Acessibilidade / Reportar erro

Use of new recombinant proteins for ovarian stimulation in ruminants

Abstract

Currently, gonadotropin products (follicle stimulating hormone, FSH, and luteinizing hormone, LH) used in animal reproduction are produced by extraction and purification from abattoir-derived pituitary glands. This method, relying on animal-derived materials, carries the potential risk of hormone contamination and pathogen transmission. Additionally, chorionic gonadotropins are extracted from the blood of pregnant mares (equine chorionic gonadotropin; eCG) or the urine of pregnant women (human chorionic gonadotropin; hCG). However, recent advancements have introduced recombinant gonadotropins for assisted animal reproduction therapies. The traditional use of FSH for superovulation has limitations, including labor requirements and variability in superovulation response, affecting the success of in vivo (SOV) and in vitro (OPU/IVEP) embryo production. FSH treatment for superstimulation before OPU can promote the growth of a homogenous follicular population and the recovery of competent oocytes suitable for IVEP procedures. At present, a single injection of a preparation of long-acting bovine recombinant FSH (rFSH) produced similar superovulation responses resulting in the production of good-quality in vivo and in vitro embryos. Furthermore, the treatment with eCG at FTAI protocol has demonstrated its efficacy in promoting follicular growth, ovulation, and P/AI, mainly in heifers and anestrous cows. Currently, treatment with recombinant glycoproteins with eCG-like activity (r-eCG) have shown promising results in increasing follicular growth, ovulation, and P/AI in cows submitted to P4/E2 -based protocols. Bovine somatotropin (bST) is a naturally occurring hormone found in cows. Recombinant bovine somatotropin (rbST), produced through genetic engineering techniques, has shown potential in enhancing reproductive outcomes in ruminants. Treatment with rbST has been found to improve P/IA, increase donor embryo production, and enhance P/ET in recipients. The use of recombinant hormones allows to produce non-animal-derived products, offering several advantages in assisted reproductive technologies for ruminants. This advancement opens up new possibilities for improving reproductive efficiency and success rates in the field of animal reproduction.

Keywords:
follicle stimulating hormone; luteinizing hormone; bovine somatotropin

Introduction

Assisted reproductive technologies (ARTs) have transformed the dairy and beef production industries worldwide by revolutionizing their approach to breeding, reproductive efficiency and genetic selection, leading to significant improvements in the quality and quantity of animal products (Wiltbank et al., 2002Wiltbank MC, Gümen A, Sartori R. Physiological classification of anovulatory conditions in cattle. Theriogenology. 2002;57(1):21-52. http://dx.doi.org/10.1016/S0093-691X(01)00656-2. PMid:11775971.
http://dx.doi.org/10.1016/S0093-691X(01)...
; Bó et al., 2002Bó GA, Baruselli PS, Moreno D, Cutaia L, Caccia M, Tríbulo R, Tríbulo H, Mapletoft RJ. The control of follicular wave development for self-appointed embryo transfer programs in cattle. Theriogenology. 2002;57(1):53-72. http://dx.doi.org/10.1016/S0093-691X(01)00657-4. PMid:11775981.
http://dx.doi.org/10.1016/S0093-691X(01)...
; Baruselli et al., 2004cBaruselli PS, Reis EL, Marques MO, Nasser LF, Bó GA. The use of hormonal treatments to improve reproductive performance of anestrous beef cattle in tropical climates. Anim Reprod Sci. 2004c;82-83:479-86. http://dx.doi.org/10.1016/j.anireprosci.2004.04.025. PMid:15271474.
http://dx.doi.org/10.1016/j.anireprosci....
). The most used ARTs in the cattle industry, such as artificial insemination (AI), in vitro embryo production (IVEP), and embryo transfer (ET), have enabled more efficient breeding programs, allowing farmers and breeders to produce offspring with desirable traits such as improved milk production, meat quality, and disease resistance (Bó et al., 2007Bó GA, Cutaia L, Peres LC, Pincinato D, Maraña D, Baruselli PS. Technologies for fixed-time artificial insemination and their influence on reproductive performance of Bos indicus cattle. Soc Reprod Fertil Suppl. 2007;64:223-36. PMid:17491150.; Rodriguez-Martinez, 2011Rodriguez-Martinez H. Assisted reproductive techniques for cattle breeding in developing countries: a critical appraisal of their value and limitations. Reprod Domest Anim. 2011;47(Suppl 1):21-6. http://dx.doi.org/10.1111/j.1439-0531.2011.01961.x. PMid:22212208.
http://dx.doi.org/10.1111/j.1439-0531.20...
).

Ovarian pharmacological manipulation plays a crucial role in ARTs. In the cattle industry, hormonal treatments have a significant role in the control and manipulation of reproductive processes, ultimately leading to improved fertility. FSH, LH, hCG and eCG are commonly used to induce the development of follicles in the ovaries and ovulation, and to improve fertility in cows (Bó et al., 2006Bó GA, Baruselli PS, Chesta PM, Martins CM. The timing of ovulation and insemination schedules in superstimulated cattle. Theriogenology. 2006;65(1):89-101. http://dx.doi.org/10.1016/j.theriogenology.2005.10.008. PMid:16293299.
http://dx.doi.org/10.1016/j.theriogenolo...
; Baruselli et al., 2006Baruselli PS, Sá MF Fo, Martins CM, Nasser LF, Nogueira MFG, Barros CM, Bó GA. Superovulation and embryo transfer in Bos indicus cattle. Theriogenology. 2006;65(1):77-88. http://dx.doi.org/10.1016/j.theriogenology.2005.10.006. PMid:16290257.
http://dx.doi.org/10.1016/j.theriogenolo...
; Baruselli et al., 2008bBaruselli PS, Martins CM, Sales JNS, Ferreira RM. Recent advances in bovine superovulation. Acta Sci Vet. 2008b;36(2):s433-48.; Marques et al., 2012Marques MO, Nasser LF, Silva RCP, Bó GA, Sales JNS, Sá MF Fo, Reis EL, Binelli M, Baruselli PS. Follicular dynamics and pregnancy rates in Bos taurus x Bos indicus embryo transfer recipients treated to increase plasma progesterone concentrations. Anim Reprod. 2012;9(2):111-9.). Bovine somatotropin (bST) is a hormone used to promote growth, enhance milk production in dairy cows, and optimize feed efficiency and reproductive outcomes (Cushman et al., 2001Cushman RA, DeSouza JC, Hedgpeth VS, Britt JH. Effect of long-term treatment with recombinant bovine somatotropin and estradiol on hormone concentrations and ovulatory response of superovulated cattle. Theriogenology. 2001;55(7):1533-47. http://dx.doi.org/10.1016/S0093-691X(01)00500-3. PMid:11354712.
http://dx.doi.org/10.1016/S0093-691X(01)...
; Thatcher et al., 2006Thatcher WW, Bilby TR, Bartolome JA, Silvestre F, Staples CR, Santos JEP. Strategies for improving fertility in the modern dairy cow. Theriogenology. 2006;65(1):30-44. http://dx.doi.org/10.1016/j.theriogenology.2005.10.004. PMid:16280156.
http://dx.doi.org/10.1016/j.theriogenolo...
). Nevertheless, these hormones are produced by extraction and purification from abattoir-derived pituitary glands or extracted from fluids (blood and urine) of pregnant females. Nowadays, recombinant hormones, which are synthetic versions of hormones normally produced by animals (McClamrock, 2003McClamrock HD. Recombinant gonadotropins. Clin Obstet Gynecol. 2003;46(2):298-316. http://dx.doi.org/10.1097/00003081-200306000-00009. PMid:12808381.
http://dx.doi.org/10.1097/00003081-20030...
), are produced using genetic engineering techniques. These involve inserting the genes responsible for producing the hormone into a host organism, such as a virus, bacteria, or yeast, allowing for the large-scale production of hormones for various applications (Sanderson and Martinez, 2020Sanderson N, Martinez M. A single administration of a long-acting recombinant ovine FSH (roFSH) for cattle superovulation. Theriogenology. 2020;154:66-72. http://dx.doi.org/10.1016/j.theriogenology.2020.04.037. PMid:32512315.
http://dx.doi.org/10.1016/j.theriogenolo...
). Therefore, the utilization of recombinant hormones has revolutionized the large-scale production of non-animal-derived products, characterized by a remarkable purity and consistent composition. This progress enables diverse applications across industries without variability (Lunenfeld et al., 2019Lunenfeld B, Bilger W, Longobardi S, Alam V, D’Hooghe T, Sunkara SK. The development of gonadotropins for clinical use in the treatment of infertility. Front Endocrinol. 2019;10:429. http://dx.doi.org/10.3389/fendo.2019.00429. PMid:31333582.
http://dx.doi.org/10.3389/fendo.2019.004...
).

The combined use of ARTs and hormonal treatments has resulted in significant advancements in the cattle industry, enabling the production of a large number of animals with desirable traits, ultimately benefiting both farmers and consumers (Baruselli et al., 2018Baruselli PS, Ferreira RM, Sá MF Fo, Bó GA. Review: using artificial insemination v. natural service in beef herds. Animal. 2018;12(Suppl 1):s45-52. http://dx.doi.org/10.1017/S175173111800054X. PMid:29554986.
http://dx.doi.org/10.1017/S1751731118000...
). The goal of the present review is to provide the reader with an update on the use of recombinant hormones for ovarian stimulation in ruminants with special emphasis on ARTs programs.

Recombinant treatment (FSH-Like) for superovulation

Follicle stimulating hormone (FSH) is a crucial glycoprotein that exists as a heterodimer composed of two subunits, α and β. FSH plays a fundamental role in regulating gonadal functions, specifically stimulating the growth of follicles in ovaries and primary spermatocytes in the testes (Fortune et al., 2001Fortune JE, Rivera GM, Evans ACO, Turzillo AM. Differentiation of dominant versus subordinate follicles in cattle. Biol Reprod. 2001;65(3):648-54. http://dx.doi.org/10.1095/biolreprod65.3.648. PMid:11514324.
http://dx.doi.org/10.1095/biolreprod65.3...
). Initially, FSH formulations were extracted from the pituitary glands of pigs (pFSH) and sheep (oFSH) and contained both FSH and LH (Greep et al., 1942Greep RO, Van Dyke HB, Chow BF. Gonadotropins of the swine pituitary I. Various biological effects of purified thylakentrin (FSH) and pure metakentrin (ICSH). Endocrinology. 1942;30(5):635-49. http://dx.doi.org/10.1210/endo-30-5-635.
http://dx.doi.org/10.1210/endo-30-5-635...
; Steelman et al., 1956Steelman SL, Lamont WA, Baltes BJ. Preparation of highly active follicle stimulating hormone from swine pituitary glands. Acta Endocrinol. 1956;22(2):186-90. http://dx.doi.org/10.1530/acta.0.0220186. PMid:13326186.
http://dx.doi.org/10.1530/acta.0.0220186...
). However, subsequent studies revealed that high concentrations of LH could negatively impact bovine embryo quality and production (Donaldson et al., 1986Donaldson LE, Ward DN, Glenn SD. Use of porcine follicle stimulating hormone after chromatographic purification in superovulation of cattle. Theriogenology. 1986;25(6):747-57. http://dx.doi.org/10.1016/0093-691X(86)90090-7.
http://dx.doi.org/10.1016/0093-691X(86)9...
; Gonzalez et al., 1990Gonzalez A, Lussier IG, Carruthers TD, Murphy BD, Mapletoft RJ. Superovulation of beef heifers with Folltropin: a new FSH preparation containing reduced LH activity. Theriogenology. 1990;33(2):519-29. http://dx.doi.org/10.1016/0093-691X(90)90509-R. PMid:16726748.
http://dx.doi.org/10.1016/0093-691X(90)9...
; Mapletoft and Pierson, 1993Mapletoft RJ, Pierson RA. Factors affecting superovulation in the cow: practical considerations. Embryo Transf Newsl. 1993;11:14-24.).

The success of in vivo (SOV) and in vitro (OPU/IVEP) embryo production has been hindered by labor-intensive FSH treatments and variability in superovulation responses. Traditional superstimulatory treatments involve twice-daily intramuscular (IM) injections of pFSH for both in vivo (Bó et al., 2002Bó GA, Baruselli PS, Moreno D, Cutaia L, Caccia M, Tríbulo R, Tríbulo H, Mapletoft RJ. The control of follicular wave development for self-appointed embryo transfer programs in cattle. Theriogenology. 2002;57(1):53-72. http://dx.doi.org/10.1016/S0093-691X(01)00657-4. PMid:11775981.
http://dx.doi.org/10.1016/S0093-691X(01)...
) and in vitro (Vieira et al., 2014Vieira LM, Rodrigues CA, Castro A No, Guerreiro BM, Silveira CRA, Moreira RJC, Sá MF Fo, Bó GA, Mapletoft RJ, Baruselli PS. Superstimulation prior to the ovum pick-up to improve in vitro embryo production in lactating and non-lactating Holstein cows. Theriogenology. 2014;82(2):318-24. http://dx.doi.org/10.1016/j.theriogenology.2014.04.013. PMid:24839924.
http://dx.doi.org/10.1016/j.theriogenolo...
) embryo production. The need for frequent applications is due to the short half-life of FSH. From plasma profiles, the half-life and the disappearance of pFSH were estimated at 5 h and at 10 to 12 h, respectively (Demoustier et al., 1988Demoustier MM, Beckers JF, Van Der Zwalmen P, Closset J, Gillard JL, Ectors F. Determination of porcine plasma folltropin levels during superovulation treatment in cows. Theriogenology. 1988;30(2):379-86. http://dx.doi.org/10.1016/0093-691X(88)90185-9. PMid:16726478.
http://dx.doi.org/10.1016/0093-691X(88)9...
). This necessitates precise handling and attention during the treatments to induce ovarian superstimulation effectively. Thus, implementing traditional superstimulatory protocols in large-scale programs can lead to failures and poor results due to the complexity and potential for errors during handling. Therefore, there is a demand for simplified protocols that can be efficiently and easily applied in the field, reducing handling and the incidence of potential errors. To address this, studies have focused on developing alternative methods to maintain FSH release for a prolonged period, aiming to improve the efficiency and success of superovulation protocols.

An alternative that has been studied for in vivo (Bó and Mapletoft, 2020Bó GA, Mapletoft RJ. Superstimulation of ovarian follicles in cattle: gonadotropin treatment protocols and FSH profiles. Theriogenology. 2020;150:353-9. http://dx.doi.org/10.1016/j.theriogenology.2020.02.001. PMid:32088042.
http://dx.doi.org/10.1016/j.theriogenolo...
) and in vitro (Vieira et al., 2016Vieira LM, Rodrigues CA, Castro A No, Guerreiro BM, Silveira CRA, Freitas BG, Bragança LGM, Marques KNG, Sá MF Fo, Bó GA, Mapletoft RJ, Baruselli PS. Efficacy of a single intramuscular injection of porcine FSH in hyaluronan prior to ovum pick-up in Holstein cattle. Theriogenology. 2016;85(5):877-86. http://dx.doi.org/10.1016/j.theriogenology.2015.10.036. PMid:26639640.
http://dx.doi.org/10.1016/j.theriogenolo...
) embryo production is the use of a single injection of pFSH in a hyaluronan (HA) solution. HA, also known as hyaluronic acid, is a simple glycosaminoglycan with remarkable biocompatibility, and when used as a diluent, it facilitates a sustained release of various drugs. Overall, a single IM treatment of pFSH in a 2.0% solution of HA resulted in a similar number of transferable embryos as the traditional twice-daily IM protocol (Vieira et al., 2016Vieira LM, Rodrigues CA, Castro A No, Guerreiro BM, Silveira CRA, Freitas BG, Bragança LGM, Marques KNG, Sá MF Fo, Bó GA, Mapletoft RJ, Baruselli PS. Efficacy of a single intramuscular injection of porcine FSH in hyaluronan prior to ovum pick-up in Holstein cattle. Theriogenology. 2016;85(5):877-86. http://dx.doi.org/10.1016/j.theriogenology.2015.10.036. PMid:26639640.
http://dx.doi.org/10.1016/j.theriogenolo...
; Bó and Mapletoft, 2020Bó GA, Mapletoft RJ. Superstimulation of ovarian follicles in cattle: gonadotropin treatment protocols and FSH profiles. Theriogenology. 2020;150:353-9. http://dx.doi.org/10.1016/j.theriogenology.2020.02.001. PMid:32088042.
http://dx.doi.org/10.1016/j.theriogenolo...
). The use of HA as a carrier for pFSH provides an efficient and effective means of achieving superovulation, making it a viable option for improving the success of both in vivo and in vitro embryo production procedures.

In parallel, recombinant DNA technology has emerged as a significant pharmacological advancement for producing FSH (rFSH). This technique utilizes biological processes capable of encoding the two subunits of FSH, resulting in the creation of recombinant forms of the hormone (Le Cotonnec et al., 1994Le Cotonnec JY, Porchet HC, Beltrami V, Khan A, Toon S, Rowland M. Clinical pharmacology of recombinant human follicle-stimulating hormone (FSH). I. Comparative pharmacokinetics with urinary human FSH. Fertil Steril. 1994;61(4):669-78. http://dx.doi.org/10.1016/S0015-0282(16)56644-8. PMid:8150109.
http://dx.doi.org/10.1016/S0015-0282(16)...
; Calder et al., 2003Calder MD, Caveney AN, Smith LC, Watson AJ. Responsiveness of bovine cumulus-oocyte-complexes (COC) to porcine and recombinant human FSH, and the effect of COC quality on gonadotropin receptor and Cx43 marker gene mRNAs during maturation in vitro. Reprod Biol Endocrinol. 2003;1(1):14. http://dx.doi.org/10.1186/1477-7827-1-14. PMid:12646061.
http://dx.doi.org/10.1186/1477-7827-1-14...
). The rFSH can induce a superovulatory response without exogenous LH (Wilson et al., 1993Wilson JM, Jones AL, Moore K, Looney CR, Bondioli KR. Superovulation of cattle with a recombinant-DNA bovine follicle stimulating hormone. Anim Reprod Sci. 1993;33(1-4):71-82. http://dx.doi.org/10.1016/0378-4320(93)90107-3.
http://dx.doi.org/10.1016/0378-4320(93)9...
). However, one of the main challenges in producing these recombinant proteins has been achieving proper post-translational modifications, particularly glycosylations (Hesser et al., 2011Hesser MW, Morris JC, Gibbons JR. Advances in recombinant gonadotropin production for use in bovine superovulation. Reprod Domest Anim. 2011;46(5):933-42. http://dx.doi.org/10.1111/j.1439-0531.2011.01767.x. PMid:21366721.
http://dx.doi.org/10.1111/j.1439-0531.20...
), which play a crucial role in extending the biological activity and half-life of the hormone. Proper glycosylation helps preserve the hormone from enzymatic degradation in the bloodstream, reducing renal and hepatic clearance (Morell et al., 1971Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971;246(5):1461-7. http://dx.doi.org/10.1016/S0021-9258(19)76994-4. PMid:5545089.
http://dx.doi.org/10.1016/S0021-9258(19)...
; Sinclair and Elliott, 2005Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005;94(8):1626-35. http://dx.doi.org/10.1002/jps.20319. PMid:15959882.
http://dx.doi.org/10.1002/jps.20319...
).

Traditionally, superstimulation of the ovaries using pFSH required multiple administrations at 12-hour intervals for four days (Monniaux et al., 1983Monniaux D, Chupin D, Saumande J. Superovulatory responses of cattle. Theriogenology. 1983;19(1):55-81. http://dx.doi.org/10.1016/0093-691X(83)90124-3.
http://dx.doi.org/10.1016/0093-691X(83)9...
). Nowadays, treatment with rFSH for SOV protocol improved the number of corpora lutea and embryo-derived compared to pFSH (Gutiérrez-Reinoso et al., 2023Gutiérrez-Reinoso MA, Arreseigor CJ, Driedger B, Cabezas I, Hugues F, Parra NC, Sánchez O, Toledo JR, Garcia-Herreros M. Effects of recombinant FSH (bscrFSH) and pituitary FSH (FSH-p) on embryo production in superovulated dairy heifers inseminated with unsorted and sex-sorted semen. Anim Reprod Sci. 2023;252:107226. http://dx.doi.org/10.1016/j.anireprosci.2023.107226. PMid:37027990.
http://dx.doi.org/10.1016/j.anireprosci....
). Furthermore, recent studies have shown promising results with long-acting bovine recombinant FSH (brFSH). This long-acting version of rFSH has the potential to reduce the number of treatments and improve the efficiency of superovulation (SOV) protocols for in vivo (Carvalho et al., 2014Carvalho PD, Hackbart KS, Bender RW, Baez GM, Dresch AR, Guenther JN, Souza AH, Fricke PM. Use of a single injection of long-acting recombinant bovine FSH to superovulate Holstein heifers: a preliminary study. Theriogenology. 2014;82(3):481-9. http://dx.doi.org/10.1016/j.theriogenology.2014.05.011. PMid:24938802.
http://dx.doi.org/10.1016/j.theriogenolo...
) and in vitro embryo production (OPU/IVEP) (Rodrigues et al., 2023aRodrigues CA, Castro A No, Catussi BLC, Rebeis LM, Pinho P, Randi F, Baruselli PS. Superstimulation prior to the ovum pick-up with a single dose of recombinant FSH improves in vitro embryo production in Holstein heifers. Animal Sci Proc. 2023a;14(3):483-4. http://dx.doi.org/10.1016/j.anscip.2023.03.085.
http://dx.doi.org/10.1016/j.anscip.2023....
, bRodrigues CA, Castro A No, Catussi BLC, Rebeis LM, Pinho P, Randi F, Baruselli PS. Superstimulation prior to ovum pick-up with a single dose of recombinant FSH improves in vitro embryo production in lactating Holstein cows. Animal Sci Proc. 2023b;14(3):484-5. http://dx.doi.org/10.1016/j.anscip.2023.03.087.
http://dx.doi.org/10.1016/j.anscip.2023....
). The use of a single-dose of long-acting brFSH simplifies donor management and enhances the efficiency of embryo transfer programs. Additionally, studies comparing Holstein heifers treated with multiple doses of conventional pFSH administered twice daily during the SOV protocol with Holstein heifers receiving a single treatment of long-acting brFSH showed similar superovulation responses, resulting in the production of good-quality embryos in both groups (Carvalho et al., 2014Carvalho PD, Hackbart KS, Bender RW, Baez GM, Dresch AR, Guenther JN, Souza AH, Fricke PM. Use of a single injection of long-acting recombinant bovine FSH to superovulate Holstein heifers: a preliminary study. Theriogenology. 2014;82(3):481-9. http://dx.doi.org/10.1016/j.theriogenology.2014.05.011. PMid:24938802.
http://dx.doi.org/10.1016/j.theriogenolo...
).

FSH treatment for superstimulation before OPU has proven to be beneficial in promoting the growth of a homogenous population of follicles and facilitating the recovery of competent oocytes suitable for in vitro embryo production (IVEP) procedures. Studies conducted in cattle (Blondin et al., 2002Blondin P, Bousquet D, Twagiramungu H, Barnes F, Sirard MA. Manipulation of follicular development to produce developmentally competent bovine oocytes. Biol Reprod. 2002;66(1):38-43. http://dx.doi.org/10.1095/biolreprod66.1.38. PMid:11751261.
http://dx.doi.org/10.1095/biolreprod66.1...
; Vieira et al., 2014Vieira LM, Rodrigues CA, Castro A No, Guerreiro BM, Silveira CRA, Moreira RJC, Sá MF Fo, Bó GA, Mapletoft RJ, Baruselli PS. Superstimulation prior to the ovum pick-up to improve in vitro embryo production in lactating and non-lactating Holstein cows. Theriogenology. 2014;82(2):318-24. http://dx.doi.org/10.1016/j.theriogenology.2014.04.013. PMid:24839924.
http://dx.doi.org/10.1016/j.theriogenolo...
) and buffalo (Carvalho et al., 2019Carvalho JGS, Carvalho NAT, Bayeux BM, Watanabe YF, Watanabe OY, Mingoti RD, Baruselli PS. Superstimulation prior to the ovum pick-up improves the in vitro embryo production in nulliparous, primiparous and multiparous buffalo (Bubalus bubalis) donors. Theriogenology. 2019;138(15):164-8. http://dx.doi.org/10.1016/j.theriogenology.2019.07.003. PMid:31374459.
http://dx.doi.org/10.1016/j.theriogenolo...
) have shown that FSH treatment leads to the development of follicles with larger diameters, which, in turn, improves the quality of the oocytes obtained and enhances the efficiency of the IVEP procedures. The growth of follicles to larger diameters has been associated with the acquisition of developmental potential in oocytes, enabling them to reach the blastocyst stage during embryo development (Seneda et al., 2001Seneda MM, Esper CR, Garcia JM, Oliveira JA, Vantini R. Relationship between follicle size and ultrasound-guided transvaginal oocyte recovery. Anim Reprod Sci. 2001;67(1-2):37-43. http://dx.doi.org/10.1016/S0378-4320(01)00113-0. PMid:11408112.
http://dx.doi.org/10.1016/S0378-4320(01)...
). It has been observed that the developmental competence of the oocyte continues to increase as the follicular diameter approaches the LH surge (Sirard, 2012Sirard MA. Factors affecting oocyte and embryo transcriptomes. Reprod Domest Anim. 2012;47(Suppl 4):148-55. http://dx.doi.org/10.1111/j.1439-0531.2012.02069.x. PMid:22827364.
http://dx.doi.org/10.1111/j.1439-0531.20...
). The process of follicular growth and oocyte development is governed by a sequence of molecular and transcriptional alterations. The quality and developmental potential of the oocyte have been linked to these molecular changes during follicular growth (Labrecque and Sirard, 2014Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod. 2014;20(2):103-16. http://dx.doi.org/10.1093/molehr/gat082. PMid:24233546.
http://dx.doi.org/10.1093/molehr/gat082...
). Consequently, oocyte quality is highly correlated with the diameter of the follicle in which it matures.

In Brazil, studies have been conducted to assess the impact of follicular stimulation using long-acting brFSH on the efficiency of OPU and IVEP in Holstein heifers. The effects of treatment on follicular diameter, viable oocyte rate, recovery rate, cleavage rate, and blastocyst rate were evaluated (Rodrigues et al., 2023aRodrigues CA, Castro A No, Catussi BLC, Rebeis LM, Pinho P, Randi F, Baruselli PS. Superstimulation prior to the ovum pick-up with a single dose of recombinant FSH improves in vitro embryo production in Holstein heifers. Animal Sci Proc. 2023a;14(3):483-4. http://dx.doi.org/10.1016/j.anscip.2023.03.085.
http://dx.doi.org/10.1016/j.anscip.2023....
). Heifers in the Control group (n=30) received no further treatment, whereas heifers in the brFSH group received a single dose of 50 µg (n=30) or 100 µg (n=30) of brFSH 3 days before OPU. There was no difference between groups in the total number of follicles aspirated per OPU session (Control=13.2±1.4 vs. 50 µg=11.9±1.2 vs. 100 µg=11.6±0.9; P=0.90), however, treatment with brFSH regardless of dosage (50 µg or 100 µg) increased the number of medium follicles (6-10 mm) and decreased the number of small follicles (<6 mm) compared to the Control group at OPU. Furthermore, heifers treated with 100 µg of brFSH produced a greater number of large follicles (>10 mm) than the Control group. Heifers treated with 100 µg of brFSH had greater (P=0.004) viable oocytes rate than the Control group (Control=54.0%b vs. 50 µg=62.0%ab vs. 100 µg=71.0%a; P=0.004), without compromising the recovery rate (Control=79.7% vs. 50 µg=72.7% vs. 100 µg=75.5%; P=0.57). Heifers treated with 100 µg of brFSH also exhibited higher cleavage (Control=30.9%b vs. 50 µg=41.4%ab vs. 100 µg=52.3%a; P=0.02) and blastocysts rates (Control=7.1%b vs. 50 µg=16.2%ab vs. 100 µg=17.4%a; P=0.05), indicating improved embryo development potential compared to the Control group. The number of embryos produced per OPU was similar between groups (Control=0.97±0.22 vs. 50 µg=1.67±0.40 vs. 100 µg=1.37±0.28; P=0.29). However, treatment with a single dose of brFSH did positively affect several parameters, such as follicular diameter and, viable oocyte, cleavage and blastocyst rates, without compromising the recovery rate, leading to an enhancement in the efficiency of OPU and IVEP procedures in Holstein heifers.

In another study conducted by Rodrigues et al. (2023b)Rodrigues CA, Castro A No, Catussi BLC, Rebeis LM, Pinho P, Randi F, Baruselli PS. Superstimulation prior to ovum pick-up with a single dose of recombinant FSH improves in vitro embryo production in lactating Holstein cows. Animal Sci Proc. 2023b;14(3):484-5. http://dx.doi.org/10.1016/j.anscip.2023.03.087.
http://dx.doi.org/10.1016/j.anscip.2023....
, lactating Holstein cows were subjected to different treatments to evaluate their impact on OPU and IVEP. One group received a single dose of 100 µg of brFSH 3 days before OPU (n=31), another group received a single dose of 150 µg of brFSH 3 days before OPU (n=33), and a third group received a total dosage of 200 mg of pFSH (Folltropin, Vetoquinol) administered in four decreasing doses over a 12-hour interval (57, 57, 43, and 43 mg; n=27). The total number of follicles aspirated did not differ between the groups (mean of 12.6±0.98; P=0.21). However, both brFSH treatments (100 µg and 150 µg) and the pFSH treatment resulted in an increase in the number of large follicles (>10 mm) and a decrease in the number of small follicles (<6 mm) at the time of OPU compared to the Control group (no FSH treatment; P<0.0001). Donors treated with 100 µg (71.1%) and 150 µg (74.7%) of brFSH exhibited similar recovery rates [number of cumulus-oocyte complexes (COCs) recovered/total number of follicles aspirated] compared to the control group (81.9%). However, donors treated with pFSH (68.0%) showed a lower oocyte recovery rate (P<0.05) than the control group. Previous studies have suggested a negative correlation between follicle size and recovery rate in donor cows and heifers, despite the improvement in oocyte quality with follicle growth (Seneda et al., 2001Seneda MM, Esper CR, Garcia JM, Oliveira JA, Vantini R. Relationship between follicle size and ultrasound-guided transvaginal oocyte recovery. Anim Reprod Sci. 2001;67(1-2):37-43. http://dx.doi.org/10.1016/S0378-4320(01)00113-0. PMid:11408112.
http://dx.doi.org/10.1016/S0378-4320(01)...
; Vieira et al., 2014Vieira LM, Rodrigues CA, Castro A No, Guerreiro BM, Silveira CRA, Moreira RJC, Sá MF Fo, Bó GA, Mapletoft RJ, Baruselli PS. Superstimulation prior to the ovum pick-up to improve in vitro embryo production in lactating and non-lactating Holstein cows. Theriogenology. 2014;82(2):318-24. http://dx.doi.org/10.1016/j.theriogenology.2014.04.013. PMid:24839924.
http://dx.doi.org/10.1016/j.theriogenolo...
). Furthermore, Rodrigues et al. (2023b)Rodrigues CA, Castro A No, Catussi BLC, Rebeis LM, Pinho P, Randi F, Baruselli PS. Superstimulation prior to ovum pick-up with a single dose of recombinant FSH improves in vitro embryo production in lactating Holstein cows. Animal Sci Proc. 2023b;14(3):484-5. http://dx.doi.org/10.1016/j.anscip.2023.03.087.
http://dx.doi.org/10.1016/j.anscip.2023....
found that the blastocyst rate (number of blastocysts/number of oocytes cultured) was higher in donors treated with 150 µg of brFSH (27.4%) compared to those treated with 100 µg of brFSH (14.1%; P=0.01). The dose of 150 µg of brFSH (2.58±0.39) also yielded a higher number of blastocysts per OPU (P=0.07) compared to 100 µg of brFSH (1.58±0.30) and pFSH (1.46±0.25). Additionally, the study assessed the pregnancy rate per embryo transfer (P/ET) of in vitro-produced embryos derived from Holstein donors who received a single dose of 100 µg of brFSH three days prior to OPU. These embryos were subsequently transferred to lactating Holstein recipients. The results revealed a significant increase in the P/ET among recipients who received embryos from brFSH-treated donors compared to the control group [Control=27.1% (39/144) vs. brFSH=35.1% (60/171); P=0.06]. Based on these findings, the authors concluded that the utilization of a single brFSH treatment for superstimulation not only simplifies donor management but also enhances the efficiency of OPU/IVEP procedures in lactating Holstein cows.

Recombinant treatment (eCG-Like) for FTAI protocols

Equine chorionic gonadotropin or eCG is an important hormone produced by the placenta of pregnant mares. This hormone is commonly used to enhance the reproduction of beef and dairy heifers and cows, sheep, goats, and pigs. The eCG is a glycoprotein secreted by the endometrial cups of pregnant mares between days 40 and 130 of gestation. This hormone exhibits a half-life of approximately 46 hours. Acting as a gonadotropin, eCG can bind to both FSH and LH receptors and demonstrates FSH and LH-like activities in cattle (Murphy and Martinuk, 1991Murphy BD, Martinuk SD. Equine chorionic gonadotropin. Endocr Rev. 1991;12(1):27-44. http://dx.doi.org/10.1210/edrv-12-1-27. PMid:2026120.
http://dx.doi.org/10.1210/edrv-12-1-27...
). Consequently, eCG binds to these follicular receptors and promotes growth and maturation, thereby enhancing the ovulation capacity of the dominant follicle (Stewart and Allen, 1981Stewart F, Allen WR. Biological functions and receptor binding activities of equine chorionic gonadotrophins. J Reprod Fertil. 1981;62(2):527-36. http://dx.doi.org/10.1530/jrf.0.0620527. PMid:6265633.
http://dx.doi.org/10.1530/jrf.0.0620527...
; Baruselli et al., 2008aBaruselli PS, Jacomini JO, Sales JNS, Crepaldi GA. Importância do emprego da eCG em protocolos de sincronização para IA, TE e SOV em tempo fixo. In: Proceedings of the 3° Simpósio Internacional de Reprodução Animal Aplicada; 2008 Sep 25-27; Londrina, Brazil. São Paulo: Faculdade de Medicina Veterinária e Zootecnia/Universidade de São Paulo; 2008a. p. 146-67.). The eCG molecule is composed of two subunits (α - composed of 96 amino acids; and β - composed of 149 amino acids). One of the notable features of eCG is the abundance of carbohydrates, particularly sialic acid (n-acetyl-neuraminic acid), primarily found in the β subunit of the eCG molecule. The abundance of sialic acid contributes to eCG prolonged half-life (Murphy and Martinuk, 1991Murphy BD, Martinuk SD. Equine chorionic gonadotropin. Endocr Rev. 1991;12(1):27-44. http://dx.doi.org/10.1210/edrv-12-1-27. PMid:2026120.
http://dx.doi.org/10.1210/edrv-12-1-27...
). Additionally, eCG possesses a high molecular weight and carries a negative charge due to the presence of sialic acid, which hampers its glomerular filtration, further extending its half-life (Legardinier et al., 2005Legardinier S, Cahoreau C, Klett D, Combarnous Y. Involvement of equine chorionic gonadotropin (eCG) carbohydrate side chains in its bioactivity; lessons from recombinant hormone expressed in insect cells. Reprod Nutr Dev. 2005;45(3):255-9. http://dx.doi.org/10.1051/rnd:2005018. PMid:15982452.
http://dx.doi.org/10.1051/rnd:2005018...
).

Several authors have observed the positive effects of the treatment with eCG on follicular development in cattle during estrous synchronization programs (Bó et al., 2003Bó GA, Baruselli PS, Martinez MF. Pattern and manipulation of follicle development in Bos indicus cattle. Anim Reprod Sci. 2003;78(3-4):307-26. http://dx.doi.org/10.1016/S0378-4320(03)00097-6. PMid:12818651.
http://dx.doi.org/10.1016/S0378-4320(03)...
; Baruselli et al., 2004cBaruselli PS, Reis EL, Marques MO, Nasser LF, Bó GA. The use of hormonal treatments to improve reproductive performance of anestrous beef cattle in tropical climates. Anim Reprod Sci. 2004c;82-83:479-86. http://dx.doi.org/10.1016/j.anireprosci.2004.04.025. PMid:15271474.
http://dx.doi.org/10.1016/j.anireprosci....
; Sá et al., 2010aSá MF Fo, Ayres H, Ferreira RM, Marques MO, Reis EL, Silva RCP, Rodrigues CA, Madureira EH, Bó GA, Baruselli PS. Equine chorionic gonadotropin and gonadotropin-releasing hormone enhance fertility in a norgestomet-based, timed artificial insemination protocol in suckled Nellore (Bos indicus) cows. Theriogenology. 2010a;73(5):651-8. http://dx.doi.org/10.1016/j.theriogenology.2009.11.004. PMid:20080296.
http://dx.doi.org/10.1016/j.theriogenolo...
; Sales et al., 2011Sales JNS, Crepaldi GA, Girotto RW, Souza AH, Baruselli PS. Fixed-time AI protocols replacing eCG with a single dose of FSH were less effective in stimulating follicular growth, ovulation, and fertility in suckled-anestrus Nellore beef cows. Anim Reprod Sci. 2011;124(1-2):12-8. http://dx.doi.org/10.1016/j.anireprosci.2011.02.007. PMid:21376482.
http://dx.doi.org/10.1016/j.anireprosci....
). In a previous study conducted by our research group, we observed that the effect of eCG was particularly pronounced in specific groups of animals, including anestrous or undernourished suckled beef cows (Baruselli et al., 2003Baruselli PS, Marques MO, Nasser LF, Reis EL, Bó GA. Effect of eCG on pregnancy rates of lactating zebu beef cows treated with CIDR-B devices for timed artificial insemination. Theriogenology. 2003;59(1):214. http://dx.doi.org/10.1016/S0093-691X(02)01253-0.
http://dx.doi.org/10.1016/S0093-691X(02)...
; Baruselli et al., 2004aBaruselli PS, Madureira EH, Marques MO, Rodrigues CA, Nasser LFT, Silva RCP, Reis EL, Sá MF Fo. Efeito do tratamento com eCG na taxa de concepção de vacas Nelores com diferentes escores de condição corporal inseminadas em tempo fixo (análise retrospectiva). Acta Sci Vet. 2004a;32:228.; Bó et al., 2007Bó GA, Cutaia L, Peres LC, Pincinato D, Maraña D, Baruselli PS. Technologies for fixed-time artificial insemination and their influence on reproductive performance of Bos indicus cattle. Soc Reprod Fertil Suppl. 2007;64:223-36. PMid:17491150.), prepubertal and pubertal beef heifers (Baruselli et al., 2004bBaruselli PS, Reis EL, Carvalho NAT, Carvalho JBP. eCG increases ovulation rate and plasmatic progesterone concentration in Nelore (Bos indicus) heifers treated with progesterone releasing device. In: Proceedings of the XV International Congress on Animal Reproduction; 2004 Aug 8-12; Porto Seguro, Brazil. Belo Horizonte: Colégio Brasileiro de Reprodução Animal; 2004b. p. 117.; Sá et al., 2010bSá MF Fo, Torres-Júnior JRS, Penteado L, Gimenes LU, Ferreira RM, Ayres H, Castro e Paula LA, Sales JNS, Baruselli PS. Equine chorionic gonadotropin improves the efficacy of a progestin-based fixed-time artificial insemination protocol in Nelore (Bos indicus) heifers. Anim Reprod Sci. 2010b;118(2-4):182-7. http://dx.doi.org/10.1016/j.anireprosci.2009.10.004. PMid:19939592.
http://dx.doi.org/10.1016/j.anireprosci....
; Pessoa et al., 2016Pessoa GA, Martini AP, Carloto GW, Rodrigues MCC, Claro I Jr, Baruselli PS, Brauner CC, Rubin MIB, Corrêa MN, Leivas FG, Sá MF Fo. Different doses of equine chorionic gonadotropin on ovarian follicular growth and pregnancy rate of suckled Bos taurus beef cows subjected to timed artificial insemination protocol. Theriogenology. 2016;85(5):792-9. http://dx.doi.org/10.1016/j.theriogenology.2015.09.057. PMid:26577752.
http://dx.doi.org/10.1016/j.theriogenolo...
), primiparous beef cows (Sales et al., 2016Sales JNS, Bottino MP, Silva LACL, Girotto RW, Massoneto JPM, Souza JC, Baruselli PS. Effects of eCG are more pronounced in primiparous than multiparous Bos indicus cows submitted to a timed artificial insemination protocol. Theriogenology. 2016;86(9):2290-5. http://dx.doi.org/10.1016/j.theriogenology.2016.07.023. PMid:27616213.
http://dx.doi.org/10.1016/j.theriogenolo...
), dairy cows in anestrous or with a low body condition score at the beginning of the FTAI protocol (Souza et al., 2009Souza AH, Viechnieski S, Lima FA, Silva FF, Araújo R, Bó GA, Wiltbank MC, Baruselli PS. Effects of equine chorionic gonadotropin and type of ovulatory stimulus in a timed-AI protocol on reproductive responses in dairy cows. Theriogenology. 2009;72(1):10-21. http://dx.doi.org/10.1016/j.theriogenology.2008.12.025. PMid:19269685.
http://dx.doi.org/10.1016/j.theriogenolo...
) and in lactating buffaloes submitted to FTAI during the non-breeding season (Carvalho et al., 2013Carvalho NAT, Soares JG, Porto RM Fo, Gimenes LU, Souza DC, Nichi M, Sales JS, Baruselli PS. Equine chorionic gonadotropin improves the efficacy of a timed artificial insemination protocol in buffalo during the nonbreeding season. Theriogenology. 2013;79(3):423-8. http://dx.doi.org/10.1016/j.theriogenology.2012.10.013. PMid:23154144.
http://dx.doi.org/10.1016/j.theriogenolo...
). Treatment with eCG at the time of P4 device removal has been used to enhance fertility in both beef (Baruselli et al., 2004cBaruselli PS, Reis EL, Marques MO, Nasser LF, Bó GA. The use of hormonal treatments to improve reproductive performance of anestrous beef cattle in tropical climates. Anim Reprod Sci. 2004c;82-83:479-86. http://dx.doi.org/10.1016/j.anireprosci.2004.04.025. PMid:15271474.
http://dx.doi.org/10.1016/j.anireprosci....
; Dias et al., 2009Dias CC, Wechsler FS, Day ML, Vasconcelos JLM. Progesterone concentrations, exogenous equine chorionic gonadotropin, and timing of prostaglandin F2α treatment affect fertility in postpuberal Nelore heifers. Theriogenology. 2009;72(3):378-85. http://dx.doi.org/10.1016/j.theriogenology.2009.03.006. PMid:19477500.
http://dx.doi.org/10.1016/j.theriogenolo...
; Núñez-Olivera et al., 2014Núñez-Olivera R, Castro T, García-Pintos C, Bó GA, Piaggio J, Menchaca A. Ovulatory response and luteal function after eCG administration at the end of a progesterone and estradiol’ based treatment in postpartum anestrous beef cattle. Anim Reprod Sci. 2014;146(3-4):111-6. http://dx.doi.org/10.1016/j.anireprosci.2014.02.017. PMid:24646633.
http://dx.doi.org/10.1016/j.anireprosci....
) and dairy cows (Souza et al., 2009Souza AH, Viechnieski S, Lima FA, Silva FF, Araújo R, Bó GA, Wiltbank MC, Baruselli PS. Effects of equine chorionic gonadotropin and type of ovulatory stimulus in a timed-AI protocol on reproductive responses in dairy cows. Theriogenology. 2009;72(1):10-21. http://dx.doi.org/10.1016/j.theriogenology.2008.12.025. PMid:19269685.
http://dx.doi.org/10.1016/j.theriogenolo...
; Garcia-Ispierto et al., 2012Garcia-Ispierto I, López-Helguera I, Martino A, López-Gatius F. Reproductive performance of anoestrous high-producing dairy cows improved by adding equine chorionic gonadotrophin to a progesterone-based oestrous synchronizing protocol. Reprod Domest Anim. 2012;47(5):752-8. http://dx.doi.org/10.1111/j.1439-0531.2011.01954.x. PMid:22117847.
http://dx.doi.org/10.1111/j.1439-0531.20...
). This treatment stimulates follicular growth, ovulation, and the function of the corpus luteum (CL), leading to improved reproductive outcomes. Additionally, we observed that eCG treatment promotes conceptus development in cows (Costa e Silva et al., 2013Costa e Silva PP Fo, Sales JNS, Sá MF Fo, Perecin F, Assis AC No, Baruselli PS, Vincenti L. Effects of equine chorionic gonadotropin on follicular, luteal and conceptus development of non-lactating Bos indicus beef cows subjected to a progesterone plus estradiol-based timed artificial insemination protocol. Ital J Anim Sci. 2013;12(3):e61. http://dx.doi.org/10.4081/ijas.2013.e61.
http://dx.doi.org/10.4081/ijas.2013.e61...
).

Furthermore, eCG induces morpho-functional changes in the CL of treated cattle, including increased CL volume and elevated plasma concentration of progesterone. There were indications of cellular changes related to increased hormonal production and increased CL volume in treated females (Rigoglio et al., 2013Rigoglio NN, Fátima LA, Hanassaka JY, Pinto GL, Machado ASD, Gimenes LU, Baruselli PS, Rennó FP, Moura CEB, Watanabe IS, Papa PC. Equine chorionic gonadotropin alters luteal cell morphologic features related to progesterone synthesis. Theriogenology. 2013;79(4):673-9. http://dx.doi.org/10.1016/j.theriogenology.2012.11.023. PMid:23273432.
http://dx.doi.org/10.1016/j.theriogenolo...
). Additionally, it was observed that stimulatory treatment with eCG increased to density and volume of small and large luteal cells and increased the mitochondrial density (Rigoglio et al., 2013Rigoglio NN, Fátima LA, Hanassaka JY, Pinto GL, Machado ASD, Gimenes LU, Baruselli PS, Rennó FP, Moura CEB, Watanabe IS, Papa PC. Equine chorionic gonadotropin alters luteal cell morphologic features related to progesterone synthesis. Theriogenology. 2013;79(4):673-9. http://dx.doi.org/10.1016/j.theriogenology.2012.11.023. PMid:23273432.
http://dx.doi.org/10.1016/j.theriogenolo...
). In another study, we analyzed by microarray the effects of stimulatory treatments using eCG on the luteal gene expression profile. It has been observed that eCG causes changes in the expression of multiple genes, particularly those related to P4 synthesis, metabolism, cell differentiation, proliferation, and angiogenesis (Fátima et al., 2013Fátima LA, Baruselli PS, Gimenes LU, Binelli M, Rennó FP, Murphy BD, Papa PC. Global gene expression in the bovine corpus luteum is altered after stimulatory and superovulatory treatments. Reprod Fertil Dev. 2013;25(7):998-1011. http://dx.doi.org/10.1071/RD12155. PMid:23106933.
http://dx.doi.org/10.1071/RD12155...
; Moura et al., 2015Moura CEB, Rigoglio NN, Braz JKFS, Machado M, Baruselli PS, Papa PC. Microvascularization of corpus luteum of bovine treated with equine chorionic gonadotropin. Microsc Res Tech. 2015;78(9):747-53. http://dx.doi.org/10.1002/jemt.22533. PMid:26094589.
http://dx.doi.org/10.1002/jemt.22533...
). Moreover, among the differentially expressed genes after eCG treatment, many were involved in lipid biosynthesis and progesterone production, such as PPARG, STAR, prolactin receptors, and follistatin (Fátima et al., 2013Fátima LA, Baruselli PS, Gimenes LU, Binelli M, Rennó FP, Murphy BD, Papa PC. Global gene expression in the bovine corpus luteum is altered after stimulatory and superovulatory treatments. Reprod Fertil Dev. 2013;25(7):998-1011. http://dx.doi.org/10.1071/RD12155. PMid:23106933.
http://dx.doi.org/10.1071/RD12155...
). Also, our results suggest that eCG induces IGF-1 production in the CL, supporting its responsiveness to gonadotropins and the increase in progesterone production by increased lipogenic activity, angiogenesis, and plasticity of the extracellular matrix (ECM;Sousa et al., 2016Sousa LMMC, Mendes GP, Campos DB, Baruselli PS, Papa PC. Equine chorionic gonadotropin modulates the expression of genes related to the structure and function of the bovine corpus luteum. PLoS One. 2016;11(10):e0164089. http://dx.doi.org/10.1371/journal.pone.0164089. PMid:27711194.
http://dx.doi.org/10.1371/journal.pone.0...
).

Sales et al. (2011)Sales JNS, Crepaldi GA, Girotto RW, Souza AH, Baruselli PS. Fixed-time AI protocols replacing eCG with a single dose of FSH were less effective in stimulating follicular growth, ovulation, and fertility in suckled-anestrus Nellore beef cows. Anim Reprod Sci. 2011;124(1-2):12-8. http://dx.doi.org/10.1016/j.anireprosci.2011.02.007. PMid:21376482.
http://dx.doi.org/10.1016/j.anireprosci....
observed an increase in the diameter of the largest follicle at the time of FTAI (Control=12.9±0.3 mm vs. eCG=13.9±0.2 mm; P=0.006) and on the follicular growth rate between P4 device removal and FTAI (Control=0.95±0.1 mm/day vs. eCG=1.40±0.1 mm/day; P=0.006) in beef cows treated with eCG. In Nelore heifers, Baruselli et al. (2004c)Baruselli PS, Reis EL, Marques MO, Nasser LF, Bó GA. The use of hormonal treatments to improve reproductive performance of anestrous beef cattle in tropical climates. Anim Reprod Sci. 2004c;82-83:479-86. http://dx.doi.org/10.1016/j.anireprosci.2004.04.025. PMid:15271474.
http://dx.doi.org/10.1016/j.anireprosci....
found a positive effect of the treatment of eCG on ovulation rate (Control=50.0% vs. eCG=76.2%; P<0.05), however, the eCG treatment did not interfere with the interval between P4 device removal and ovulation (Control=72.0±2.5 h vs. eCG=72.0±3.1 h). Moreover, treatment with eCG presented an increase in plasma P4 concentrations during diestrus (12 days after the treatment) in both Nelore heifers (Control=2.2±0.2 ng/mL vs eCG=4.3±0.6 ng/mL; Baruselli et al., 2004cBaruselli PS, Reis EL, Marques MO, Nasser LF, Bó GA. The use of hormonal treatments to improve reproductive performance of anestrous beef cattle in tropical climates. Anim Reprod Sci. 2004c;82-83:479-86. http://dx.doi.org/10.1016/j.anireprosci.2004.04.025. PMid:15271474.
http://dx.doi.org/10.1016/j.anireprosci....
) and crossbred beef suckled primiparous (Control=6.4±0.5 ng/mL vs eCG=8.6±0.4 ng/mL; Marques et al., 2003Marques MO, Reis EL, Campos EP Fo, Baruselli PS. Efeitos da administração de eCG e de benzoato de estradiol para sincronização da ovulação em vacas zebuínas no período pós-parto. In: Proceedings of the V Simposio Internacional de Reproducción Animal; 2003; Córdoba, Argentina. Córdoba: Instituto de Reproducción Animal Córdoba; 2003. p. 392.). In another study conducted by Sá et al. (2010b)Sá MF Fo, Torres-Júnior JRS, Penteado L, Gimenes LU, Ferreira RM, Ayres H, Castro e Paula LA, Sales JNS, Baruselli PS. Equine chorionic gonadotropin improves the efficacy of a progestin-based fixed-time artificial insemination protocol in Nelore (Bos indicus) heifers. Anim Reprod Sci. 2010b;118(2-4):182-7. http://dx.doi.org/10.1016/j.anireprosci.2009.10.004. PMid:19939592.
http://dx.doi.org/10.1016/j.anireprosci....
on cyclic or acyclic Nelore heifers, the administration of eCG at P4 device removal led to an increase in the diameter of the largest follicle at the time of FTAI (48 hours later; Control=9.5±0.2 mm vs. eCG=10.6±0.2 mm; P=0.003), a higher growth rate of the largest follicle from the day of P4 device removal to FTAI (Control=0.64±0.10 mm/day vs. eCG=1.14±0.10 mm/day; P=0.0009) and an enhanced ovulation rate (Control=73.6% vs. eCG=94.4%; P=0.006). Thus, the use of eCG has been found to promote increased follicular growth and ovulation while also raising the progesterone concentration during the diestrus phase following the estrus synchronization. As a result, eCG is currently being successfully employed in FTAI programs.

The use of eCG has also been studied for in vivo and in vitro superstimulation and embryo production (Bó and Mapletoft, 2014Bó GA, Mapletoft RJ. Historical perspectives and recent research on superovulation in cattle. Theriogenology. 2014;81(1):38-48. http://dx.doi.org/10.1016/j.theriogenology.2013.09.020. PMid:24274408.
http://dx.doi.org/10.1016/j.theriogenolo...
). Our research group studied the hypothesis that satisfactory embryo production could be achieved by administering a single dose of eCG for superovulation in Nelore and Holstein donor cows (Baruselli et al., 2008bBaruselli PS, Martins CM, Sales JNS, Ferreira RM. Recent advances in bovine superovulation. Acta Sci Vet. 2008b;36(2):s433-48.). The findings showed that treatment with eCG (1,500 IU or 2,000 IU for Nelore and 2,000 IU or 2,500 IU for Holstein) resulted in a similar number of transferable embryos compared to donors treated with eight gradually decreasing doses of pFSH. These studies provide evidence that incorporating eCG treatment for superstimulation during the synchronization protocol for follicular growth and ovulation can reduce management without compromising embryo production, both in Nelore (Bos indicus) and Holstein (Bos taurus) donors.

Additionally, we assessed the impact of eCG treatment (administered two days before OPU) on the success of OPU/IVEP programs in Nelore (Bos indicus), Brangus (crossbred), and Holstein (Bos taurus) donors (Martins et al., 2012Martins CM, Reis PO, Sales JNS, Sala RV, Vieira LM, Baruselli PS. Efeito da sincronização da onda de crescimento folicular e do tratamento com bST ou eCG na OPU-PIV de doadoras Nelore, Brangus e Holandesas. In: XXVI Reunião Anual da Sociedade Brasileira de Tecnologia de Embriões; 2012 Aug/Sep 30-2; Foz do Iguaçu, Brazil. Jaboticabal: Sociedade Brasileira de Tecnologia de Embriões; 2012. p. 403.). Overall, the eCG treatment resulted in a higher number of viable oocytes in Brangus and Holstein donors. However, it only led to a greater total number of blastocysts per OPU session in Holstein donors, indicating a breed-specific effect on the response to eCG treatment for in vitro embryo production.

Currently, the eCG products available in the international market are derived from the blood of pregnant mares. It is essential to note that the glycosylation profile of eCG significantly affects its half-life and effectiveness, and this profile may vary among mares and at different stages of gestation (González-Menció et al., 1978González-Menció F, Manns J, Murphy BD. FSH and LH activity of PMSG from mares at different stages of gestation. Anim Reprod Sci. 1978;1(2):137-44. http://dx.doi.org/10.1016/0378-4320(78)90021-0.
http://dx.doi.org/10.1016/0378-4320(78)9...
; Manning et al., 1987Manning AW, Rajkumar K, Bristol F, Flood PF, Murphy BD. Genetic and temporal variation in serum concentrations and biological activity of horse chorionic gonadotrophin. J Reprod Fertil Suppl. 1987;35:389-97. PMid:3119830.; Murphy and Martinuk, 1991Murphy BD, Martinuk SD. Equine chorionic gonadotropin. Endocr Rev. 1991;12(1):27-44. http://dx.doi.org/10.1210/edrv-12-1-27. PMid:2026120.
http://dx.doi.org/10.1210/edrv-12-1-27...
). However, through genetic engineering techniques, it is possible to produce eCG in laboratory settings without the need for animal-derived products. This advancement has led to the development of recombinant eCG (reCG), which offers a compelling alternative to conventional eCG (Villarraza et al., 2021Villarraza CJ, Antuña S, Tardivo MB, Rodríguez MC, Mussio P, Cattaneo L, Fontana D, Díaz PU, Ortega HH, Tríbulo A, Macagno A, Bó G, Ceaglio N, Prieto C. Development of a suitable manufacturing process for production of a bioactive recombinant equine chorionic gonadotropin (reCG) in CHO-K1Cells. Theriogenology. 2021;172:8-19. http://dx.doi.org/10.1016/j.theriogenology.2021.05.013. PMid:34082223.
http://dx.doi.org/10.1016/j.theriogenolo...
). By using reCG, not only is the production source better controlled, but also batch-to-batch consistency and reproducibility are ensured (McClamrock, 2003McClamrock HD. Recombinant gonadotropins. Clin Obstet Gynecol. 2003;46(2):298-316. http://dx.doi.org/10.1097/00003081-200306000-00009. PMid:12808381.
http://dx.doi.org/10.1097/00003081-20030...
). This represents a significant step forward in the field of reproductive technologies.

Crispo et al. (2021)Crispo M, Meikle MN, Schlapp G, Menchaca A. Ovarian superstimulatory response and embryo development using a new recombinant glycoprotein with eCG-like activity in mice. Theriogenology. 2021;164:31-5. http://dx.doi.org/10.1016/j.theriogenology.2021.01.012. PMid:33529809.
http://dx.doi.org/10.1016/j.theriogenolo...
reported the superovulation response and embryo development in mice obtained with a new glycoprotein with eCG-like activity (reCG) produced by recombinant DNA technology. A total of 150 females from three different mouse strains (C57BL/6J, BALB/Cj, and B6D2F1/J) were subjected to a superstimulatory protocol consisting of 5 IU of natural eCG, 5 IU of reCG or received a placebo (no-eCG), followed by 5 IU of human chorionic gonadotropin 48 hours later. Overall, no significant differences were observed in the total number of zygotes (33.6±2.4 vs. 28.7±2.6) and viable zygotes (31.5±2.4 vs. 25.8±2.5) collected per female between eCG and reCG treated females, respectively, which were greater (P<0.05) than those obtained in no-eCG treated females (6.9±0.7 and 5.9±0.7, respectively). Zygotes derived from the three experimental groups were subjected to in vitro culture until hatching 4.5 days post-coitus (DPC). Regardless of the mouse strain, no differences were observed among eCG and reCG-treated females for an overall cleavage rate of 1.5 DPC (58.5% vs. 60.5%), development rate of 3.5 DPC (47.2% vs. 48.9%) and hatching rate of 4.5 DPC (49.5% vs. 54.5%). Control females from no-eCG treated group showed lower cleavage and development rates [36.4% (cleavage rate at 24 hours) and 29.7% (blastocysts at 3.5 DPC; P<0.05). This study demonstrates a comparable superovulation response and embryo development between recombinant and natural eCG treatment.

Villarraza et al. (2021)Villarraza CJ, Antuña S, Tardivo MB, Rodríguez MC, Mussio P, Cattaneo L, Fontana D, Díaz PU, Ortega HH, Tríbulo A, Macagno A, Bó G, Ceaglio N, Prieto C. Development of a suitable manufacturing process for production of a bioactive recombinant equine chorionic gonadotropin (reCG) in CHO-K1Cells. Theriogenology. 2021;172:8-19. http://dx.doi.org/10.1016/j.theriogenology.2021.05.013. PMid:34082223.
http://dx.doi.org/10.1016/j.theriogenolo...
reported the development of a highly efficient process for the production of reCG in CHO-K1 cells using lentiviral vector systems as a delivery method. The authors found that reCG demonstrated biological activity in cattle since around 30 mg of reCG was needed to exert the same biologic effect as 400 IU of eCG in an ovulation synchronization protocol. Furthermore, the ovulation rate after the synchronization protocol was significantly greater (P<0.05) for both eCG-treated groups (conventional and reCG) than in cows in the control group (no eCG treatment). However, the interval between P4 device removal and ovulation was earlier (P<0.05) in cows treated with reCG than in cows treated with conventional eCG. Finally, the authors found that the CL diameter 13 days after ovulation did not differ among groups.

This information was confirmed by Bó and Cattaneo (2022)Bó GA, Cattaneo L. The use of a recombinant equine chorionic gonadotropin (reCG) in fixed-time AI programs in beef cattle. Anim Reprod. 2022;19(2):e22020. in Argentina. The authors used reCG in suckled beef cows submitted to an estradiol (E2) and progesterone (P4)-based FTAI protocol. In experiment 1, Angus and Angus x Hereford beef cows (n=1,244), with 45 to 60 days post-partum, were used to study different doses of reCG [105 IU (1.5 Ml) or 140 IU (2 Ml)] at the time of P4 device removal. In experiment 2, crossbred (Bos taurus x Bos indicus) beef cows (n=905), with 40 to 90 days post-partum, were used to study different doses of reCG [84 UI (1.2 Ml), 105 UI (1.5 Ml) or 126 UI (1.8 Ml)] at the time of P4 device removal. In experiment 1, P/AI was greater (P<0.05) in cows treated with reCG than in those in the control group [105 UI reCG=52.3% (216/413) vs. 140 IU reCG=53.5% (224/419) vs. Control=44.4% (183/412)]. In experiment 2, although differences among groups only tended to differ [84 IU reCG=38.6% (78/202) vs. 105 IU reCG=38.5% (100/260) vs. 126 IU reCG=36.8% (84/228) vs. Control=27.9% (60/215); P=0.1], there was a significant effect of giving or not reCG, regardless of dose, on P/AI [reCG=38% (262/690) vs. Control=27.9% (60/215); P<0.01]. The authors concluded that treatment with reCG increased P/AI in suckled cows submitted to E2/P4-based FTAI protocols.

In Brazil, our research group also compared the effect of equine chorionic gonadotropin-like glycoprotein produced by recombinant technology (reCG) treatment on the follicular dynamics and pregnancy rate of Nelore cows submitted to FTAI (Abreu et al., 2023Abreu LA, Cutaia L, Wallace SP, Resende TS, Carreira ALM, Cunha BS, Sousa AVG, Silva LA, Catussi BLC, Baruselli PS. Efficacy of eCG-like on preovulatory follicle diameter and pregnancy rate in Nelore cows submitted to FTAI. In: Proceedings of the 49th Annual Conference of International Embryo Technology Society; 2023 Jan 15-19; Lima, Peru. Champaign: IETS; 2023. p. 222.). A total of 1,928 suckled Bos indicus (Nelore) cows were homogenously distributed either one of the treatments on the day of P4 device removal (D8): 1) cows without eCG treatment; 2) cows treated with 300 IU of conventional eCG and 3) cows treated with 300 IU of reCG. The diameter of the largest follicle was greater (P=0.008) in reCG (11.0±0.2 mm) than in the control group (9.7±0.2 mm). However, no difference was observed between conventional eCG (10.2± 0.2mm) and reCG. Treatment with reCG increased (P<0.0001) the daily growth rate of the largest follicle (1.41±0.10 mm/day) compared to control (0.80±0.09 mm/day) and conventional eCG (1.05±0.08 mm/day) groups. The ovulation rate (presence of CL on D17) was greater (P=0.07) in reCG (51.4%) and in conventional eCG (46.8%) than in the control group (37.0%). The P/AI was greater (P<0.0001) in reCG (39.0%) and in conventional eCG (36.0%) than in the control group (23.0%). In conclusion, reCG has shown to enhance the reproductive performance of cows submitted to FTAI. Interestingly, no significant differences were observed in reproductive efficiency between the conventional eCG and the reCG. This finding highlights the promising potential of this advanced technology in improving reproductive outcomes in cattle breeding programs.

Recombinant treatment (bST) for artificial insemination and embryo transfer

Bovine somatotropin (bST), also known as bovine growth hormone (bGH), is an endogenous hormone present in cows that plays a vital role in regulating growth and lactation. In the early stages of research, bST was isolated and purified from the bovine pituitary through extraction methods (Evans and Simpson, 1931Evans HM, Simpson ME. Hormones to the anterior hypophysis. Am J Physiol. 1931;98(3):511-46. http://dx.doi.org/10.1152/ajplegacy.1931.98.3.511.
http://dx.doi.org/10.1152/ajplegacy.1931...
). The first studies conducted in the 1930s explored the use of crude extracts of bovine somatotropin to evaluate its impact on milk production, leading to promising results that demonstrated improvements in galactopoiesis (Asimov and Krouze, 1937Asimov GJ, Krouze NK. The lactogenic preparations from the anterior pituitary and the increase of milk yield in cows. J Dairy Sci. 1937;20(6):289-306. http://dx.doi.org/10.3168/jds.S0022-0302(37)95698-4.
http://dx.doi.org/10.3168/jds.S0022-0302...
). However, the challenges associated with large-scale extraction hindered the widespread adoption of this therapy. To overcome this limitation, scientists turned to biotechnology to produce synthetic versions of bST, known as recombinant bovine somatotropin (rbST). Recombinant bST, produced through genetic engineering techniques, is a replica of the natural hormone found in cows. The first study using rbST was described in 1982 (Bauman, 1999Bauman DE. Bovine somatotropin and lactation: from basic science to commercial application. Domest Anim Endocrinol. 1999;17(2-3):101-16. http://dx.doi.org/10.1016/S0739-7240(99)00028-4. PMid:10527114.
http://dx.doi.org/10.1016/S0739-7240(99)...
). Subsequent studies have consistently demonstrated its effectiveness in increasing milk production (West et al., 1990West JW, Bondari K, Johnson JC Jr. Effects of bovine somatotropin on milk yield and composition, body weight, and condition score of Holstein and Jersey cows. J Dairy Sci. 1990;73(4):1062-8. http://dx.doi.org/10.3168/jds.S0022-0302(90)78765-6. PMid:2345196.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Zhao et al., 1992Zhao X, Burton JH, McBride BW. Lactation, health, and reproduction of dairy cows receiving daily injectable or sustained-release somatotropin. J Dairy Sci. 1992;75(11):3122-30. http://dx.doi.org/10.3168/jds.S0022-0302(92)78075-8. PMid:1460139.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Phipps et al., 1997Phipps RH, Hard DL, Adriaens F. Use of bovine somatotropin in the tropics: the effect of sometribove on milk production in western, eastern, and southern Africa. J Dairy Sci. 1997;80(3):504-10. http://dx.doi.org/10.3168/jds.S0022-0302(97)75963-0. PMid:9098800.
http://dx.doi.org/10.3168/jds.S0022-0302...
), while extensive research has confirmed its safety for both human and bovine health (Bauman, 1992Bauman DE. Bovine somatotropin: review of an emerging animal technology. J Dairy Sci. 1992;75(12):3432-51. http://dx.doi.org/10.3168/jds.S0022-0302(92)78119-3. PMid:1474210.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Laurent et al., 1992Laurent F, Vignon B, Coomans D, Wilkinson J, Bonnel A. Influence of bovine somatotropin on the compositlon and manufacturing properties of milk. J Dairy Sci. 1992;75(8):2226-34. http://dx.doi.org/10.3168/jds.S0022-0302(92)77983-1. PMid:1401373.
http://dx.doi.org/10.3168/jds.S0022-0302...
). In 1993, after rigorous evaluation of its potential impact on human and cattle health, the Food and Drug Administration (FDA) approved the use of rbST (Bauman, 1999Bauman DE. Bovine somatotropin and lactation: from basic science to commercial application. Domest Anim Endocrinol. 1999;17(2-3):101-16. http://dx.doi.org/10.1016/S0739-7240(99)00028-4. PMid:10527114.
http://dx.doi.org/10.1016/S0739-7240(99)...
; Raux et al., 2022Raux A, Bichon E, Benedetto A, Pezzolato M, Bozzetta E, Le Bizec B, Dervilly G. The promise and challenges of determining recombinant bovine growth hormone in milk. Foods. 2022;11(3):274. http://dx.doi.org/10.3390/foods11030274. PMid:35159426.
http://dx.doi.org/10.3390/foods11030274...
). Currently, more than 20 countries use rbST to increase the efficiency of milk production (Raux et al., 2022Raux A, Bichon E, Benedetto A, Pezzolato M, Bozzetta E, Le Bizec B, Dervilly G. The promise and challenges of determining recombinant bovine growth hormone in milk. Foods. 2022;11(3):274. http://dx.doi.org/10.3390/foods11030274. PMid:35159426.
http://dx.doi.org/10.3390/foods11030274...
), contributing to a more efficient and sustainable livestock industry.

The use of rbST not only exerts a positive impact on milk production but has also garnered significant interest within the scientific community regarding its effects on reproductive efficiency. Similar to bGH, rbST increases the plasmatic levels of IGF-1 and insulin in cattle (Bilby et al., 2004Bilby TR, Guzeloglu A, Kamimura S, Pancarci SM, Michel F, Head HH, Thatcher WW. Pregnancy and bovine somatotropin in nonlactating dairy cows: I. Ovarian, conceptus, and insulin-like growth factor system responses. J Dairy Sci. 2004;87(10):3256-67. http://dx.doi.org/10.3168/jds.S0022-0302(04)73462-1. PMid:15377605.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Cooke et al., 2013Cooke RF, Bohnert DW, Francisco CL, Marques RS, Mueller CJ, Keisler DH. Effects of bovine somatotropin administration on growth, physiological, and reproductive responses of replacement beef heifers. J Anim Sci. 2013;91(6):2894-901. http://dx.doi.org/10.2527/jas.2012-6082. PMid:23478831.
http://dx.doi.org/10.2527/jas.2012-6082...
; Mercadante et al., 2016Mercadante VRG, Fontes PLP, Ciriaco FM, Henry DD, Moriel P, Ealy AD, Johnson SE, Di Lorenzo N, Lamb GC. Effects of recombinant bovine somatotropin administration at breeding on cow, conceptus, and subsequent offspring performance of beef cattle. J Anim Sci. 2016;94(5):2128-38. http://dx.doi.org/10.2527/jas.2015-0217. PMid:27285709.
http://dx.doi.org/10.2527/jas.2015-0217...
), crucial hormones for reproductive processes (Velazquez et al., 2008Velazquez MA, Spicer LJ, Wathes DC. The role of endocrine insulin-like growth factor-I (IGF-I) in female bovine reproduction. Domest Anim Endocrinol. 2008;35(4):325-42. http://dx.doi.org/10.1016/j.domaniend.2008.07.002. PMid:18703307.
http://dx.doi.org/10.1016/j.domaniend.20...
). The components of the IGF system play vital roles in bovine follicular development and CL function. Several studies support the importance of IGF-1 in the endocrine regulation of ruminant ovaries. When there is a decrease in plasma concentrations of IGF-1 due to a growth hormone receptor deficiency (GHRD), it can lead to a reduction in the number of small antral follicles and the development of the dominant follicle in the first wave, ultimately affecting reproductive efficiency (Chase et al., 1998Chase CC Jr, Kirby CJ, Hammond AC, Olson TA, Lucy MC. Patterns of ovarian growth and development in cattle with a growth hormone receptor deficiency. J Anim Sci. 1998;76(1):212-9. http://dx.doi.org/10.2527/1998.761212x. PMid:9464901.
http://dx.doi.org/10.2527/1998.761212x...
). Additionally, IGF-1 is involved in the regulation of plasma progesterone concentrations, another critical factor for reproduction (Chase et al., 1998Chase CC Jr, Kirby CJ, Hammond AC, Olson TA, Lucy MC. Patterns of ovarian growth and development in cattle with a growth hormone receptor deficiency. J Anim Sci. 1998;76(1):212-9. http://dx.doi.org/10.2527/1998.761212x. PMid:9464901.
http://dx.doi.org/10.2527/1998.761212x...
). In the CL, IGF-1 indirectly influences angiogenesis by stimulating VEGF-A production in luteal cells, thereby promoting the proliferation and differentiation of luteal and endothelial cells (Schams et al., 2001Schams D, Kosmann M, Berisha B, Amselgruber WM, Miyamoto A. Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells. Exp Clin Endocrinol Diabetes. 2001;109(3):155-62. http://dx.doi.org/10.1055/s-2001-14839. PMid:11409298.
http://dx.doi.org/10.1055/s-2001-14839...
). These interactions between IGF-1, hormonal regulation, and angiogenesis in the ovary and CL underscore the significance of this system in ruminant reproductive function. Moreover, it is important to highlight that the effects of rbST treatment on reproduction are dose-dependent and circulating levels of IGF-1 can positively or negatively influence outcomes (Thatcher et al., 2006Thatcher WW, Bilby TR, Bartolome JA, Silvestre F, Staples CR, Santos JEP. Strategies for improving fertility in the modern dairy cow. Theriogenology. 2006;65(1):30-44. http://dx.doi.org/10.1016/j.theriogenology.2005.10.004. PMid:16280156.
http://dx.doi.org/10.1016/j.theriogenolo...
; Oosthuizen et al., 2018Oosthuizen N, Fontes PLP, Henry DD, Ciriaco FM, Sanford CD, Canal LB, Moraes GV, DiLorenzo N, Currin JF, Clark S, Whittier WD, Mercadante VRG, Lamb GC. Administration of recombinant bovine somatotropin prior to fixed-time artificial insemination and the effects on fertility, embryo, and fetal size in beef heifers. J Anim Sci. 2018;96(5):1894-902. http://dx.doi.org/10.1093/jas/sky077. PMid:29733416.
http://dx.doi.org/10.1093/jas/sky077...
).

Research studies have been conducted to investigate the impact of rbST treatment on reproduction, particularly in high-producing dairy cows undergoing FTAI protocols. Several studies have reported an increase in fertility among cows treated with rbST (Moreira et al., 2000Moreira F, Risco CA, Pires MFA, Ambrose JD, Drost M, Thatcher WW. Use of bovine somatotropin in lactating dairy cows receiving timed artificial insemination. J Dairy Sci. 2000;83(6):1237-47. http://dx.doi.org/10.3168/jds.S0022-0302(00)74990-3. PMid:10877389.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Moreira et al., 2001Moreira F, Orlandi C, Risco CA, Mattos R, Lopes F, Thatcher WW. Effects of presynchronization and bovine somatotropin on pregnancy rates to a timed artificial insemination protocol in lactating dairy cows. J Dairy Sci. 2001;84(7):1646-59. http://dx.doi.org/10.3168/jds.S0022-0302(01)74600-0. PMid:11467815.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Santos et al., 2004Santos JEP, Juchem SO, Cerri RLA, Galvão KN, Chebel RC, Thatcher WW, Dei CS, Bilby CR. Effect of bST and reproductive management on reproductive performance of Holstein dairy cows. J Dairy Sci. 2004;87(4):868-81. http://dx.doi.org/10.3168/jds.S0022-0302(04)73231-2. PMid:15259221.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Ribeiro et al., 2014Ribeiro ES, Bruno RGS, Farias AM, Hernández-Rivera JA, Gomes GC, Surjus R, Becker LFV, Birt A, Ott TL, Branen JR, Sasser RG, Keisler DH, Thatcher WW, Bilby TR, Santos JEP. Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows. Biol Reprod. 2014;90(1):1-12. http://dx.doi.org/10.1095/biolreprod.113.114694. PMid:24285716.
http://dx.doi.org/10.1095/biolreprod.113...
). Specifically, when lactating cows were administered 500 mg of rbST every 14 days alongside synchronization protocols, an improvement in P/AI was observed (Moreira et al., 2000Moreira F, Risco CA, Pires MFA, Ambrose JD, Drost M, Thatcher WW. Use of bovine somatotropin in lactating dairy cows receiving timed artificial insemination. J Dairy Sci. 2000;83(6):1237-47. http://dx.doi.org/10.3168/jds.S0022-0302(00)74990-3. PMid:10877389.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Moreira et al., 2001Moreira F, Orlandi C, Risco CA, Mattos R, Lopes F, Thatcher WW. Effects of presynchronization and bovine somatotropin on pregnancy rates to a timed artificial insemination protocol in lactating dairy cows. J Dairy Sci. 2001;84(7):1646-59. http://dx.doi.org/10.3168/jds.S0022-0302(01)74600-0. PMid:11467815.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Santos et al., 2004Santos JEP, Juchem SO, Cerri RLA, Galvão KN, Chebel RC, Thatcher WW, Dei CS, Bilby CR. Effect of bST and reproductive management on reproductive performance of Holstein dairy cows. J Dairy Sci. 2004;87(4):868-81. http://dx.doi.org/10.3168/jds.S0022-0302(04)73231-2. PMid:15259221.
http://dx.doi.org/10.3168/jds.S0022-0302...
). Furthermore, the treatment with 500 mg of rbST at the time of estrus detection and 10 days later increased the P/AI in repeat breeder cows (Morales-Roura et al., 2001Morales-Roura JS, Zarco L, Hernández-Cerón J, Rodríguez G. Effect of short-term treatment with bovine somatotropin at estrus on conception rate and luteal function of repeat-breeding dairy cows. Theriogenology. 2001;55(9):1831-41. http://dx.doi.org/10.1016/S0093-691X(01)00525-8. PMid:11414488.
http://dx.doi.org/10.1016/S0093-691X(01)...
).

Current research is prioritizing and extensively investigating the use of reduced doses of rbST (below 500 mg) due to concerns that high doses of rbST may elevate circulating concentrations of IGF-1, potentially leading to negative effects on reproduction (Thatcher et al., 2006Thatcher WW, Bilby TR, Bartolome JA, Silvestre F, Staples CR, Santos JEP. Strategies for improving fertility in the modern dairy cow. Theriogenology. 2006;65(1):30-44. http://dx.doi.org/10.1016/j.theriogenology.2005.10.004. PMid:16280156.
http://dx.doi.org/10.1016/j.theriogenolo...
). These studies aim to determine the optimal dosage of rbST that can enhance reproductive outcomes without compromising fertility in cattle. A study conducted with 1,483 lactating Holstein cows at 50 days postpartum revealed an improvement in fertility (greater P/AI, reduced pregnancy losses, and increased conceptus development) when 325 mg of rbST on the day of artificial insemination and 14 days later were administrated (Ribeiro et al., 2014Ribeiro ES, Bruno RGS, Farias AM, Hernández-Rivera JA, Gomes GC, Surjus R, Becker LFV, Birt A, Ott TL, Branen JR, Sasser RG, Keisler DH, Thatcher WW, Bilby TR, Santos JEP. Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows. Biol Reprod. 2014;90(1):1-12. http://dx.doi.org/10.1095/biolreprod.113.114694. PMid:24285716.
http://dx.doi.org/10.1095/biolreprod.113...
). Recently, in a study conducted with 834 crossbred beef cows (Rebeis et al., 2023Rebeis LM, Weiler SA, Silva LP, Garcia TAM, Baumgarten HA, Casamayouret FF, Viacava R, Masselli Filho AD, Mori FK, Baruselli PS. Effect of treatment with bST at the beginning of the protocol (D0) on FTAI and FTET. In: XXXVI Reunião Annual da Sociedade Brasileira de Tecnologia de Embriões; 2023 Aug 9-12; Campinas, Brazil. Jaboticabal: Sociedade Brasileira de Tecnologia de Embriões; In Press 2023. in press), administration of 325 mg of rbST at the beginning of the synchronization protocol for FTAI increased the pregnancy rate [rbST-D0=53.0% (232/438) vs. Control=48.8% (190/389); P=0.08]. These results were also observed in non-lactating multiparous crossbred cows treated with 500 mg of rbST at the beginning of the synchronization protocol for FTAI (Kaminski et al., 2019Kaminski AP, Carvalho MLA, Segui MS, Kozicki LE, Pedrosa VB, Weiss RR, Bergstein-Galan TG. Impact of recombinant bovine somatotropin, progesterone, and estradiol benzoate on ovarian follicular dynamics in Bos taurus taurus cows using a protocol for estrus and ovulation synchronization. Theriogenology. 2019;125:331-4. http://dx.doi.org/10.1016/j.theriogenology.2018.11.009. PMid:30504074.
http://dx.doi.org/10.1016/j.theriogenolo...
). In treated cows with rbST larger diameter of pre-ovulatory follicle (rbST=14.5 mm vs. Control=12 mm; P<0.03), greater ovulation rate (rbST=90.9% vs. Control=69.2%; P=0.09) and greater CL diameter 5 days after FTAI (rbST=19.7 mm vs. Control=16.9 mm; P<0.01) were found by these authors. Starbuck et al. (2006)Starbuck MJ, Inskeep EK, Dailey RA. Effect of a single growth hormone (rbST) treatment at breeding on conception rates and pregnancy retention in dairy and beef cattle. Anim Reprod Sci. 2006;93(3-4):349-59. http://dx.doi.org/10.1016/j.anireprosci.2005.08.010. PMid:16183219.
http://dx.doi.org/10.1016/j.anireprosci....
also showed increase in pregnancy rate in lactating cows treated with 500 mg of rbST on the day of insemination. The authors observed an improvement in P/IA in treated Holstein cows with days in milk (DIM) above 100 (60.4% vs. 40.3%; P<0.05), but no effect was found in dairy heifers or in crossbred lactating beef cows.

Recombinant bovine somatotropin treatment has been utilized in OPU/IVEP programs to enhance follicular population and improve oocyte quality prior to aspiration. Treatment with bST has been shown to increase the follicular population in Bos taurus (Gong et al., 1993Gong JG, Bramley TA, Webb R. The effect of recombinant bovine somatotrophin on ovarian follicular growth and development in heifers. J Reprod Fertil. 1993;97(1):247-54. http://dx.doi.org/10.1530/jrf.0.0970247. PMid:8464017.
http://dx.doi.org/10.1530/jrf.0.0970247...
), Bos indicus (Buratini et al., 2000Buratini J Jr, Price CA, Visintin JA, Bó GA. Effects of dominant follicle aspiration and treatment with recombinant bovine somatotropin (bST) on ovarian follicular development in Nelore (Bos indicus) heifers. Theriogenology. 2000;54(3):421-31. http://dx.doi.org/10.1016/S0093-691X(00)00359-9. PMid:11051325.
http://dx.doi.org/10.1016/S0093-691X(00)...
), and buffalo (Sá et al., 2009Sá MF Fo, Carvalho NAT, Gimenes LU, Torres-Júnior JR, Nasser LFT, Tonhati H, Garcia JM, Gasparrini B, Zicarelli L, Baruselli PS. Effect of recombinant bovine somatotropin (bST) on follicular population and on in vitro buffalo embryo production. Anim Reprod Sci. 2009;113(1-4):51-9. http://dx.doi.org/10.1016/j.anireprosci.2008.06.008. PMid:18691835.
http://dx.doi.org/10.1016/j.anireprosci....
). Recombinant bST treatment has been found to increase the number of follicles in lactating Holstein cows and the size of the second largest follicle in both lactating and non-lactating cows (De la Sota et al., 1993De La Sota RL, Lucy MC, Staples CR, Thatcher WW. Effects of recombinant bovine somatotropin (Sometribove) on ovarian function in lactating and nonlactating dairy cows. J Dairy Sci. 1993;76(4):1002-13. http://dx.doi.org/10.3168/jds.S0022-0302(93)77428-7. PMid:8486832.
http://dx.doi.org/10.3168/jds.S0022-0302...
). Additionally, a study by Lucy et al. (1993)Lucy MC, Hauser SD, Eppard PJ, Krivi GG, Clark JH, Bauman DE, Collier RJ. Variants of somatotropin in cattle: gene frequencies in major dairy breeds and associated milk production. Domest Anim Endocrinol. 1993;10(4):325-33. http://dx.doi.org/10.1016/0739-7240(93)90036-B. PMid:7905813.
http://dx.doi.org/10.1016/0739-7240(93)9...
demonstrated that lactating dairy cows treated with bST before day 12 of the estrous cycle, specifically during the first follicular wave (with estrus considered as day 0), exhibited a higher number of ovarian follicles ranging from 3 to 9 mm in size compared to cows treated with saline. Moreover, Buratini et al. (2000)Buratini J Jr, Price CA, Visintin JA, Bó GA. Effects of dominant follicle aspiration and treatment with recombinant bovine somatotropin (bST) on ovarian follicular development in Nelore (Bos indicus) heifers. Theriogenology. 2000;54(3):421-31. http://dx.doi.org/10.1016/S0093-691X(00)00359-9. PMid:11051325.
http://dx.doi.org/10.1016/S0093-691X(00)...
observed a significant increase in plasma IGF-1 concentration and an increase of 36% in the number of small follicles (<5 mm) when Bos indicus heifers were treated with rbST on day 3 of the estrous cycle. However, no effect was observed on the number of medium (5-9 mm) or large (>9 mm) follicles. Positive outcomes of rbST treatment include enhancing oocyte quality and embryo development capacity, improving in vitro oocyte maturation and increasing fertilization (Pavlok et al., 1996Pavlok A, Koutecká L, Krejčí P, Slavík T, Cerman J, Slaba J, Dorn D. Effect of recombinant bovine somatotropin on follicular growth and quality of oocytes in cattle. Anim Reprod Sci. 1996;41(3-4):183-92. http://dx.doi.org/10.1016/0378-4320(95)01464-0.
http://dx.doi.org/10.1016/0378-4320(95)0...
; Bols et al., 1998Bols PEJ, Ysebaert MT, Lein A, Coryn M, Van Soom A, de Kruif A. Effects of long-term treatment with bovine somatotropin on follicular dynamics and subsequent oocyte and blastocyst yield in an OPU-IVF program. Theriogenology. 1998;49(5):983-95. http://dx.doi.org/10.1016/S0093-691X(98)00047-8. PMid:10732106.
http://dx.doi.org/10.1016/S0093-691X(98)...
; Tripp et al., 2000Tripp MW, Ju JC, Hoagland TA, Riesen JW, Yang X, Zinn SA. Influence of somatotropin and nutrition on bovine oocyte retrieval and in vitro development. Theriogenology. 2000;53(8):1581-90. http://dx.doi.org/10.1016/S0093-691X(00)00299-5. PMid:10883845.
http://dx.doi.org/10.1016/S0093-691X(00)...
; Roth et al., 2002Roth Z, Arav A, Braw-Tai R, Bor A, Wolfenson D. Effect of treatment with follicle-stimulating hormone or bovine somatotropin on the quality of oocytes aspirated in the autumn from previously heat-stressed cows. J Dairy Sci. 2002;85(6):1398-405. http://dx.doi.org/10.3168/jds.S0022-0302(02)74207-0. PMid:12146470.
http://dx.doi.org/10.3168/jds.S0022-0302...
). We evaluated the effect of 500mg of rbST administered 5 days before OPU on the success of OPU/IVEP programs in Nelore (Bos indicus), Brangus (crossbred) and Holstein (Bos taurus) donors (Martins et al., 2012Martins CM, Reis PO, Sales JNS, Sala RV, Vieira LM, Baruselli PS. Efeito da sincronização da onda de crescimento folicular e do tratamento com bST ou eCG na OPU-PIV de doadoras Nelore, Brangus e Holandesas. In: XXVI Reunião Anual da Sociedade Brasileira de Tecnologia de Embriões; 2012 Aug/Sep 30-2; Foz do Iguaçu, Brazil. Jaboticabal: Sociedade Brasileira de Tecnologia de Embriões; 2012. p. 403.). Overall, the bST treatments resulted in a higher number of total blastocysts per OPU session only in Holstein donors. We performed other studies that confirmed the positive effect of rbST treatment before OPU/IVEP increasing embryo production also in prepubertal Holstein heifers. Currently, in vitro embryo production with oocytes from heifer calves combined with genomic selection provides a powerful technology platform to reduce generation interval and significantly increase the rate of genetic gain in cattle (Baruselli et al., 2016Baruselli PS, Batista EOS, Vieira LM, Ferreira RM, Guerreiro BG, Bayeux BM, Sales JNS, Souza AH, Gimenes LU. Factors that interfere with oocyte quality for in vitro production of cattle embryos: effects of different developmental & reproductive stages. Anim Reprod. 2016;13(3):264-72. http://dx.doi.org/10.21451/1984-3143-AR861.
http://dx.doi.org/10.21451/1984-3143-AR8...
; Baruselli et al., 2021Baruselli PS, Rodrigues CA, Ferreira RM, Sales JNS, Elliff FM, Silva LG, Viziack MP, Factor L, D’Occhio MJ. Impact of oocyte donor age and breed on in vitro embryo production in cattle, and relationship of dairy and beef embryo recipients on pregnancy and the subsequent performance of offspring: a review. Reprod Fertil Dev. 2021;34(2):36-51. http://dx.doi.org/10.1071/RD21285. PMid:35231233.
http://dx.doi.org/10.1071/RD21285...
). rbST treatment increased the cleavage rate, and there was also a tendency for bST to increase the blastocyst rate and the number of blastocysts per OPU in prepubertal heifers (Elliff, 2020Elliff FM. Estratégias para melhorar a produção in vitro de embriões de doadoras jovens das raças Holandês (Bos taurus) e Gir (Bos indicus) [dissertation]. São Paulo: Universidade de São Paulo; 2020. http://dx.doi.org/10.11606/D.10.2020.tde-12052020-144315.
http://dx.doi.org/10.11606/D.10.2020.tde...
). The treatment with bST increased the circulating levels of IGF-1, which may have positively influenced oocyte competence and in vitro embryo development (Bevers et al., 1997Bevers MM, Dieleman SJ, van den Hurk R, Izadyar F. Regulation and modulation of oocyte maturation in the bovine. Theriogenology. 1997;47(1):13-22. http://dx.doi.org/10.1016/S0093-691X(96)00335-4.
http://dx.doi.org/10.1016/S0093-691X(96)...
; Elliff, 2020Elliff FM. Estratégias para melhorar a produção in vitro de embriões de doadoras jovens das raças Holandês (Bos taurus) e Gir (Bos indicus) [dissertation]. São Paulo: Universidade de São Paulo; 2020. http://dx.doi.org/10.11606/D.10.2020.tde-12052020-144315.
http://dx.doi.org/10.11606/D.10.2020.tde...
).

Moreover, investigations have shown positive effects on fertility in studies involving embryo recipients treated with rbST. For instance, Rebeis et al. (2022)Rebeis LM, Lemes KM, Reis EL, Souza ES, Barros DM, Catussi BLC, Souza SP, Nunes MA, Monolio LR, Baruselli PS. Treatment with bovine somatrotopin (bST) improve pregnancy rate in F1 crossbred recipients submitted to FTET. Anim Reprod. 2022;19(2):e22099. observed improved fertility in crossbred heifers recipients (n=751) who received 325 mg of rbST upon removal of the P4 device, with a significant increase in the pregnancy per transfer rate (P/TE) compared to the control group [Control=27.4% (87/317) vs. bST=38.3% (119/311); P=0.004]. In another study by Rebeis et al. (2023 in press), heifers recipients treated with 325 mg of rbST at the beginning of the synchronization protocol (D0) also exhibited enhanced P/TE rates [rbST-D0=57.7% (60/104) vs. Control=48.2% (54/112); P=0.07]. However, it is important to consider that factors such as age, genetics, nutritional status, and overall health, can influence individual cow responses to rbST treatments.

Conclusions

The utilization of recombinant hormones in cattle reproduction presents a promising alternative to conventional methods of hormone extraction from animal-derived sources. Currently, gonadotropin products used in cattle are derived from pituitary tissue, blood, or urine, requiring extraction and purification processes. However, through genetic engineering techniques, these desired hormones can be synthesized in laboratory settings, eliminating the need for animal-derived materials. This approach offers several advantages, including reduced risk of pathogen transmission and enhanced quality control of hormone products. Additionally, recombinant gonadotropins can be engineered to have prolonged action, enabling single-dose administration. This provides convenience and efficiency in managing cattle reproduction. While recombinant gonadotropins are already available to some extent in human and animal reproduction, further development and licensing of extended-action recombinant hormones are anticipated in the near future. The adoption of recombinant hormones in cattle reproduction offers safer, more reliable, and potentially more convenient options for producers.

Acknowledgements

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001, Fapesp, CNPq and Fumvet.

  • Financial support: FAPESP (15/19563-0 and 19/14679-1), CNPq (306759/2016-0 and 315978/2021-0) and CAPES (Grant number 001).
  • How to cite: Baruselli PS, Abreu LÂ, Catussi BLC, Oliveira ACS, Rebeis LM, Gricio EA, Albertini S, Sales JNS, Rodrigues CA. Use of new recombinant proteins for ovarian stimulation in ruminants. Anim Reprod. 2023;20(2):e20230092. https://doi.org/10.1590/1984-3143-AR2023-0092

References

  • Abreu LA, Cutaia L, Wallace SP, Resende TS, Carreira ALM, Cunha BS, Sousa AVG, Silva LA, Catussi BLC, Baruselli PS. Efficacy of eCG-like on preovulatory follicle diameter and pregnancy rate in Nelore cows submitted to FTAI. In: Proceedings of the 49th Annual Conference of International Embryo Technology Society; 2023 Jan 15-19; Lima, Peru. Champaign: IETS; 2023. p. 222.
  • Asimov GJ, Krouze NK. The lactogenic preparations from the anterior pituitary and the increase of milk yield in cows. J Dairy Sci. 1937;20(6):289-306. http://dx.doi.org/10.3168/jds.S0022-0302(37)95698-4
    » http://dx.doi.org/10.3168/jds.S0022-0302(37)95698-4
  • Baruselli PS, Batista EOS, Vieira LM, Ferreira RM, Guerreiro BG, Bayeux BM, Sales JNS, Souza AH, Gimenes LU. Factors that interfere with oocyte quality for in vitro production of cattle embryos: effects of different developmental & reproductive stages. Anim Reprod. 2016;13(3):264-72. http://dx.doi.org/10.21451/1984-3143-AR861
    » http://dx.doi.org/10.21451/1984-3143-AR861
  • Baruselli PS, Ferreira RM, Sá MF Fo, Bó GA. Review: using artificial insemination v. natural service in beef herds. Animal. 2018;12(Suppl 1):s45-52. http://dx.doi.org/10.1017/S175173111800054X PMid:29554986.
    » http://dx.doi.org/10.1017/S175173111800054X
  • Baruselli PS, Jacomini JO, Sales JNS, Crepaldi GA. Importância do emprego da eCG em protocolos de sincronização para IA, TE e SOV em tempo fixo. In: Proceedings of the 3° Simpósio Internacional de Reprodução Animal Aplicada; 2008 Sep 25-27; Londrina, Brazil. São Paulo: Faculdade de Medicina Veterinária e Zootecnia/Universidade de São Paulo; 2008a. p. 146-67.
  • Baruselli PS, Madureira EH, Marques MO, Rodrigues CA, Nasser LFT, Silva RCP, Reis EL, Sá MF Fo. Efeito do tratamento com eCG na taxa de concepção de vacas Nelores com diferentes escores de condição corporal inseminadas em tempo fixo (análise retrospectiva). Acta Sci Vet. 2004a;32:228.
  • Baruselli PS, Marques MO, Nasser LF, Reis EL, Bó GA. Effect of eCG on pregnancy rates of lactating zebu beef cows treated with CIDR-B devices for timed artificial insemination. Theriogenology. 2003;59(1):214. http://dx.doi.org/10.1016/S0093-691X(02)01253-0
    » http://dx.doi.org/10.1016/S0093-691X(02)01253-0
  • Baruselli PS, Martins CM, Sales JNS, Ferreira RM. Recent advances in bovine superovulation. Acta Sci Vet. 2008b;36(2):s433-48.
  • Baruselli PS, Reis EL, Carvalho NAT, Carvalho JBP. eCG increases ovulation rate and plasmatic progesterone concentration in Nelore (Bos indicus) heifers treated with progesterone releasing device. In: Proceedings of the XV International Congress on Animal Reproduction; 2004 Aug 8-12; Porto Seguro, Brazil. Belo Horizonte: Colégio Brasileiro de Reprodução Animal; 2004b. p. 117.
  • Baruselli PS, Reis EL, Marques MO, Nasser LF, Bó GA. The use of hormonal treatments to improve reproductive performance of anestrous beef cattle in tropical climates. Anim Reprod Sci. 2004c;82-83:479-86. http://dx.doi.org/10.1016/j.anireprosci.2004.04.025 PMid:15271474.
    » http://dx.doi.org/10.1016/j.anireprosci.2004.04.025
  • Baruselli PS, Rodrigues CA, Ferreira RM, Sales JNS, Elliff FM, Silva LG, Viziack MP, Factor L, D’Occhio MJ. Impact of oocyte donor age and breed on in vitro embryo production in cattle, and relationship of dairy and beef embryo recipients on pregnancy and the subsequent performance of offspring: a review. Reprod Fertil Dev. 2021;34(2):36-51. http://dx.doi.org/10.1071/RD21285 PMid:35231233.
    » http://dx.doi.org/10.1071/RD21285
  • Baruselli PS, Sá MF Fo, Martins CM, Nasser LF, Nogueira MFG, Barros CM, Bó GA. Superovulation and embryo transfer in Bos indicus cattle. Theriogenology. 2006;65(1):77-88. http://dx.doi.org/10.1016/j.theriogenology.2005.10.006 PMid:16290257.
    » http://dx.doi.org/10.1016/j.theriogenology.2005.10.006
  • Bauman DE. Bovine somatotropin and lactation: from basic science to commercial application. Domest Anim Endocrinol. 1999;17(2-3):101-16. http://dx.doi.org/10.1016/S0739-7240(99)00028-4 PMid:10527114.
    » http://dx.doi.org/10.1016/S0739-7240(99)00028-4
  • Bauman DE. Bovine somatotropin: review of an emerging animal technology. J Dairy Sci. 1992;75(12):3432-51. http://dx.doi.org/10.3168/jds.S0022-0302(92)78119-3 PMid:1474210.
    » http://dx.doi.org/10.3168/jds.S0022-0302(92)78119-3
  • Bevers MM, Dieleman SJ, van den Hurk R, Izadyar F. Regulation and modulation of oocyte maturation in the bovine. Theriogenology. 1997;47(1):13-22. http://dx.doi.org/10.1016/S0093-691X(96)00335-4
    » http://dx.doi.org/10.1016/S0093-691X(96)00335-4
  • Bilby TR, Guzeloglu A, Kamimura S, Pancarci SM, Michel F, Head HH, Thatcher WW. Pregnancy and bovine somatotropin in nonlactating dairy cows: I. Ovarian, conceptus, and insulin-like growth factor system responses. J Dairy Sci. 2004;87(10):3256-67. http://dx.doi.org/10.3168/jds.S0022-0302(04)73462-1 PMid:15377605.
    » http://dx.doi.org/10.3168/jds.S0022-0302(04)73462-1
  • Blondin P, Bousquet D, Twagiramungu H, Barnes F, Sirard MA. Manipulation of follicular development to produce developmentally competent bovine oocytes. Biol Reprod. 2002;66(1):38-43. http://dx.doi.org/10.1095/biolreprod66.1.38 PMid:11751261.
    » http://dx.doi.org/10.1095/biolreprod66.1.38
  • Bó GA, Baruselli PS, Chesta PM, Martins CM. The timing of ovulation and insemination schedules in superstimulated cattle. Theriogenology. 2006;65(1):89-101. http://dx.doi.org/10.1016/j.theriogenology.2005.10.008 PMid:16293299.
    » http://dx.doi.org/10.1016/j.theriogenology.2005.10.008
  • Bó GA, Baruselli PS, Martinez MF. Pattern and manipulation of follicle development in Bos indicus cattle. Anim Reprod Sci. 2003;78(3-4):307-26. http://dx.doi.org/10.1016/S0378-4320(03)00097-6 PMid:12818651.
    » http://dx.doi.org/10.1016/S0378-4320(03)00097-6
  • Bó GA, Baruselli PS, Moreno D, Cutaia L, Caccia M, Tríbulo R, Tríbulo H, Mapletoft RJ. The control of follicular wave development for self-appointed embryo transfer programs in cattle. Theriogenology. 2002;57(1):53-72. http://dx.doi.org/10.1016/S0093-691X(01)00657-4 PMid:11775981.
    » http://dx.doi.org/10.1016/S0093-691X(01)00657-4
  • Bó GA, Cattaneo L. The use of a recombinant equine chorionic gonadotropin (reCG) in fixed-time AI programs in beef cattle. Anim Reprod. 2022;19(2):e22020.
  • Bó GA, Cutaia L, Peres LC, Pincinato D, Maraña D, Baruselli PS. Technologies for fixed-time artificial insemination and their influence on reproductive performance of Bos indicus cattle. Soc Reprod Fertil Suppl. 2007;64:223-36. PMid:17491150.
  • Bó GA, Mapletoft RJ. Historical perspectives and recent research on superovulation in cattle. Theriogenology. 2014;81(1):38-48. http://dx.doi.org/10.1016/j.theriogenology.2013.09.020 PMid:24274408.
    » http://dx.doi.org/10.1016/j.theriogenology.2013.09.020
  • Bó GA, Mapletoft RJ. Superstimulation of ovarian follicles in cattle: gonadotropin treatment protocols and FSH profiles. Theriogenology. 2020;150:353-9. http://dx.doi.org/10.1016/j.theriogenology.2020.02.001 PMid:32088042.
    » http://dx.doi.org/10.1016/j.theriogenology.2020.02.001
  • Bols PEJ, Ysebaert MT, Lein A, Coryn M, Van Soom A, de Kruif A. Effects of long-term treatment with bovine somatotropin on follicular dynamics and subsequent oocyte and blastocyst yield in an OPU-IVF program. Theriogenology. 1998;49(5):983-95. http://dx.doi.org/10.1016/S0093-691X(98)00047-8 PMid:10732106.
    » http://dx.doi.org/10.1016/S0093-691X(98)00047-8
  • Buratini J Jr, Price CA, Visintin JA, Bó GA. Effects of dominant follicle aspiration and treatment with recombinant bovine somatotropin (bST) on ovarian follicular development in Nelore (Bos indicus) heifers. Theriogenology. 2000;54(3):421-31. http://dx.doi.org/10.1016/S0093-691X(00)00359-9 PMid:11051325.
    » http://dx.doi.org/10.1016/S0093-691X(00)00359-9
  • Calder MD, Caveney AN, Smith LC, Watson AJ. Responsiveness of bovine cumulus-oocyte-complexes (COC) to porcine and recombinant human FSH, and the effect of COC quality on gonadotropin receptor and Cx43 marker gene mRNAs during maturation in vitro. Reprod Biol Endocrinol. 2003;1(1):14. http://dx.doi.org/10.1186/1477-7827-1-14 PMid:12646061.
    » http://dx.doi.org/10.1186/1477-7827-1-14
  • Carvalho JGS, Carvalho NAT, Bayeux BM, Watanabe YF, Watanabe OY, Mingoti RD, Baruselli PS. Superstimulation prior to the ovum pick-up improves the in vitro embryo production in nulliparous, primiparous and multiparous buffalo (Bubalus bubalis) donors. Theriogenology. 2019;138(15):164-8. http://dx.doi.org/10.1016/j.theriogenology.2019.07.003 PMid:31374459.
    » http://dx.doi.org/10.1016/j.theriogenology.2019.07.003
  • Carvalho NAT, Soares JG, Porto RM Fo, Gimenes LU, Souza DC, Nichi M, Sales JS, Baruselli PS. Equine chorionic gonadotropin improves the efficacy of a timed artificial insemination protocol in buffalo during the nonbreeding season. Theriogenology. 2013;79(3):423-8. http://dx.doi.org/10.1016/j.theriogenology.2012.10.013 PMid:23154144.
    » http://dx.doi.org/10.1016/j.theriogenology.2012.10.013
  • Carvalho PD, Hackbart KS, Bender RW, Baez GM, Dresch AR, Guenther JN, Souza AH, Fricke PM. Use of a single injection of long-acting recombinant bovine FSH to superovulate Holstein heifers: a preliminary study. Theriogenology. 2014;82(3):481-9. http://dx.doi.org/10.1016/j.theriogenology.2014.05.011 PMid:24938802.
    » http://dx.doi.org/10.1016/j.theriogenology.2014.05.011
  • Chase CC Jr, Kirby CJ, Hammond AC, Olson TA, Lucy MC. Patterns of ovarian growth and development in cattle with a growth hormone receptor deficiency. J Anim Sci. 1998;76(1):212-9. http://dx.doi.org/10.2527/1998.761212x PMid:9464901.
    » http://dx.doi.org/10.2527/1998.761212x
  • Cooke RF, Bohnert DW, Francisco CL, Marques RS, Mueller CJ, Keisler DH. Effects of bovine somatotropin administration on growth, physiological, and reproductive responses of replacement beef heifers. J Anim Sci. 2013;91(6):2894-901. http://dx.doi.org/10.2527/jas.2012-6082 PMid:23478831.
    » http://dx.doi.org/10.2527/jas.2012-6082
  • Costa e Silva PP Fo, Sales JNS, Sá MF Fo, Perecin F, Assis AC No, Baruselli PS, Vincenti L. Effects of equine chorionic gonadotropin on follicular, luteal and conceptus development of non-lactating Bos indicus beef cows subjected to a progesterone plus estradiol-based timed artificial insemination protocol. Ital J Anim Sci. 2013;12(3):e61. http://dx.doi.org/10.4081/ijas.2013.e61
    » http://dx.doi.org/10.4081/ijas.2013.e61
  • Crispo M, Meikle MN, Schlapp G, Menchaca A. Ovarian superstimulatory response and embryo development using a new recombinant glycoprotein with eCG-like activity in mice. Theriogenology. 2021;164:31-5. http://dx.doi.org/10.1016/j.theriogenology.2021.01.012 PMid:33529809.
    » http://dx.doi.org/10.1016/j.theriogenology.2021.01.012
  • Cushman RA, DeSouza JC, Hedgpeth VS, Britt JH. Effect of long-term treatment with recombinant bovine somatotropin and estradiol on hormone concentrations and ovulatory response of superovulated cattle. Theriogenology. 2001;55(7):1533-47. http://dx.doi.org/10.1016/S0093-691X(01)00500-3 PMid:11354712.
    » http://dx.doi.org/10.1016/S0093-691X(01)00500-3
  • De La Sota RL, Lucy MC, Staples CR, Thatcher WW. Effects of recombinant bovine somatotropin (Sometribove) on ovarian function in lactating and nonlactating dairy cows. J Dairy Sci. 1993;76(4):1002-13. http://dx.doi.org/10.3168/jds.S0022-0302(93)77428-7 PMid:8486832.
    » http://dx.doi.org/10.3168/jds.S0022-0302(93)77428-7
  • Demoustier MM, Beckers JF, Van Der Zwalmen P, Closset J, Gillard JL, Ectors F. Determination of porcine plasma folltropin levels during superovulation treatment in cows. Theriogenology. 1988;30(2):379-86. http://dx.doi.org/10.1016/0093-691X(88)90185-9 PMid:16726478.
    » http://dx.doi.org/10.1016/0093-691X(88)90185-9
  • Dias CC, Wechsler FS, Day ML, Vasconcelos JLM. Progesterone concentrations, exogenous equine chorionic gonadotropin, and timing of prostaglandin F treatment affect fertility in postpuberal Nelore heifers. Theriogenology. 2009;72(3):378-85. http://dx.doi.org/10.1016/j.theriogenology.2009.03.006 PMid:19477500.
    » http://dx.doi.org/10.1016/j.theriogenology.2009.03.006
  • Donaldson LE, Ward DN, Glenn SD. Use of porcine follicle stimulating hormone after chromatographic purification in superovulation of cattle. Theriogenology. 1986;25(6):747-57. http://dx.doi.org/10.1016/0093-691X(86)90090-7
    » http://dx.doi.org/10.1016/0093-691X(86)90090-7
  • Elliff FM. Estratégias para melhorar a produção in vitro de embriões de doadoras jovens das raças Holandês (Bos taurus) e Gir (Bos indicus) [dissertation]. São Paulo: Universidade de São Paulo; 2020. http://dx.doi.org/10.11606/D.10.2020.tde-12052020-144315
    » http://dx.doi.org/10.11606/D.10.2020.tde-12052020-144315
  • Evans HM, Simpson ME. Hormones to the anterior hypophysis. Am J Physiol. 1931;98(3):511-46. http://dx.doi.org/10.1152/ajplegacy.1931.98.3.511
    » http://dx.doi.org/10.1152/ajplegacy.1931.98.3.511
  • Fátima LA, Baruselli PS, Gimenes LU, Binelli M, Rennó FP, Murphy BD, Papa PC. Global gene expression in the bovine corpus luteum is altered after stimulatory and superovulatory treatments. Reprod Fertil Dev. 2013;25(7):998-1011. http://dx.doi.org/10.1071/RD12155 PMid:23106933.
    » http://dx.doi.org/10.1071/RD12155
  • Fortune JE, Rivera GM, Evans ACO, Turzillo AM. Differentiation of dominant versus subordinate follicles in cattle. Biol Reprod. 2001;65(3):648-54. http://dx.doi.org/10.1095/biolreprod65.3.648 PMid:11514324.
    » http://dx.doi.org/10.1095/biolreprod65.3.648
  • Garcia-Ispierto I, López-Helguera I, Martino A, López-Gatius F. Reproductive performance of anoestrous high-producing dairy cows improved by adding equine chorionic gonadotrophin to a progesterone-based oestrous synchronizing protocol. Reprod Domest Anim. 2012;47(5):752-8. http://dx.doi.org/10.1111/j.1439-0531.2011.01954.x PMid:22117847.
    » http://dx.doi.org/10.1111/j.1439-0531.2011.01954.x
  • Gong JG, Bramley TA, Webb R. The effect of recombinant bovine somatotrophin on ovarian follicular growth and development in heifers. J Reprod Fertil. 1993;97(1):247-54. http://dx.doi.org/10.1530/jrf.0.0970247 PMid:8464017.
    » http://dx.doi.org/10.1530/jrf.0.0970247
  • Gonzalez A, Lussier IG, Carruthers TD, Murphy BD, Mapletoft RJ. Superovulation of beef heifers with Folltropin: a new FSH preparation containing reduced LH activity. Theriogenology. 1990;33(2):519-29. http://dx.doi.org/10.1016/0093-691X(90)90509-R PMid:16726748.
    » http://dx.doi.org/10.1016/0093-691X(90)90509-R
  • González-Menció F, Manns J, Murphy BD. FSH and LH activity of PMSG from mares at different stages of gestation. Anim Reprod Sci. 1978;1(2):137-44. http://dx.doi.org/10.1016/0378-4320(78)90021-0
    » http://dx.doi.org/10.1016/0378-4320(78)90021-0
  • Greep RO, Van Dyke HB, Chow BF. Gonadotropins of the swine pituitary I. Various biological effects of purified thylakentrin (FSH) and pure metakentrin (ICSH). Endocrinology. 1942;30(5):635-49. http://dx.doi.org/10.1210/endo-30-5-635
    » http://dx.doi.org/10.1210/endo-30-5-635
  • Gutiérrez-Reinoso MA, Arreseigor CJ, Driedger B, Cabezas I, Hugues F, Parra NC, Sánchez O, Toledo JR, Garcia-Herreros M. Effects of recombinant FSH (bscrFSH) and pituitary FSH (FSH-p) on embryo production in superovulated dairy heifers inseminated with unsorted and sex-sorted semen. Anim Reprod Sci. 2023;252:107226. http://dx.doi.org/10.1016/j.anireprosci.2023.107226 PMid:37027990.
    » http://dx.doi.org/10.1016/j.anireprosci.2023.107226
  • Hesser MW, Morris JC, Gibbons JR. Advances in recombinant gonadotropin production for use in bovine superovulation. Reprod Domest Anim. 2011;46(5):933-42. http://dx.doi.org/10.1111/j.1439-0531.2011.01767.x PMid:21366721.
    » http://dx.doi.org/10.1111/j.1439-0531.2011.01767.x
  • Kaminski AP, Carvalho MLA, Segui MS, Kozicki LE, Pedrosa VB, Weiss RR, Bergstein-Galan TG. Impact of recombinant bovine somatotropin, progesterone, and estradiol benzoate on ovarian follicular dynamics in Bos taurus taurus cows using a protocol for estrus and ovulation synchronization. Theriogenology. 2019;125:331-4. http://dx.doi.org/10.1016/j.theriogenology.2018.11.009 PMid:30504074.
    » http://dx.doi.org/10.1016/j.theriogenology.2018.11.009
  • Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod. 2014;20(2):103-16. http://dx.doi.org/10.1093/molehr/gat082 PMid:24233546.
    » http://dx.doi.org/10.1093/molehr/gat082
  • Laurent F, Vignon B, Coomans D, Wilkinson J, Bonnel A. Influence of bovine somatotropin on the compositlon and manufacturing properties of milk. J Dairy Sci. 1992;75(8):2226-34. http://dx.doi.org/10.3168/jds.S0022-0302(92)77983-1 PMid:1401373.
    » http://dx.doi.org/10.3168/jds.S0022-0302(92)77983-1
  • Le Cotonnec JY, Porchet HC, Beltrami V, Khan A, Toon S, Rowland M. Clinical pharmacology of recombinant human follicle-stimulating hormone (FSH). I. Comparative pharmacokinetics with urinary human FSH. Fertil Steril. 1994;61(4):669-78. http://dx.doi.org/10.1016/S0015-0282(16)56644-8 PMid:8150109.
    » http://dx.doi.org/10.1016/S0015-0282(16)56644-8
  • Legardinier S, Cahoreau C, Klett D, Combarnous Y. Involvement of equine chorionic gonadotropin (eCG) carbohydrate side chains in its bioactivity; lessons from recombinant hormone expressed in insect cells. Reprod Nutr Dev. 2005;45(3):255-9. http://dx.doi.org/10.1051/rnd:2005018 PMid:15982452.
    » http://dx.doi.org/10.1051/rnd:2005018
  • Lucy MC, Hauser SD, Eppard PJ, Krivi GG, Clark JH, Bauman DE, Collier RJ. Variants of somatotropin in cattle: gene frequencies in major dairy breeds and associated milk production. Domest Anim Endocrinol. 1993;10(4):325-33. http://dx.doi.org/10.1016/0739-7240(93)90036-B PMid:7905813.
    » http://dx.doi.org/10.1016/0739-7240(93)90036-B
  • Lunenfeld B, Bilger W, Longobardi S, Alam V, D’Hooghe T, Sunkara SK. The development of gonadotropins for clinical use in the treatment of infertility. Front Endocrinol. 2019;10:429. http://dx.doi.org/10.3389/fendo.2019.00429 PMid:31333582.
    » http://dx.doi.org/10.3389/fendo.2019.00429
  • Manning AW, Rajkumar K, Bristol F, Flood PF, Murphy BD. Genetic and temporal variation in serum concentrations and biological activity of horse chorionic gonadotrophin. J Reprod Fertil Suppl. 1987;35:389-97. PMid:3119830.
  • Mapletoft RJ, Pierson RA. Factors affecting superovulation in the cow: practical considerations. Embryo Transf Newsl. 1993;11:14-24.
  • Marques MO, Nasser LF, Silva RCP, Bó GA, Sales JNS, Sá MF Fo, Reis EL, Binelli M, Baruselli PS. Follicular dynamics and pregnancy rates in Bos taurus x Bos indicus embryo transfer recipients treated to increase plasma progesterone concentrations. Anim Reprod. 2012;9(2):111-9.
  • Marques MO, Reis EL, Campos EP Fo, Baruselli PS. Efeitos da administração de eCG e de benzoato de estradiol para sincronização da ovulação em vacas zebuínas no período pós-parto. In: Proceedings of the V Simposio Internacional de Reproducción Animal; 2003; Córdoba, Argentina. Córdoba: Instituto de Reproducción Animal Córdoba; 2003. p. 392.
  • Martins CM, Reis PO, Sales JNS, Sala RV, Vieira LM, Baruselli PS. Efeito da sincronização da onda de crescimento folicular e do tratamento com bST ou eCG na OPU-PIV de doadoras Nelore, Brangus e Holandesas. In: XXVI Reunião Anual da Sociedade Brasileira de Tecnologia de Embriões; 2012 Aug/Sep 30-2; Foz do Iguaçu, Brazil. Jaboticabal: Sociedade Brasileira de Tecnologia de Embriões; 2012. p. 403.
  • McClamrock HD. Recombinant gonadotropins. Clin Obstet Gynecol. 2003;46(2):298-316. http://dx.doi.org/10.1097/00003081-200306000-00009 PMid:12808381.
    » http://dx.doi.org/10.1097/00003081-200306000-00009
  • Mercadante VRG, Fontes PLP, Ciriaco FM, Henry DD, Moriel P, Ealy AD, Johnson SE, Di Lorenzo N, Lamb GC. Effects of recombinant bovine somatotropin administration at breeding on cow, conceptus, and subsequent offspring performance of beef cattle. J Anim Sci. 2016;94(5):2128-38. http://dx.doi.org/10.2527/jas.2015-0217 PMid:27285709.
    » http://dx.doi.org/10.2527/jas.2015-0217
  • Monniaux D, Chupin D, Saumande J. Superovulatory responses of cattle. Theriogenology. 1983;19(1):55-81. http://dx.doi.org/10.1016/0093-691X(83)90124-3
    » http://dx.doi.org/10.1016/0093-691X(83)90124-3
  • Morales-Roura JS, Zarco L, Hernández-Cerón J, Rodríguez G. Effect of short-term treatment with bovine somatotropin at estrus on conception rate and luteal function of repeat-breeding dairy cows. Theriogenology. 2001;55(9):1831-41. http://dx.doi.org/10.1016/S0093-691X(01)00525-8 PMid:11414488.
    » http://dx.doi.org/10.1016/S0093-691X(01)00525-8
  • Moreira F, Orlandi C, Risco CA, Mattos R, Lopes F, Thatcher WW. Effects of presynchronization and bovine somatotropin on pregnancy rates to a timed artificial insemination protocol in lactating dairy cows. J Dairy Sci. 2001;84(7):1646-59. http://dx.doi.org/10.3168/jds.S0022-0302(01)74600-0 PMid:11467815.
    » http://dx.doi.org/10.3168/jds.S0022-0302(01)74600-0
  • Moreira F, Risco CA, Pires MFA, Ambrose JD, Drost M, Thatcher WW. Use of bovine somatotropin in lactating dairy cows receiving timed artificial insemination. J Dairy Sci. 2000;83(6):1237-47. http://dx.doi.org/10.3168/jds.S0022-0302(00)74990-3 PMid:10877389.
    » http://dx.doi.org/10.3168/jds.S0022-0302(00)74990-3
  • Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971;246(5):1461-7. http://dx.doi.org/10.1016/S0021-9258(19)76994-4 PMid:5545089.
    » http://dx.doi.org/10.1016/S0021-9258(19)76994-4
  • Moura CEB, Rigoglio NN, Braz JKFS, Machado M, Baruselli PS, Papa PC. Microvascularization of corpus luteum of bovine treated with equine chorionic gonadotropin. Microsc Res Tech. 2015;78(9):747-53. http://dx.doi.org/10.1002/jemt.22533 PMid:26094589.
    » http://dx.doi.org/10.1002/jemt.22533
  • Murphy BD, Martinuk SD. Equine chorionic gonadotropin. Endocr Rev. 1991;12(1):27-44. http://dx.doi.org/10.1210/edrv-12-1-27 PMid:2026120.
    » http://dx.doi.org/10.1210/edrv-12-1-27
  • Núñez-Olivera R, Castro T, García-Pintos C, Bó GA, Piaggio J, Menchaca A. Ovulatory response and luteal function after eCG administration at the end of a progesterone and estradiol’ based treatment in postpartum anestrous beef cattle. Anim Reprod Sci. 2014;146(3-4):111-6. http://dx.doi.org/10.1016/j.anireprosci.2014.02.017 PMid:24646633.
    » http://dx.doi.org/10.1016/j.anireprosci.2014.02.017
  • Oosthuizen N, Fontes PLP, Henry DD, Ciriaco FM, Sanford CD, Canal LB, Moraes GV, DiLorenzo N, Currin JF, Clark S, Whittier WD, Mercadante VRG, Lamb GC. Administration of recombinant bovine somatotropin prior to fixed-time artificial insemination and the effects on fertility, embryo, and fetal size in beef heifers. J Anim Sci. 2018;96(5):1894-902. http://dx.doi.org/10.1093/jas/sky077 PMid:29733416.
    » http://dx.doi.org/10.1093/jas/sky077
  • Pavlok A, Koutecká L, Krejčí P, Slavík T, Cerman J, Slaba J, Dorn D. Effect of recombinant bovine somatotropin on follicular growth and quality of oocytes in cattle. Anim Reprod Sci. 1996;41(3-4):183-92. http://dx.doi.org/10.1016/0378-4320(95)01464-0
    » http://dx.doi.org/10.1016/0378-4320(95)01464-0
  • Pessoa GA, Martini AP, Carloto GW, Rodrigues MCC, Claro I Jr, Baruselli PS, Brauner CC, Rubin MIB, Corrêa MN, Leivas FG, Sá MF Fo. Different doses of equine chorionic gonadotropin on ovarian follicular growth and pregnancy rate of suckled Bos taurus beef cows subjected to timed artificial insemination protocol. Theriogenology. 2016;85(5):792-9. http://dx.doi.org/10.1016/j.theriogenology.2015.09.057 PMid:26577752.
    » http://dx.doi.org/10.1016/j.theriogenology.2015.09.057
  • Phipps RH, Hard DL, Adriaens F. Use of bovine somatotropin in the tropics: the effect of sometribove on milk production in western, eastern, and southern Africa. J Dairy Sci. 1997;80(3):504-10. http://dx.doi.org/10.3168/jds.S0022-0302(97)75963-0 PMid:9098800.
    » http://dx.doi.org/10.3168/jds.S0022-0302(97)75963-0
  • Raux A, Bichon E, Benedetto A, Pezzolato M, Bozzetta E, Le Bizec B, Dervilly G. The promise and challenges of determining recombinant bovine growth hormone in milk. Foods. 2022;11(3):274. http://dx.doi.org/10.3390/foods11030274 PMid:35159426.
    » http://dx.doi.org/10.3390/foods11030274
  • Rebeis LM, Lemes KM, Reis EL, Souza ES, Barros DM, Catussi BLC, Souza SP, Nunes MA, Monolio LR, Baruselli PS. Treatment with bovine somatrotopin (bST) improve pregnancy rate in F1 crossbred recipients submitted to FTET. Anim Reprod. 2022;19(2):e22099.
  • Rebeis LM, Weiler SA, Silva LP, Garcia TAM, Baumgarten HA, Casamayouret FF, Viacava R, Masselli Filho AD, Mori FK, Baruselli PS. Effect of treatment with bST at the beginning of the protocol (D0) on FTAI and FTET. In: XXXVI Reunião Annual da Sociedade Brasileira de Tecnologia de Embriões; 2023 Aug 9-12; Campinas, Brazil. Jaboticabal: Sociedade Brasileira de Tecnologia de Embriões; In Press 2023.
  • Ribeiro ES, Bruno RGS, Farias AM, Hernández-Rivera JA, Gomes GC, Surjus R, Becker LFV, Birt A, Ott TL, Branen JR, Sasser RG, Keisler DH, Thatcher WW, Bilby TR, Santos JEP. Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows. Biol Reprod. 2014;90(1):1-12. http://dx.doi.org/10.1095/biolreprod.113.114694 PMid:24285716.
    » http://dx.doi.org/10.1095/biolreprod.113.114694
  • Rigoglio NN, Fátima LA, Hanassaka JY, Pinto GL, Machado ASD, Gimenes LU, Baruselli PS, Rennó FP, Moura CEB, Watanabe IS, Papa PC. Equine chorionic gonadotropin alters luteal cell morphologic features related to progesterone synthesis. Theriogenology. 2013;79(4):673-9. http://dx.doi.org/10.1016/j.theriogenology.2012.11.023 PMid:23273432.
    » http://dx.doi.org/10.1016/j.theriogenology.2012.11.023
  • Rodrigues CA, Castro A No, Catussi BLC, Rebeis LM, Pinho P, Randi F, Baruselli PS. Superstimulation prior to the ovum pick-up with a single dose of recombinant FSH improves in vitro embryo production in Holstein heifers. Animal Sci Proc. 2023a;14(3):483-4. http://dx.doi.org/10.1016/j.anscip.2023.03.085
    » http://dx.doi.org/10.1016/j.anscip.2023.03.085
  • Rodrigues CA, Castro A No, Catussi BLC, Rebeis LM, Pinho P, Randi F, Baruselli PS. Superstimulation prior to ovum pick-up with a single dose of recombinant FSH improves in vitro embryo production in lactating Holstein cows. Animal Sci Proc. 2023b;14(3):484-5. http://dx.doi.org/10.1016/j.anscip.2023.03.087
    » http://dx.doi.org/10.1016/j.anscip.2023.03.087
  • Rodriguez-Martinez H. Assisted reproductive techniques for cattle breeding in developing countries: a critical appraisal of their value and limitations. Reprod Domest Anim. 2011;47(Suppl 1):21-6. http://dx.doi.org/10.1111/j.1439-0531.2011.01961.x PMid:22212208.
    » http://dx.doi.org/10.1111/j.1439-0531.2011.01961.x
  • Roth Z, Arav A, Braw-Tai R, Bor A, Wolfenson D. Effect of treatment with follicle-stimulating hormone or bovine somatotropin on the quality of oocytes aspirated in the autumn from previously heat-stressed cows. J Dairy Sci. 2002;85(6):1398-405. http://dx.doi.org/10.3168/jds.S0022-0302(02)74207-0 PMid:12146470.
    » http://dx.doi.org/10.3168/jds.S0022-0302(02)74207-0
  • Sá MF Fo, Ayres H, Ferreira RM, Marques MO, Reis EL, Silva RCP, Rodrigues CA, Madureira EH, Bó GA, Baruselli PS. Equine chorionic gonadotropin and gonadotropin-releasing hormone enhance fertility in a norgestomet-based, timed artificial insemination protocol in suckled Nellore (Bos indicus) cows. Theriogenology. 2010a;73(5):651-8. http://dx.doi.org/10.1016/j.theriogenology.2009.11.004 PMid:20080296.
    » http://dx.doi.org/10.1016/j.theriogenology.2009.11.004
  • Sá MF Fo, Carvalho NAT, Gimenes LU, Torres-Júnior JR, Nasser LFT, Tonhati H, Garcia JM, Gasparrini B, Zicarelli L, Baruselli PS. Effect of recombinant bovine somatotropin (bST) on follicular population and on in vitro buffalo embryo production. Anim Reprod Sci. 2009;113(1-4):51-9. http://dx.doi.org/10.1016/j.anireprosci.2008.06.008 PMid:18691835.
    » http://dx.doi.org/10.1016/j.anireprosci.2008.06.008
  • Sá MF Fo, Torres-Júnior JRS, Penteado L, Gimenes LU, Ferreira RM, Ayres H, Castro e Paula LA, Sales JNS, Baruselli PS. Equine chorionic gonadotropin improves the efficacy of a progestin-based fixed-time artificial insemination protocol in Nelore (Bos indicus) heifers. Anim Reprod Sci. 2010b;118(2-4):182-7. http://dx.doi.org/10.1016/j.anireprosci.2009.10.004 PMid:19939592.
    » http://dx.doi.org/10.1016/j.anireprosci.2009.10.004
  • Sales JNS, Bottino MP, Silva LACL, Girotto RW, Massoneto JPM, Souza JC, Baruselli PS. Effects of eCG are more pronounced in primiparous than multiparous Bos indicus cows submitted to a timed artificial insemination protocol. Theriogenology. 2016;86(9):2290-5. http://dx.doi.org/10.1016/j.theriogenology.2016.07.023 PMid:27616213.
    » http://dx.doi.org/10.1016/j.theriogenology.2016.07.023
  • Sales JNS, Crepaldi GA, Girotto RW, Souza AH, Baruselli PS. Fixed-time AI protocols replacing eCG with a single dose of FSH were less effective in stimulating follicular growth, ovulation, and fertility in suckled-anestrus Nellore beef cows. Anim Reprod Sci. 2011;124(1-2):12-8. http://dx.doi.org/10.1016/j.anireprosci.2011.02.007 PMid:21376482.
    » http://dx.doi.org/10.1016/j.anireprosci.2011.02.007
  • Sanderson N, Martinez M. A single administration of a long-acting recombinant ovine FSH (roFSH) for cattle superovulation. Theriogenology. 2020;154:66-72. http://dx.doi.org/10.1016/j.theriogenology.2020.04.037 PMid:32512315.
    » http://dx.doi.org/10.1016/j.theriogenology.2020.04.037
  • Santos JEP, Juchem SO, Cerri RLA, Galvão KN, Chebel RC, Thatcher WW, Dei CS, Bilby CR. Effect of bST and reproductive management on reproductive performance of Holstein dairy cows. J Dairy Sci. 2004;87(4):868-81. http://dx.doi.org/10.3168/jds.S0022-0302(04)73231-2 PMid:15259221.
    » http://dx.doi.org/10.3168/jds.S0022-0302(04)73231-2
  • Schams D, Kosmann M, Berisha B, Amselgruber WM, Miyamoto A. Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells. Exp Clin Endocrinol Diabetes. 2001;109(3):155-62. http://dx.doi.org/10.1055/s-2001-14839 PMid:11409298.
    » http://dx.doi.org/10.1055/s-2001-14839
  • Seneda MM, Esper CR, Garcia JM, Oliveira JA, Vantini R. Relationship between follicle size and ultrasound-guided transvaginal oocyte recovery. Anim Reprod Sci. 2001;67(1-2):37-43. http://dx.doi.org/10.1016/S0378-4320(01)00113-0 PMid:11408112.
    » http://dx.doi.org/10.1016/S0378-4320(01)00113-0
  • Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005;94(8):1626-35. http://dx.doi.org/10.1002/jps.20319 PMid:15959882.
    » http://dx.doi.org/10.1002/jps.20319
  • Sirard MA. Factors affecting oocyte and embryo transcriptomes. Reprod Domest Anim. 2012;47(Suppl 4):148-55. http://dx.doi.org/10.1111/j.1439-0531.2012.02069.x PMid:22827364.
    » http://dx.doi.org/10.1111/j.1439-0531.2012.02069.x
  • Sousa LMMC, Mendes GP, Campos DB, Baruselli PS, Papa PC. Equine chorionic gonadotropin modulates the expression of genes related to the structure and function of the bovine corpus luteum. PLoS One. 2016;11(10):e0164089. http://dx.doi.org/10.1371/journal.pone.0164089 PMid:27711194.
    » http://dx.doi.org/10.1371/journal.pone.0164089
  • Souza AH, Viechnieski S, Lima FA, Silva FF, Araújo R, Bó GA, Wiltbank MC, Baruselli PS. Effects of equine chorionic gonadotropin and type of ovulatory stimulus in a timed-AI protocol on reproductive responses in dairy cows. Theriogenology. 2009;72(1):10-21. http://dx.doi.org/10.1016/j.theriogenology.2008.12.025 PMid:19269685.
    » http://dx.doi.org/10.1016/j.theriogenology.2008.12.025
  • Starbuck MJ, Inskeep EK, Dailey RA. Effect of a single growth hormone (rbST) treatment at breeding on conception rates and pregnancy retention in dairy and beef cattle. Anim Reprod Sci. 2006;93(3-4):349-59. http://dx.doi.org/10.1016/j.anireprosci.2005.08.010 PMid:16183219.
    » http://dx.doi.org/10.1016/j.anireprosci.2005.08.010
  • Steelman SL, Lamont WA, Baltes BJ. Preparation of highly active follicle stimulating hormone from swine pituitary glands. Acta Endocrinol. 1956;22(2):186-90. http://dx.doi.org/10.1530/acta.0.0220186 PMid:13326186.
    » http://dx.doi.org/10.1530/acta.0.0220186
  • Stewart F, Allen WR. Biological functions and receptor binding activities of equine chorionic gonadotrophins. J Reprod Fertil. 1981;62(2):527-36. http://dx.doi.org/10.1530/jrf.0.0620527 PMid:6265633.
    » http://dx.doi.org/10.1530/jrf.0.0620527
  • Thatcher WW, Bilby TR, Bartolome JA, Silvestre F, Staples CR, Santos JEP. Strategies for improving fertility in the modern dairy cow. Theriogenology. 2006;65(1):30-44. http://dx.doi.org/10.1016/j.theriogenology.2005.10.004 PMid:16280156.
    » http://dx.doi.org/10.1016/j.theriogenology.2005.10.004
  • Tripp MW, Ju JC, Hoagland TA, Riesen JW, Yang X, Zinn SA. Influence of somatotropin and nutrition on bovine oocyte retrieval and in vitro development. Theriogenology. 2000;53(8):1581-90. http://dx.doi.org/10.1016/S0093-691X(00)00299-5 PMid:10883845.
    » http://dx.doi.org/10.1016/S0093-691X(00)00299-5
  • Velazquez MA, Spicer LJ, Wathes DC. The role of endocrine insulin-like growth factor-I (IGF-I) in female bovine reproduction. Domest Anim Endocrinol. 2008;35(4):325-42. http://dx.doi.org/10.1016/j.domaniend.2008.07.002 PMid:18703307.
    » http://dx.doi.org/10.1016/j.domaniend.2008.07.002
  • Vieira LM, Rodrigues CA, Castro A No, Guerreiro BM, Silveira CRA, Moreira RJC, Sá MF Fo, Bó GA, Mapletoft RJ, Baruselli PS. Superstimulation prior to the ovum pick-up to improve in vitro embryo production in lactating and non-lactating Holstein cows. Theriogenology. 2014;82(2):318-24. http://dx.doi.org/10.1016/j.theriogenology.2014.04.013 PMid:24839924.
    » http://dx.doi.org/10.1016/j.theriogenology.2014.04.013
  • Vieira LM, Rodrigues CA, Castro A No, Guerreiro BM, Silveira CRA, Freitas BG, Bragança LGM, Marques KNG, Sá MF Fo, Bó GA, Mapletoft RJ, Baruselli PS. Efficacy of a single intramuscular injection of porcine FSH in hyaluronan prior to ovum pick-up in Holstein cattle. Theriogenology. 2016;85(5):877-86. http://dx.doi.org/10.1016/j.theriogenology.2015.10.036 PMid:26639640.
    » http://dx.doi.org/10.1016/j.theriogenology.2015.10.036
  • Villarraza CJ, Antuña S, Tardivo MB, Rodríguez MC, Mussio P, Cattaneo L, Fontana D, Díaz PU, Ortega HH, Tríbulo A, Macagno A, Bó G, Ceaglio N, Prieto C. Development of a suitable manufacturing process for production of a bioactive recombinant equine chorionic gonadotropin (reCG) in CHO-K1Cells. Theriogenology. 2021;172:8-19. http://dx.doi.org/10.1016/j.theriogenology.2021.05.013 PMid:34082223.
    » http://dx.doi.org/10.1016/j.theriogenology.2021.05.013
  • West JW, Bondari K, Johnson JC Jr. Effects of bovine somatotropin on milk yield and composition, body weight, and condition score of Holstein and Jersey cows. J Dairy Sci. 1990;73(4):1062-8. http://dx.doi.org/10.3168/jds.S0022-0302(90)78765-6 PMid:2345196.
    » http://dx.doi.org/10.3168/jds.S0022-0302(90)78765-6
  • Wilson JM, Jones AL, Moore K, Looney CR, Bondioli KR. Superovulation of cattle with a recombinant-DNA bovine follicle stimulating hormone. Anim Reprod Sci. 1993;33(1-4):71-82. http://dx.doi.org/10.1016/0378-4320(93)90107-3
    » http://dx.doi.org/10.1016/0378-4320(93)90107-3
  • Wiltbank MC, Gümen A, Sartori R. Physiological classification of anovulatory conditions in cattle. Theriogenology. 2002;57(1):21-52. http://dx.doi.org/10.1016/S0093-691X(01)00656-2 PMid:11775971.
    » http://dx.doi.org/10.1016/S0093-691X(01)00656-2
  • Zhao X, Burton JH, McBride BW. Lactation, health, and reproduction of dairy cows receiving daily injectable or sustained-release somatotropin. J Dairy Sci. 1992;75(11):3122-30. http://dx.doi.org/10.3168/jds.S0022-0302(92)78075-8 PMid:1460139.
    » http://dx.doi.org/10.3168/jds.S0022-0302(92)78075-8

Publication Dates

  • Publication in this collection
    04 Sept 2023
  • Date of issue
    2023

History

  • Received
    06 June 2023
  • Accepted
    21 July 2023
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com