http://nead.uesc.br/arquivos/Biologia/modulo_7_bloco_1/1_unidade/material_apoio/4_herbario_texto_da_apresent.doc> Access on 1 January 2018.
http://nead.uesc.br/arquivos/Biologia/mo...
).

However, the ‘herbarium’ concept has broadened in recent times, coupled with the evolution of academic activities that now extend scientific attention to broader and multidisciplinary focuses such as plant biodiversity maintenance and efforts to implement sustainability principles (Agbogidi & Aghojare 2014Agbogidi OM, & Aghojare O (2014) Herbarium in the maintenance of biodiversity. Journal of Biological and Chemical Research 31: 275-285.), while the use of tools for the digitization of exsiccate collections and specimen records has also increased. This has contributed to the swift modernization of herbaria by modifying curatorial management and herbarium management (Peixoto & Morim 2003Peixoto AL, & Morim MP (2003) Coleções botânicas: documentação da biodiversidade brasileira. Ciência e Cultura 55: 21-24.), greatly facilitating researcher access to collections (Costa et al. 2016Costa JCM, Lucas FCA, Gois MAF, Leão VM, & Lobato GDJM (2016) Herbário virtual e universidade: biodiversidade vegetal para ensino, pesquisa e extensão. Scientia Plena 12: 1-11. Available at <https://www.scientiaplena.org.br/sp/article/view/3033> Access on 21 April 2018.
https://www.scientiaplena.org.br/sp/arti...
; Willis et al. 2017Willis CG, Ellwood ER, Primack RB, Davis CC, Pearson KD, Gallinat AS, Yost JM, Nelson G, Mazer SJ, Rossington NL, Sparks TH, & Soltis PS (2017) Old plants, new tricks: phenological research using herbarium specimens. Trends in Ecology, & Evolution 32: 531-546.).

The scientific boundaries of information now compiled in herbaria surpass records concerning only the floristic richness of a certain territory and its intrinsic botanical value to taxonomy, systematics and ecology, as well as research and teaching. The scenario outlined by modern scientific demands and the greater and more swift availability of information organized in herbaria have highlighted and strengthened the importance of official herbaria collections. These collections, and their incorporated information, began to subsidize the development of activities in increasingly multidisciplinary areas, with six main points, summarized in 1985 by S. A. Mori and collaborators (1985)Mori SA, Mattos-Silva LA, Lisboa G, & Coradin L (1985) Manual de manejo do herbário fanerógamo. Universidade Federal de Pernambuco (UFPE), Recife, 91p.. The unfolding and peculiarities of these functions, as well as the incorporation of additional characteristics, were later systematized for the Smithsonian Institute by V. Funk, who compiled a list of 32 activities supporting various scientific and academic interests, in order to demonstrate herbaria importance (Funk 2003Funk V (2003) The importance of herbaria. Plant Science Bulletin 49: 94-95.).

Thus, botanical knowledge added to herbaria collections has increasingly subsidized a number of different studies, as illustrated by approaches that include (i) indirectly prospecting regions potentially rich in specific minerals (inferred by soil which species displaying accumulation characteristics inhabit) (Brooks et al. 1977Brooks R, Lee J, Reeves R, & Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7: 49-57.); (ii) recognizing and valuing the correct identification of species as important for forest management plans (Procópio & Secco 2008Procópio LC, & Secco RS (2008) The importance of botanical identification in forest inventories: the example of ”tauari” - Couratari spp. and Cariniana spp, Lecythidaceae - in two timber areas of the state of Pará. Acta Amazonica 38: 31-44.); (iii) clarifying taxonomic positions among species based on their potential to accumulate specific metals (Fernando et al. 2009Fernando DR, Guymer G, Reeves RD, Woodrow IE, Baker AJ, & Batianoff GN (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Annals of Botany 103: 931-939.); (iv) inferring hypotheses concerning evolutionary, ecological and conservation research using taxonomic control variables (Franz et al. 2016Franz N, Gilbert E, Ludäscher B, & Weakley A (2016) Controlling the taxonomic variable: taxonomic concept resolution for a southeastern United States herbarium portal. Research Ideas and Outcomes 2, p e10610.); (v) introducing new floristic analysis methods that reflect the conservation value of protected areas (Wieringa & Sosef 2011Wieringa JJ, & Sosef MSM (2011) The applicability of relative floristic resemblance to evaluate the conservation value of protected areas. Plant Ecology and Evolution 144: 242-248.); (vi) relating floristic diversity to specific local fauna behaviors (Machado & Oliveira 2015Machado AO, & Oliveira PE (2015) Diversidade beta de plantas que oferecem néctar como recurso floral aos beija-flores em cerrados do Brasil Central. Rodriguésia 66: 1-19.); (vii) exploring herbaria collection potential in expanding phenological research (Willis et al. 2017Willis CG, Ellwood ER, Primack RB, Davis CC, Pearson KD, Gallinat AS, Yost JM, Nelson G, Mazer SJ, Rossington NL, Sparks TH, & Soltis PS (2017) Old plants, new tricks: phenological research using herbarium specimens. Trends in Ecology, & Evolution 32: 531-546.); (viii) formulating evolutionary developmental biology hypotheses from morphometric studies (Chen et al. 2018Chen Y, Jabbour F, Novikov A, Wang W, & Gerber S (2018) A study of floral shape variation in Delphinieae (Ranunculaceae) using geometric morphometrics on herbarium specimens. Botany Letters 165: 368-376.); and (ix) establishing standards to relate taxonomic diversity to niche climatic conditions (Schneider et al. 2018Schneider JV, Negraschis V, Habersetzer J, Rabenstein R, Wesenberg J, Wesche K, & Zizka G (2018) Taxonomic diversity masks leaf vein-climate relationships: lessons from herbarium collections across a latitudinal rainfall gradient in West Africa. Botany Letters 165: 384-395.), among others.

Technological research aimed at developing new products based on plant diversity is also supported by herbaria collections (Hung 2014Hung CP (2014) Elaboração de um banco de dados georreferenciados do acervo do Herbário DDMS para a gestão da biodiversidade. Universidade Federal daGrande Dourados (UFGD), Dourados. 36p.), since the success of projects concerned with the transformation of plant diversity requires botanical origin certification and the seal of an official herbarium (Peixoto & Morim 2003Peixoto AL, & Morim MP (2003) Coleções botânicas: documentação da biodiversidade brasileira. Ciência e Cultura 55: 21-24.; Peixoto et al. 2009Peixoto AL, Barbosa MV, Canhos DAL, & Maia LC (2009) Coleções botânicas: objetos e dados para a ciência. Cultura material e patrimônio da Ciência e Tecnologia. Museu da Astronomia e Ciências Afins, Rio de Janeiro. Pp. 6-10.), including sample georeferences (Siani 2003Siani AC (2003) Desenvolvimento tecnológico de fitoterápicos: plataforma metodológica. Scriptorio, Rio de Janeiro. 98p.). In the research and development of phytopharmaceutical products, for example, the preservation of medicinal plants long used by traditional communities at specific locations is extremely important. In this regard, herbaria are a primary or complementary source for ethnomedical information (Fabricant & Farnsworth 2001Fabricant DS, & Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives 109: 69-75.), playing a crucial role in plant identification and authentication. Herbaria collections will help guarantee support for the correspondence between plant origin and characteristics as well as chemical and pharmacological properties established during pharmaceutical development (Ahmed & Hasan 2016Ahmed S, & Hasan MM (2016) Importance of herbaria in herbal drug discovery. World Journal of Pharmaceutical Sciences 4: 127-129.).

In a similar context, the present study aimed to use the informational potential of herbaria collections as a basis for inferring the distribution of pyrrolizidine alkaloid (PA)-producing species in Brazil. PAs are nitrogenated substances known as “natural pesticides” (González-Coloma et al. 2002González-Coloma A, Reina M, Gutiérrez C, & Fraga BM (2002) Natural insecticides: structure diversity, effects and structure-activity relationships. A case study. In: Atta-ur-Rahman (ed.) Studies in Natural Products Chemistry. Vol. 26. Elsevier, Amsterdam. Pp. 849-879.) that are present in approximately 3% of higher plants. Their main function is to act as anti-feeding compounds to halt herbivore predation (Reina et al. 1998Reina M, Gonzalez-Coloma A, Gutierrez C, Cabrera R, Henriquez J, & Villarroel L (1998) Pyrrolizidine Alkaloids from Heliotropium megalanthum. Journal of Natural Products 61: 1418-1420.; Siciliano et al. 2005Siciliano T, Leo MD, Bader A, Tommasi ND, Vrieling K, Braca A, & Morelli I (2005) Pyrrolizidine alkaloids from Anchusa strigosa and their antifeedant activity. Phytochemistry 66: 1593-1600.), a property that also leads them to be sequestered by certain classes of insects in order to incorporate them into their own defensive arsenals (Hartmann et al. 1999Hartmann T, Theuring C, Schmidt J, Rahier M, & Pasteels JM (1999) Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. Journal of Insect Physiology 45: 1085-1095.; Trigo 2000Trigo JR (2000) The chemistry of antipredator defense by secondary compounds in neotropical lepidoptera: facts, perspectives and caveats. Journal of the Brazilian Chemical Society 11: 551-561.). Currently, approximately 650 PAs have been identified from 6,000 plants (Stegelmeier et al. 2009Stegelmeier B, Gardner D, & Davis TZ (2009) Livestock poisoning with Pyrrolizidine-Alkaloid-Containing plants (Senecio, Crotalaria, Cynoglossum, Amsinckia, Heliotropium, and Echiumspp) Rangelands 31: 35-37.; Ruan et al. 2012Ruan J, Li N, Xia Q, Fu PP, Peng S, Ye Y, & Lin G (2012) Characteristic ion clusters as determinants for the identification of pyrrolizidine alkaloid N-oxides in pyrrolizidine alkaloid-containing natural products using HPLC-MS analysis. Journal of mass spectrometry: JMS 47: 331-337.), mainly within the Asteraceae, Apocynaceae, Boraginaceae, Fabaceae and Orchidaceae families (Boppre 2011Boppre M (2011) The ecological context of pyrrolizidine alkaloids in food, feed and forage: an overview. Food additives, & contaminants. Food Additives and Contaminants 28: 260-81.).

The degree of toxicity of these plants is closely related to the molecular configurations of the PAs they contain. Depending on their chemical structure, the PAs may be highly reactive towards some vital mammal proteins and DNA (Prakash et al. 1999Prakash AS, Pereira TN, Reilly PE, & Seawright AA (1999) Pyrrolizidine alkaloids in human diet. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 443: 53-67.). Hepatic veno-occlusive disease (VOD), hepato-splenomegaly and emaciation have been observed in chronic human PA poisoning. Mutagenicity of some PAs (monocrotaline, lasiocarpine and heliotrine) have already been demonstrated. Riddelliine and structurally related PAs are likely to be carcinogenic and cytotoxic substances (Prakash et al. 1999Prakash AS, Pereira TN, Reilly PE, & Seawright AA (1999) Pyrrolizidine alkaloids in human diet. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 443: 53-67.). The International Agency for Research on Cancer (IARC) has classified lasiocarpine, monocrotaline and riddelliine as possibly carcinogenic to humans (group 2B) and hydroxysenkirkine, isatidine, jacobine, retrorsine, seneciphylline, senkirkine and symphytine as not classifiable as to its carcinogenicity to humans (Group 3) (IARC-WHO 1976IARC-WHO (1976) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 10: Some Naturally Occurring Substances. Available at < https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Naturally-Occurring-Substances-1976>. Access on 17 November 2017.
https://publications.iarc.fr/Book-And-Re...
, 2002IARC-WHO (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Available at <http://site.ebrary.com/id/10252491> Access on 17 November 2017.
http://site.ebrary.com/id/10252491...
).

On the other hand, many plants containing these substances possess a high potential for being inserted into the production chains of basic foodstuffs. Therefore, the deleterious effects of PAs can reach humans by indirect contamination of products of animal origin.

The Codex Alimentarius, or “Food Code”, in spite of having a defined quality standard for some foodstuffs, such as honey (Codex Alimentarius 2001Codex Alimentarius (2001) Standard for honey CXS 12-1981. Adopted in 1981. Revised in 1987, 2001. Amended in 2019. Available at <http://www.fao.org/fao-who-codexalimentarius/en/>. Access on 17 November 2017.
http://www.fao.org/fao-who-codexalimenta...
), makes simply general statements with regard to residues and contaminants in this matrix (Codex Alimentarius 2012Codex Alimentarius (2012) Maximum Residue Limit or Risk Management Recommendation established by Codex for veterinary drugs in food. Available at <http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/vetdrugs/veterinary-drugs/en/>. Access 17 November 2017.
http://www.fao.org/fao-who-codexalimenta...
, 2014Codex Alimentarius (2014) CODEX online commodity categories - pesticide residues in food and feed. Available at <http://www.codexalimentarius.net/pestres/data/commodities/index.html?expand=all> Access on 17 November 2017.
http://www.codexalimentarius.net/pestres...
). No maximum levels for the naturally occurring toxicants PAs in food commodities have been recommended by the Joint FAO / WHO Expert Committee on Food Additives (JECFA), since tolerable daily intake (TDI) values could not be defined (JECFA 2009JECFA (2009) Technical report series (954): evaluation of certain veterinary drug residues in food : seventieth report of the Joint FAO/WHO Expert Committee on Food Additives. Proceedings of Meeting World Health Organization Food Agriculture Organization of the United Nations, World Health Organization. , 2015JECFA (2015) Eightieth meeting report of the Joint FAO/WHO Expert Committee on Food Additives. Proceedings of Meeting World Health Organization Food Agriculture Organization of the United Nations, World Health Organization.). Due to the genotoxic properties, the JECFA deemed that it was not possible to derive a health-based guidance value (e.g. TDI) and decided to use the BMDL10 (lower 95% confidence limit on the benchmark dose for a 10% response) of 182 µg/kg body weight (bw) per day for riddelliine as the start point for estimating margins of exposure (MOEs). MOEs were calculated for exposure to 1,2-unsaturated PAs and their N-oxides from consumption of honey or tea or duplicate diets for children and adults, separately, using a range from the lowest lower-bound mean or high-percentile dietary exposure to the highest upper-bound mean or high-percentile dietary exposures. Mean and high-percentile dietary exposures, including lower-bound and upper-bound estimates, across population groups (adults and children) and individual foodstuffs (honey and tea) ranged from 0.01 to 130 ng/kg bw per day at the mean and from 5 to 260 ng/kg bw per day at the high percentile (JECFA 2017JECFA (2017) Technical Report Series (995): evaluation of certain contaminants in food: eighty-third report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization. )

The European Community, through the European Food Safety Agency (EFSA) has also not established maximum levels for PAs in honey but estimated a TDI of 7 ng/kg bw per day (considering 50 kg bw), employing the MOE framework. The benchmark dose giving 10% response (BMD10) of 120 µg/kg bw per day for lasiocarpine, for male rats, for the development of hemangiosarcoma in liver (the key finding in cancer studies) was used as the start point on the dose-response curve for the MOE estimation for exposure to PAs from consumption of herbal medicinal products (EMA 2016EMA - European Medicines Agency (2016) Public statement on contamination of herbal medicinal products/traditional herbal medicinal products with pyrrolizidine alkaloids: transitional recommendations for risk management and quality control. EMA/HMPC/328782/2016. Available at <https://www.ema.europa.eu/en/documents/public-statement/public-statement-contamination-herbal-medicinal-products/traditional-herbal-medicinal-products-pyrrolizidine-alkaloids_en.pdf> 17 November 2017.
https://www.ema.europa.eu/en/documents/p...
). In Brazil, Regulation RDC No 26, on 13 May 2014, lays down minimal requirements for phytomedicines (ANVISA 2014ANVISA - Agência Nacional de Vigilância Sanitária. (2014) Resolução-RDC no 26, de 14 de maio de 2014 - Dispõe sobre o registro de medicamentos fitoterápicos e o registro e a notificação de produtos tradicionais fitoterápicos. Diário Oficial da União, pág. 52, seção 01 de 2014.).

As it turned out, when it comes to PAs, it is clear that a specific legislation is still incipient worldwide. To date in Brazil, there are no general recommendations on risk management, except for RDC No 26/2014, besides official monitoring data.

This study aims to carry out herbaria-based research on mapping the occurrence of PA-producing plants in Brazil. Organizing data on plants containing these alkaloids constitutes the first step in guiding future health surveillance actions, which may include monitoring for the presence of these substances in diverse foodstuffs.

Material and Methods

To evaluate the distribution of PA-producing plants in Brazil, all botanical genera (or as many as possible) known to produce these alkaloids were compiled. This information was first searched in the RIKILT database. The RIKILT Institute is part of Wageningen University & Research, Netherlands, that carries out independent research into the safety and reliability of food. One of its main tasks is measuring and detecting substances in food that may have negative effects on humans and animals (WUR 2019WUR - Wageningen University, & Research (2019) RIKILT - Measuring and detecting substances. Available at <https://www.wur.nl/en/Research-Results/Research-Institutes/rikilt/Expertise-areas/Measuring-and-detecting-substances.htm>. Access on 1 February 2019.
https://www.wur.nl/en/Research-Results/R...
). The RIKILT is populated with data obtained from the European Food Safety compendium of botanic genera and species, complemented with information from several other sources. A working group of experts sponsored by the EFSA Scientific Cooperation (ESCO), in order to report plants that contain toxic, addictive, psychotropic or other substances of health concern, prepares this compendium of botanicals (EFSA 2009EFSA - European Food Safety Authority (2009) Compendium of botanicals that have been reported to contain toxic, addictive, psychotropic or other substances of concern on request of EFSA. EFSA Journal 2009; 7(9):281. Available at < https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2009.281>. Access 17 November 2017.
https://efsa.onlinelibrary.wiley.com/doi...
; WUR 2019WUR - Wageningen University, & Research (2019) RIKILT - Measuring and detecting substances. Available at <https://www.wur.nl/en/Research-Results/Research-Institutes/rikilt/Expertise-areas/Measuring-and-detecting-substances.htm>. Access on 1 February 2019.
https://www.wur.nl/en/Research-Results/R...
).

When the query was performed by genus, the database also returned the following information: (i) botanical family name, (ii) main classes of plant toxins present, (iii) individual components of the toxins, whenever they are previously known, (iv) species in which the toxins are present, (v) which parts of the plant contain the toxins, and (vi) the main toxic effects of the toxins.

The search by secondary metabolite class resulted in the listing of genera currently known to produce PAs at the global level. It should be noted that all database entries are properly referenced in the query itself, complementary to the botanical genera provided by RIKILT.

Once the PA-producing genera were listed, information was searched regarding the occurrence and distribution of the listed genera in Brazil. The Virtual Reflora Herbarium of the Reflora/CNPq Program at the Rio de Janeiro Botanical Garden (BFG 2020BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.) and the Virtual Flora and Fungi Herbarium of the National Institute of Science and Technology (INCT) databases were consulted (INCT, 2017INCT (2017) Herbário Virtual da Flora e dos Fungos. Available at <http://inct.splink.org.br/>.
http://inct.splink.org.br/...
). In the case of the JBRJ, searches were based on exsiccates of specimens deposited throughout Brazil, resulting in diverse botanical information (including taxonomy) and allowing for collecting useful statistics on the geographical distribution of confirmed occurrences, such as the genera distribution by state and region. Recently, this source of information has been properly used to correlate botanical entries with geographic locales. Moreover, the INCT database is built to converge virtual data from multiple herbaria in the country. Genera consultations at the INCT Virtual Herbarium led to equally fruitful information, including exsiccate locations in herbaria. The INCT Virtual Herbarium allows for multiple genera to be queried at once. Thus, PA-producing genera were individually obtained from both herbaria. At the INCT herbarium, a search for all genera was carried out simultaneously to design the total plant distribution throughout Brazilian regions and states.

Once the most representative genera were established using their record (voucher) distribution, the five most frequent species were selected. Descriptions of toxicological events occurring in Brazil related to species belonging to the most representative genera were also obtained from the literature.

Results and Discussion

Three steps constituted the method used to assemble the data for analysis. The first step included the search in RIKILT database with the aim of establishing the AP-producing genera that occur throughout the world. The RIKILT database for plant toxins contains over 700 plant species and associated toxins.

The following step involved recognition of the genera, among those extracted from RIKILT, that occur in Brazil by checking both the Flora do Brasil and INCT databases. The final step involved using the gathered information to build Table 1. At this point, it is relevant to note that there may exist divergences between Flora do Brasil and INCT. Nevertheless, this fact has not affected the scope of the present proposition. Data were extracted from both databases and used as they were displayed, with no interferences from the authors.

Table 1
Geographic distribution of pyrrolizidine alkaloid-producing genera according to the RIKILT database: crossing data with registers in Flora do Brasil and INCT databases

Specifically, searching the INCT provided bulky data regarding genera representation and the quantitative outspread to the species records. It is quite plausible that most of this set of massive botanical data is identified with sufficient fidelity at the genus level to meet our statistical purposes. For this reason, we decided to opt for this more abundant source of data, and to consider the registers of possible PA-producing species, to more properly fit our goal of building a general risk panorama of potential toxic plants.

Thus, a quantitative scenario based on the species available from searching the INCT was built for each selected genus in the Brazilian states (Tab. 2). It is important to note that this methodology does not allow conclusions about the territorial species distribution - either by geographic coordinate or phytogeography - but rather quantifies the exsiccate records in herbaria throughout the country.

In addition to the bias inherent to the data collection, the approaches that support Table 1 and Table 2 data were also susceptible to other method limitations. The main limitation is regarding possible distortions of and inconsistencies in taxonomy and botanical aspects that would be directly transposed to our quantitative survey with no chance to be verified. Data retrieved from INCT were inserted in Table 2 and Table 3 the same way that they were generated in the search. In this sense, any possible lack in accuracy in correlating the frequency of the exsiccate records to geographical origin would be overcome by the huge amount of data generated thereof.

Table 2
Total exsiccates of pyrrolizidine alkaloid-producing genera in Brazil compiled from the INCT database
Table 3
The five most abundant records of species from the main pyrrolizidine alkaloid-producing genera found by searching the INCT database.

The amount of plant deposits varies in each state, with higher densities coinciding with areas with higher concentrations of universities and research institutes. Higher concentrations of plant deposit records were observed in southern and southeastern Brazil. This fact reflects a differentiated effort to collect samples in the states comprised in those regions (Forzza et al. 2016Forzza RC, Carvalho Jr A, Andrade ACS, Franco L, Estevão LA, Fonseca-Kruel VS, Coelho MAN, Tamaio N, & Zappi D (2016) Coleções biológicas do Jardim Botânico do Rio de Janeiro à luz das metas da GSPC/CDB: onde estaremos em 2020? Revista Museologia, & Interdisciplinaridade 5: 125-141.). The variable intensity of the collected records is also directly related to the number of scientific projects involving floristic surveys either executed or currently in progress throughout Brazilian states and regions. Furthermore, it is not possible to rule out the fact that a smaller number of exsiccates might have been recorded regarding collections in fields that are difficult to access. The lowest number of records was observed in the north (closed forest predominance) and central west (large flooded areas) areas. Another source of bias can occur when the voucher is sent to different states or even regions than where the material was collected. However, it is expected that this is greatly minimized because the current practice is that botanical activity remains associated with a local institution until voucher deposit - even if duplicate materials are sent to other centers, as in the case of scientific collaborations or material exchange and donation between herbaria. In this case, duplicate exsiccates would be registered more than once, possibly involving surveys from different regions or states. However, this was assumed to be insignificant for the overall aim of this study. Finally, it is also assumed that errors are minimal in the identification of botanical genera recorded through exsiccates, justifying the inclusion of specimens still under determination (c.f.).

In summary, although several biases have been recognized within our methods, a primary but plausible conclusion could be established to bring to the fore the risks of plants with PA throughout the country.

In the initial evaluation, 23 PA-producing genera belonging to five botanical families were identified from the results of the RIKILT. The geographical distribution of their records in Brazil was delineated by crossing the data with those resulting from the Flora do Brasil and INCT search. (Tab. 2).

In total, 55,480 exsiccates were found. The frequency of deposits throughout Brazilian states is variable, as displayed in Figure 1, where the distribution of total PA-producing species records is represented by color density. The number of records ranged from a minimum of 132 to a maximum of 8,126 records.

Figure 1
Total number of species per substrate. COR = corticicolous; RUP = rupicolous; EPF = epiphyllous; EPX = epixilous; TER = terricolous; SA = artificial substrate.

Overall, the results indicate that all Brazilian regions contain pyrrolizidine alkaloid-producing species, especially the South, Southeast and Northeast, where similar amounts of deposits were recorded (between 24% and 30% of the total). Based on the compiled specimens, the total distribution of exsiccate registers in each Brazilian state is presented in Table 1, where the predominance of records for six PA-producing genera is observed: Ipomoea (18,430) (Convolvulaceae) > Crotalaria (13,212) (Fabaceae) > Eupatorium (9,099) > Senecio (7,415) (Asteraceae) > Pleurothallis (4,595) (Orchidaceae) > Erechtites (2,202) (Asteraceae). Symphytum (167) and Echium (154) (Boraginaceae) are the most noteworthy genera among those presenting the lowest number of registered exsiccates. Considering the relative amount of species and exsiccates for the six most representative genera, graphs grouping states by region were constructed (Fig. 2).

Figure 2
Similarity dendrogram (Sörensen index) obtained by UPGMA of the six areas compared in this study. The acronyms of the areas correspond to those in Table 1.

Within the entire territory of the nation, the genus most frequently found in search results among the 17 was Ipomoea, represented by 33.2% of the total deposited specimens, followed by Crotalaria (23.8%), Eupatorium (16.4%), Senecio, (4%), Pleurothallis (8.28%) and Erechtites (3.97%). The greatest genera variation was observed for the South and Southeast regions and states. Ipomoea records also prevail in most Brazilian states when considered individually and, therefore, in the figures consolidated by region (Fig. 2).

Taking into account only the six most frequent genera, the number of registered Ipomoea specimens ranged from 45.0% to 65.9% of total occurrences in the northern states, except for Roraima, where it was superseded by Crotalaria, at 53.9%. Ipomoea was also listed most frequently in all northeastern states, where the recorded specimen occurrences ranged between 50.8% (Piauí) and 71.6% (Ceará). Crotalaria records occupy the second most abundant position in most northern and northeastern region states, rivalling Eupatorium which presented minimum and maximum records of specimens in northern states (7.5% in PA to 13.9% in AM). Additionally, in the northern region, the records of Pleurothallis were greater than or similar to Eupatorium in three states (9% to 16% in AC, AM, AP, RR), while in the Northeast, these two genera presented quantitative values below 10% in all states.

In the Central-West region, the same Ipomoea relation persists (40.0%-48.3%), higher than Crotalaria (21.5%-38.6%), with a certain relevance attributed to Eupatorium genus records in Goiás (14, 4%) and Mato Grosso do Sul (13.3%). A more heterogeneous distribution of genera records is observed in southeastern and southern states. Minas Gerais and São Paulo display the same relative trend: Crotalaria (23.4%-36.9%)> Ipomoea (21.2%-23.4%) > Eupatorium (14.9%-22.7%) > Senecio (12.2%-14.6%) > Pleurothallis (9.9%). In Rio de Janeiro, these five genera are relatively represented, with the lowest variations in the region (14.8%-22.2%), highlighting the relevance of Pleurothallis, at 18.4%, in addition to minor records for Erechtites (5.5%) surpassing the three other states. Pleurothallis noteworthiness is even more pronounced in Espírito Santo, where it surpasses all other genera, comprising 51.0% of the records, followed by Ipomoea (26.1%). Floristic surveys on Orchidaceae species in the Espírito Santo restingas probably contributed to this increase (de Fraga & Peixoto 2004Fraga CN, & Peixoto AL (2004) Florística e ecologia das Orchidaceae das restingas do estado do Espírito Santo. Rodriguésia 55: 5-20.).

In the southern states, the records of Ipomoea and Senecio lead the census in Paraná, comprising 26.2% and 24.9% of the total records, respectively, followed by Pleurothallis (18.7%), Crotalaria (15.4%) and Eupatorium (12.3%). The two leading genera switched positions in Santa Catarina and Rio Grande do Sul rankings. In the latter, an unprecedented first place was observed for Eupatorium records, accounting for 36.3% of the total records, followed by Senecio (30.6%) and Ipomoea (17.5%). In this case, it is interesting to note the lowest frequency of Crotalaria (8.4%) among all Brazilian states.

The five main species with the highest record occurrence within each of the six main genera are presented in Table 3.

Most exsiccates belonging to the Eupatorium and Pleurothallis genera still lack identification and show a clear concentration of identified species records in the South and Southeast.

The records for the genus Ipomoea also contained large numbers of unidentified deposits of plant samples; however, these deposits were always less abundant than the identified samples. For instance, there is a clear predominance of I. cairica in the South, while I. asarifolia and I. bahiensis records are relatively more abundant in the Northeast upon excluding the unidentified registers. The same is true for I. cairica in the Southeast, I. asarifolia in the North and I. nil in the Midwest.

This same scenario holds for Crotalaria, where a slight majority of identified species were collected from the Brazilian Northeast, and C. retusa was the most abundant, followed by equal amounts of C. pallida and C. incana. Excluding undetermined exsiccates, C. micans prevails in the South, Southeast and Midwest, which also present relatively significant amounts of records for the species listed in Table 3. The North presents the lowest number of Crotalaria records, with a balance between all species considered herein.

The Senecio genus comprises the overwhelming number of records in the South and Southeast, with a high predominance of S. brasiliensis but also with significant representatives of the other species listed in Table 3 (always below the number of undetermined records). The number of records for species belonging to this genus is very low in the rest of the country.

An opposite trend is observed for the Erechtites genus, in which most of the identified specimens originate from the South and Southeast, with E. hieracifolia largely predominant among all cases of exsiccates having the binomial identified.

It is known that PA production in plants is conditioned to occur based on plant phenotypes and seasonal influences, among other ecological factors (Trigo 2000Trigo JR (2000) The chemistry of antipredator defense by secondary compounds in neotropical lepidoptera: facts, perspectives and caveats. Journal of the Brazilian Chemical Society 11: 551-561.). Despite this fact, the set of surveyed data allow us to conclude that a ubiquitous, if not dense, distribution of PA-producing species is observed in Brazil. This feature implies the existence of a generalized primary source of contamination by these alkaloids. Therefore, PA-producing plants exhibit high potential for being present in the productive food chains in the country by progressively contaminating food matrices such as honey (contamination carried by bees), meat, milk and eggs (animal consumption), and grain (harvesting and storage) (Stewart & Steenkamp 2001Stewart MJ, & Steenkamp V (2001) Pyrrolizidine poisoning: a neglected area in human toxicology. Therapeutic Drug Monitoring 23: 698-708.), without ruling out certain direct routes into foods, such as medicinal teas, spices and vegetables.

Studies on the contamination of the production chain of products using honey or pollen as ingredients have shown that PAs could be found in significant amounts in the products derived thereof (KEMPFet al. 2010; KEMPFet al. 2011). In some cases, the presence of pyrrolizidine alkaloids jeopardizes the health of bee colonies (REINHARDet al. 2009). Publications that call attention to reduced exposure (subchronic toxicity) to pyrrolizidine alkaloids that may permeate the production chain through livestock and other animal products are also found (EDGARet al. 2011; KEMPFet al. 2011; MOLYNEUXet al. 2011).

Additionally, relevant information on these potential contamination events comes from the many veterinary reports that describe spontaneous intoxications of various types of farm animals. On the same hand, many in vivo toxicological experiments over the decades have corroborated the deleterious effects of these alkaloids on animal health since they were first observed (Pammel 1903Pammel LH (1903) Some weeds of Iowa. 6a ed. Experiment Station, Iowa State College of Agriculture and the Mechanic Arts, Ames. 256p.). Circumscribing the observations to the six most common PA-producing genera detected by this census, animal intoxication is obviously related to PA presence in the spontaneous menu of grazing animals. This varies seasonally, with a relative increase in the availability of harmful species in times of drought, when the animals tolerate the poor palatability of some Asteraceae and Boraginaceae species, as they are among the most resilient species in the environment (Gazziero et al. 2006Gazziero DLP, Brighenti AM, Lollato RP, Pitelli RA, Voll E, Oliveira E, & Moriyama RT (2006) Manual de identificação de plantas daninhas da cultura da soja. Embrapa Soja, Londrina. 126p. Available at <http://www.infoteca.cnptia.embrapa.br/handle/doc/469956> Access on 22 April 2018.
http://www.infoteca.cnptia.embrapa.br/ha...
; Brighenti 2010Brighenti AM (2010) Manual de identificação e manejo de plantas daninhas em cultivos de cana-de-açúcar. Embrapa Gado de Leite, Juiz de Fora. 112p.). Although under specific conditions, due to the wide variety and phenological aspects, the species comprising in the genera evaluated herein - particularly Asteraceae - fall into the category of invasive or weedy plants, infesting pasture and ruderal environments in general.

The pantropical genus Crotalaria L. (family Fabaceae), comprising 600 species, is the only member of the Crotalarieae (Benth.) Hutch. tribe native to Brazil. Forty-two Crotalaria species occurring throughout Brazil are accepted by the Flora do Brasil database. Few phytogeographic studies on the ubiquity of the genus in the country are available (Flores & Miotto 2005Flores AS, & Miotto STS (2005) Aspectos fitogeográficos das espécies de Crotalaria L. (Leguminosae, Faboideae) na Região Sul do Brasil. Acta Botanica Brasilica 19: 245-249.). Because they belongs to the Leguminosae (Faboideae) family and display nitrogen fixation capacity, Crotalaria species have traditionally been used as forage in many countries (Mkiwa et al. 1990Mkiwa FEJ, Sarwatt SV, Lwoga AB, & Dzowela BH (1990) Nutritive value of Crotalaria ochroleuca:I. Chemical composition and in vitro dry matter digestibility at different stages of growth. Available at <https://cgspace.cgiar.org/bitstream/handle/10568/49746/Nutritive_value.pdf?sequence=1&isAllowed=y>. Access on 15 September 2018..
https://cgspace.cgiar.org/bitstream/hand...
; Sarwatt et al. 1990Sarwatt SV, Mkiwa FEJ, Lwoga AB, & Dzow-ela BH (1990) Nutritive value of Crotalaria ochroleuca: II. The effect of supplementation on feed utilisation and performance of growing sheep. Available at <https://cgspace.cgiar.org/bitstream/handle/10568/49746/Nutritive_value.pdf?sequence=1&isAllowed=y>. Access on 15 September 2018.
https://cgspace.cgiar.org/bitstream/hand...
; Arias et al. 2003Arias L, Losada H, Rendón A, Grande D, Vieyra J, Soriano R, Rivera J, & Cortés J (2003) Evaluation of Chipilín (Crotalaria longirostrata) as a forage resource for ruminant feeding in the tropical areas of Mexico. Livestock Research for Rural Development 15: 1-4.; Mosjidis 2006Mosjidis JA (2006) Legume breeding and their utilization as forage and cover crops. In: Proceedings of the 60th Southern Pasture and Forage Crop Improvement Conference, Auburn, AL. 12 Apr. 2006, Texas. Available at <https://agrilife.org/spfcic/files/2013/02/mosjidis.pdf> Access on 17 November 2017.
https://agrilife.org/spfcic/files/2013/0...
), a fact that caught attention in Brazil as early as the middle of the last century, for agronomic and livestock reasons (Vandoni 1952Vandoni R (1952) Contribuição para o conhecimento de algumas leguminosas como forrageiras - Aceitação, palatabilidade e toxides - Testes em coelhos e cobaios. Anais da Escola Superior de Agricultura Luiz de Queiroz 9: 195-214.). The production of PAs toxic to animals by species belonging to this genus has been reported since the end of the XIX century (Pammel 2017Pammel LH (2017) Botany of Russian Thistle. Bulletin 3: 3.) and has directed the selection of innocuous species for exploration for the abovementioned purposes (Mosjidis & Wang 2011Mosjidis JA, & Wang ML (2011) Crotalaria. In: Kole C (ed.) Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg. Pp. 63-69. ). For economic purposes, the present agronomic trend has suggested the domestication of certain species (even those with an exotic origin) that are, in theory, free of PAs. More recently, Crotalaria species have also been used in ‘green fertilization’ (Rotar & Joy 1983Rotar PP, & Joy RJ (1983) Tropic Sun’Sunn Hemp; Crotalaria juncea L. Research Extension Series 036-11/83. University of Hawai, Honolulu. 9p.; Agrolink 2018Agrolink (2018) Cambarazinho ou Mata pasto, falso cambará, eupatório (Eupatorium laevigatum). Portal Agrolink. Available at <https://www.agrolink.com.br/culturas/problema/cambarazinho_622.html> Access on 4 April 2018.
https://www.agrolink.com.br/culturas/pro...
), displaying good results in the recovery of poor soils in Brazil (Teodoro et al. 2011Teodoro RB, Oliveira FL, Silva DMN, Fávero C, & Quaresma MAL (2011) Aspectos agronômicos de leguminosas para adubação verde no Cerrado do Alto Vale do Jequitinhonha. Revista Brasileira de Ciência do Solo 35: 635-640.).

Throughout investigations on the usefulness of Crotalaria species in agriculture, toxicity measures associated with these species have also been carried out. Even before PA chemical structures were fully clarified, experiments were performed to confirm field observations (Pammel 2017Pammel LH (2017) Botany of Russian Thistle. Bulletin 3: 3.) in studies that were soon reproduced in Brazil (Vandoni 1952Vandoni R (1952) Contribuição para o conhecimento de algumas leguminosas como forrageiras - Aceitação, palatabilidade e toxides - Testes em coelhos e cobaios. Anais da Escola Superior de Agricultura Luiz de Queiroz 9: 195-214.; Torres 1954Torres ADP (1954) Toxicidade de algumas crotolárias. Anais da Escola Superior de Agricultura Luiz de Queiroz 11: 115-124.), associated with the beginning of the modernization of livestock in the country, from the middle of the XX century (Teixeira & Hespanhol 2014Teixeira JC, & Hespanhol AN (2014) A trajetória da pecuária bovina brasileira. Caderno Prudentino de Geografia 1: 26-38.). In Brazil, the effects of Crotalaria species ingestion, accompanied by experimental studies, have been continuously documented for cattle (Boghossian et al. 2007Boghossian MR, Peixoto PV, Brito MF, & Tokarnia CH (2007) Aspectos clínico-patológicos da intoxicação experimental pelas sementes de Crotalaria mucronata (Fabaceae) em bovinos. Pesquisa Veterinária Brasileira 27: 149-156.; Queiroz et al. 2013Queiroz GR, Ribeiro RCL, Flaiban KKMC, Bracarense APFRL, & Lisboa JAN (2013) Intoxicação espontânea por Crotalaria incana em bovinos no norte do estado do Paraná. Semina: Ciências Agrárias 34: 823-832.), sheep (Nobre et al. 2004Nobre VMT, Riet-Correa F, Barbosa Filho JM, Dantas AFM, Tabosa IM, & Vasconcelos JS (2004) Intoxicação por Crotalaria retusa (Fabaceae) em Eqüídeos no semi-árido da Paraíba. Pesquisa Veterinária Brasileira 24: 132-143.; Sanchez et al. 2013Sanchez DCC, Simplício KMMG, Borges LA, Fagliari JJ, Canola JC, & Hatayde MR (2013) Clinical and laboratory evaluation of sheep experimentally intoxicated with Crotalaria spectabilis (Leg. Papilionoidea) seeds evidências clínico-patológicas de ovinos intoxicados experimentalmente com sementes de Crotalaria spectabilis (leg. papilionoidea). Revista Acadêmica: Ciência Animal 11: 263-273.; Borelli et al. 2016Borelli V, Cardoso TC, Biffi CP, Wicpolt N, Ogliari D, Savari T, Traverso SD, & Gava A (2016) Intoxicação experimental por folhas de Crotalaria pallida (mucronata) em ovinos. Pesquisa Veterinária Brasileira 36: 935-938.), pigs (Ubiali et al. 2011Ubiali DG, Boabaid FM, Borges NA, Caldeira FHB, Lodi LR, Pescadorn CA, Souza MA., & Colodel EM (2011) Intoxicação aguda com sementes de Crotalaria spectabilis (Leg. Papilionoideae) em suínos. Pesquisa Veterinária Brasileira 31: 313-318.), goats (Maia et al. 2013Maia LA, Lucena RBT, Nobre VM, Dantas AF M, Colegate SM, & Riet-Correa F (2013) Natural and experimental poisoning of goats with the pyrrolizidine alkaloid-producing plant Crotalaria retusa L. Journal of Veterinary Diagnostic Investigation 25: 592-595.), and horses (Nobre et al. 2004Nobre VMT, Riet-Correa F, Barbosa Filho JM, Dantas AFM, Tabosa IM, & Vasconcelos JS (2004) Intoxicação por Crotalaria retusa (Fabaceae) em Eqüídeos no semi-árido da Paraíba. Pesquisa Veterinária Brasileira 24: 132-143.). Poultry intoxication by seed ingestion is also common (Hatayde et al. 1997Hatayde MR, Alessi AC, Berchieri A, Cafe MB, & Curtarelli SM (1997) Estudo experimental sobre a intoxicação de Gallus gallus domesticus com semente de Crotalaria spectabilis. II efeito em aves na fase final de crescimento. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 49: 239-249.).

The genus Senecio L. is included among the eight genera belonging to the Senecioneae Cass. tribe (family Asteraceae, subfamily Asteroideae) occurring in Brazil, with 60 accepted species occurring in the country (BFG 2018BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.). Exact species number varies between 67 and 85, according to earlier authors (Matzenbacher 2009Matzenbacher NI (2009) Uma nova espécie do gênero Senecio L. (Asteraceae - Senecioneae) no Rio Grande do Sul, Brasil. Iheringia Série Botânica 64: 109-113.). Senecio species, native all over the world and widely distributed, are recognized for their high potential to invade diverse agricultural crops (Ernst 1998Ernst WHO (1998) Invasion, dispersal and ecology of the South African neophyte Senecio inaequidens in The Netherlands: from wool alien to railway and road alien. Acta botanica neerlandica 1: 131-151.; Leiss & Müller-Schärer 2001Leiss KA, & Müller-Schärer H (2001) Adaptation of Senecio vulgaris (Asteraceae) to ruderal and agricultural habitats. American Journal of Botany 88: 1593-1599.).

In recent years, scientific attention to the toxic potential of Senecio species has intensified given the growing concern of cattle ranchers due to ingestion of the plants by herds. There is now an urgency to effectively control these pasture weeds, which pose a real risk to the rural economy (Brighenti et al. 2017Brighenti AM, Lamego FP, Miranda JEC, Oliveira VM, & D’Oliveira PS (2017) Plantas tóxicas em pastagens: (Senecio brasiliensis e S. madagascariensis) - Família: Asteraceae.). Livestock deaths by Senecio species have also been described in Brazil since the mid-XX century (Vandoni 1952Vandoni R (1952) Contribuição para o conhecimento de algumas leguminosas como forrageiras - Aceitação, palatabilidade e toxides - Testes em coelhos e cobaios. Anais da Escola Superior de Agricultura Luiz de Queiroz 9: 195-214.; Nazário et al. 1988Nazário W, Portugal MASC, & Fancelli MI (1988) Considerações sobre o papel do Senecio brasiliensis, Lessing. Acompanhamento de acidente tóxico em bovinos, ocorrido em São Paulo. Pesquisa Agropecuária Brasileira 23: 537-542.). This phenomenon is particularly seen in traditional livestock areas containing beef cattle and dairy herds (Basile et al. 2004Basile JR, Diniz JMF, Okano W, Cirio SM, & Leite LC (2004) Intoxicação por Senecio spp. (Compositae) em bovinos no sul do Brasil. Acta Scientiae Veterinariae 33: 63-68.; Cruz et al. 2010Cruz CEF, Karam FC, Dalto AC, Pavarini SP, Bandarra PM, & Driemeier D (2010) Fireweed (Senecio madagascariensis) poisoning in cattle. Pesquisa Veterinária Brasileira 30: 10-12.; Lucena et al. 2010Lucena RB, Rissi DR, Maia LA, Flores MM, Dantas AFM, Nobre VMT, Riet-Correa F, & Barros CSL (2010) Intoxicação por alcaloides pirrolizidínicos em ruminantes e equinos no Brasil. Pesquisa Veterinária Brasileira 30: 447-452.), sheep (Ilha et al. 2001Ilha MRS, Loretti AP, Barros SS, & Barros CSL (2001) Spontaneous poisoning in sheep by Senecio brasiliensis (Asteraceae) in southern Brazil. Pesquisa Veterinária Brasileira 21: 123-138.; Giaretta et al. 2014Giaretta PR, Panziera W, Hammerschmitt ME, Bianchi RM, Galiza GJN, Wiethan IS, Bazzi T, & Barros CSL (2014) Clinical and pathological aspects of chronic Senecio spp. poisoning in sheep. Pesquisa Veterinária Brasileira 34: 967-973.), buffalo (Corrêa et al. 2008Corrêa AMR, Bezerra Junior PS, Pavarini SP, Santos AS, Sonne L, Zlotowski P, Gomes G, & Driemeier D (2008) Senecio brasiliensis (Asteraceae) poisoning in Murrah buffaloes in Rio Grande do Sul. Pesquisa Veterinária Brasileira 28: 187-189.) and horses (Gava & Barros 1997Gava A, & Barros CSL (1997) Senecio spp. Poisoning of horses in southern Brazil. Pesquisa Veterinária Brasileira 17: 36-40.; Panziera et al. 2017aPanziera W, Bianchi RM, Mazaro RD, Giaretta PR, Silva GB, Silva DRP, & Fighera RA (2017a) Intoxicação natural por Senecio brasiliensis em equinos. Pesquisa Veterinária Brasileira 37: 313-318.), in the latter case also reaching border countries (Micheloud et al. 2017Micheloud JF, Merep P, Tomas RH, Perotti M, & Schuff C (2017) Intoxicación de equinos por Senecio pp en el noroeste argentino. Revista Veterinaria 28: 126-131.). The deleterious effects of Senecio species ingestion have been proven via experimental intoxications conducted on calves (Panziera et al. 2017bPanziera W, Gonçalves MA, Oliveira LGS, Lorenzett MP, Reis M, Hammerschmitt ME, Pavarini SP, & riemeier D (2017b) Senecio brasiliensis poisoning in calves: pattern and evolution of hepatic lesions. Pesquisa Veterinária Brasileira 37: 8-16.), horses (Pilati & Barros 2007Pilati C, & Barros CSL (2007) Experimental poisoning by Senecio brasiliensis (Asteraceae) in horses. Pesquisa Veterinária Brasileira 27: 287-296.) and broilers (Biffi 2017Biffi CP (2017). Intoxicação por Senecio brasiliensis em bovinos no estado de Santa Catarina e intoxicação experimental por Senecio spp em frangos de corte. Tese de doutorado. Universidade do Estado de Santa Catarina (UDESC), Lages. 62p.). Senecio intoxication is estimated to account for half of all herd animal deaths that result from some type of poisoning (Damé 2009Damé MCF (2009) Considerações sobre algumas doenças infecciosas, tóxicas e congênitas de interesse à bubalinocultura do extremo Sul do país. Available at <http://www.infoteca.cnptia.embrapa.br/handle/doc/746891> Access on 21 April 2018.
http://www.infoteca.cnptia.embrapa.br/ha...
).

The genus Eupatorium L. (Asteraceae, Eupatorieae Cass.) is currently recognized as being represented in Brazil by the single species Eupatorium adamantinum, although 83 synonyms have been recognized over its main distribution in the southeastern region and part of the midwestern region (BFG 2018BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.). Most Eupatorium species are perennial and highly harmful to crops in general (Agrolink, 2018Agrolink (2018) Cambarazinho ou Mata pasto, falso cambará, eupatório (Eupatorium laevigatum). Portal Agrolink. Available at <https://www.agrolink.com.br/culturas/problema/cambarazinho_622.html> Access on 4 April 2018.
https://www.agrolink.com.br/culturas/pro...
). Being invasive, with a strong ruderal character, plants of these species spread in large urban agglomerations (Albuquerque 1980Albuquerque JM ( 1980) Identificação de plantas invasoras de cultura da região de Manaus. Acta Amazonica 10: 47-95.; de Souza & Poletto 2007Souza AA, & Poletto RS (2007) Levantamento de espécies invasores nas praças de Garça - SP - Magnoliopsida e Lilopsida. Revista Científica Eletrônica de Engenharia Florestal 9: 1-14.; Biondi & Pedrosa-Macedo 2008Biondi D, & Pedrosa-Macedo JH (2008) Plantas invasoras encontradas na área urbana de Curitiba (PR). FLORESTA [online], 38(1). Available at <http://revistas.ufpr.br/floresta/article/view/11034> Access on 21 April 2018.
http://revistas.ufpr.br/floresta/article...
).

Much of the inferences regarding Senecio species toxicity can be transposed to Eupatorium species because they belong to the same family and share similar habitats (These et al. 2013These A, Bodi D, Ronczka S, Lahrssen-Wiederholt M, & Preiss-Weigert A (2013) Structural screening by multiple reaction monitoring as a new approach for tandem mass spectrometry: presented for the determination of pyrrolizidine alkaloids in plants. Analytical and bioanalytical chemistry 405: 9375-9383.). However, a much lower number of reports regarding animal intoxication from foraging species belonging to this genus are available, even though cattle (Camarão et al. 1990Camarão AP, Simao Neto M, Serrão EAS, Rodrigues IA, & Lascano CE (1990) Identificação e composição química de espécies de invasoras consumidas por bovinos em pastagens cultivadas em Paragominas, Pará. Boletim de Pesquisa 104: 62.; Lucioli et al. 2007Lucioli J, Furlan FH, Mezaroba S, Traverso SD, & Gava A (2007) Intoxicação espontânea e experimental por Eupatorium tremulum (Asteraceae) em bovinos. Pesquisa Veterinária Brasileira 27: 442-445.) and other ruminants are known to ingest members of this genus, both in Brazil and in contiguous countries (Riet-Correa & Medeiros 2001Riet-Correa F, & Medeiros RMT (2001) Intoxicações por plantas em ruminantes no Brasil e no Uruguai: importância econômica, controle e riscos para a saúde pública. Pesquisa Veterinária Brasileira 21: 38-42.; Rymer 2008Rymer C (2008) The effect of wilting and soaking Eupatorium adenophorum on its digestibility in vitro and voluntary intake by goats. Animal Feed Science and Technology 141: 49-60.).

Ipomoea L. is the largest genus in the Convolvulaceae family (Simão-Bianchini & Pirani 2005Simão-Bianchini R, & Pirani JR (2005) Duas novas espécies de Convolvulaceae de Minas Gerais, Brasil. Hoehnea 32: 295-300.), comprising between 600 and 700 species, with a distribution concentrated in tropical and subtropical regions (Meira et al. 2012Meira M, Silva EP, David JM, & David JP (2012) Review of the genus Ipomoea: traditional uses, chemistry and biological activities. Revista Brasileira de Farmacognosia 22: 682-713.). In Brazil, 149 species of this genus occur, according to the Flora do Brasil database. It is an important genus for humans due to its tuberous feeding roots (‘potatoes’) and the aesthetic value of its flowers, in addition to containing many species used in popular medicine (Ruchi et al. 2009Ruchi J, Nilesh J, & Surendra J (2009) Evaluation of anti-inflammatory activity of Ipomoea fistulosa Linn. Asian Journal of Pharmaceutical and Clinical Research 2: 64-67.; Sharma & Bachheti 2013Sharma A, & Bachheti RK (2013) A review on Ipomoea carnea. International Journal of Pharma and Bio Sciences 4: 363-377.). Comprising a wide morphological variety (Ferreira & Miotto 2011Ferreira PPA, & Miotto STS (2011) Three new species of Ipomoea L. (Convolvulaceae) from Southern Brazil. Kew Bulletin 66: 289-294.), many species belonging to this genus also have high invasive potential (Machado & Sazima 1987Machado ICS, & Sazima M (1987) Estudo comparativo da biologia floral em duas espécies invasoras: Ipomoea hederifolia e I. qualmoclit (Convolvulaceae). Revista Brasileira de Biologia 47: 425-436.) and are considered weeds in various crops (Chame 2009Chame M (2009) Espécies exóticas invasoras que afetam a saúde humana. Ciência e Cultura 61: 30-34.; Garcia et al. 2011Garcia LM, Feitosa N, D’Oliveira PS, & Zonetti PDC (2011) Levantamento de espécies de plantas daninhas na cultura do pinhão manso em Maringá, PR. Scientia Agraria Paranaensis 10: 75.). The usefulness of some Ipomoea species in the recovery of degraded soils in the Caatinga Brazilian biome has been tested (Montefusco et al. 2011Montefusco NEG, Fabricante JR, & Siqueira-Filho JA (2011) Uso de Ipomoea asarifolia (Desr.) Roem., & Schult. (Convolvulaceae) na recuperação de solos degradados na Caatinga. Proceedings of X Congresso de Ecologia do Brasil, São Lourenço - MG. Sociedade de Ecologia do Brasil, São Lourenço. Pp. 1-3. ).

Ipomoea species produce several other types of biologically active alkaloids besides PAs. Therefore, intoxications reported by species belonging to this genus describe a mixture of symptoms, such as visible signs of neurotoxicity (Haraguchi et al. 2003Haraguchi M, Gorniak SL, Ikeda K, Minami Y, Kato A, Watson AA, Nash RJ, Molyneux RJ, & Asano N (2003) Alkaloidal Components in the Poisonous Plant, Ipomoea carnea (Convolvulaceae). Journal of Agricultural and Food Chemistry 51: 4995-5000.; Ríos et al. 2012Ríos EE, Cholich LA, Gimeno EJ, Guidi MG, Pérez OCA (2012) Experimental poisoning of goats by Ipomoea carnea subsp. fistulosa in Argentina: a clinic and pathological correlation with special consideration on the central nervous system. Pesquisa Veterinária Brasileira 32: 37-42.). Reports on sheep intoxication (Gardiner et al. 1965Gardiner MR, Royce R, & Oldroyd B (1965) Ipomoea Muelleri intoxication of sheep in Western Australia. British Veterinary Journal 121: 272-277.) reaching the fetus in the case of pregnant ewes (Armién et al. 2011Armién AG, Tokarnia CH, Peixoto PV, Barbosa JD, & Frese K (2011) Clinical and morphologic changes in ewes and fetuses poisoned by Ipomoea Carnea subspecies Fistulosa. Journal of Veterinary Diagnostic Investigation 23: 221-232.) and suckling lambs and calves have been found (Neto et al. 2017Neto SAG, Melo MM, & Soto-Blanco B (2017) Avaliação da toxicidade do leite de fêmeas ruminantes que ingeriram Marsdenia megalantha Goyder, & Morillo. Revista Brasileira de Higiene e Sanidade Animal 11: 322-330.). In Brazil, most of the reported intoxication cases refer to goats in the Northeast (Medeiros et al. 2003Medeiros RMT, Barbosa RC, Riet-Correa F, Lima EF, Tabosa IM, Barros SS, Gardner DR, & Molyneux RJ (2003) Tremorgenic syndrome in goats caused by Ipomoea asarifolia in Northeastern Brazil. Toxicon 41: 933-935.; Barbosa et al. 2006Barbosa RC, Riet-Correa F, Medeiros RMT, Lima EF, Barros SS, Gimeno EJ, Molyneux RJ, & Gardner DR (2006) Intoxication by Ipomoea sericophylla and Ipomoea riedelii in goats in the state of Paraíba, Northeastern Brazil. Toxicon 47: 371-379.; Mendonça et al. 2011Mendonça FS, Evêncio-Neto J, Albuquerque RF, Driemeir D, Camargo LM, Dória RGS, Boabaid FM, Caldeira FHB, & Colodel EM (2011) Spontaneous poisoning of goats by the plant Ipomoea sericophylla (Convolvulaceae) in Brazil - a case report. Acta Veterinaria Brno 80: 235-239.), with some experimental intoxication also tested in goats (Barbosa et al. 2007Barbosa RC, Riet-Correa F, Lima EF, Medeiros RMT, Guedes KMR, Gardner DR, Molyneux RJ, & Melo LEH (2007) Experimental swainsonine poisoning in goats ingesting Ipomoea sericophylla and Ipomoea riedelii (Convolvulaceae). Pesquisa Veterinária Brasileira 27: 409-414.; Araújo et al. 2008Araújo JAS, Riet-Correa F, Medeiros RMT, Soares MP, Oliveira DM, & Carvalho FKL (2008) Intoxicação experimental por Ipomoea asarifolia (Convolvulaceae) em caprinos e ovinos. Veterinária Brasileira 28: 488-494.; Chaves 2009Chaves DP (2009) Intoxicação experimental por Ipomoea asarifolia em ovinos: achados clínicos, laboratoriais e anatomopatológicos. Tese de doutorado. Universidade Estadual Paulista (UNESP), Jaboticabal. 70p.). To a lesser extent, spontaneous and experimental intoxications have been described in cattle in the Mato Grosso Pantanal (Antoniassi et al. 2007Antoniassi NAB, Ferreira EV, Santos CEP, Arruda LP, Campos JLE, Nakazato L, & Colodel EM (2007) Intoxicação espontânea por Ipomoea carnea subsp. fistulosa (Convolvulaceae) em bovinos no Pantanal Matogrossense. Pesquisa Veterinária Brasileira 27: 415-418.) and buffaloes (Barbosa et al. 2005Barbosa JD, Oliveira CMC, Duarte MD, Peixoto PV, & Tokarnia CH (2005) Intoxicações experimental e natural por Ipomoea asarifolia (Convolvulaceae) em búfalos e outros ruminantes. Pesquisa Veterinária Brasileira 25: 231-234.). In addition, many Ipomoea species are visited by bees in the Caatinga (Maia-Silva et al. 2012Maia-Silva C, Silva CI, Hrncir M, Queiroz RT, & Imperatriz-Fonseca VL (2012) Guia de plantas visitadas por abelhas na Caatinga. Fundação Brasil Cidadão, Fortaleza. 191p.).

The genus Erechtites Raf. (Asteraceae) contains 5 accepted species (BFG 2018) occurring in almost all Brazilian states. Intoxications resulting from consumption of species belonging to this genus are summarized as a single case described for E. hieracifolia (containing 0.2% PAs), affecting a herd of 1-year-old cattle (Rivero et al. 2011Rivero R, Riet-Correa F, Dutra F, & Matto C (2011) Toxic plants and mycotoxins affecting cattle and sheep in Uruguay. In: Riet-Correa F, Pfister J, Schild AL, & Wierenga T (eds.) Poisoning by plants, mycotoxins and related toxins. CABI, Wallingford. Pp. 25-34. ISBN 978-1-84593-833-8.).

Several Pleurothallis R.Br. (Orchidaceae) species are described as containing PAs (Borba et al. 2001Borba EL, Trigo JR, & Semir J (2001) Variation of diastereoisomeric pyrrolizidine alkaloids in Pleurothallis (Orchidaceae). Biochemical Systematics and Ecology 29: 45-52.), but no reported cases of mammal or bird intoxication are available. However, this genus comprises species visited by Hymenoptera pollinators, especially Euglossini bees (Borba et al. 2001Borba EL, Trigo JR, & Semir J (2001) Variation of diastereoisomeric pyrrolizidine alkaloids in Pleurothallis (Orchidaceae). Biochemical Systematics and Ecology 29: 45-52.; Czervinsk et al. 2007Czervinsk T, Pittner E, & Buschini MLT (2007) Levantamento de espécies da família Orchidaceae no Parque Municipal, Guarapuava (PR). Available at <https://www.unicentro.br/pesquisa/anais/proic/2007/pdf/artigo_207.pdf> Access on 19 April 2018.
https://www.unicentro.br/pesquisa/anais/...
; Ospina-Torres et al. 2015Ospina-Torres R, Montoya-Pfeiffer PM, Parra-H A, Solarte V, & Otero JT (2015) Interaction networks and the use of floral resources by male orchid bees (Hymenoptera: Apidae: Euglossini) in a primary rain forests of the Chocó Region (Colombia). Revista de Biología Tropical 63: 647-658.). Twelve species in Brazil are encompassed by this genus (BFG 2018BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.).

The panorama outlined by the distribution of PA-producing species in Brazil and cases reported in the literature concerning the intoxication of farm animals show the potential risk of contamination of several foodstuffs by these natural toxins. Although this issue is of increasing concern to health authorities in many parts of the world, there are still no fully established protocols to support the control of PAs as contaminants in food matrices. Depending on the country or region, this concern has a distinct relevance, ranging from direct consumption of in natura plants, such as teas and medicinal infusions (Andrade et al. 2002Andrade RJ, Lucena MI, & García-Cortés M (2002) Hepatotoxicidad por infusión de hierbas. Gastroenterología y Hepatología 25: 327-332.), common in many places worldwide (Bosi et al. 2013Bosi CF, Rosa DW, Grougnet R, Lemonakis N, Halabalaki M, Skaltsounis AL, & Biavatti MW (2013) Pyrrolizidine alkaloids in medicinal tea of Ageratum conyzoides. Revista Brasileira de Farmacognosia 23: 425-432.), to contamination of basic foods (Prakash et al. 1999Prakash AS, Pereira TN, Reilly PE, & Seawright AA (1999) Pyrrolizidine alkaloids in human diet. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 443: 53-67.), such as cereals, meat, milk, eggs (Boppre 2011Boppre M (2011) The ecological context of pyrrolizidine alkaloids in food, feed and forage: an overview. Food additives, & contaminants. Food Additives and Contaminants 28: 260-81.; Sandini et al. 2013Sandini TM, Udo MSB, & Spinosa HS (2013) Senecio brasiliensis e alcaloides pirrolizidínicos: toxicidade em animais e na saúde humana. Biotemas 26: 83-92.) and, mainly, honey (Prakash et al. 1999Prakash AS, Pereira TN, Reilly PE, & Seawright AA (1999) Pyrrolizidine alkaloids in human diet. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 443: 53-67.). The latter is considered to be the most susceptible food substrate to PA contamination, with apicultural products being the most likely source for exposure to PA contamination (Bandini & Spisso 2017Bandini TB, & Spisso BF (2017) Risco sanitário do mel no Brasil em relação a novas ameaças: resíduos e contaminantes químicos emergentes. Vigilância Sanitária em Debate: Sociedade, Ciência e Tecnologia 5: 116-126.). Accurate analyses of honey produced by bees that fed on Echium, Eupatorium and Senecio species (Crews et al. 1997Crews C, Startin JR, & Clarke PA (1997) Determination of pyrrolizidine alkaloids in honey from selected sites by solid phase extraction and HPLC-MS. Food Additives, & Contaminants 14: 419-28.; Kast et al. 2018Kast C, Kilchenmann V, Reinhard H, Droz B, Lucchetti MA, Dübecke A, Beckh G, & Zoller O (2018) Chemical fingerprinting identifies Echium vulgare, Eupatorium cannabinum and Senecio spp. as plant species mainly responsible for pyrrolizidine alkaloids in bee-collected pollen. Food Additives, & Contaminants: Part A 35: 316-327.) or more diversified sources - including pollens - have indicated the presence of PAs in most of the investigated samples (Dubecke et al. 2011Dubecke A, Beckh G, & Lullmann C (2011) Pyrrolizidine alkaloids in honey and bee pollen. Food additives, & contaminants Part A, 28: pp 348-58.; Valese et al. 2016Valese AC, Molognoni L, de Sá Ploêncio LA, Lima FG, Gonzaga LV, Górniak SL, Daguer H, Barreto F, & Costa ACO (2016) A fast and simple LC-ESI-MS/MS method for detecting pyrrolizidine alkaloids in honey with full validation and measurement uncertainty. Food Control 67: 183-191.; Letsyo et al. 2017Letsyo E, Jerz G, Winterhalter P, Dubecke A, von der Ohe W, von der Ohe K, & Beuerle T (2017) Pyrrolizidine alkaloids in floral honeys of tropical Ghana and health risk assessment. Food Additives, & Contaminants Part B, 10: 300-310.).

In Brazil, the three largest honey-producing states in 2015 were Paraná, Rio Grande do Sul and Bahia (Bandini & Spisso 2017Bandini TB, & Spisso BF (2017) Risco sanitário do mel no Brasil em relação a novas ameaças: resíduos e contaminantes químicos emergentes. Vigilância Sanitária em Debate: Sociedade, Ciência e Tecnologia 5: 116-126.). The distribution of deposited exsiccates for the PA-producing genera in these Brazilian states is displayed in Figure 3.

Figure 3
a. Distribution of records of genera producing pyrrolizidine alkaloids in Paraná; b. Rio Grande do Sul; c. Bahia: red color indicates the precise coordinates of the plant collection, and blue color indicates the coordinates of the municipality where the species was collected. Source: INCT (2017)INCT (2017) Herbário Virtual da Flora e dos Fungos. Available at <http://inct.splink.org.br/>.
http://inct.splink.org.br/...

In these three states, locations associated with plant collection are dispersed evenly throughout. A strong hypothesis is that it is unlikely for any apicultural region to be located away from vegetation containing PA-producing genera. This situation is similar for virtually the entire country, implying a high probability of alkaloid presence not only in honey but also in many other food matrices.

In general, the data presented herein suggest that the entire food production chain in the country is potentially exposed to PA contamination. Considering the toxic properties of these substances and the widespread occurrence of PA-producing genera potentially throughout Brazil, it is not difficult to infer how critical this situation may be. It is reasonable to assume that there is a potential risk of PA contamination in the food production chain that could lead to intoxications from cumulative underdoses or even severe acute cases. However, the direct ingestion of pyrrolizidine alkaloids could occur through the sporadic consumption of either crude plants or teas containing them (Bosiet al. 2013Bosi CF, Rosa DW, Grougnet R, Lemonakis N, Halabalaki M, Skaltsounis AL, & Biavatti MW (2013) Pyrrolizidine alkaloids in medicinal tea of Ageratum conyzoides. Revista Brasileira de Farmacognosia 23: 425-432.; Edgar et al. 2011).

At present, there is little information in Brazil about human and animal intoxications proven to be caused by the ingestion of plants containing pyrrolizidine alkaloids and contamination of food by the same substances. The absence of monitoring activities aggravates this situation because there is no historically accumulated data on the presence of these alkaloids in Brazilian foods.

Additionally, in a toxicological context, the data set compiled on the records of species that produce PAs in Brazil allows for the planning of subsequent research on the deleterious effects of PAs from Brazilian plant diversity as well as proposals regarding more incisive regulatory actions. This study demonstrates the usefulness of Brazilian herbaria for yet unexplored purposes, such as contributing to the construction of health surveillance parameters in a specific niche of basic products consumed by the population, thus seeking to solve a latent health problem not yet duly considered by authorities.

Acknowledgements

We are thankful to the botanist Dr. Marcelo Trovó L. de Oliveira for helping with the manuscript’s final revision.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

References

  • Agbogidi OM, & Aghojare O (2014) Herbarium in the maintenance of biodiversity. Journal of Biological and Chemical Research 31: 275-285.
  • Agrolink (2018) Cambarazinho ou Mata pasto, falso cambará, eupatório (Eupatorium laevigatum). Portal Agrolink. Available at <https://www.agrolink.com.br/culturas/problema/cambarazinho_622.html> Access on 4 April 2018.
    » https://www.agrolink.com.br/culturas/problema/cambarazinho_622.html
  • Ahmed S, & Hasan MM (2016) Importance of herbaria in herbal drug discovery. World Journal of Pharmaceutical Sciences 4: 127-129.
  • Albuquerque JM ( 1980) Identificação de plantas invasoras de cultura da região de Manaus. Acta Amazonica 10: 47-95.
  • Andrade RJ, Lucena MI, & García-Cortés M (2002) Hepatotoxicidad por infusión de hierbas. Gastroenterología y Hepatología 25: 327-332.
  • Antoniassi NAB, Ferreira EV, Santos CEP, Arruda LP, Campos JLE, Nakazato L, & Colodel EM (2007) Intoxicação espontânea por Ipomoea carnea subsp. fistulosa (Convolvulaceae) em bovinos no Pantanal Matogrossense. Pesquisa Veterinária Brasileira 27: 415-418.
  • ANVISA - Agência Nacional de Vigilância Sanitária. (2014) Resolução-RDC no 26, de 14 de maio de 2014 - Dispõe sobre o registro de medicamentos fitoterápicos e o registro e a notificação de produtos tradicionais fitoterápicos. Diário Oficial da União, pág. 52, seção 01 de 2014.
  • Araújo JAS, Riet-Correa F, Medeiros RMT, Soares MP, Oliveira DM, & Carvalho FKL (2008) Intoxicação experimental por Ipomoea asarifolia (Convolvulaceae) em caprinos e ovinos. Veterinária Brasileira 28: 488-494.
  • Arias L, Losada H, Rendón A, Grande D, Vieyra J, Soriano R, Rivera J, & Cortés J (2003) Evaluation of Chipilín (Crotalaria longirostrata) as a forage resource for ruminant feeding in the tropical areas of Mexico. Livestock Research for Rural Development 15: 1-4.
  • Armién AG, Tokarnia CH, Peixoto PV, Barbosa JD, & Frese K (2011) Clinical and morphologic changes in ewes and fetuses poisoned by Ipomoea Carnea subspecies Fistulosa Journal of Veterinary Diagnostic Investigation 23: 221-232.
  • Bandini TB, & Spisso BF (2017) Risco sanitário do mel no Brasil em relação a novas ameaças: resíduos e contaminantes químicos emergentes. Vigilância Sanitária em Debate: Sociedade, Ciência e Tecnologia 5: 116-126.
  • Barbosa JD, Oliveira CMC, Duarte MD, Peixoto PV, & Tokarnia CH (2005) Intoxicações experimental e natural por Ipomoea asarifolia (Convolvulaceae) em búfalos e outros ruminantes. Pesquisa Veterinária Brasileira 25: 231-234.
  • Barbosa RC, Riet-Correa F, Lima EF, Medeiros RMT, Guedes KMR, Gardner DR, Molyneux RJ, & Melo LEH (2007) Experimental swainsonine poisoning in goats ingesting Ipomoea sericophylla and Ipomoea riedelii (Convolvulaceae). Pesquisa Veterinária Brasileira 27: 409-414.
  • Barbosa RC, Riet-Correa F, Medeiros RMT, Lima EF, Barros SS, Gimeno EJ, Molyneux RJ, & Gardner DR (2006) Intoxication by Ipomoea sericophylla and Ipomoea riedelii in goats in the state of Paraíba, Northeastern Brazil. Toxicon 47: 371-379.
  • Basile JR, Diniz JMF, Okano W, Cirio SM, & Leite LC (2004) Intoxicação por Senecio spp. (Compositae) em bovinos no sul do Brasil. Acta Scientiae Veterinariae 33: 63-68.
  • BFG - The Brazil Flora Group (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69: 1513-1527.
  • Biffi CP (2017). Intoxicação por Senecio brasiliensis em bovinos no estado de Santa Catarina e intoxicação experimental por Senecio spp em frangos de corte. Tese de doutorado. Universidade do Estado de Santa Catarina (UDESC), Lages. 62p.
  • Biondi D, & Pedrosa-Macedo JH (2008) Plantas invasoras encontradas na área urbana de Curitiba (PR). FLORESTA [online], 38(1). Available at <http://revistas.ufpr.br/floresta/article/view/11034> Access on 21 April 2018.
    » http://revistas.ufpr.br/floresta/article/view/11034
  • Boghossian MR, Peixoto PV, Brito MF, & Tokarnia CH (2007) Aspectos clínico-patológicos da intoxicação experimental pelas sementes de Crotalaria mucronata (Fabaceae) em bovinos. Pesquisa Veterinária Brasileira 27: 149-156.
  • Boppre M (2011) The ecological context of pyrrolizidine alkaloids in food, feed and forage: an overview. Food additives, & contaminants. Food Additives and Contaminants 28: 260-81.
  • Borba EL, Trigo JR, & Semir J (2001) Variation of diastereoisomeric pyrrolizidine alkaloids in Pleurothallis (Orchidaceae). Biochemical Systematics and Ecology 29: 45-52.
  • Borelli V, Cardoso TC, Biffi CP, Wicpolt N, Ogliari D, Savari T, Traverso SD, & Gava A (2016) Intoxicação experimental por folhas de Crotalaria pallida (mucronata) em ovinos. Pesquisa Veterinária Brasileira 36: 935-938.
  • Bosi CF, Rosa DW, Grougnet R, Lemonakis N, Halabalaki M, Skaltsounis AL, & Biavatti MW (2013) Pyrrolizidine alkaloids in medicinal tea of Ageratum conyzoides. Revista Brasileira de Farmacognosia 23: 425-432.
  • Brighenti AM (2010) Manual de identificação e manejo de plantas daninhas em cultivos de cana-de-açúcar. Embrapa Gado de Leite, Juiz de Fora. 112p.
  • Brighenti AM, Lamego FP, Miranda JEC, Oliveira VM, & D’Oliveira PS (2017) Plantas tóxicas em pastagens: (Senecio brasiliensis e S. madagascariensis) - Família: Asteraceae.
  • Embrapa gado de leite - comunicado técnico (Infoteca-E). Available at <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/169780/1/COT-83-Plantas-Toxicas-Senecio.pdf> Access on 19 March 2018.
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/169780/1/COT-83-Plantas-Toxicas-Senecio.pdf
  • Brooks R, Lee J, Reeves R, & Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7: 49-57.
  • Camarão AP, Simao Neto M, Serrão EAS, Rodrigues IA, & Lascano CE (1990) Identificação e composição química de espécies de invasoras consumidas por bovinos em pastagens cultivadas em Paragominas, Pará. Boletim de Pesquisa 104: 62.
  • Chame M (2009) Espécies exóticas invasoras que afetam a saúde humana. Ciência e Cultura 61: 30-34.
  • Chaves DP (2009) Intoxicação experimental por Ipomoea asarifolia em ovinos: achados clínicos, laboratoriais e anatomopatológicos. Tese de doutorado. Universidade Estadual Paulista (UNESP), Jaboticabal. 70p.
  • Chen Y, Jabbour F, Novikov A, Wang W, & Gerber S (2018) A study of floral shape variation in Delphinieae (Ranunculaceae) using geometric morphometrics on herbarium specimens. Botany Letters 165: 368-376.
  • Codex Alimentarius (2001) Standard for honey CXS 12-1981. Adopted in 1981. Revised in 1987, 2001. Amended in 2019. Available at <http://www.fao.org/fao-who-codexalimentarius/en/>. Access on 17 November 2017.
    » http://www.fao.org/fao-who-codexalimentarius/en/
  • Codex Alimentarius (2012) Maximum Residue Limit or Risk Management Recommendation established by Codex for veterinary drugs in food. Available at <http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/vetdrugs/veterinary-drugs/en/>. Access 17 November 2017.
    » http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/vetdrugs/veterinary-drugs/en/
  • Codex Alimentarius (2014) CODEX online commodity categories - pesticide residues in food and feed. Available at <http://www.codexalimentarius.net/pestres/data/commodities/index.html?expand=all> Access on 17 November 2017.
    » http://www.codexalimentarius.net/pestres/data/commodities/index.html?expand=all
  • Corrêa AMR, Bezerra Junior PS, Pavarini SP, Santos AS, Sonne L, Zlotowski P, Gomes G, & Driemeier D (2008) Senecio brasiliensis (Asteraceae) poisoning in Murrah buffaloes in Rio Grande do Sul. Pesquisa Veterinária Brasileira 28: 187-189.
  • Costa JCM, Lucas FCA, Gois MAF, Leão VM, & Lobato GDJM (2016) Herbário virtual e universidade: biodiversidade vegetal para ensino, pesquisa e extensão. Scientia Plena 12: 1-11. Available at <https://www.scientiaplena.org.br/sp/article/view/3033> Access on 21 April 2018.
    » https://www.scientiaplena.org.br/sp/article/view/3033
  • Crews C, Startin JR, & Clarke PA (1997) Determination of pyrrolizidine alkaloids in honey from selected sites by solid phase extraction and HPLC-MS. Food Additives, & Contaminants 14: 419-28.
  • Cruz CEF, Karam FC, Dalto AC, Pavarini SP, Bandarra PM, & Driemeier D (2010) Fireweed (Senecio madagascariensis) poisoning in cattle. Pesquisa Veterinária Brasileira 30: 10-12.
  • Czervinsk T, Pittner E, & Buschini MLT (2007) Levantamento de espécies da família Orchidaceae no Parque Municipal, Guarapuava (PR). Available at <https://www.unicentro.br/pesquisa/anais/proic/2007/pdf/artigo_207.pdf> Access on 19 April 2018.
    » https://www.unicentro.br/pesquisa/anais/proic/2007/pdf/artigo_207.pdf
  • Damé MCF (2009) Considerações sobre algumas doenças infecciosas, tóxicas e congênitas de interesse à bubalinocultura do extremo Sul do país. Available at <http://www.infoteca.cnptia.embrapa.br/handle/doc/746891> Access on 21 April 2018.
    » http://www.infoteca.cnptia.embrapa.br/handle/doc/746891
  • Dubecke A, Beckh G, & Lullmann C (2011) Pyrrolizidine alkaloids in honey and bee pollen. Food additives, & contaminants Part A, 28: pp 348-58.
  • EFSA - European Food Safety Authority (2009) Compendium of botanicals that have been reported to contain toxic, addictive, psychotropic or other substances of concern on request of EFSA. EFSA Journal 2009; 7(9):281. Available at < https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2009.281>. Access 17 November 2017.
    » https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2009.281
  • EMA - European Medicines Agency (2016) Public statement on contamination of herbal medicinal products/traditional herbal medicinal products with pyrrolizidine alkaloids: transitional recommendations for risk management and quality control. EMA/HMPC/328782/2016. Available at <https://www.ema.europa.eu/en/documents/public-statement/public-statement-contamination-herbal-medicinal-products/traditional-herbal-medicinal-products-pyrrolizidine-alkaloids_en.pdf> 17 November 2017.
    » https://www.ema.europa.eu/en/documents/public-statement/public-statement-contamination-herbal-medicinal-products/traditional-herbal-medicinal-products-pyrrolizidine-alkaloids_en.pdf
  • Ernst WHO (1998) Invasion, dispersal and ecology of the South African neophyte Senecio inaequidens in The Netherlands: from wool alien to railway and road alien. Acta botanica neerlandica 1: 131-151.
  • Fabricant DS, & Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives 109: 69-75.
  • Fernando DR, Guymer G, Reeves RD, Woodrow IE, Baker AJ, & Batianoff GN (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Annals of Botany 103: 931-939.
  • Ferreira PPA, & Miotto STS (2011) Three new species of Ipomoea L. (Convolvulaceae) from Southern Brazil. Kew Bulletin 66: 289-294.
  • Flores AS, & Miotto STS (2005) Aspectos fitogeográficos das espécies de Crotalaria L. (Leguminosae, Faboideae) na Região Sul do Brasil. Acta Botanica Brasilica 19: 245-249.
  • Forzza RC, Carvalho Jr A, Andrade ACS, Franco L, Estevão LA, Fonseca-Kruel VS, Coelho MAN, Tamaio N, & Zappi D (2016) Coleções biológicas do Jardim Botânico do Rio de Janeiro à luz das metas da GSPC/CDB: onde estaremos em 2020? Revista Museologia, & Interdisciplinaridade 5: 125-141.
  • Fraga CN, & Peixoto AL (2004) Florística e ecologia das Orchidaceae das restingas do estado do Espírito Santo. Rodriguésia 55: 5-20.
  • Franz N, Gilbert E, Ludäscher B, & Weakley A (2016) Controlling the taxonomic variable: taxonomic concept resolution for a southeastern United States herbarium portal. Research Ideas and Outcomes 2, p e10610.
  • Funk V (2003) The importance of herbaria. Plant Science Bulletin 49: 94-95.
  • Garcia LM, Feitosa N, D’Oliveira PS, & Zonetti PDC (2011) Levantamento de espécies de plantas daninhas na cultura do pinhão manso em Maringá, PR. Scientia Agraria Paranaensis 10: 75.
  • Gardiner MR, Royce R, & Oldroyd B (1965) Ipomoea Muelleri intoxication of sheep in Western Australia. British Veterinary Journal 121: 272-277.
  • Gava A, & Barros CSL (1997) Senecio spp. Poisoning of horses in southern Brazil. Pesquisa Veterinária Brasileira 17: 36-40.
  • Gazziero DLP, Brighenti AM, Lollato RP, Pitelli RA, Voll E, Oliveira E, & Moriyama RT (2006) Manual de identificação de plantas daninhas da cultura da soja. Embrapa Soja, Londrina. 126p. Available at <http://www.infoteca.cnptia.embrapa.br/handle/doc/469956> Access on 22 April 2018.
    » http://www.infoteca.cnptia.embrapa.br/handle/doc/469956
  • Giaretta PR, Panziera W, Hammerschmitt ME, Bianchi RM, Galiza GJN, Wiethan IS, Bazzi T, & Barros CSL (2014) Clinical and pathological aspects of chronic Senecio spp. poisoning in sheep. Pesquisa Veterinária Brasileira 34: 967-973.
  • González-Coloma A, Reina M, Gutiérrez C, & Fraga BM (2002) Natural insecticides: structure diversity, effects and structure-activity relationships. A case study. In: Atta-ur-Rahman (ed.) Studies in Natural Products Chemistry. Vol. 26. Elsevier, Amsterdam. Pp. 849-879.
  • Haraguchi M, Gorniak SL, Ikeda K, Minami Y, Kato A, Watson AA, Nash RJ, Molyneux RJ, & Asano N (2003) Alkaloidal Components in the Poisonous Plant, Ipomoea carnea (Convolvulaceae). Journal of Agricultural and Food Chemistry 51: 4995-5000.
  • Hartmann T, Theuring C, Schmidt J, Rahier M, & Pasteels JM (1999) Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. Journal of Insect Physiology 45: 1085-1095.
  • Hatayde MR, Alessi AC, Berchieri A, Cafe MB, & Curtarelli SM (1997) Estudo experimental sobre a intoxicação de Gallus gallus domesticus com semente de Crotalaria spectabilis II efeito em aves na fase final de crescimento. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 49: 239-249.
  • Hicks AJ, & Hicks PM (1978) A selected bibliography of plant collection and herbarium curation. Taxon 27: 63-99.
  • Hung CP (2014) Elaboração de um banco de dados georreferenciados do acervo do Herbário DDMS para a gestão da biodiversidade. Universidade Federal daGrande Dourados (UFGD), Dourados. 36p.
  • IARC-WHO (1976) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 10: Some Naturally Occurring Substances. Available at < https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Naturally-Occurring-Substances-1976>. Access on 17 November 2017.
    » https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Naturally-Occurring-Substances-1976
  • IARC-WHO (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Available at <http://site.ebrary.com/id/10252491> Access on 17 November 2017.
    » http://site.ebrary.com/id/10252491
  • Ilha MRS, Loretti AP, Barros SS, & Barros CSL (2001) Spontaneous poisoning in sheep by Senecio brasiliensis (Asteraceae) in southern Brazil. Pesquisa Veterinária Brasileira 21: 123-138.
  • INCT (2017) Herbário Virtual da Flora e dos Fungos. Available at <http://inct.splink.org.br/>.
    » http://inct.splink.org.br/
  • JECFA (2017) Technical Report Series (995): evaluation of certain contaminants in food: eighty-third report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization.
  • JECFA (2009) Technical report series (954): evaluation of certain veterinary drug residues in food : seventieth report of the Joint FAO/WHO Expert Committee on Food Additives. Proceedings of Meeting World Health Organization Food Agriculture Organization of the United Nations, World Health Organization.
  • JECFA (2015) Eightieth meeting report of the Joint FAO/WHO Expert Committee on Food Additives. Proceedings of Meeting World Health Organization Food Agriculture Organization of the United Nations, World Health Organization.
  • Kast C, Kilchenmann V, Reinhard H, Droz B, Lucchetti MA, Dübecke A, Beckh G, & Zoller O (2018) Chemical fingerprinting identifies Echium vulgare, Eupatorium cannabinum and Senecio spp. as plant species mainly responsible for pyrrolizidine alkaloids in bee-collected pollen. Food Additives, & Contaminants: Part A 35: 316-327.
  • Leiss KA, & Müller-Schärer H (2001) Adaptation of Senecio vulgaris (Asteraceae) to ruderal and agricultural habitats. American Journal of Botany 88: 1593-1599.
  • Letsyo E, Jerz G, Winterhalter P, Dubecke A, von der Ohe W, von der Ohe K, & Beuerle T (2017) Pyrrolizidine alkaloids in floral honeys of tropical Ghana and health risk assessment. Food Additives, & Contaminants Part B, 10: 300-310.
  • Lucena RB, Rissi DR, Maia LA, Flores MM, Dantas AFM, Nobre VMT, Riet-Correa F, & Barros CSL (2010) Intoxicação por alcaloides pirrolizidínicos em ruminantes e equinos no Brasil. Pesquisa Veterinária Brasileira 30: 447-452.
  • Lucioli J, Furlan FH, Mezaroba S, Traverso SD, & Gava A (2007) Intoxicação espontânea e experimental por Eupatorium tremulum (Asteraceae) em bovinos. Pesquisa Veterinária Brasileira 27: 442-445.
  • Machado AO, & Oliveira PE (2015) Diversidade beta de plantas que oferecem néctar como recurso floral aos beija-flores em cerrados do Brasil Central. Rodriguésia 66: 1-19.
  • Machado ICS, & Sazima M (1987) Estudo comparativo da biologia floral em duas espécies invasoras: Ipomoea hederifolia e I. qualmoclit (Convolvulaceae). Revista Brasileira de Biologia 47: 425-436.
  • Maia LA, Lucena RBT, Nobre VM, Dantas AF M, Colegate SM, & Riet-Correa F (2013) Natural and experimental poisoning of goats with the pyrrolizidine alkaloid-producing plant Crotalaria retusa L. Journal of Veterinary Diagnostic Investigation 25: 592-595.
  • Maia-Silva C, Silva CI, Hrncir M, Queiroz RT, & Imperatriz-Fonseca VL (2012) Guia de plantas visitadas por abelhas na Caatinga. Fundação Brasil Cidadão, Fortaleza. 191p.
  • Matzenbacher NI (2009) Uma nova espécie do gênero Senecio L. (Asteraceae - Senecioneae) no Rio Grande do Sul, Brasil. Iheringia Série Botânica 64: 109-113.
  • Medeiros RMT, Barbosa RC, Riet-Correa F, Lima EF, Tabosa IM, Barros SS, Gardner DR, & Molyneux RJ (2003) Tremorgenic syndrome in goats caused by Ipomoea asarifolia in Northeastern Brazil. Toxicon 41: 933-935.
  • Meira M, Silva EP, David JM, & David JP (2012) Review of the genus Ipomoea: traditional uses, chemistry and biological activities. Revista Brasileira de Farmacognosia 22: 682-713.
  • Mendonça FS, Evêncio-Neto J, Albuquerque RF, Driemeir D, Camargo LM, Dória RGS, Boabaid FM, Caldeira FHB, & Colodel EM (2011) Spontaneous poisoning of goats by the plant Ipomoea sericophylla (Convolvulaceae) in Brazil - a case report. Acta Veterinaria Brno 80: 235-239.
  • Micheloud JF, Merep P, Tomas RH, Perotti M, & Schuff C (2017) Intoxicación de equinos por Senecio pp en el noroeste argentino. Revista Veterinaria 28: 126-131.
  • Mkiwa FEJ, Sarwatt SV, Lwoga AB, & Dzowela BH (1990) Nutritive value of Crotalaria ochroleuca:I Chemical composition and in vitro dry matter digestibility at different stages of growth. Available at <https://cgspace.cgiar.org/bitstream/handle/10568/49746/Nutritive_value.pdf?sequence=1&isAllowed=y>. Access on 15 September 2018..
    » https://cgspace.cgiar.org/bitstream/handle/10568/49746/Nutritive_value.pdf?sequence=1&isAllowed=y
  • Montefusco NEG, Fabricante JR, & Siqueira-Filho JA (2011) Uso de Ipomoea asarifolia (Desr.) Roem., & Schult. (Convolvulaceae) na recuperação de solos degradados na Caatinga. Proceedings of X Congresso de Ecologia do Brasil, São Lourenço - MG. Sociedade de Ecologia do Brasil, São Lourenço. Pp. 1-3.
  • Mori SA, Mattos-Silva LA, Lisboa G, & Coradin L (1985) Manual de manejo do herbário fanerógamo. Universidade Federal de Pernambuco (UFPE), Recife, 91p.
  • Mosjidis JA (2006) Legume breeding and their utilization as forage and cover crops. In: Proceedings of the 60th Southern Pasture and Forage Crop Improvement Conference, Auburn, AL. 12 Apr. 2006, Texas. Available at <https://agrilife.org/spfcic/files/2013/02/mosjidis.pdf> Access on 17 November 2017.
    » https://agrilife.org/spfcic/files/2013/02/mosjidis.pdf
  • Mosjidis JA, & Wang ML (2011) Crotalaria. In: Kole C (ed.) Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg. Pp. 63-69.
  • Nazário W, Portugal MASC, & Fancelli MI (1988) Considerações sobre o papel do Senecio brasiliensis, Lessing. Acompanhamento de acidente tóxico em bovinos, ocorrido em São Paulo. Pesquisa Agropecuária Brasileira 23: 537-542.
  • Neto SAG, Melo MM, & Soto-Blanco B (2017) Avaliação da toxicidade do leite de fêmeas ruminantes que ingeriram Marsdenia megalantha Goyder, & Morillo. Revista Brasileira de Higiene e Sanidade Animal 11: 322-330.
  • Nobre VMT, Riet-Correa F, Barbosa Filho JM, Dantas AFM, Tabosa IM, & Vasconcelos JS (2004) Intoxicação por Crotalaria retusa (Fabaceae) em Eqüídeos no semi-árido da Paraíba. Pesquisa Veterinária Brasileira 24: 132-143.
  • Ospina-Torres R, Montoya-Pfeiffer PM, Parra-H A, Solarte V, & Otero JT (2015) Interaction networks and the use of floral resources by male orchid bees (Hymenoptera: Apidae: Euglossini) in a primary rain forests of the Chocó Region (Colombia). Revista de Biología Tropical 63: 647-658.
  • Pammel LH (1903) Some weeds of Iowa. 6a ed. Experiment Station, Iowa State College of Agriculture and the Mechanic Arts, Ames. 256p.
  • Pammel LH (2017) Botany of Russian Thistle. Bulletin 3: 3.
  • Panziera W, Bianchi RM, Mazaro RD, Giaretta PR, Silva GB, Silva DRP, & Fighera RA (2017a) Intoxicação natural por Senecio brasiliensis em equinos. Pesquisa Veterinária Brasileira 37: 313-318.
  • Panziera W, Gonçalves MA, Oliveira LGS, Lorenzett MP, Reis M, Hammerschmitt ME, Pavarini SP, & riemeier D (2017b) Senecio brasiliensis poisoning in calves: pattern and evolution of hepatic lesions. Pesquisa Veterinária Brasileira 37: 8-16.
  • Peixoto AL, Barbosa MV, Canhos DAL, & Maia LC (2009) Coleções botânicas: objetos e dados para a ciência. Cultura material e patrimônio da Ciência e Tecnologia. Museu da Astronomia e Ciências Afins, Rio de Janeiro. Pp. 6-10.
  • Peixoto AL, & Maia LC (2013) Manual de procedimentos para herbários. Editora Universitárida da Universidade Federal de Pernambuco (UFPE), Recife. 101p.
  • Peixoto AL, & Morim MP (2003) Coleções botânicas: documentação da biodiversidade brasileira. Ciência e Cultura 55: 21-24.
  • Pilati C, & Barros CSL (2007) Experimental poisoning by Senecio brasiliensis (Asteraceae) in horses. Pesquisa Veterinária Brasileira 27: 287-296.
  • Prakash AS, Pereira TN, Reilly PE, & Seawright AA (1999) Pyrrolizidine alkaloids in human diet. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 443: 53-67.
  • Procópio LC, & Secco RS (2008) The importance of botanical identification in forest inventories: the example of ”tauari” - Couratari spp. and Cariniana spp, Lecythidaceae - in two timber areas of the state of Pará. Acta Amazonica 38: 31-44.
  • Queiroz GR, Ribeiro RCL, Flaiban KKMC, Bracarense APFRL, & Lisboa JAN (2013) Intoxicação espontânea por Crotalaria incana em bovinos no norte do estado do Paraná. Semina: Ciências Agrárias 34: 823-832.
  • Reina M, Gonzalez-Coloma A, Gutierrez C, Cabrera R, Henriquez J, & Villarroel L (1998) Pyrrolizidine Alkaloids from Heliotropium megalanthum Journal of Natural Products 61: 1418-1420.
  • Resende MLF, & Guimarães LL (2007) Inventários da biodiversidade do bioma Cerrado: biogeografia de plantas. Biblioteca IBGE, Rio de Janeiro, 14p. Available at <https://biblioteca.ibge.gov.br/visualizacao/livros/liv95776.pdf> Access on 19 April 2018.
    » https://biblioteca.ibge.gov.br/visualizacao/livros/liv95776.pdf
  • Riet-Correa F, & Medeiros RMT (2001) Intoxicações por plantas em ruminantes no Brasil e no Uruguai: importância econômica, controle e riscos para a saúde pública. Pesquisa Veterinária Brasileira 21: 38-42.
  • Rikilt WU (2016) Plant toxins. Available at <http://www.wageningenur.nl/en/Expertise-Services/Research-Institutes/rikilt/Measuring-and-detecting-substances/Natural-toxins/Plant-toxins.htm> Access on 19 March 2016.
    » http://www.wageningenur.nl/en/Expertise-Services/Research-Institutes/rikilt/Measuring-and-detecting-substances/Natural-toxins/Plant-toxins.htm
  • Ríos EE, Cholich LA, Gimeno EJ, Guidi MG, Pérez OCA (2012) Experimental poisoning of goats by Ipomoea carnea subsp. fistulosa in Argentina: a clinic and pathological correlation with special consideration on the central nervous system. Pesquisa Veterinária Brasileira 32: 37-42.
  • Rivero R, Riet-Correa F, Dutra F, & Matto C (2011) Toxic plants and mycotoxins affecting cattle and sheep in Uruguay. In: Riet-Correa F, Pfister J, Schild AL, & Wierenga T (eds.) Poisoning by plants, mycotoxins and related toxins. CABI, Wallingford. Pp. 25-34. ISBN 978-1-84593-833-8.
  • Rotar PP, & Joy RJ (1983) Tropic Sun’Sunn Hemp; Crotalaria juncea L. Research Extension Series 036-11/83. University of Hawai, Honolulu. 9p.
  • Ruan J, Li N, Xia Q, Fu PP, Peng S, Ye Y, & Lin G (2012) Characteristic ion clusters as determinants for the identification of pyrrolizidine alkaloid N-oxides in pyrrolizidine alkaloid-containing natural products using HPLC-MS analysis. Journal of mass spectrometry: JMS 47: 331-337.
  • Ruchi J, Nilesh J, & Surendra J (2009) Evaluation of anti-inflammatory activity of Ipomoea fistulosa Linn. Asian Journal of Pharmaceutical and Clinical Research 2: 64-67.
  • Rymer C (2008) The effect of wilting and soaking Eupatorium adenophorum on its digestibility in vitro and voluntary intake by goats. Animal Feed Science and Technology 141: 49-60.
  • Sanchez DCC, Simplício KMMG, Borges LA, Fagliari JJ, Canola JC, & Hatayde MR (2013) Clinical and laboratory evaluation of sheep experimentally intoxicated with Crotalaria spectabilis (Leg. Papilionoidea) seeds evidências clínico-patológicas de ovinos intoxicados experimentalmente com sementes de Crotalaria spectabilis (leg. papilionoidea). Revista Acadêmica: Ciência Animal 11: 263-273.
  • Sandini TM, Udo MSB, & Spinosa HS (2013) Senecio brasiliensis e alcaloides pirrolizidínicos: toxicidade em animais e na saúde humana. Biotemas 26: 83-92.
  • Sarwatt SV, Mkiwa FEJ, Lwoga AB, & Dzow-ela BH (1990) Nutritive value of Crotalaria ochroleuca: II. The effect of supplementation on feed utilisation and performance of growing sheep. Available at <https://cgspace.cgiar.org/bitstream/handle/10568/49746/Nutritive_value.pdf?sequence=1&isAllowed=y>. Access on 15 September 2018.
    » https://cgspace.cgiar.org/bitstream/handle/10568/49746/Nutritive_value.pdf?sequence=1&isAllowed=y
  • Schneider JV, Negraschis V, Habersetzer J, Rabenstein R, Wesenberg J, Wesche K, & Zizka G (2018) Taxonomic diversity masks leaf vein-climate relationships: lessons from herbarium collections across a latitudinal rainfall gradient in West Africa. Botany Letters 165: 384-395.
  • Sharma A, & Bachheti RK (2013) A review on Ipomoea carnea. International Journal of Pharma and Bio Sciences 4: 363-377.
  • Siani AC (2003) Desenvolvimento tecnológico de fitoterápicos: plataforma metodológica. Scriptorio, Rio de Janeiro. 98p.
  • Siciliano T, Leo MD, Bader A, Tommasi ND, Vrieling K, Braca A, & Morelli I (2005) Pyrrolizidine alkaloids from Anchusa strigosa and their antifeedant activity. Phytochemistry 66: 1593-1600.
  • Silva LAM (2013) Tópicos sobre técnicas de coleta de material botânico e manejo de herbário. EAD-UESC, Mod. Botânica I. Available at <http://nead.uesc.br/arquivos/Biologia/modulo_7_bloco_1/1_unidade/material_apoio/4_herbario_texto_da_apresent.doc> Access on 1 January 2018.
    » http://nead.uesc.br/arquivos/Biologia/modulo_7_bloco_1/1_unidade/material_apoio/4_herbario_texto_da_apresent.doc
  • Simão-Bianchini R, & Pirani JR (2005) Duas novas espécies de Convolvulaceae de Minas Gerais, Brasil. Hoehnea 32: 295-300.
  • Souza AA, & Poletto RS (2007) Levantamento de espécies invasores nas praças de Garça - SP - Magnoliopsida e Lilopsida. Revista Científica Eletrônica de Engenharia Florestal 9: 1-14.
  • Stegelmeier B, Gardner D, & Davis TZ (2009) Livestock poisoning with Pyrrolizidine-Alkaloid-Containing plants (Senecio, Crotalaria, Cynoglossum, Amsinckia, Heliotropium, and Echiumspp) Rangelands 31: 35-37.
  • Stewart MJ, & Steenkamp V (2001) Pyrrolizidine poisoning: a neglected area in human toxicology. Therapeutic Drug Monitoring 23: 698-708.
  • Teixeira JC, & Hespanhol AN (2014) A trajetória da pecuária bovina brasileira. Caderno Prudentino de Geografia 1: 26-38.
  • Teodoro RB, Oliveira FL, Silva DMN, Fávero C, & Quaresma MAL (2011) Aspectos agronômicos de leguminosas para adubação verde no Cerrado do Alto Vale do Jequitinhonha. Revista Brasileira de Ciência do Solo 35: 635-640.
  • These A, Bodi D, Ronczka S, Lahrssen-Wiederholt M, & Preiss-Weigert A (2013) Structural screening by multiple reaction monitoring as a new approach for tandem mass spectrometry: presented for the determination of pyrrolizidine alkaloids in plants. Analytical and bioanalytical chemistry 405: 9375-9383.
  • Torres ADP (1954) Toxicidade de algumas crotolárias. Anais da Escola Superior de Agricultura Luiz de Queiroz 11: 115-124.
  • Trigo JR (2000) The chemistry of antipredator defense by secondary compounds in neotropical lepidoptera: facts, perspectives and caveats. Journal of the Brazilian Chemical Society 11: 551-561.
  • Ubiali DG, Boabaid FM, Borges NA, Caldeira FHB, Lodi LR, Pescadorn CA, Souza MA., & Colodel EM (2011) Intoxicação aguda com sementes de Crotalaria spectabilis (Leg. Papilionoideae) em suínos. Pesquisa Veterinária Brasileira 31: 313-318.
  • Valese AC, Molognoni L, de Sá Ploêncio LA, Lima FG, Gonzaga LV, Górniak SL, Daguer H, Barreto F, & Costa ACO (2016) A fast and simple LC-ESI-MS/MS method for detecting pyrrolizidine alkaloids in honey with full validation and measurement uncertainty. Food Control 67: 183-191.
  • Vandoni R (1952) Contribuição para o conhecimento de algumas leguminosas como forrageiras - Aceitação, palatabilidade e toxides - Testes em coelhos e cobaios. Anais da Escola Superior de Agricultura Luiz de Queiroz 9: 195-214.
  • Wieringa JJ, & Sosef MSM (2011) The applicability of relative floristic resemblance to evaluate the conservation value of protected areas. Plant Ecology and Evolution 144: 242-248.
  • Willis CG, Ellwood ER, Primack RB, Davis CC, Pearson KD, Gallinat AS, Yost JM, Nelson G, Mazer SJ, Rossington NL, Sparks TH, & Soltis PS (2017) Old plants, new tricks: phenological research using herbarium specimens. Trends in Ecology, & Evolution 32: 531-546.
  • WUR - Wageningen University, & Research (2019) RIKILT - Measuring and detecting substances. Available at <https://www.wur.nl/en/Research-Results/Research-Institutes/rikilt/Expertise-areas/Measuring-and-detecting-substances.htm>. Access on 1 February 2019.
    » https://www.wur.nl/en/Research-Results/Research-Institutes/rikilt/Expertise-areas/Measuring-and-detecting-substances.htm

Edited by

Editora de área: Dra. Cassia Sakuragui

Publication Dates

  • Publication in this collection
    16 Nov 2020
  • Date of issue
    2020

History

  • Received
    09 May 2018
  • Accepted
    12 Apr 2019
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br