Accessibility / Report Error

Land cover changes affect soil chemical attributes in the Brazilian Amazon

Modificações na cobertura vegetal influenciam os atributos químicos do solo na Amazônia brasileira

Murilo Rezende Machado Rodrigo Camara Paulo de Tarso Barbosa Sampaio Marcos Gervasio Pereira João Baptista Silva Ferraz About the authors

ABSTRACT.

Forest plantations may minimize the effects of deforestation in the Amazon. However, there are differences among species in terms of their influences on soil recovery. The effects of monospecific plantations of Acacia mangium, Dipteryx odorata, Jacaranda copaia, Parkia decussata,and Swietenia macrophylla, and areas of pasture and native forest on the chemical soil attributes of the Brazilian Amazon were evaluated. One bulked soil sample was collected per plot (0.00-0.05, 0.05-0.10, and 0.10-0.30 m; three plots of 128 m2) in each area. No significant differences in most of the soil attributes were observed among the forest plantations. However, soil K+ and P were higher in the Swietenia macrophylla plantations, while higher values of Ca2+, sum of bases, and pH occurred in Jacaranda copaia plantations. In the native forest, the pH, and P content were lower, whereas the soil organic matter (SOM) content, soil organic carbon (SOC) content, cation exchange capacity (CEC), N content, H+Al content, and Al3+ content were higher than in the plantations. The lowest values of SOM, SOC, CEC, K+, Mg2+, N, H+Al, and Al3+ occurred in the pasture. None of the forest species led to the return of the original soil chemical attributes of the native forest. However, S. macrophylla and J. copaia plantations presented the highest positive edaphic influences.

Keywords:
Amazon deforestation; edaphic attributes; environmental reclamation; forest plantations.

RESUMO.

Plantios florestais podem mimizar o efeito do desmatamento na Amazônia. Contudo, há diferenças entre as espécies com relação à influência no solo. Os efeitos de plantações monoespecíficas de Acacia mangium, Dipteryx odorata, Jacaranda copaia, Parkia decussata e Swietenia macrophylla, e áreas de pastagem e mata nativa, sobre os atributos químicos do solo, foram avaliados na Amazônia brasileira. Uma amostra composta de solo por parcela foi coletada (0-5, 5-10 e 10-30 cm; três parcelas de 128 m2) em cada área. Não houve diferenças significativas para a maioria dos atributos avaliados, na comparação entre os plantios. Contudo maiores valores de K+ e P foram observados sob Swietenia macrophylla, enquanto maiores valores de Ca2+, soma de bases e pH ocorreram sob Jacaranda copaia. Em relação aos plantios, na mata nativa foram menores o pH e P disponível, enquanto conteúdo de matéria orgânica do solo (MOS), carbono orgânico do solo (COS), capacidade de troca catiônica (CTC), N, H+Al e Al3+ foram maiores. Sob pastagem, ocorreram menores valores de MOS, COS, CTC, K+, Mg2+, N, H+Al e Al3+. Não ocorreu o retorno das condições originais dos atributos químicos do solo observados na mata nativa, sob nenhuma espécie florestal. No entanto, os plantios de S. macrophylla e J. copaia promoveram as maiores influências positivas no solo.

Palavras-chave:
desmatamento na Amazônia; atributos edáficos; recuperação ambiental; plantações florestais.

Introduction

The Amazon region encompasses the world’s highest level of biodiversity. However, the loss of diversity is affecting millions of individuals of different species of plants, animals and microbial life-forms (Foley et al., 2007Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., De Fries, R., Gibbs, H.K., … Snyder, P. (2007). Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Frontiers in Ecology and the Environment, 5(1), 25-32. ) due to annual deforestation of over 20,000 km2 (Arraes, Mariano, & Simonassi, 2012Arraes, R. A., Mariano, F. Z., & Simonassi, A. G. (2012). Causas do desmatamento no Brasil e seu ordenamento no contexto mundial. Revista de Economia e Sociologia Rural, 50(1), 119-140. ). Thus, approximately 20% of its 3.6 million km2 have already been lost, resulting in “savannization”, which negatively affects biodiversity and water availability across other biomes (Sawyer, 2009Sawyer, D. (2009). Fluxos de carbono na Amazônia e no Cerrado: um olhar socioecossistêmico. Sociedade e Estado , 24(1), 149-171. ). This accelerated deforestation is driven by the trees being cut for commercial purposes, with subsequent burn before initiating agricultural activities (Arraes et al., 2012). Consequently, this region is an important Brazilian source of carbon emissions for the atmosphere, which significantly contribute to the greenhouse effect (Machado, 2009Machado, L. O. R. (2009). Desflorestamento na Amazônia brasileira: ação coletiva, governança e governabilidade em área de fronteira. Sociedade e Estado, 24(1), 115-147. ).

Therefore, the scientific community has agreed that fighting against Amazon deforestation is a matter of national security (Machado, 2009Machado, L. O. R. (2009). Desflorestamento na Amazônia brasileira: ação coletiva, governança e governabilidade em área de fronteira. Sociedade e Estado, 24(1), 115-147. ; Sawyer, 2009Sawyer, D. (2009). Fluxos de carbono na Amazônia e no Cerrado: um olhar socioecossistêmico. Sociedade e Estado , 24(1), 149-171. ). Thus, promoting the conservation of natural resources combined with sustainable socio-economic and environmental development will contribute to minimizing this situation (Foley et al., 2007Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., De Fries, R., Gibbs, H.K., … Snyder, P. (2007). Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Frontiers in Ecology and the Environment, 5(1), 25-32. ). The establishment of forest plantations enhances forest regeneration (Sansevero, Prieto, Moraes, & Rodrigues, 2011Sansevero, J. B. B., Prieto, P. V., Moraes, L. F. D., & Rodrigues, P. J. F. P. (2011). Natural regeneration in plantations of native trees in Lowland Brazilian Atlantic Forest: community structure, diversity, and dispersal syndromes. Restoration Ecology, 19(3), 379-389. ). This fact is a consequence of the attraction of birds, which are seed dispersal agents, and the amelioration of severe microclimate conditions by the recovery of plants in the soil, which facilitates the establishment of seedlings (Meli & Dirzo, 2013Meli, P., & Dirzo, R. (2013). Effects of grasses on sapling establishment and the role of transplanted saplings on the light environment of pastures: implications for tropical forest restoration. Applied Vegetation Science, 16(2), 296-304. ). Moreover, the presence of a dense root system contributes to the control of soil erosion and to the input of soil organic matter and nutrients through litterfall (Chada, Campello, & Faria, 2004Chada, S. S., Campello, E. F. C., & Faria, S. M. (2004). Sucessão vegetal em uma encosta reflorestada com leguminosas arbóreas em Angra dos Reis, RJ. Revista Árvore, 28(6), 801-809. ).

The high amount of biomass in the Amazon forest is due to efficient nutrient cycling between plants and soil (Ferreira, Luizão, Miranda, Silva, & Vital, 2006Ferreira, S. J. F., Luizão, F. J., Miranda, S. A. F., Silva, M. S. F., & Vital, A. R. T. (2006). Nutrientes na solução do solo em floresta de terra firme na Amazônia Central submetida à extração seletiva de madeira. Acta Amazonica, 36(1), 59-68. ). Thus, it is necessary to select suitable species that can be effectively established on degraded soils and contribute to its nutritional enrichment (Meli, Martinez-Ramos, Rey-Benayas, & Carabias, 2014Meli, P., Martínez-Ramos, M., Rey-Benayas, J. M., & Carabias, J. (2014). Combining ecological, social and technical criteria to select species for forest restoration. Applied Vegetation Science , 17(4), 744-753. ). Studies focused on this information should include native and well-adapted exotic species, pioneer and non-pioneer species, and nitrogen-fixing species, which may facilitate the reforestation and long-term recovery of ecosystem functions (Chada et al., 2004Chada, S. S., Campello, E. F. C., & Faria, S. M. (2004). Sucessão vegetal em uma encosta reflorestada com leguminosas arbóreas em Angra dos Reis, RJ. Revista Árvore, 28(6), 801-809. ; Macedo et al., 2008Macedo, M. O., Resende, A. S., Garcia, P. C., Boddey, R. M., Jantalia, C. P., Urquiaga, S., ... Franco, A. A. (2008). Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. Forest Ecology and Management, 255(5-6), 1516-1524. ).

This study aimed to evaluate the impacts of monospecific plantations established in pasture areas on the chemical properties of topsoil in the Brazilian Amazon. Accordingly, we tested the hypothesis that there is no difference among five forest species with respect to their effects on improving soil chemical properties.

Material and methods

The experimental area was located at the coordinates 2° 56' 13 “S and 58º 55' 55” W, 250 km from the AM-010 State Road in Itacoatiara, Amazonas State, Brazil. According to the National Institute of Meteorology (INMET), the local climate is characterized by high total annual rainfall (2,551 mm year-1) and a short period with less rain from August to October, and an annual mean temperature of 25.9ºC. The drier month presents total rainfall less than 60 mm, and the mean temperature of the colder month is always equal to or greater than 18°C. The climate was classified as “Am”, which means that an excessive amount of rainfall occurs (≥ 2,500 mm per year) and the winter is dry (Köppen, 1948Köppen, W. (1948). Climatologia: con un estudio de los climas de la Tierra. Mexico: Fondo de Cultura Economica.).

The local relief varies from flat to wavy, and the soils are predominantly Oxisols. For the establishment of pasture areas, tree species with high economical value were removed from the original vegetation, Ombrophilous Dense Forest, with subsequent burning of the remaining vegetation. Thereafter, areas with Bracharia humidicula (Rendle) Schweickerdt pastures were established. In December 2003, part of this area was selected on a farm called Nova Vida for the establishment of monospecific plantations of five species (Table 1). The planting spacing was 2 x 2 m. More information about the preparation of the area for the installation of the plantations was provided by Machado, Sampaio, Ferraz, Camara, and Pereira (2016Machado, M. R., Sampaio, P. T. B., Ferraz, J., Camara, R., & Pereira, M. G. (2016). Nutrient retranslocation in forest species in the Brazilian Amazon. Acta Scientiarum. Agronomy, 38(1), 93-101. ).

In addition to the forest stands, two contiguous areas with representative types of land use in the region were considered: a Brachiaria humidicola pasture area and a native forest area. The soil chemical attributes in the pasture were considered as the soil conditions prior to the installation of the forest stands, in the experimental area. On the other hand, the native forest was considered as a reference for the original conditions of the soil.

The soil chemical attributes were evaluated in three plots of 128 m2 in each of the seven land use types. In each of the plots, one soil sample was randomly collected at three depths (0.00-0.05 m, 0.05-0.10 m, and 0.10-0.30 m), each consisting of six subsamples, using a thread auger in December 2007. The experimental design was completely randomized, consisting of seven treatments and three replicates within each treatment.

After air-drying on the lab bench, the soil samples were manually ground, passed through a 2-mm sieve, and the plant residues were removed. Values of the following variables were determined according to Embrapa (2011): pH (H2O); potential acidity (H+Al); Al3+, K+, Ca2+, and Mg2+ content; sum of exchangeable bases (SB); potential cation-exchange capacity (CEC at pH 7.0); available P content; N content; soil organic carbon (SOC) content; and soil organic matter (SOM) content.

Table 1
General information about the forest species and the respective planted area in Itacoatiara, Amazonas, Brazil.

The results were subjected to analysis of variance using the F test, and the mean values were compared using the LSD test (p < 0.05). These analyseswere performedusing Systat software, version 8.0 (Wilkinson, 1998Wilkinson, L. (1998). SYSTAT: The system for statistics. version 8.0. Evanston, IL: SPSS. Inc.). We also performed multivariate analysis of hierarchical clustering using Ward’s method to identify possible patterns in the effects of the different land use on soil chemical attributes. Therefore, we considered the mean values of the soil attributes calculated among the soil depths (0.00-0.05 m, 0.05-0.10 m, and 0.10-0.30 m) in each ecosystem. A dendrogram was constructedusing PAST software, version 2.17c (Hammer, Harper, & Ryan, 2001Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9.).

Results and discussion

In general, the land use significantly influenced all of the chemical attributes at the three sampling depths (Table 2). Comparing only the monospecific plantations, some patterns of this effect were observed. Higher K+ and P soil values occurredin Swietenia macrophylla plantations. On the other hand, the higher soil values of Ca2+, which influenced higher SB values, occurred in soils withJacarandacopaia. As a result, higher pH values were observedin this area, but these pH values were not significantly different from the pH values verifiedin the soil in the pasture area.

Considering all seven types of land use, the highest values of SOM, CEC, H+Al, Al3+, SOC, and N occurred in the native forest soil (Table 3). In the contrast, the lower values of SOM, CEC, H+Al, Al3+, SOC, K+, Mg2+, and N were verified in the pasture soil, while the lowest values of pH and P were found in the native forest soil.

The relationships among SOM and the other soil chemical attributes were previously found by other authors. The direct relationship between SOM and CEC is a function of the high reactivity power of SOM, in which the diversified organic radicals influence the CEC (Iwata et al., 2012Iwata, B. F., Leite, L. F. C., Araújo, A. S. F., Nunes, L. A. P. L., Gehring, C., & Campos, L. P. (2012). Sistemas agroflorestais e seus efeitos sobre os atributos químicos em Argissolo Vermelho-Amarelo do Cerrado piauiense. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(7), 730-738. ). Thus, the higher content of SOM increases the low fertility of Oxisols, in which the organic matter is responsible for a substantial proportion of the CEC (Effgen et al., 2012Effgen, E. M., Nappo, M. E., Cecílio, R. A., Mendonça, A. R., Manzole, R., & Borcarte, M. (2012). Atributos químicos de um Latossolo Vermelho-Amarelo distrófico sob cultivo de eucalipto e pastagem no sul do Espírito Santo. Scientia Forestalis, 40(95), 375-381.). In this way, the Oxisolshave a high content of very low-charged 1:1 clays and Fe and Al oxide-hydroxides (Santos et al., 2013Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., … Oliveira, J. B. (2013). Sistema brasileiro de classificação de solos (3a ed.) Brasília, DF: Embrapa.). Thus, the Oxisols have high Al3+contents and low CEC values, which are highly dependent upon the organic matter content.

Organic carbon is the main constituent of the SOM (Effgen et al., 2012Effgen, E. M., Nappo, M. E., Cecílio, R. A., Mendonça, A. R., Manzole, R., & Borcarte, M. (2012). Atributos químicos de um Latossolo Vermelho-Amarelo distrófico sob cultivo de eucalipto e pastagem no sul do Espírito Santo. Scientia Forestalis, 40(95), 375-381.). Thus, SOC and SOM quickly respond to changes in land-use and soil management (Smith, 2008Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81(2), 169-178. ). The soil N content is also directly related to the SOM content, which reflects the input of the deciduous plant material into the soil (Barreto & Lima, 2006Barreto, A. C., & Lima, F. H. S. (2006). Características químicas e físicas de um solo sob floresta, sistema agroflorestal e pastagem no sul da Bahia. Revista Caatinga, 19(4), 415-425.); this input is significantly higher in forests than in pasture areas (Machado, Piña-Rodrigues, & Pereira, 2008Machado, M. R., Piña-Rodrigues, F. C. M., & Pereira, M. G. (2008). Produção de serapilheira como bioindicador de recuperação em plantio adensado e de revegetação. Revista Árvore , 32(1), 143-151. ).

Table 2.The
mean values of pH, N, P, K+, Ca2+, and Mg2+ in soil (0.00-0.05 m, 0.05-0.10 m, and 0.10-0.30 m) in monospecific plantations of Acacia mangium, Dipteryx odorata, Jacaranda copaia, Parkia decussate,and Swietenia macrophylla, and in areas of native forest and pasture in Itacoatiara, Amazonas, Brazil.
Table3.The mean
values of SOC (soil organic carbon), SOM (soil organic matter), H++Al3+, Al3+, potential cation-exchange capacity (CEC at pH 7.0) and sum of bases (SB) in soil (0.00-0.05 m, 0.05-0.10 m, and 0.10-0.30 m) in monospecific plantations of Acacia mangium, Dipteryx odorata, Jacaranda copaia, Parkia decussate,and Swietenia macrophylla, and in areas of native forest and pasture in Itacoatiara, Amazonas, Brazil.

The anionic organic compounds in the SOM are capable of complexing the H+ and Al+3cationsthat are free in the soil solution and add base cations (Ca2+, Mg2+, and K+), reducing the soil acidity and increasing the soil pH (Pavinato & Rosolem, 2008Pavinato, P. S., & Rosolem, C. A. (2008). Disponibilidade de nutrientes no solo - decomposição e liberação de compostos orgânicos de resíduos vegetais. Revista Brasileira de Ciência do Solo , 32(3), 911-920. ). Therefore, the increase of SOM influenced the low soil values of H+Al and Al3+ in the native forest. Although we expected higher soil K+, Ca2+, and Mg2+ contents and pH in this ecosystem, this result did not occur. The higher pH values that were observedin the monospecific forest plantations and pasture area were likely due to liming and periodic burning, respectively.

Periodic burning in pasture areas leads to the release of bases to the soil from plant material (Sousa, Miranda, & Oliveira, 2007Sousa, D. M. G., Miranda, L. N., & Oliveira, S. A. (2007). Acidez do solo e sua correção. In R. F. Novais, V. H. Alvarez, N. F. Barros, R. L. F. Fontes, R. B. Cantarutti, & J. C. L. Neves (Eds.), Fertilidade do solo (p. 205-274). Viçosa, MG: Sociedade Brasileira de Ciência do Solo.). As a result, the H+ and Al3+contents in the soil solution decrease and the pH increases. This effect was verifiedin the present study, while the opposite effect was observed for Mg2+, whichdecreased in the pasture area. This pattern was probably caused by nutrient losses through leaching under high rates of rainfall (Heringer, Jacques, Bissani, & Tedesco, 2002Heringer, I., Jacques, A. V. A., Bissani, C. A., & Tedesco, M. (2002). Características de um Latossolo Vermelho sob pastagem natural sujeita à ação prolongada do fogo e de práticas alternativas de manejo. Ciência Rural, 32(2), 309-314. ), which naturally occur in the Amazon.

Although the lower SOM content may have influenced the low K+ and Mg2+contents in the soil in the pasture area, the higher SOM content did not increase the concentrations of these bases in the native forest. The probable explanation for this divergence are the differences between these ecosystems, with respect to the quality of the organic matter (C/N ratio and lignin content, for example), because this characteristic and the amount of plant organic matter into the soil influence the SOM content (Costa et al., 2009Costa, O. V., Cantarutti, R. B., Fontes, L. E. F., Costa, L. M., Nacif, P. G. S., & Faria, J.C. (2009). Estoque de carbono do solo sob pastagem em área de tabuleiro costeiro no sul da Bahia. Revista Brasileira de Ciência do Solo, 33(5), 1137-1145. ).

Acacia mangium, whichbelongs to the Fabaceae (Leguminosae) family, has the ability to form a mutualistic symbiosis with N-fixing bacteria (Perrineau et al., 2011Perrineau, M. M., Le Roux, C., Faria, S. M., Balieiro, F. C., Galiana, A., Prin, Y., & Béna, G. (2011). Genetic diversity of symbiotic Bradyrhizobiumelkanii populations recovered from inoculated and non-inoculated Acaciamangium field trials in Brazil. Systematic and Applied Microbiology, 34(5), 376-384. ). Therefore, both green and senescent leaves of this species have higher N contents compared to the N contents in Dipteryx odorata, Parkia decussata and S. macrophylla leaves, although the values for J. copaialeaves were not significantly different from those observed inA. mangium (Machado, Sampaio, Ferraz, Camara, & Pereira, 2016Machado, M. R., Sampaio, P. T. B., Ferraz, J., Camara, R., & Pereira, M. G. (2016). Nutrient retranslocation in forest species in the Brazilian Amazon. Acta Scientiarum. Agronomy, 38(1), 93-101. ). Silva et al. (2015Silva, C. F., Loss, A., Carmo, E. R., Pereira, M. G., Silva, E. M. R., & Martins, M. A. (2015). Fertilidade do solo e substâncias húmicas em área de cava de extração de argila revegetada com eucalipto e leguminosas no Norte Fluminense. Ciência Florestal , 25(3), 547-561. ) verified that the total soil N content in a monospecific plantation of A. mangiumwas higherwhen compared to a monospecific plantation of Eucalyptus camaldulensis Dehn, in the north of Rio de Janeiro State.

However, Silva et al. (2015Silva, C. F., Loss, A., Carmo, E. R., Pereira, M. G., Silva, E. M. R., & Martins, M. A. (2015). Fertilidade do solo e substâncias húmicas em área de cava de extração de argila revegetada com eucalipto e leguminosas no Norte Fluminense. Ciência Florestal , 25(3), 547-561. ) noticed that the total N content was significantly lower in the soil in both the mixed stands of A. mangium/E.camaldulensis and A.mangium/Sesbaniavirgata (Cav.) Pers., compared to the monospecific plantation of Acacia mangium. This result was observed even though S. virgata (Fabaceae) also may associate with N-fixing bacteria. Therefore, factors other than forest species also determine the soil chemical attributes, such as weather conditions and the characteristics of the decomposer biota community.

The soil under the native forest presented higher soil fertility, probably because the richness of the plant community was higher than in the monospecific plantations and pasture area. Some studies pointed out that the litter in native forests can have higher nutrient contents than the litter ofmonospecific plantations with native or exotic tree species (Cunha Neto, Leles, Pereira, Bellumath, & Alonso, 2013Cunha Neto, F. V., Leles, P. S. S., Pereira, M. G., Bellumath, V. G. H., & Alonso, J. M. (2013). Acúmulo e decomposição da serapilheira em quatro formações florestais. Ciência Florestal, 23(3), 379-387. ). Thus, more diverse litter is more suitable for decomposers (Balvanera et al., 2006Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9(10), 1146-1156. ), which leads to the favorable release of mineral elements enclosed in the litter and results in soil with higher fertility in native forest ecosystems.

The coexistence of different tree species that continuously produce heterogeneous litter in terms of chemical quality and that have different rates of nutrients uptake from soil results in increased soil fertility, compared to the soil fertility of monospecific plantations (Gama-Rodrigues, Barros, & Comerford, 2007Gama-Rodrigues, A. C., Barros, N. F., & Comerford, N. B. (2007). Biomass and nutrient cycling in pure and mixed stands of native tree species in southeastern Bahia, Brazil. Revista Brasileira de Ciência do Solo , 31(2), 287-298. ). Thus, the authors of the study previously mentioned suggested that more diverse forest ecosystems present complementarity between various tree species, which results in more efficient and balanced nutrient cycling dynamics.

The hierarchical clustering dendrogram obtained from the multivariate analysis indicated that J. copaia and S. macrophylla formed a group with high similarity (lower distance between connections) with the native forest (group 1) compared to the other ecosystems (Figure 1). In contrast, A. mangium and P.decussata formed another group with high similarity to D .odorata (group 2). These groups (1 and 2) presented low similarity to each other because the distance of connection between them (approximately 18) was greater than half of the total connection distance (30) that linked all of the types of land use (Figure 1). Moreover, the forest ecosystems (monospecific plantations and native forest) formed a macro group (group 3) in which the distance of connection to the pasture area was equal to 27, i.e., next to the value of the connection that encompassed all of the seven ecosystems. Thus, the soil chemical attributes showed that the pasture presented the highest dissimilarity to the forest ecosystems.

The information obtained by the present study indicated that the plantations did not result in the return of the soil chemical attributes to their original conditions that occurred under native forest. However, when comparing the different monospecific plantations with each other, the plantations of J. copaia and S. macrophyllahad major positive impacts on the soil chemical attributes to a depth of 0.03 m. In contrast, the pasture resulted in major negative edaphic impacts.

Figure 1
A hierarchical clustering dendrogram for the soil chemical attributes (mean values obtained among the three depths 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.30 m) in monospecific plantations of Acacia mangium, Dipteryx odorata, Jacaranda copaia, Parkia decussate, and Swietenia macrophylla, and areas of native forest and pasture in Itacoatiara, Amazonas, Brazil.

The intensely weathered soils in Amazon present low natural fertility (Quesada et al., 2010Quesada, C. A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T. R., Czimczik, C., ... Piva, R. (2010). Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences, 7(5), 1515-1541. ). Thus, we may consider that the forest species strongly depend on the nutrient cycling to attend their nutritional needs. For this reason, there is a close association between the litter layer disposedon the soil surface and a dense net of fine roots, which decreases in quantity with an increasing soil depth in the Amazonian forest (Herrera, Jordan, Klinge, & Medina, 1978Herrera, R., Jordan, C., Klinge, H., & Medina, E. (1978).Amazon ecosystems: their structure and functioning with particular emphasis on nutrients. Interciencia, 3(4), 223-231.).

This process allows the direct uptake of nutrients by plants that are released during the decomposition and mineralization of litter, which is an important mechanism to minimize nutrient loss by soil leachingthat is favored by heavy rainfall in the region (Newbery, Alexander, & Rother, 1997Newbery, D. Mc C., Alexander, I. J., & Rother, J. A. (1997). Phosphorus dynamics in a lowland African rain forest, the influence of ectomycorrhizal trees. Ecological Monographs, 67(3), 367-409. ). Moreover, another important mechanism of nutrient retention in the ecosystem is biochemical cycling, i.e., the internal translocation of mobile nutrients within plant organisms from senescent tissues to young tissues before leaf abscission (Almeida et al., 2014Almeida, C. X., Pita Junior, J. L., Rozane, D. E., Souza, H. A., Hernandes, A., Natale, W., & Ferraudo, A. S. (2014). Nutrient cycling in mango trees. Semina: Ciências Agrárias, 35(1), 259-266. ). This re-translocation process conserves approximately 60 to 85% of the total nutrient contents absorbed when the soil availability of nutrients is low (Malavolta, 2006Malavolta, E. (2006). Manual de nutrição de plantas. São Paulo, SP: Agronômica Ceres.). In this sense, the species that have higher rates of such a dynamic would be more adapted to the soil and climatic conditions that prevail in the Amazon.

The results obtained by Machado et al. (2016Machado, M. R., Sampaio, P. T. B., Ferraz, J., Camara, R., & Pereira, M. G. (2016). Nutrient retranslocation in forest species in the Brazilian Amazon. Acta Scientiarum. Agronomy, 38(1), 93-101. ) indicated that higher rates of internal nutrient translocation occurred in S. macrophylla (for N), A. mangium (for P and S), J. copaia (for K) and P.decussata (for Mg), while D.odorata did not show high performance for the re-translocation of macronutrients. Because N and P are the most limiting nutrients in the soil for tropical forest productivity, S. macrophylla and A. mangium play important ecological roles. Thus, both species should be prioritized for recovering degraded Amazon areas compared to the other forest species studied.

Conclusion

The forest plantations did not return the soil chemical attributes to their original native forest conditions.

When comparing the forest plantations, S. macrophylla and J. copaiahad the highest positive edaphic influence. Therefore, these forest species should be preferentially recommended in plantations for land reclamation in degraded areas with similar soil characteristics and climate conditions to those observed in this study.

Acknowledgements

The authors thank the Amazon Conservation Scholarship Program (Bolsas de Estudo para a Conservação da Amazônia - BECA)/International Institute of Education in Brazil (InstitutoInternacional de Educação do Brasil - IEB)/Moore Foundation for financial support of this project.

References

  • Almeida, C. X., Pita Junior, J. L., Rozane, D. E., Souza, H. A., Hernandes, A., Natale, W., & Ferraudo, A. S. (2014). Nutrient cycling in mango trees. Semina: Ciências Agrárias, 35(1), 259-266.
  • Arraes, R. A., Mariano, F. Z., & Simonassi, A. G. (2012). Causas do desmatamento no Brasil e seu ordenamento no contexto mundial. Revista de Economia e Sociologia Rural, 50(1), 119-140.
  • Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9(10), 1146-1156.
  • Barreto, A. C., & Lima, F. H. S. (2006). Características químicas e físicas de um solo sob floresta, sistema agroflorestal e pastagem no sul da Bahia. Revista Caatinga, 19(4), 415-425.
  • Chada, S. S., Campello, E. F. C., & Faria, S. M. (2004). Sucessão vegetal em uma encosta reflorestada com leguminosas arbóreas em Angra dos Reis, RJ. Revista Árvore, 28(6), 801-809.
  • Costa, O. V., Cantarutti, R. B., Fontes, L. E. F., Costa, L. M., Nacif, P. G. S., & Faria, J.C. (2009). Estoque de carbono do solo sob pastagem em área de tabuleiro costeiro no sul da Bahia. Revista Brasileira de Ciência do Solo, 33(5), 1137-1145.
  • Cunha Neto, F. V., Leles, P. S. S., Pereira, M. G., Bellumath, V. G. H., & Alonso, J. M. (2013). Acúmulo e decomposição da serapilheira em quatro formações florestais. Ciência Florestal, 23(3), 379-387.
  • Effgen, E. M., Nappo, M. E., Cecílio, R. A., Mendonça, A. R., Manzole, R., & Borcarte, M. (2012). Atributos químicos de um Latossolo Vermelho-Amarelo distrófico sob cultivo de eucalipto e pastagem no sul do Espírito Santo. Scientia Forestalis, 40(95), 375-381.
  • Empresa Brasileira de Pesquisa Agropecuária [Embrapa]. (2011). Manual de métodos de análises de solos (2a ed.). Rio de Janeiro, RJ: Embrapa Solos.
  • Ferreira, S. J. F., Luizão, F. J., Miranda, S. A. F., Silva, M. S. F., & Vital, A. R. T. (2006). Nutrientes na solução do solo em floresta de terra firme na Amazônia Central submetida à extração seletiva de madeira. Acta Amazonica, 36(1), 59-68.
  • Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., De Fries, R., Gibbs, H.K., … Snyder, P. (2007). Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Frontiers in Ecology and the Environment, 5(1), 25-32.
  • Gama-Rodrigues, A. C., Barros, N. F., & Comerford, N. B. (2007). Biomass and nutrient cycling in pure and mixed stands of native tree species in southeastern Bahia, Brazil. Revista Brasileira de Ciência do Solo , 31(2), 287-298.
  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9.
  • Heringer, I., Jacques, A. V. A., Bissani, C. A., & Tedesco, M. (2002). Características de um Latossolo Vermelho sob pastagem natural sujeita à ação prolongada do fogo e de práticas alternativas de manejo. Ciência Rural, 32(2), 309-314.
  • Herrera, R., Jordan, C., Klinge, H., & Medina, E. (1978).Amazon ecosystems: their structure and functioning with particular emphasis on nutrients. Interciencia, 3(4), 223-231.
  • Iwata, B. F., Leite, L. F. C., Araújo, A. S. F., Nunes, L. A. P. L., Gehring, C., & Campos, L. P. (2012). Sistemas agroflorestais e seus efeitos sobre os atributos químicos em Argissolo Vermelho-Amarelo do Cerrado piauiense. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(7), 730-738.
  • Köppen, W. (1948). Climatologia: con un estudio de los climas de la Tierra. Mexico: Fondo de Cultura Economica.
  • Macedo, M. O., Resende, A. S., Garcia, P. C., Boddey, R. M., Jantalia, C. P., Urquiaga, S., ... Franco, A. A. (2008). Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. Forest Ecology and Management, 255(5-6), 1516-1524.
  • Machado, L. O. R. (2009). Desflorestamento na Amazônia brasileira: ação coletiva, governança e governabilidade em área de fronteira. Sociedade e Estado, 24(1), 115-147.
  • Machado, M. R., Piña-Rodrigues, F. C. M., & Pereira, M. G. (2008). Produção de serapilheira como bioindicador de recuperação em plantio adensado e de revegetação. Revista Árvore , 32(1), 143-151.
  • Machado, M. R., Sampaio, P. T. B., Ferraz, J., Camara, R., & Pereira, M. G. (2016). Nutrient retranslocation in forest species in the Brazilian Amazon. Acta Scientiarum. Agronomy, 38(1), 93-101.
  • Malavolta, E. (2006). Manual de nutrição de plantas São Paulo, SP: Agronômica Ceres.
  • Meli, P., & Dirzo, R. (2013). Effects of grasses on sapling establishment and the role of transplanted saplings on the light environment of pastures: implications for tropical forest restoration. Applied Vegetation Science, 16(2), 296-304.
  • Meli, P., Martínez-Ramos, M., Rey-Benayas, J. M., & Carabias, J. (2014). Combining ecological, social and technical criteria to select species for forest restoration. Applied Vegetation Science , 17(4), 744-753.
  • Newbery, D. Mc C., Alexander, I. J., & Rother, J. A. (1997). Phosphorus dynamics in a lowland African rain forest, the influence of ectomycorrhizal trees. Ecological Monographs, 67(3), 367-409.
  • Pavinato, P. S., & Rosolem, C. A. (2008). Disponibilidade de nutrientes no solo - decomposição e liberação de compostos orgânicos de resíduos vegetais. Revista Brasileira de Ciência do Solo , 32(3), 911-920.
  • Perrineau, M. M., Le Roux, C., Faria, S. M., Balieiro, F. C., Galiana, A., Prin, Y., & Béna, G. (2011). Genetic diversity of symbiotic Bradyrhizobiumelkanii populations recovered from inoculated and non-inoculated Acaciamangium field trials in Brazil. Systematic and Applied Microbiology, 34(5), 376-384.
  • Quesada, C. A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T. R., Czimczik, C., ... Piva, R. (2010). Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences, 7(5), 1515-1541.
  • Sansevero, J. B. B., Prieto, P. V., Moraes, L. F. D., & Rodrigues, P. J. F. P. (2011). Natural regeneration in plantations of native trees in Lowland Brazilian Atlantic Forest: community structure, diversity, and dispersal syndromes. Restoration Ecology, 19(3), 379-389.
  • Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., … Oliveira, J. B. (2013). Sistema brasileiro de classificação de solos (3a ed.) Brasília, DF: Embrapa.
  • Sawyer, D. (2009). Fluxos de carbono na Amazônia e no Cerrado: um olhar socioecossistêmico. Sociedade e Estado , 24(1), 149-171.
  • Silva, C. F., Loss, A., Carmo, E. R., Pereira, M. G., Silva, E. M. R., & Martins, M. A. (2015). Fertilidade do solo e substâncias húmicas em área de cava de extração de argila revegetada com eucalipto e leguminosas no Norte Fluminense. Ciência Florestal , 25(3), 547-561.
  • Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81(2), 169-178.
  • Sousa, D. M. G., Miranda, L. N., & Oliveira, S. A. (2007). Acidez do solo e sua correção. In R. F. Novais, V. H. Alvarez, N. F. Barros, R. L. F. Fontes, R. B. Cantarutti, & J. C. L. Neves (Eds.), Fertilidade do solo (p. 205-274). Viçosa, MG: Sociedade Brasileira de Ciência do Solo.
  • Wilkinson, L. (1998). SYSTAT: The system for statistics version 8.0 Evanston, IL: SPSS. Inc.

Publication Dates

  • Publication in this collection
    Jul-Sep 2017

History

  • Received
    12 July 2016
  • Accepted
    01 Nov 2016
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, 87020-900 - Maringá PR/ Brasil, Tel.: (55 44) 3011-4253, Fax: (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaagron@uem.br