Ecotoxicidade de efluentes brutos e tratados gerados por uma fábrica de medicamentos veterinários

Ecotoxicity of raw and treated effluents generated by a veterinary medicine industry

Resumos

Efluentes de indústrias farmacêuticas veterinárias, que formulam medicamentos, são gerados principalmente durante a lavagem dos equipamentos. O objetivo desse trabalho foi avaliar a toxicidade aguda para Daphnia similis e crônica para Ceriodaphnia dubia, dos efluentes brutos e tratados gerados por uma indústria farmacêutica veterinária. O sistema de tratamento de efluentes usado é composto por uma etapa de tratamento químico (coagulação-sedimentação forçada) seguida do tratamento biológico aeróbio (processo de lodos ativados). Foram realizadas 5 campanhas de amostragens entre outubro de 2011 e julho de 2012. As amostras de efluentes brutos apresentaram elevada toxicidade aguda e crônica (aguda: quarta campanha com CE50 - 48-h de <0,001% e crônica: terceira campanha com CI50 - 7d <0,0001%). As amostras de efluentes tratados quimicamente foram as mais tóxicas com CE50 - 48-h entre <0,001 e 0,1% e CI50 - 7-d entre 0,00001 e 0,0001%, provavelmente relacionada ao uso de sulfato de alumínio como agente floculante. O tratamento biológico levou a uma pequena diminuição da toxicidade dos efluentes. Os testes ecotoxicológicos foram adequados para detectar a toxicidade dos efluentes e úteis para avaliar a eficiência das etapas do tratamento. Melhorias no sistema de tratamento de efluentes da indústria estudada deveriam ser implementadas visando à redução da toxicidade observada nos efluentes finais.

Fármacos veterinários; efluentes industriais; avaliação ecotoxicológica


Effluents from veterinary pharmaceutical industries that formulate medicines are mainly generated during the washing of equipment. The aim of this work was to evaluate the acute toxicity to Daphnia similis and chronic toxicity to Ceriodaphnia dubia of raw and treated effluents generated by a veterinary pharmaceutical industry. The industrial effluent treatment system comprises a step of chemical treatment (coagulation-sedimentation forced) followed by aerobic biological treatment (activated sludge process). Five samplings campaigns were performed from October 2011 to July 2012. The raw effluent samples showed high acute and chronic toxicity (acute: fourth sampling with EC50 - 48-h of <0.001% and chronic: third sampling with IC50 - 7-d of <0.0001%). The chemically treated effluent samples were the most toxic with EC50 - 48-h between <0.001 and 0.1% and IC50 - 7-d between 0.00001 and 0.0001%. This increase in toxicity is probably related to the use of aluminum sulfate as flocculating agent. The biological treatment led to a small reduction in toxicity of the effluents. The selected ecotoxicological tests were adequate for detecting the effluent toxicity and useful for evaluating the efficiency of the steps of the effluent treatment. Improvements in the industrial wastewater treatment system should be implemented in order to reduce the observed toxicity of the final effluent.

Veterinary pharmaceuticals; industrial effluents; ecotoxicological assessment


  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12.713: ecotoxicologia aquática - toxicidade aguda - método de ensaio com Daphnia spp. (Cladocera, Crustacea). Rio de Janeiro, 2009. 21 p.
  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13373: ecotoxicologia aquática - toxicidade crônica - método de ensaio com Ceriodaphnia spp. (Cladocera, Crustacea). Rio de Janeiro, 2010. 15 p.
  • AKINTONWA, A.; AWODELE, O.; OLOFINNADE, A. T.; ANYAKORA, C.; AFOLAYAN, G. O.; COKER, H. A. B. Assessment of the mutagenicity of some pharmaceutical effluents. American Journal of Pharmacology and Toxicology, Vails Gate, v. 4, p. 144-150, 2009. http://dx.doi.org/10.3844/ajptsp.2009.144.150
  • BALCIOĞLU, I. A.; ÖTKER, M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere, Oxford, v. 50, p. 85-95, 2003. http://dx.doi.org/10.1016/S0045-6535(02)00534-9
  • BERRY, M. A.; RONDINELLI, D. A. Environmental management in the pharmaceutical industry: Integrating corporate responsibility and business strategy. Environmental Quality Management, Wheaton, v. 9, p. 21-35, 2000. http://dx.doi.org/10.1002/1520-6483(200021)9:3<21::AID-TQEM3>3.0.CO;2-4
  • BOXALL, A. B. A.; KOLPIN, D. W.; HALLING-SØRENSEN, B.; TOLLS, J. Are veterinary medicines causing environmental risks? Environmental Science and Technology, Easton, v. 37, p. 286A-294A, 2003.
  • CHEN, Z.; WANG, H.; CHEN, Z.; REN, N.; WANG, A.; SHI, Y.; LI, X. Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin. Journal of Hazardous Materials, Amsterdam, v. 185, p. 905-913, 2011. http://dx.doi.org/10.1016/j.jhazmat.2010.09.106
  • COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO. Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. 1. ed. São Paulo, 2011. 325 p.
  • COSTA, C. R.; OLIVI, P.; BOTTA, C. M. R.; ESPINDOLA, E. L. G. A toxicidade em ambientes aquáticos: discussão e métodos de avaliação. Química Nova, São Paulo, v. 31, n. 7, p. 1820-1830, 2008. http://dx.doi.org/10.1590/S0100-40422008000700038
  • FATTA-KASSINOS, D.; MERIC, S.; NIKOLAOU, A. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and Bioanalytical Chemistry, Heidelberg, v. 399, p. 251-275, 2011. http://dx.doi.org/10.1007/s00216-010-4300-9
  • FICK, J.; SÖDERSTRÖM, H.; LINDBERG, R. H.; PHAN, C.; TYSKLIND, M.; LARSSON, D. G. J. Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, Pensacola, v. 28, p. 2522-2527, 2009. http://dx.doi.org/10.1897/09-073.1
  • HAMILTON, M. A.; RUSSO, R. C.; THURFTON, R. B. Trimmed Spearman - Karber method for estimating median lethal concentration in toxicity bioassays. Environmental Science and Technology, Easton, v. 11, p. 714-719, 1977. http://dx.doi/org/10.1021/es60130a004
  • JONES, O. A. H.; VOULVOULIS, N.; LESTER, J. N. Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment. Critical Reviews in Toxicology, Boca Raton, v. 34, p. 335-350, 2004. http://dx.doi.org/10.1080/10408440490464697
  • KAPANEN, A.; ITÄVAARA, M. Ecotoxicity tests for compost applications. Ecotoxicology and Environmental Safety, New York, v. 49, p. 1-16, 2001. http://dx.doi.org/10.1006/eesa.2000.1927
  • KIM, J.; PARK, J.; KIM, P. G.; LEE, C.; CHOI, K. Implication of global environmental changes on chemical toxicity effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna Ecotoxicology, London, v. 19, p. 662-669, 2010. http://dx.doi.org/10.1007/s10646-009-0440-0
  • LARSSON, D. G. J.; PEDRO, C.; PAXEUS, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, Amsterdam, v. 148, p. 751-755, 2007. http://dx.doi.org/10.1016/j.jhazmat.2007.07.008
  • LARSSON, D. G. J.; FICK, J. Transparency throughout the production chain-a way to reduce pollution from the manufacturing of pharmaceuticals? Regulatory Toxicology and Pharmacology, New York, v. 53, p. 161-163, 2009. http://dx.doi.org/10.1016/j.yrtph.2009.01.008
  • LIGUORO, M. D.; FIORETTO, B.; POLTRONIERI, C.; GALLINA, G. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere, Oxford, v. 75, p. 1519-1524, 2009. http://dx.doi.org/10.1016/j.chemosphere.2009.02.002
  • LOCATELLI, M. A. F.; SODRÉ, F. F.; JARDIM, W. F. Determination of Antibiotics in Brazilian Surface Waters Using Liquid Chromatography - Electrospray Tandem Mass Spectrometry. Archives of Environmental Contamination and Toxicology, New York, v. 60, p. 385-393, 2011. http://dx.doi.org/10.1007/s00244-010-9550-1
  • MELO, S. A. S.; TROVÓ, A. G.; BAUTITZ, I. R.; NOGUEIRA, R. F. P. Degradação de fármacos residuais por processos oxidativos avançados. Química Nova, São Paulo, v. 32, p. 188-197, 2009. http://dx.doi.org/10.1590/S0100-40422009000100034
  • MORALES, G. C. Ensayos toxicológicos y métodos de evaluación de calidad de aguas: estandarización, intercalibración, resultados y aplicaciones. 1. ed. México: IMTA, 2004. 189 p.
  • MOUNT, D. R.; GULLEY, D. D.; HOCKETT, J. R.; GARRISON, T. D.; EVANS, J. M. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows). Environmental Toxicology and Chemistry, New York, v. 16, p. 2009-2019, 1997. http://dx.doi.org/10.1002/etc.5620161005
  • NORBERT-KING, T. J. A linear interpolation method for sublethal toxicity: the inhibition concentration (ICp) approach (Version 2.0). Dulunth: USEPA, 1993. Tech. Rept. 03-93. 25 p.
  • REIS FILHO, R. W.; BARREIRO, J. C.; VIEIRA, E. M.; CASS, Q. B. Fármacos, ETEs e corpos hídricos. Revista Ambiente e Água, Taubaté, v. 2, p. 54-61, 2007. http://dx.doi.org/10.4136/ambi-agua.33
  • SANDERSON, H.; BRAIN, R. A.; JOHNSON, D. J.; WILSON, C. J.; SOLOMON, R. K. Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology, Amsterdam, v. 203, p. 27-40, 2004. http://dx.doi.org/10.1016/j.tox.2004.05.015
  • SANTOS, L. H. M. L. M.; ARAÚJO, A. N.; FRACHINI, A.; PENA, A.; DELERUE-MATOS, C.; MONTENEGRO, M. C. B. S. M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environments. Journal of Hazardous Materials, Amsterdam, v. 175, p. 45-95, 2010. http://dx.doi.org/10.1016/j.jhazmat.2009.10.100
  • SODRÉ, F. F.; PESCARA, I. C.; MONTAGNER, C. C.; JARDIM, W. F. Assessing selected estrogens and xenoestrogens in Brazilian surface waters by liquid chromatography - tandem mass spectrometry. Microchemical Journal, Amsterdam, v. 96, p. 92-98, 2010. http://dx.doi.org/10.1016/j.microc.2010.02.012
  • TAMBOSI, J. L.; YAMANAKA, L. Y.; JOSÉ, H. J.; MOREIRA, R. F. P. M.; SCHRÖDER, H. F. Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP). Química Nova, São Paulo, v. 33, p. 411-420, 2010. http://dx.doi.org/10.1590/S0100-404220100000200032
  • WATANABE, N.; BERGAMASCHI, B.; LOFIN, K.; MEYER, T. M.; HARTER, T. Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environmental Science and Technology, Easton, v. 44, p. 6591-6600, 2010. http://dx.doi.org/10.1021/es100834s
  • WILKE, B. M.; RIEPERT, F.; KOCH, C.; KÜHNE, T. Ecotoxicological characterization of hazardous wastes. Ecotoxicology and Environmental Safety, New York, v. 70, p. 283-293, 2008. http://dx.doi.org/10.1016/j.ecoenv.2007.10.003
  • WREN, C. D.; STEPHENSON, G. L. The effect of acidification on the accumulation and toxicity of metals to freshwater invertebrates. Environmental Pollution, Amsterdam, v. 71, p. 205-241, 1991. http://dx.doi.org/10.1016/0269-7491(91)90033-S

Datas de Publicação

  • Publicação nesta coleção
    08 Out 2013
  • Data do Fascículo
    Ago 2013
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com