Accessibility / Report Error

Influência da temperatura na remoção de fosfato por microalgas em biorreatores heterotróficos

Influence of temperature in phosphate removal by microalgae in heterotrophic bioreactors


Neste trabalho, a eficiência da cianobactéria Aphanothece microscopica Nägeli em remover heterotroficamente fosfato total dissolvido do efluente do processamento de laticínios foi avaliada. Os experimentos foram conduzidos em biorreatores operados descontinuamente, alimentados com 4,5 L de efluente. As condições experimentais foram: concentração celular inicial de 0,2 g/L, pH ajustado a 7,6, reator isotérmico operando em temperaturas de 10, 20 e 30ºC, ausência de luminosidade e aeração contínua de 1 VVM. Os resultados mostraram que a remoção de fosfato é fortemente dependente da temperatura do processo. A cianobactéria A. microscopica Nägelifoi efetiva na remoção de fosfato,alcançando taxas de remoção de 3,77 mg/L.h, que refletiram em conversões de 98,4% em tempos de detenção hidráulica de 24 h.

microalgas; biorreator heterotrófico; fosfato; efluente de laticínios

The removal of total dissolved phosphate by the cyanobacteria Aphanothece microscopica Nägeli cultivated heterotrophically in dairy processing wastewater was investigated in this work. The experiments were carried out in bioreactors operating in a batch mode, fed with 4.5 L of wastewater. The experimental conditions were as follows: initial cell concentration of 0.2 g/L, pH adjusted to 7.6, isothermal reactor operating at temperatures of 10, 20 and 30ºC with absence of light and continuous aeration of 1 VVM. The results showed that phosphate removal is strongly dependent on process temperature. A. microscopica Nägeli was effective in the removal phosphate achieving removal rates of 3.77 mg/L.h, which reflected in the conversion of 98.4% in hydraulic detention times of 24 h.

microalgae; heterotrophic bioreactor; phosphate; dairy processing wastewater

  • AMERICAN PUBLIC HEALTH ASSOCIATION - APHA. Standard methods for the examination of water and wastewater Washington, 2005.
  • CEMBELLA, A. D.; ANTIA, N. J.; HARRISON, P. J. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective. CRC Critical Reviews in Microbiology, v.10, n. 4, p. 317-391, 1983.
  • DEVI, M. P.; SUBHASH, G. V.; MOHAN, S. V. Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renewable Energy, v. 43, p. 276-283, 2012.
  • GEIDER, R. J.; OSBORNE, B. A. Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytologist Trust, v. 112, p. 327-341, 1989.
  • GONZALEZ, L. E.; CAÑIZARES, R. O.; BAENA, S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus Bioresource Technology, v. 60, p. 259-262, 1997.
  • HEALEY, F. P. Phosphate. In: CARR, N. G.; WHITTON, B. A. (Eds.). The biology of cyanobacteria Berkeley: University of California Press, 1982.
  • INSTITUTO NACIONAL DE METEOROLOGIA - INMET (Brasil). Brasília, 2011. Disponível em: <>. Acesso em: 8 jun. 2011.
    » link
  • JACOB-LOPES, E.; SCOPARO, C.H.G.; QUEIROZ, M. I.; FRANCO, T. T. Biotransformations of carbon dioxide in photobioreactors. Energy Conversion and Management, v. 51, n. 5, p. 894-900, 2010.
  • LEI, A. P.; HU, Z. L.; WONG, Y. S.; TAM, N. F. Y. Removal of fluoranthene and pyrene by different microalgal species. Bioresource Technology, v. 98, n. 2, p. 273-280, 2007.
  • MIYACHI, S.; KANAI, R.; MIHARA, S.; MIYACHI, S.; AOKI, S. Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochimica et Biophysica Acta, v. 93, n. 3, p. 625-634, 1964.
  • PEREZ-GARCIA, O.; ESCALANTE, F. M. E.; DE-BASHAN, L. E.; BASHAN, Y. Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, v. 45, n. 1, p.11-36, 2011.
  • PHANG, S. M.; MIAH, M. S.; YEOH, B. G.; HASHIM, M. A. Spirulina cultivation in digested sago starch factory wastewater. Journal of Applied Phycology, v. 12, n. 3/5, p. 395-400, 2000.
  • POWELL, N.; SHILTON A.; CHISTI Y.; PRATT, S. Towards a luxury uptake process via microalgae - Defining the polyphosphate dynamics. Water Research, v. 43, n. 17, p. 4207 - 4213, 2009.
  • POWELL, N.; SHILTON, A. N.; PRATT, S.; CHISTI Y. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environmental Science & Technology, v. 42, n. 16,p. 5958-5962, 2008.
  • POWELL, N.; SHILTON, A.; PRATT, S.; CHISTI, Y. Luxury uptake of phosphorus by microalgae in waste stabilization ponds. In: Stuetz, R., Teik-Thye, L. (Eds.). Young researchers 2006 London: IWA Publishing, 2006. p. 249-256. (Water and Environment Management, n. 12).
  • QUEIROZ, M. I.; HORNES M. O.; SILVA-MANETTI, A. G.; JACOB-LOPES, E. Single-cell oil production by cyanobacterium Aphanothece microscopica Nägeli cultivated heterotrophically in fish processing wastewater. Applied Energy, v. 88, n. 10, p. 3438-3443, 2011.
  • QUEIROZ, M. I.; JACOB-LOPES, E.; ZEPKA, L. Q.; BASTOS, R. G.; GOLDBECK, R. The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresource Technology, v. 98, n. 11, p. 2163-2169, 2007.
  • RIPPKA, R.; DERUELLES, J.; WATERBURY, J. B.; HERDMAN, M.; STANIER, R. Y. Generic assignments strain histories and properties of pure cultures of cyanobacteria. Microbiology, v. 111, n. 1, p. 01-61, 1979.
  • SAKAMOTO, T.; SHEN, G.; HIGASHI, S.; MURATA, N.; BRYANT, D. A. Alteration of low-temperature susceptibility of the cyanobacterium Synechococcus sp. PCC 7002 by genetic manipulation of membrane lipid unsaturation. Archives of Microbiology, v.169, n. 1, p. 20-28, 1997.
  • SAWYER, C. N.; MCCARTY, P. L. Chemistry for environmental engineering. 3. ed. New York: McGraw-Hill, 1978.
  • SINGH, G.; THOMAS, P. B. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresource Technology, v. 117, p. 80-85, 2012.
  • SMITH, A. J. Modes of cyanobacterial carbon metabolism. In: Carr, N. G.; Whitton, B. A. (Eds.). The biology of cyanobacteria. Berkeley: University of California Press, 1982.
  • SÖZEN, S.; ORHON, D.; SAN, H. A. A new approach for the evaluation of the maximum specific growth rate in nitrification. Water Research, v. 30, n. 7, p. 1661-1669, 1996.
  • STATSOFT INC. STATISTICA - data analysis software system Version 7.0. 2004. Disponível em: <>. Acesso em 17 ago. 2012.
  • SPIVAKOV, B. Y.; MARYUTINA, T. A.; MUNTAU, D. H. Phosphorus speciation in water and sediments. Pure Applied Chemistry, v. 71, n. 11, p. 2161-2176, 1999.
  • TCHOBANOGLOUS, G.; BURTON, F. L.; STENSEL, D. Wastewater engineering, treatment and reuse 4th edition. New York: McGraw-Hill, 2003.
  • TOMASELLI, L.; GIOVANNETTI, L.; SACCHI, A.; BOCHI, F. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Stadler, T.; Mellion, J.; Verdus, M. C.; Karamanos, Y.; Morvan, H.; Christiaen, D. (Eds.). Algal biotechnology London: Elsevier Applied Science, 1988. p. 303-314.

Datas de Publicação

  • Publicação nesta coleção
    16 Set 2014
  • Data do Fascículo
    Jun 2012
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil