Acessibilidade / Reportar erro

Late Paleozoic glacial to postglacial stratigraphic evolution of the Rio do Sul depocenter, Itararé and Guatá groups, Pennsylvanian-Cisuralian, southern Brazil

Abstract

The transition from the Late Paleozoic Ice Age (LPIA) to fully postglacial conditions in SW Gondwana is under increasing discussion due to either the radiometric ages of its boundary or the stratigraphic nature of this transition. The record of this transition in the Paraná Basin is found in the glacial and glacially influenced deposits of the upper Mafra and Rio do Sul Formations (upper Itararé Group) and postglacial strata of the Rio Bonito Formation (Guatá Group). Here we address the depositional architecture and stratigraphic evolution of these deposits in the Rio do Sul depocenter, eastern Paraná Basin, Brazil, the main area of subsidence in the basin during this transition in Pennsylvanian-Cisuralian time, bringing an opportunity to examine the characteristics of glacial to postglacial transition. Analyses of facies, stratigraphic logs, stratigraphic correlations, and paleocurrent dispersal trends allowed us to define three evolutionary stages. The first stage registers glacial advance from the south-southwest represented by an erosive surface and subglacial tillites. Gravitational deposits covered the tillites in response to ice retreat (upper Mafra Formation), and the Lontras Shales (lower Rio do Sul Formation) correspond to the marine maximum flooding. The second stage comprises co-genetic deepwater (Rio do Sul Formation) to shallow (Rio Bonito Formation, Triunfo Member) progradational deposits after the Lontras Shale maximum flooding. Paleocurrent data and glacially related features point to glaciated source areas located to the NE, E, and SE for the Rio do Sul depocenter during this stage. The third stage corresponds to retrogradational stacking pattern upon a fluvial subaerial unconformity (incised valley), starting with fluvio-deltaic beds (Triunfo Member), followed by fine-grained deposits of the Paraguaçu Member of Rio Bonito Formation. No features related to glacial influence characterize this third stage. As previously suggested, tectonic uplift likely drove the additional NE source and created the space that allowed the transitional contact between Rio do Sul and Rio Bonito formations in the Rio do Sul depocenter.

KEYWORDS:
Late Paleozoic Ice Age; Gondwanan palaeogeography; glacially influenced deposits; co-genetic deepwater to shallow deposits

INTRODUCTION

The Rio do Sul depocenter was the main subsiding area during the Pennsylvanian-Permian transition of the Paraná Basin, filled mainly by glacio-influenced, deep-marine deposits of the Rio do Sul Formation (upper Itararé Group, Ramos 1967Ramos A.N. 1967. Análise estratigráfica da Formação Rio Bonito. Boletim Técnico da Petrobras, 10:307-407., Northfleet et al. 1969Northfleet A.A., Medeiros R.A., Mühlmann H. 1969. Reavaliação dos dados geológicos da Bacia do Paraná. Boletim Técnico da Petrobras, 12:291-346., Medeiros and Thomaz Filho 1973Medeiros R.A., Thomaz Filho A. 1973. Facies e ambientes deposicionais da Formação Rio Bonito. XXVII Congresso Brasileiro de Geologia. Anais… Salvador, v. 3, p. 3-32., Schneider et al. 1974Schneider R.L., Muhlmann H., Tommasi E., Medeiros R.A., Daemon R.A., Nogueira A.A. 1974. Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 27., 1974. Anais… Porto Alegre, p. 41-65., Castro 1980Castro J.C. 1980. Fácies, ambientes e sequências deposicionais das formações Rio do Sul e Rio Bonito, leste de Santa Catarina. In: XXXI Congresso Brasileiro de Geologia. Anais… Camboriú, p. 283-299., 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p., Eyles et al. 1993Eyles N., Eyles C.H., França A.B. 1993. Glaciation and tectonics in an active intracratonic basin: The Late Paleozoic Itararé Group, Paraná Basin, Brazil. Sedimentology, 40(1):1-25. https://doi.org/10.1111/j.1365-3091.1993.tb01087.x
https://doi.org/10.1111/j.1365-3091.1993...
). Its name refers to where these deposits can reach their maximum thickness (about 330 m, Schneider et al. 1974Schneider R.L., Muhlmann H., Tommasi E., Medeiros R.A., Daemon R.A., Nogueira A.A. 1974. Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 27., 1974. Anais… Porto Alegre, p. 41-65.) in the Rio do Sul locality, Santa Catarina State, southern Brazil. Those deep-marine deposits are superposed by fluvio-deltaic strata (Rio Bonito Formation), composing one of the outstanding intervals of the basin regarding mineral and energy potential (França and Potter 1988França A.B., Potter P.E. 1988. Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permocarbonífero), Bacia do Paraná (parte 1). Boletim de Geociências da Petrobras, 2:147-191.). The Itararé Group holds gas reservoirs (Campos et al. 1998Campos L., Milani E., Toledo M., Queiroz R., Catto A., Selke S. 1998. Barra Bonita: a primeira acumulação comercial de hidrocarboneto da Bacia do Paraná. In: Rio Oil & Gas Conference. Anais… Rio de Janeiro: Brazilian Petroleum Institute (IBP), p. 1-7.), and the Rio Bonito Formation hosts almost all the coal deposits in Brazil (Milani et al. 2007Milani E.J., Melo J.H.G., Souza P.L., Fernandes L.A., França A.B. 2007. Bacia do Paraná. Boletim de Geociências da Petrobras, 1:265-287.).

It has been widely reported the likely genetic link between the uppermost strata of the Itararé Group (Rio do Sul Formation) and the lowermost interval of the Rio Bonito Formation (Triunfo Member) in Santa Catarina State (e.g., Medeiros and Thomaz Filho 1973Medeiros R.A., Thomaz Filho A. 1973. Facies e ambientes deposicionais da Formação Rio Bonito. XXVII Congresso Brasileiro de Geologia. Anais… Salvador, v. 3, p. 3-32., Castro 1980Castro J.C. 1980. Fácies, ambientes e sequências deposicionais das formações Rio do Sul e Rio Bonito, leste de Santa Catarina. In: XXXI Congresso Brasileiro de Geologia. Anais… Camboriú, p. 283-299., Schneider et al. 1974Schneider R.L., Muhlmann H., Tommasi E., Medeiros R.A., Daemon R.A., Nogueira A.A. 1974. Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 27., 1974. Anais… Porto Alegre, p. 41-65., Canuto 1993Canuto J.R. 1993. Fácies e ambientes deposicionais da Formação Rio do Sul (Permiano), Bacia do Paraná, na região de Rio do Sul, Estado de Santa Catarina. Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 183 p., Santos et al. 1996Santos P.R., Rocha-Campos A.C., Canuto J.R. 1996. Patterns of Late Palaeozoic deglaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 125(1-4):165-184. https://doi.org/10.1016/S0031-0182(96)00029-6
https://doi.org/10.1016/S0031-0182(96)00...
, D’Ávila 2009D’Ávila R.S.F. 2009. Sequências deposicionais do Grupo Itararé (Carbonífero e Eopermiano), Bacia do Paraná, na área de Doutor Pedrinho e cercanias, Santa Catarina, Brasil: turbiditos, pelitos e depósitos caóticos. Thesis, Unisinos, São Leopoldo, 245 p., Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
), configuring an up to 500-m-thick succession. The Rio do Sul Formation stands out due to gravitational flow deposits, such as subaqueous slumps and slides, debris flows, and turbidities, possibly developed on a paleogradient to the west-northwest (Medeiros and Thomaz Filho 1973Medeiros R.A., Thomaz Filho A. 1973. Facies e ambientes deposicionais da Formação Rio Bonito. XXVII Congresso Brasileiro de Geologia. Anais… Salvador, v. 3, p. 3-32., Castro 1980Castro J.C. 1980. Fácies, ambientes e sequências deposicionais das formações Rio do Sul e Rio Bonito, leste de Santa Catarina. In: XXXI Congresso Brasileiro de Geologia. Anais… Camboriú, p. 283-299., 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p.). Likewise, Medeiros and Thomaz Filho (1973)Medeiros R.A., Thomaz Filho A. 1973. Facies e ambientes deposicionais da Formação Rio Bonito. XXVII Congresso Brasileiro de Geologia. Anais… Salvador, v. 3, p. 3-32. recognized deltaic and coastal tide-influenced deposits in the Rio Bonito Formation. The paleogeographic model proposed by these authors points to the existence of a source area to the east, and the development of deltas toward the west, in similar paleoflow directions to the lowermost gravitational deposits.

Both tectonics and the presence of glaciers could be the reason for the high rate of subsidence and the somewhat deep sea during the sedimentation of the uppermost Itararé Group in the Rio do Sul area. Previous works suggested a likely tectonic uplift of the northern portion of the Paraná Basin during the final stage of the Itararé Group deposition, leading to the displacement of the main depocenters toward the south. It configured the so-called embayment, sub-basin, or depocenter of Rio do Sul (Ramos 1967Ramos A.N. 1967. Análise estratigráfica da Formação Rio Bonito. Boletim Técnico da Petrobras, 10:307-407., Northfleet et al. 1969Northfleet A.A., Medeiros R.A., Mühlmann H. 1969. Reavaliação dos dados geológicos da Bacia do Paraná. Boletim Técnico da Petrobras, 12:291-346., Medeiros and Thomaz Filho 1973Medeiros R.A., Thomaz Filho A. 1973. Facies e ambientes deposicionais da Formação Rio Bonito. XXVII Congresso Brasileiro de Geologia. Anais… Salvador, v. 3, p. 3-32., Santos 1987Santos P.R. 1987. Fácies e evolução paleogeográfica do Sub-Grupo Itararé/Grupo Aquidauana (Neopaleozoico) na Bacia do Paraná, Brasil. Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo., Canuto 1993Canuto J.R. 1993. Fácies e ambientes deposicionais da Formação Rio do Sul (Permiano), Bacia do Paraná, na região de Rio do Sul, Estado de Santa Catarina. Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 183 p., Santos et al. 1996Santos P.R., Rocha-Campos A.C., Canuto J.R. 1996. Patterns of Late Palaeozoic deglaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 125(1-4):165-184. https://doi.org/10.1016/S0031-0182(96)00029-6
https://doi.org/10.1016/S0031-0182(96)00...
). Therefore, the basement structures might have compartmentalized the basin, delimited depocenters, and controlled the emplacement of paleoslopes (e.g., Castro 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p., Rostirolla et al. 2000Rostirolla S.P., Assine M.L., Fernandes L.A., Artur P.C. 2000. Reativação de paleolineamentos durante a evolução da Bacia do Paraná - o exemplo do alto estrutural de Quatiguá. Revista Brasileira de Geociências, 30(4):639-648., Riccomini et al. 2005Riccomini C., Almeida R.P., Turra B.B., Chamani M.A.C., Fairchild T.R., Hachiro J. 2005. Reativação de falha do embasamento causa sismicidade no Permotriássico da Bacia do Paraná. In: Simpósio Nacional de Estudos Tectônicos, 10., 2005. Boletim de Resumos Expandidos…, p. 18-20.).

This study is a complement to the previous work by Schemiko et al. (2019)Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
that describes the genetic relationship between glacially influenced deepwater (Rio do Sul Formation) and fluvio-deltaic (Rio Bonito Formation) deposits within the same depositional tract in the northeastern region of Rio do Sul depocenter (Santa Catarina State), showing a transitional contact. Nevertheless, the transition between the upper Itararé Group and Rio Bonito Formation occurs through an abrupt contact in the northern part of the basin (e.g., Paraná State, Zacharias and Assine 2005Zacharias A.A., Assine M.L. 2005. Modelo de preenchimento de vales incisos por associações de fácies estuarinas, Formação Rio Bonito no norte do estado do Paraná. Revista Brasileira de Geociências, 35(4):573-583., Mottin et al. 2018Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
https://doi.org/10.1016/j.palaeo.2017.11...
). Thus, this article aimed at a detailed analysis of the depositional framework of the Rio do Sul depocenter to understand the stratigraphic evolution of the Pennsylvanian-Permian transition in the southern sector of Paraná Basin (southern Gondwana). The study area consists of an elongated polygon between Alfredo Wagner (SE) and Witmarsum (NW) localities. The main methods employed include the construction of vertical stratigraphic profiles, recognition of the facies and facies associations, definition of vertical depositional trends and the key surfaces, correlation of outcrop and subsurface data, and paleocurrent analysis.

GEOLOGICAL SETTING

The Paraná Basin is a large intraplate basin covering up to 1,600,000 km2 of central-southern of South America. The upper Paleozoic succession is the thickest of the Paraná Basin and embraces stratigraphic units deposited in marine to continental environments that compose the Itararé and Guatá groups. The study interval encompasses the glacially related strata of the upper Itararé Group (Rio do Sul Formation) and the postglacial sediments of the lower Guatá Group (coal-bearing Rio Bonito Formation).

Successive deglaciation phases of the Late Paleozoic Ice Age (LPIA) (Glacial I, II, and III; Isbell et al. 2003Isbell J.L., Miller M.F., Wolfe K.L., Lenaker P.A. 2003. Timing of Late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclotherms? Geological Society of America Special Papers, 370:5-24. https://doi.org/10.1130/0-8137-2370-1.5
https://doi.org/10.1130/0-8137-2370-1.5...
, López-Gamundí and Buatois 2010López-Gamundí O.R., Buatois L.A. 2010. Introduction: Late Paleozoic glacial events and postglacial transgressions. In: López-Gamundí O.R., Buatois L.A. (Eds.), Late paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper, 468:v-viii.) across the Paraná Basin led to the deposition of strata set over 1,300-m thick composed overall of proglacial deposits of the Itararé Group (França and Potter 1988França A.B., Potter P.E. 1988. Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permocarbonífero), Bacia do Paraná (parte 1). Boletim de Geociências da Petrobras, 2:147-191., Vesely and Assine 2006Vesely F.F. 2006. Dinâmica sedimentar e arquitetura estratigráfica do Grupo Itararé (Carbonífero-Permiano) no centro-leste da Bacia do Paraná. Thesis, Universidade Federal do Paraná, Curitiba, 226 p.), corresponding to different formal stratigraphic units. Schneider et al. (1974)Schneider R.L., Muhlmann H., Tommasi E., Medeiros R.A., Daemon R.A., Nogueira A.A. 1974. Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 27., 1974. Anais… Porto Alegre, p. 41-65., based on outcrop studies along the eastern portion of the Paraná Basin, divided the Itararé Group into the Campo do Tenente, Mafra, and Rio do Sul formations, where the Lontras Shale is placed in the base of Rio do Sul Formation (Fig. 1). After that, França and Potter (1988)França A.B., Potter P.E. 1988. Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permocarbonífero), Bacia do Paraná (parte 1). Boletim de Geociências da Petrobras, 2:147-191., based on subsurface data, subdivided it into Lagoa Azul, Campo Mourão, and Taciba formations. The upper Itararé Group can show a transitional (e.g., Medeiros and Thomaz Filho 1973Medeiros R.A., Thomaz Filho A. 1973. Facies e ambientes deposicionais da Formação Rio Bonito. XXVII Congresso Brasileiro de Geologia. Anais… Salvador, v. 3, p. 3-32., Castro 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p., Castro et al. 2004Castro J.C., Weinschütz L.C., Castro M.R. 2004. Estratigrafia de sequências das Formações Taciba e Rio Bonito (Membro Triunfo) na região de Mafra/SC, leste da Bacia do Paraná. Boletim de Geociências da Petrobras, 13(1):27-42., Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
) or abrupt contact (e.g., Vesely and Assine 2006Vesely F.F. 2006. Dinâmica sedimentar e arquitetura estratigráfica do Grupo Itararé (Carbonífero-Permiano) no centro-leste da Bacia do Paraná. Thesis, Universidade Federal do Paraná, Curitiba, 226 p., Mottin et al. 2018Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
https://doi.org/10.1016/j.palaeo.2017.11...
, Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
) with postglacial deposits of the Rio Bonito Formation of the Guatá Group. Schneider et al. (1974)Schneider R.L., Muhlmann H., Tommasi E., Medeiros R.A., Daemon R.A., Nogueira A.A. 1974. Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 27., 1974. Anais… Porto Alegre, p. 41-65. also proposed the distinction between the units that make up the Guatá Group comprising the Rio Bonito (bottom) and Palermo (top) formations. In addition, they proposed the subdivision of the Rio Bonito Formation into Triunfo, Paraguaçu, and Siderópolis members (Fig. 1).

Figure 1
(A) Stratigraphic scheme of the Paraná Basin showing the study interval, embracing the upper Itararé Group and the lower Rio Bonito Formation (modified from Iannuzi 2010 after Holz et al. 2010Holz M., França A.B., Souza P.A., Iannuzzi R., Rohn R. 2010. A stratigraphic chart of the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil, South America. Journal of South American Earth Science, 29(2):381-399. https://doi.org/10.1016/j.jsames.2009.04.004
https://doi.org/10.1016/j.jsames.2009.04...
); (B) Emphasis on the interval selected for the study. Vertical log from Schemiko et al. (2019)Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
. Note the absolute ages of the Rio Bonito Formation coal deposits, especially those related to transgressive systems tracts, at the base of the Paraguaçu Member. (1: a Guerra-Sommer et al. 2008aGuerra-Sommer M., Cazzulo-Klepzig M., Menegat R., Formoso M.L.L., Basei M.A.S., Barboza E.G., Simas M.W. 2008a. Geochronological data from Faxinal coal succession in southern Paraná Basin: a preliminary approach combining radiometric U/Pb age and palynostratigraphy. Journal of South American Earth Sciences, 25(2):246-256. https://doi.org/10.1016/j.jsames.2007.06.007
https://doi.org/10.1016/j.jsames.2007.06...
; b Guerra-Sommer et al. 2008bGuerra-Sommer M., Cazzulo-Klepzig M., Santos J.O.S., Hartmann L.A., Ketzer J.M.M., Formoso M.L.L. 2008b. Radiometric age determination of tonsteins and stratigraphic constrains for the Lower Permian coal succession in southern Paraná Basin, Brazil. International Journal of Coal Geology, 74(1):13-27. https://doi.org/10.1016/j.coal.2007.09.005
https://doi.org/10.1016/j.coal.2007.09.0...
; c Matos et al. 2000Matos S.L.F, Yamamoto J.K., Hachiro J., Coimbra A.M. 2000. Tonsteins da Formação Rio Bonito no depósito de carvão de candiota, RS. Revista Brasileira de Geociências, 30(4):679-684. https://doi.org/10.25249/0375-7536.2000304679684
https://doi.org/10.25249/0375-7536.20003...
, 2001Matos S.L.F., Yamamoto J.K., Riccomini C., Hachiro J., Tassinari C.C.G. 2001. Absolute dating of Permian ash-fall in the Rio Bonito Formation, Paraná Basin, Brazil. Gondwana Research, 4(3):421-426. https://doi.org/10.1016/S1342-937X(05)70341-5
https://doi.org/10.1016/S1342-937X(05)70...
; d Mori et al. 2012Mori A.L.O., Souza P.A., Marques J.C., Lopes R.C. 2012. A new U e Pb age dating and palynological data from a Lower Permian section of the southernmost Paraná a Basin, Brazil: biochronostratigraphical and geochronological implications for Gondwanan correlations. Gondwana Research, 21(2-3):654-669. https://doi.org/10.1016/j.gr.2011.05.019
https://doi.org/10.1016/j.gr.2011.05.019...
; e Cagliari et al. 2016Cagliari J., Philipp R.P., Valdez B.V., Netto R.G., Hillebrand P., Lopes C.R., Basei M.A.S., Faccini U.F. 2016. Age constraints of the glaciation in the Paraná Basin: evidence from new U–Pb dates. Journal of the Geological Society, 173(6):871-874. https://doi.org/10.1144/jgs2015-161
https://doi.org/10.1144/jgs2015-161...
; f Griffis et al. 2018Griffis N.P., Mundil R., Montañez I.P., Isbell J., Fedorchuk N., Vesely F., Iannuzzi R., Yin Q. 2018. A new stratigraphic framework built on U-Pb singlezircon TIMS ages and implications for the timing of the penultimate icehouse (Paraná Basin, Brazil). The Geological Society of America Bulletin, 130(5-6):848-858. https://doi.org/10.1130/B31775.1
https://doi.org/10.1130/B31775.1...
; and g Griffis et al. 2019Griffis N.P., Montañez I.P., Mundil R., Richey J., Isbell J., Fedorchuk N., Linol B., Iannuzzi R., Vesely F., Mottin T., Rosa E., Keller B., Yin Q.Z. 2019. Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-togreenhouse turnover in south-central Gondwana. Geology, 47(12):1146-1150. https://doi.org/10.1130/G46740.1
https://doi.org/10.1130/G46740.1...
. For further absolute age summaries, see Valdez Buso et al. 2020Valdez Buso V., Milana J.P., di Pasquo M., Paim P.S.G., Philipp R.P., Aquino C.D., Cagliari J., Junior F.C., Kellner B. 2020. Timing of the Late Paleozoic glaciation in western Gondwana: New ages and correlations from Paganzo and Paraná Basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 544:109-624. https://doi.org/10.1016/j.palaeo.2020.109624
https://doi.org/10.1016/j.palaeo.2020.10...
, Souza et al. 2021Souza P.A., Boardman D.R., Premaor E., Félix C.M., Bender R.R., Oliveira E.J. 2021. The Vittatina costabilis Zone revisited: New characterization and implications on the Pennsylvanian-Permian icehouse-to-greenhouse turnover in the Paraná Basin, Western Gondwana. Journal of South American Earth Sciences, 106:102968. https://doi.org/10.1016/j.jsames.2020.102968
https://doi.org/10.1016/j.jsames.2020.10...
, and Griffis et al. 2021Griffis N.P., Montañez I.P., Mundil R., Le Heron R.D., Dietrich P., Kettler C., Linol B., Mottin T., Vesely F., Iannuzzi R., Huyskens M., Yin Q.-Z. 2021. High-latitude ice and climate control on sediment supply across SW Gondwana during the late Carboniferous and early Permian. Geological Society of America Bulletin, 133(9-10):2113-2124. https://doi.org/10.1130/B35852.1
https://doi.org/10.1130/B35852.1...
. 2: *Schneider et al. 1974Schneider R.L., Muhlmann H., Tommasi E., Medeiros R.A., Daemon R.A., Nogueira A.A. 1974. Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 27., 1974. Anais… Porto Alegre, p. 41-65.; and **França and Potter 1988França A.B., Potter P.E. 1988. Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permocarbonífero), Bacia do Paraná (parte 1). Boletim de Geociências da Petrobras, 2:147-191.).

According to a detailed sequence stratigraphic study in the Rio Grande do Sul and southern Santa Catarina states, the upper Itararé Group and the entire Guatá Group embrace three third-order depositional sequences (Holz et al. 2006Holz M., Küchle J., Philipp R.P., Bischoff A.P., Arima, N. 2006. Hierarchy of control on stratigraphic signatures: base-level changes during Early Perminan in the Paraná Basin, southernmost Brazil. Journal of South American Earth Sciences, 22(3-4):185-204. https://doi.org/10.1016/j.jsames.2006.09.007
https://doi.org/10.1016/j.jsames.2006.09...
, 2010Holz M., França A.B., Souza P.A., Iannuzzi R., Rohn R. 2010. A stratigraphic chart of the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil, South America. Journal of South American Earth Science, 29(2):381-399. https://doi.org/10.1016/j.jsames.2009.04.004
https://doi.org/10.1016/j.jsames.2009.04...
). The study interval is correlated to the first two sequences (Fig. 1). The basal sequence corresponds to the upper Itararé Group and includes a third-order sequence boundary (SB1) at the base, usually related to the crystalline basement, while the second third-order sequence boundary (SB2) delineates the boundary between glacially influenced deposits of Rio do Sul Formation and fluvial deposits of Triunfo Member (LST2). It grades upward to the offshore mudstones of Paraguaçu Member (TST2 and MFS2). The SB3, in turn, separates the upper Paraguaçu Member (HST2) from the fluvial to shallow-marine deposits of Siderópolis Member (LTS3), where the fine-grained deposits of Palermo Formation are the subsequent widespread transgression.

According to Iannuzzi (2010Iannuzzi R. 2010. The flora of Early Permian coal measures from the Paraná Basin in Brazil: a review. International Journal of Coal Geology, 83(2-3):229-247. https://doi.org/10.1016/j.coal.2010.05.009
https://doi.org/10.1016/j.coal.2010.05.0...
, Fig. 1), the proper interpretation of the sequence analysis of the Rio Bonito Formation facilitated the positioning of the coal seams and their absolute ages at the appropriate stratigraphic level, supporting the dating of the glacial-postglacial boundary of the Paraná Basin. In this context, the demise of the Ice Age in Paraná Basin, long ascribed to be Early Permian, is currently considered Pennsylvanian-Cisuralian. An essential contribution to the age positioning of the Itararé-Guatá contact was provided first by Cagliari et al. (2014)Cagliari J., Lavina E.L.C., Philipp R.P., Tognoli F.M.W., Basei M.A.S., Faccini U.F. 2014. New Sakmarian ages for the Rio Bonito formation (Paraná Basin, southern Brazil) based on LA-ICP-MS U–Pb radiometric dating of zircons crystals. Journal of South American Earth Sciences, 56:265-277. http://doi.org/10.1016/j.jsames.2014.09.013
http://doi.org/10.1016/j.jsames.2014.09....
and corroborated by Cagliari et al. (2016)Cagliari J., Philipp R.P., Valdez B.V., Netto R.G., Hillebrand P., Lopes C.R., Basei M.A.S., Faccini U.F. 2016. Age constraints of the glaciation in the Paraná Basin: evidence from new U–Pb dates. Journal of the Geological Society, 173(6):871-874. https://doi.org/10.1144/jgs2015-161
https://doi.org/10.1144/jgs2015-161...
and Griffis et al. (2018Griffis N.P., Mundil R., Montañez I.P., Isbell J., Fedorchuk N., Vesely F., Iannuzzi R., Yin Q. 2018. A new stratigraphic framework built on U-Pb singlezircon TIMS ages and implications for the timing of the penultimate icehouse (Paraná Basin, Brazil). The Geological Society of America Bulletin, 130(5-6):848-858. https://doi.org/10.1130/B31775.1
https://doi.org/10.1130/B31775.1...
, 2019Griffis N.P., Montañez I.P., Mundil R., Richey J., Isbell J., Fedorchuk N., Linol B., Iannuzzi R., Vesely F., Mottin T., Rosa E., Keller B., Yin Q.Z. 2019. Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-togreenhouse turnover in south-central Gondwana. Geology, 47(12):1146-1150. https://doi.org/10.1130/G46740.1
https://doi.org/10.1130/G46740.1...
). It is also supported by the new palynostratigraphic revision by Souza et al. (2021)Souza P.A., Boardman D.R., Premaor E., Félix C.M., Bender R.R., Oliveira E.J. 2021. The Vittatina costabilis Zone revisited: New characterization and implications on the Pennsylvanian-Permian icehouse-to-greenhouse turnover in the Paraná Basin, Western Gondwana. Journal of South American Earth Sciences, 106:102968. https://doi.org/10.1016/j.jsames.2020.102968
https://doi.org/10.1016/j.jsames.2020.10...
.

Although the Itararé Group seems to be restricted to the Carboniferous, the transition between Itararé Group and Rio Bonito Formation still belongs to the same palynozone (Vittatina costabilis Zone — VcZ), ranging from Gzhelian-Artinskian (Souza et al. 2021Souza P.A., Boardman D.R., Premaor E., Félix C.M., Bender R.R., Oliveira E.J. 2021. The Vittatina costabilis Zone revisited: New characterization and implications on the Pennsylvanian-Permian icehouse-to-greenhouse turnover in the Paraná Basin, Western Gondwana. Journal of South American Earth Sciences, 106:102968. https://doi.org/10.1016/j.jsames.2020.102968
https://doi.org/10.1016/j.jsames.2020.10...
). It attests that there is no significant time gap or paleoecological changes for Itararé-Rio Bonito as previously reported (Daemon and Quadros 1970Daemon R.F., Quadros L.P. 1970. Bioestratigrafia do Neopaleozoico da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 24, 1970, Brasília. Anais… Brasília: SBG, 1, p. 359-412., Souza et al. 1999Souza P.A., Vesely F.F., Assine M.L. 1999. Contribuição palinológica ao conhecimento do Subgrupo Itararé na Serra dos Paes, sul do Estado de São Paulo. Revista do Instituto Geológico, 20(1-2):21-27. https://doi.org/10.5935/0100-929X.19990002
https://doi.org/10.5935/0100-929X.199900...
, Souza and Marques-Toigo 2005Souza P.A., Marques-Toigo M. 2005. Progress on the palynostratigraphy of the Permian strata in Rio Grande do Sul State, Paraná Basin, Brazil. Anais da Academia Brasileira de Ciências, 77(2):353-365. https://doi.org/10.1590/S0001-37652005000200012
https://doi.org/10.1590/S0001-3765200500...
, Souza 2006Souza P.A. 2006. Late Carboniferous palynostratigraphy of the Itararé Subgroup, northeastern Paraná Basin, Brazil. Review of Paleobotany and Palynology, 138(1):9-29. https://doi.org/10.1016/j.revpalbo.2005.09.004
https://doi.org/10.1016/j.revpalbo.2005....
, Mori et al. 2012Mori A.L.O., Souza P.A., Marques J.C., Lopes R.C. 2012. A new U e Pb age dating and palynological data from a Lower Permian section of the southernmost Paraná a Basin, Brazil: biochronostratigraphical and geochronological implications for Gondwanan correlations. Gondwana Research, 21(2-3):654-669. https://doi.org/10.1016/j.gr.2011.05.019
https://doi.org/10.1016/j.gr.2011.05.019...
, Mottin et al. 2018Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
https://doi.org/10.1016/j.palaeo.2017.11...
). Thus, the glacial-postglacial genetic criterion should not be used to delineate the lithostratigraphic boundary (e.g., Vesely 2006Vesely F.F. 2006. Dinâmica sedimentar e arquitetura estratigráfica do Grupo Itararé (Carbonífero-Permiano) no centro-leste da Bacia do Paraná. Thesis, Universidade Federal do Paraná, Curitiba, 226 p.), particularly in the southern Brazilian states (Daemon and Quadros 1970Daemon R.F., Quadros L.P. 1970. Bioestratigrafia do Neopaleozoico da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 24, 1970, Brasília. Anais… Brasília: SBG, 1, p. 359-412.).

The somewhat deepwater setting of the upper Itararé Group in the Santa Catarina State has been described as an embayment, a depocenter, or a sub-basin of the Rio do Sul (Santos 1987Santos P.R. 1987. Fácies e evolução paleogeográfica do Sub-Grupo Itararé/Grupo Aquidauana (Neopaleozoico) na Bacia do Paraná, Brasil. Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo., Canuto 1993Canuto J.R. 1993. Fácies e ambientes deposicionais da Formação Rio do Sul (Permiano), Bacia do Paraná, na região de Rio do Sul, Estado de Santa Catarina. Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 183 p., Santos et al. 1996Santos P.R., Rocha-Campos A.C., Canuto J.R. 1996. Patterns of Late Palaeozoic deglaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 125(1-4):165-184. https://doi.org/10.1016/S0031-0182(96)00029-6
https://doi.org/10.1016/S0031-0182(96)00...
). The last deglacial event of the Rio do Sul Formation in this area has a continuous deposition evolution with the lower Rio Bonito Formation by means of the relationship between deepwater systems, under the glacial influence, and the deltaic deposits in the same depositional tract (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
). It can also be verified through transport patterns. The uppermost strata of Itararé Group show paleoflows to the NW, NNE, and SW (e.g., Castro 1980Castro J.C. 1980. Fácies, ambientes e sequências deposicionais das formações Rio do Sul e Rio Bonito, leste de Santa Catarina. In: XXXI Congresso Brasileiro de Geologia. Anais… Camboriú, p. 283-299., 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p., D’Ávila and Paim 2003D’Ávila R.S.F., Paim P.S.G. 2003. Mecanismos de transporte e deposição de turbiditos. In: Paim P.S.G., Faccini U.F., Netto R.G. (Eds.). Geometria, arquitetura e heterogeneidades de corpos sedimentares. São Leopoldo: Unisinos, p. 93-121., Puigdomenech et al. 2014Puigdomenech C.N., Carvalho B., Paim P.S.G., Faccini U.F. 2014. Lowstand Turbidites and delta systems of the Itararé Group in the Vidal Ramos region (SC), southern Brazil. Revista Brasileira de Geociências, 44(4):529-544. https://doi.org/10.5327/Z23174889201400040002
https://doi.org/10.5327/Z231748892014000...
, Aquino et al. 2016Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
, Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
), suggesting a paleogradient dipping to the west-northwest. The Rio Bonito Formation, in turn, had fluvio-deltaic systems prograding mainly to the west (Medeiros and Thomaz Filho 1973Medeiros R.A., Thomaz Filho A. 1973. Facies e ambientes deposicionais da Formação Rio Bonito. XXVII Congresso Brasileiro de Geologia. Anais… Salvador, v. 3, p. 3-32., Castro 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p.). In this context, Castro (1980Castro J.C. 1980. Fácies, ambientes e sequências deposicionais das formações Rio do Sul e Rio Bonito, leste de Santa Catarina. In: XXXI Congresso Brasileiro de Geologia. Anais… Camboriú, p. 283-299., 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p.) reported scattered dropstones in the Rio Bonito Formation, indicating a relatively cold climate also during its deposition. However, in the northern portion of the basin (e.g., Paraná State), the contact between the upper Itararé Group and Rio Bonito Formation takes place through a discordant surface characterized by the presence of incised valleys developed on top of the diamictite-bearing units of the upper Itararé Group (Zacharias and Assine 2005Zacharias A.A., Assine M.L. 2005. Modelo de preenchimento de vales incisos por associações de fácies estuarinas, Formação Rio Bonito no norte do estado do Paraná. Revista Brasileira de Geociências, 35(4):573-583., Mottin et al. 2018Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
https://doi.org/10.1016/j.palaeo.2017.11...
) and filled by essentially postglacial deposits. Even so, the paleocurrents of both units are toward the southwest in this region.

METHODS AND KEY DEFINITIONS

This study is based on an investigation of outcrops in the eastern border of Paraná Basin in southeastern Santa Catarina State, southern Brazil. The stratigraphic architecture was described in detail in the northern part of the study area (Witmarsum-Presidente Getúlio localities, Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
) and regionally recognized (Fig. 2) through stratigraphic and facies analysis of about 190 outcrops (Appendix 1 Appendix 1 Localities described to construct this article. Point *UTM N UTM E Ponto *UTM N UTM E Ponto *UTM N UTM E P01 633916 7012278  P67 631178 7025347  P131 636772 6997058 P02 631375 7013060  P68 634042 7021644  P132 634986 7002011 P03 631260 7013952  P69 635256 7017438  P133 637006 7007999 P04 629580 7014155  P70 639357 7009333 P134A 621821 6987126 P05 629387 7014252  P71 624994 7000181 P134B 621716 6987143 P06 631360 7013056  P72 626089 7004510 P134C 621685 6987154 P07 631504 7012713  P73 627937 7005696 P135 637497 6966622 P08 628459 7010114  P74 627656 7005642 P136 652579 6949654 P09 628388 7010254  P75 630413 7012936 P137 652852 6946895 P10 628273 7010348  P76 630540 7012308 P138 653200 6946461 P11 628137 7010417  P77 632846 7013633 P139 662917 6936470 P12 621227 7011964  P78 632583 7014523 P140 663466 6936152 P13 617126 6992299  P79 632885 7014705 P141 663469 6936155 P14 621070 6988660  P80 624206 7014079 P142 667104 6931297 P15 620919 6990104  P81 620802 7014027 P143 660302 6981909 P16 633558 6984887  P82 621911 7021368 P144 662512 6981708 P17 633460 6982421  P83 628164 7017979 P145 660776 6982674 P18 633690 6982103  P84 630730 7015941 P146A 660644 6982172 P19 637197 6973653  P85 634676 7040103 P146B 660581 6982220 P20 639644 6977009  P86 639003 7040057 P147 658191 6981775 P21 640161 6977059  P87 643701 7041137 P147B 658215 6981655 P22 635094 6971068  P88 639093 7018188 P148 658281 6982311 P23 637034 6968115  P89 639297 7017859 P149 663093 6970984 P24 638735 6965271  P90 639371 7017687 P150 660248 6968507 P25 665676 6976233  P91 639579 7017507 P151 659524 6967230 P26 663093 6977208  P92 638855 7018045 P151B 659870 6967378 P27 661415 6976834  P93 635214 7016887 P151C 659924 6967446 P28 661849 6979521  P94 640591 6998265 P152 657624 6969168 P29 670089 6975931  P95 640623 6998242 P153 656313 6967682 P30 662731 6970777  P96 641293 6998712 P154 657764 6968403 P31 662355 6970406  P97 641881 6998893 P155 657249 6967926 P32 662562 6969501  P98 642328 6998430 P156 654486 6970487 P33 662403 6969911  P99 642152 6999083 P157 660195 6968324 P34 662555 6969492 P100 629878 7013451 P158 664034 6966199 P35 650882 6954114 P101 630175 7013617 P159 663944 6966592 P36 672586 6942530  P102 630408 7012938  P160 663889 6966701 P37 672378 6942444 P103 630700 7012422  P161 664393 6966991 P38 672524 6942745 P104 626450 7020117 P162 663091 6967421 P39 672215 6943162 P105 625295 7022631 P163 662995 6967629 P40 666453 6935531 P106 625199 7021672 P164 662971 6967479 P41 662976 6935618 P107 641291 6994244 P165 662842 6967639 P42 662973 6935614 P108 638842 6997343 P166 665700 6976266 P43 675292 6936250 P109 636797 7006619 P167 665630 6976006 P44 675707 6937057 P110 641262 7003971 P168 665441 6975672 P45 672718 6932695 P111 641101 7003915 P169 665533 6975558 P46 686908 6936343 P112 640833 7003925 P170 665503 6975482 P47 636493 7008124 P113 640565 7003403 P171 665250 6975155 P48 631385 7013493 P114 637331 7004123 P172 652778 6981775 P49 620416 7021939 P115 636597 7003264 P173 662493 6969919 P50 616993 7022768 P116 627946 7005728 P174 662458 6969598 P51 615869 7024583 P117 626602 7000004 P175 662283 6969594 P52 616322 7024677 P118 633027 7006132 P176 661414 6968930 P53 615782 7025775 P119 632958 7006052 P179 663755 6970989 P54 631664 7004284 P120 633050 7005941 P180 663865 6970739 P55 632494 7004846 P121 633143 7005770 P181 664009 6970646 P56 616025 7027912 P122 633934 7005015 P182 663047 6970758 P57 633143 7005804 P123 633702 7004712 P183 662668 6971322 P58 632882 7006455 P124 633620 7004551 P184 656189 6969319 P59 631164 7007007 P125 633418 7004293 P185 656213 6969777 P60 633291 7006310 P126 630393 7002475 P186 656106 6969771 P61 630196 7007210 P127 629461 7002345 P187 663923 6961923 P62 633812 7004016 P128 629095 7002270 P188 619590 6981609 P63 625598 7012547 P129A 638637 6997393 P189 619743 6982103 P64 638018 7017425 P129C 638702 6997312 P190 619829 6981843 P65 640713 7020450 P129D 638768 6997303 P191 619241 6981157 P66 642646 7020821 P130 638472 6997564 P192 619576 6981405 * UTM SAD69; 22J. ) in road cuts, quarries, and natural exposures. Facies were distinguished according to Miall (1978)Miall A.D. 1978. Lithofacies types and vertical profile models of braided river deposits, a summary. In: Miall A.D. (Ed.). Fluvial sedimentology. Calgary: Canadian Society of Petroleum Geologists, p. 597-604. and Eyles et al. (1983)Eyles N., Eyles C.H., Miall A.D. 1983. Lithofacies types and vertical profile models: an alternative approach to the description and environmental interpretation of glacial diamictite and diamictite sequences. Sedimentology, 30(3):393-410. https://doi.org/10.1111/j.1365-3091.1983.tb00679.x
https://doi.org/10.1111/j.1365-3091.1983...
.

Figure 2
Location of the study area, between Alfredo Wagner (SE) and Witmarsum (NW) localities in Santa Catarina State, southern Brazil, with the arrangement of the paleocurrent readings of facies associations within (A) Units B and (B) Unit C. The sediment transport concerning the deposits of Unit A is documented by Aquino et al. (2016)Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
and Fallgatter and Paim (2017)Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
, with main paleocurrents toward the northwest. The paleoflows directions of mass transport deposits are from Rodrigues et al. (2021)Rodrigues M.C.N.L., Trzaskos B., Alsop G.I., Vesely F.F., Mottin T.E., Schemiko D.C.B. 2021. Statistical analysis of structures commonly used to determine palaeoslopes from within mass transport deposits. Journal of Structural Geology, 151:104421. https://doi.org/10.1016/j.jsg.2021.104421
https://doi.org/10.1016/j.jsg.2021.10442...
, except for those from the P99 locality that was documented in Schemiko et al. (2019)Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
.

Vertical logs and subsurface data were correlated to analyze the spatial distribution of facies associations and the vertical trends. It was integrated with the paleocurrent data to establish the paleogeographic models, including the representation of depositional environments and sediment transport patterns. Well data are from CPRM (Brazilian Geological Survey) and Petrobras, drilled during coal and oil exploration campaigns. The wells used in the correlations are 1-GO-1-SC, 2-AL-1-SC, 1-RCH-1-SC, 1-TP-3-SC, 2-TG-1-SC, 1-MB-1-SC, 1-BN-1-SC, and 1-PA-1-SC from Petrobras and 7-RL-4-SC from CPRM (Figs. 3 and 4).

Figure 3
Stratigraphic framework of the Rio do Sul depocenter (Pennsylvanian-Permian of the Paraná Basin), showing the spatial distribution of the Units A, B, and C in an NWW-SSE correlation and covering up to 70 km long. Notice the convergence of paleocurrents and changes in the thickness of Passinho and Lontras Shales toward Rio do Sul locality. The asterisk corresponds to data from Fallgatter and Paim (2017)Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
.
Figure 4
Stratigraphic framework of the Rio do Sul depocenter (Pennsylvanian-Permian of the Paraná Basin), showing the spatial distribution of the Units A, B, and C in an NW-SE correlation and covering up to 400 km long. It suggests the regional expression of the recognized units that compose the Rio do Sul depocenter, especially the deposits that follow the Lontras Shale (transition between Unit A and Unit B), which have high thickness. Notice the highest thickness of Lontras Shale, nearby Rio do Sul Locality (1MB01).

The maximum flooding surfaces demonstrated easier recognition on well logs and were used as a datum on the correlations. In turn, the stratigraphic architecture interpretation followed the sequence stratigraphic concepts proposed by Hunt and Tucker (1992)Hunt D., Tucker M.E. 1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during baselevel fall. Sedimentary Geology, 81(1-2):1-9. https://doi.org/10.1016/0037-0738(92)90052-S
https://doi.org/10.1016/0037-0738(92)900...
in which the sequence boundaries (SB) and their correlative conformities (CC) are supposed to represent the end of base-level fall.

The term rhythmite is referred to as thin-bedded, regular alternations of silt, clay, and very fine sand, while the term diamictite followed the classification of Flint et al. (1960)Flint R.F., Sanders J.E., Rodgers J. 1960. Diamictite, a substitute term for symmictite. Geological Society of America Bulletin, 71(12):1809-1810. https://doi.org/10.1130/0016-7606(1960)71[1809:DASTFS]2.0.CO;2
https://doi.org/10.1130/0016-7606(1960)7...
that describes diamictites as matrix-supported sedimentary rock, poorly sorted, resulting from the mixture of mud, sand, and gravel. Likewise, the terminology of Mulder and Alexander (2001)Mulder T., Alexander J. 2001. The physical character of sedimentary density currents and their deposits. Sedimentology, 48(2):269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x
https://doi.org/10.1046/j.1365-3091.2001...
was applied for subaqueous sediment gravity-flow deposits, in which low-density flows (<9% of sediment concentration) are truly turbulent (e.g., Middleton and Hampton 1973Middleton G.V., Hampton M.A. 1973. Sediment gravity flows: mechanics of flow and deposition. In: Middleton G.V., Bouma A.H. (Eds.). Turbidity and deep-water sedimentation. Los Angeles: SEPM, p. 1-38.) and define turbidity currents (sensu stricto); meanwhile, the terms concentrated and hyperconcentrated density flows (noncohesive density flows) indicate the presence of grain-to-grain interactions and turbulence together as support mechanisms.

STRATIGRAPHIC FRAMEWORK

The study interval in the Rio do Sul area embraces a sedimentary succession of up to 500-m thick, which comprises three depositional units: the basal unit (Unit A) with a fining-upward pattern that culminates with a mud-rich interval, an intermediate succession showing a coarsening-upward pattern (Unit B), and a new fining-upward succession (Unit C). Unit B is divided into Unit B upper and lower. The whole interval is composed of 18 sedimentary facies whose descriptions and interpretations are presented in Table 1. We defined nine main facies associations that are recurrent in different depositional units:

Table 1
Summary of sedimentary facies recognized and interpreted in the Rio do Sul depocenter, southern Brazil, Pennsylvanian-Permian, Paraná Basin.
  • subglacial to ice-marginal deposits;

  • deep-marine mudstones or offshore mudstones;

  • thin- and thick-bedded turbidite deposits;

  • hyperconcentrated and concentrated density-flow deposits (CDFD);

  • mass transport deposits (MTD);

  • prodeltaic deposits;

  • delta-front and shoreface deposits;

  • delta-plain deposits;

  • fluvial-dominated, coastal plain deposits (Table 2 and Figs. 35).

Figure 5
Problematization of the stratigraphic boundary between the Rio do Sul (Itararé Group) and Rio Bonito (Guatá Group) formations. The lithostratigraphic boundary can be established below SB02 (incised valleys), in the first deltaic sand bodies, or above SB02.
Table 2
Facies associations present in the Rio do Sul depocenter, southern Brazil, Pennsylvanian-Permian, Paraná Basin.

Depositional units

Unit A: glacial and proglacial to deep-marine deposits

Up to 80-m thick, this unit is composed of three facies associations that exhibit a general finning-upward trend (Figs. 3, 4, and 6). The lower boundary characterizes the major nonconformity on Precambrian basement rocks with well-developed glacial striae. At the base, there is an association dominated by massive diamictites Dm(s) followed by resedimented diamictites Dm(r). Instead, at some places, we can observe a facies association composed of conglomerates and conglomeratic sandstones. This succession is covered by rhythmites and black shales, composing a package that can reach up to 50 m in thickness. These shales may show a south-southeastward onlap onto the basement rocks (Fig. 6F). In general, the unit is ascribed to the upper portions of the Mafra Formation and the lower strata of the Rio do Sul Formation. This succession corresponds to the depositional sequence S2 of Valdez Buso et al. (2019)Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
.

Figure 6
Main facies of Unit A and forms of occurrence of the Lontras Shale. Subglacial tillites with low-angle shear planes with (A) millimetric spacing or foliation and (B) striated surfaces at the top in the Presidente Getúlio locality. (C-E) Massive conglomerates and conglomeratic sandstones stratified into tabular and lenticular strata, configuring sets (yellow lines) of amalgamated beds, obliquely arranged (José Boiteux locality). (F) Contact between the Lontras Shale and Precambrian basement (Vidal Ramos locality). (G) Contact between the Lontras Shale and the turbidite beds of Unit B (Doutor Pedrinho locality).

The basal Dm(s) are poorly exposed and scarce throughout the study area and can be found, e.g., in the Presidente Getúlio region (Figs. 6A and 6B). Individual diamictite beds are irregular, about 0.5- to 2-m thick and laterally discontinuous. It sits directly on the Precambrian basement and is associated with striated pavements. The facies Dm(s) is composed of floating clasts within a sandy-muddy matrix (diamictites). The clasts are mainly in the granule and pebble fractions (< 5% of the rock volume), faceted, and with basement affinity (granite and quartz). This deposit has low-angle shear planes with millimetric spacing or foliation and striated surfaces at the top (Figs. 6A and 6B), allowing its classification as intraformational glacial surfaces (soft-sediment glacial surfaces; e.g., Visser 1990Visser J.N.J. 1990. Glacial bedforms at the base of the Permo-Carboniferous Dwyka Formation along the western margin of the Karoo Basin, South Africa. Sedimentology, 37(2):231-245. https://doi.org/10.1111/j.1365-3091.1990.tb00957.x
https://doi.org/10.1111/j.1365-3091.1990...
, Vesely et al. 2015Vesely F.F., Trzaskos B., Kipper F., Assine M.L., Souza P.A. 2015. Sedimentary record of a fluctuating ice margin from the Pennsylvanian of western Gondwana: Paraná Basin, southern Brazil. Sedimentary Geology, 326:45-63. https://doi.org/10.1016/j.sedgeo.2015.06.012
https://doi.org/10.1016/j.sedgeo.2015.06...
, Rosa et al. 2016Rosa E.L.M., Vesely F.F., França A.B. 2016. A review on late Paleozoic ice-related erosional landforms of the Paraná Basin: origin and paleogeographical implications. Brazilian Journal of Geology, 46(2):147-166. https://doi.org/10.1590/2317-4889201620160050
https://doi.org/10.1590/2317-48892016201...
). It suggests, together with the clast characteristics, that Dm(s) represents subglacial tillites (e.g., Evans et al. 2006Evans D.J.A., Phillips E.R., Hiemstra J.F., Auton C.A. 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1-2):115-176. https://doi.org/10.1016/j.earscirev.2006.04.001
https://doi.org/10.1016/j.earscirev.2006...
) and likely lodgment tillites (Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
).

The diamictites Dm(r) configure a package of about 5-m thick. It consists of a muddy-sandy matrix with dispersed outsized clasts (up to 1 m) composed of sandstones and rhythmites and granule to boulder clasts derived from the basement rocks, some of them striated and faceted. They can be massive and show folded bedding planes, fractures, faults, and shear surfaces. The last structure usually bound outsized clasts with sedimentary affinity. Such features allow us to interpret them as MTD (cf. Shanmugam and Moiola 1988Shanmugam G., Moiola R.J. 1988. Submarine fans: characteristics, models, classification, and reservoir potential. Earth-Science Reviews, 24(6):383-428. https://doi.org/10.1016/0012-8252(88)90064-5
https://doi.org/10.1016/0012-8252(88)900...
, Shanmugam 2006Shanmugam G. 2006. Deep-water processes and facies models, implications for sandstone petroleum reservoirs. Amsterdam: Elsevier, 476 p., Shanmugam and Wang, 2015Shanmugam G., Wang Y. 2015. The landslide problem. Journal of Palaeogeography, 4(2):109-166. https://doi.org/10.3724/SP.J.1261.2015.00071
https://doi.org/10.3724/SP.J.1261.2015.0...
). The basement-affinity clasts within the fine-grained matrix point to the resedimentation of ice-rafted debris (e.g., Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
, Mottin et al. 2018Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
https://doi.org/10.1016/j.palaeo.2017.11...
, Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
).

Above the basal tillites and mass flow diamictites, or in place of, there are coarse-grained deposits composed of polymictic conglomerates and conglomeratic sandstones. They can be massive or display diffuse stratifications and ripples with floating and extrabasinal granules to pebbles in a muddy-sandy matrix (facies Gm, Sr, Sh, Sl, St, and Sm(g)). These clasts are often striated and faceted. The conglomeratic layers can be up to 50-m thick (José Boiteux locality), forming a set of lenticular and tabular beds, and obliquely arranged, with erosional and concave-up base. These strata are interpreted as deposition products of concentrated density flows derived from melting water discharge of retreating glaciers (Figs. 6C-6E), i.e., subaqueous outwash fans (Aquino et al. 2016Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
). Valdez Buso et al. (2019)Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
ascribed their erosive base to a sequence boundary due to the glaciotectonic features impressed over the previous deposits (Aquino et al. 2016Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
). According to Aquino et al. (2016)Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
and Fallgatter and Paim (2017)Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
, these deposits are also exposed around the Doutor Pedrinho (northern) and Alfredo Wagner (southern) localities and are associated with thick-turbidite deposits.

Rhythmites followed by black shales overlie the basal interval encompassing tillites, diamictites, and coarse-grained deposits (Figs. 6E-6G). The rhythmites consist of tabular-shaped siltstone alternated with black shale composing mm-scale couplets. It grades upward to a thick package composed of fissile black shale, which has occasional carbonate lenses with a cone-in-cone structure. Basement-affinity clasts (granule to a boulder) occur in the muddy layers. This facies association is understood as the result of mud fallout and deposition from dilute suspension plumes in a somewhat deepwater environment (Miall 1978Miall A.D. 1978. Lithofacies types and vertical profile models of braided river deposits, a summary. In: Miall A.D. (Ed.). Fluvial sedimentology. Calgary: Canadian Society of Petroleum Geologists, p. 597-604., Eyles et al. 1983Eyles N., Eyles C.H., Miall A.D. 1983. Lithofacies types and vertical profile models: an alternative approach to the description and environmental interpretation of glacial diamictite and diamictite sequences. Sedimentology, 30(3):393-410. https://doi.org/10.1111/j.1365-3091.1983.tb00679.x
https://doi.org/10.1111/j.1365-3091.1983...
), while the basement-affinity clasts interpreted as dropstones point to the influence of floating ice. The origin of carbonate lenses is most likely an early diagenetic process and means an extremely low clastic sedimentation rate (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
). The association corresponds to the Lontras Shale, which is a basin-scale stratigraphic marker (França and Potter 1988França A.B., Potter P.E. 1988. Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permocarbonífero), Bacia do Paraná (parte 1). Boletim de Geociências da Petrobras, 2:147-191.). It is interpreted herein as a maximum marine transgression developed subsequently to an ice-margin retreat (e.g., Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
).

Unit B: glacially influenced, co-genetic deep-marine to fluvio-deltaic deposits

Unit B has a general thickening/coarsening-upward trend and embraces nine facies associations, reaching up to 200 m in thickness (Figs. 3 and 4). It starts with muddy- and sand-rich rhythmite over the Lontras Shales, followed by thick sandstones, conglomerates and conglomeratic sandstones, and diamictites, configuring the lower interval of Unit B (Fig. 7). An interval composed of heterolithic and sandstone-dominated deposits overlies the diamictites and sets up the Unit B upper (Figs. 5, 8, 9, and 10). Usually, the lowermost interval of this unit is assigned to the Rio do Sul Formation (Itararé Group, Schneider et al. 1974Schneider R.L., Muhlmann H., Tommasi E., Medeiros R.A., Daemon R.A., Nogueira A.A. 1974. Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 27., 1974. Anais… Porto Alegre, p. 41-65., Castro 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p.). The Unit B upper, in turn, is referred to as Triunfo Member of Rio Bonito Formation (Guatá Group, Schneider et al. 1974Schneider R.L., Muhlmann H., Tommasi E., Medeiros R.A., Daemon R.A., Nogueira A.A. 1974. Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 27., 1974. Anais… Porto Alegre, p. 41-65., Castro 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p.).

Figure 7
Main gravitational flow deposits of Unit B. (A) Sandstone boulders within mass transport deposits (MTD, Alfredo Wagner locality). (B) Delta sandstone boulders immersed in a sandy-muddy matrix of the MTD (Alfredo Wagner locality). (C) Thin-bedded turbidites with current ripples (Vidal Ramos locality). (D) Contact between thin- and thick-bedded turbidites (Vidal Ramos locality). (E and F) Faceted and striated clasts within the concentrated density-flow deposits (Presidente Getúlio locality).
Figure 8
Contact relationships between upper Unit B and the basal fluvio-deltaic strata of Unit C. (A) The contact between thin-bedded turbidites bearing till pellets with delta-front deposits in the Trombudo Central locality. (B and C) Subaerial unconformity SB2 over the prodeltaic (P14 in Rio do Oeste locality) and shoreface (P135 in Ituporanga locality) deposits.
Figure 9
Main fluvial and fluvio-deltaic facies of Unit B and Unit C. (A) Current ripples of delta-front deposits of Unit B. (B) Convoluted folds in silty sandstones in a delta-front context (Unit B). (C and D) Hummocky cross-stratification in shoreface deposits of Unit B. (E) Flaser heterolithic deposits of prodelta (Unit B). (F) Planar cross-stratification in fluvial strata of Unit C above the subaerial unconformity SB2.
Figure 10
(A) Dump structures interbedded with thin turbidites with till pellets present in Trombudo Central locality, nearby Rio do Sul locality. (B and C) Possible intraformational glacial surfaces (soft-sediment glacial surfaces) with WSW-ENE direction. (D) Details of thin-bedded turbidites with till pellets, in which dropstones of quartz composition can also be observed.

Unit B lower

The rhythmites (Figs. 7C and 7D) are characterized by thin and tabular layers of normally graded sandstone or siltstone layers (e.g., facies Sr, Shl, and Sm(f)) rhythmically alternated with black mudstones with dispersed basement-derived clasts (granule to cobble, facies Fl, and Fl(d)). These pass upward to thicker (> 50 cm) tabular or lenticular packages, with an erosive base (0.5–1 m, Figs. 6G and 7D), composed of normally graded sandstones comprising incomplete Bouma sequences. The thin and thicker sandstones show several sole marks, such as flutes, prods, bounce, and grooves. The rhythmite characteristics are consistent with the model of thin-bedded turbidites (TBT; cf., Mutti 1962Mutti E. 1962. Turbidite sandstones. Parma: AGIP and Universita di Parma, 275 p.), whereas the key features of the thick sandstones point to the deposition from surge-type turbidite currents (Bouma 1962Bouma A.H. 1962. Sedimentology of some flysh deposits, a graphic approach to facies interpretation. Amsterdam: Elsevier, p. 168., Lowe and Guy 2000Lowe D.R., Guy M. 2000. Slurry-low deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47(1):31-70. https://doi.org/10.1046/j.1365-3091.2000.00276.x
https://doi.org/10.1046/j.1365-3091.2000...
, Mulder and Alexander 2001Mulder T., Alexander J. 2001. The physical character of sedimentary density currents and their deposits. Sedimentology, 48(2):269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x
https://doi.org/10.1046/j.1365-3091.2001...
, Mulder et al. 2003Mulder T., Syvitski J.P.M., Migeon S., Faugères J.C., Savoye B. 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6-8):861-882. https://doi.org/10.1016/j.marpetgeo.2003.01.003
https://doi.org/10.1016/j.marpetgeo.2003...
). The dispersed clasts with basement affinity attest to the glacial influence during the deposition.

The following facies association comprises conglomerates and conglomeratic sandstones (Figs. 7E and 7F), composing oblique and amalgamated bedsets (up to 10-m thick and 30-m wide). It rests on concave-up erosive surfaces whose interface can show penecontemporaneous deformations (e.g., faults and folds). In some cases, massive sandstones contain erosive bases with large rip-up clasts (up to 30 cm) from underlying rhythmites. Each layer has a pattern of normal or inverse gradations. Conglomeratic sandstones or massive conglomerates pass upward to sandstones with diffuse stratifications or laminations. The inverse also may occur. Some pebble-to-boulder clasts are striated and faceted, and others occur aligned parallel to stratifications and laminations (Figs. 7E and 7F). These characteristics suggest the deposition from concentrated and hyperconcentrated density flows according to the classification of Mulder and Alexander (2001)Mulder T., Alexander J. 2001. The physical character of sedimentary density currents and their deposits. Sedimentology, 48(2):269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x
https://doi.org/10.1046/j.1365-3091.2001...
, in which vertical facies oscillations are attributed to hyperpycnal flows due to the fluctuating melting water discharge pointed out by striated and faceted clasts (hyperpycnites, Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
).

An up to 100-m-thick interval composed of diamictites covers or is laterally associated with the above-described noncohesive density-flow deposits (Figs. 7A and 7B). The diamictites are typically massive and composed of clasts immersed in a sandy-muddy matrix. The size range of the clasts embraces granules to boulders of igneous-metamorphic composition, which can be faceted and striated. However, many diamictites have plant fragments and intrabasinal outsized clasts (dimensions ranging from 0.5 to 10 m, Fig. 7B) of sandstones and rhythmites, usually bounded by shear surfaces Dm(r). Sandstone blocks show sedimentary structures observed in overlying facies associations such as heterolithic bedding, current and wave ripples, trough cross-stratification, and plant debris. These sedimentary structures become challenging to identify in the higher homogeneous facies (Dm) due to penecontemporaneous deformations such as folds and faults. Heterogeneous clasts dispersed in a sandy-muddy matrix can be interpreted as the deposition product of gravity flows with cohesive behavior. Thus, the blocks with recognizable sedimentary structures can be described as rafted blocks, while the penecontemporaneous deformations attest to the plastic behavior. It supports the interpretation of MTD from slope failure for these deposits (cf. Shanmugam and Moiola 1988Shanmugam G., Moiola R.J. 1988. Submarine fans: characteristics, models, classification, and reservoir potential. Earth-Science Reviews, 24(6):383-428. https://doi.org/10.1016/0012-8252(88)90064-5
https://doi.org/10.1016/0012-8252(88)900...
, Shanmugam 2006Shanmugam G. 2006. Deep-water processes and facies models, implications for sandstone petroleum reservoirs. Amsterdam: Elsevier, 476 p., Shanmugam and Wang 2015Shanmugam G., Wang Y. 2015. The landslide problem. Journal of Palaeogeography, 4(2):109-166. https://doi.org/10.3724/SP.J.1261.2015.00071
https://doi.org/10.3724/SP.J.1261.2015.0...
).

The structures related to shallow environments within the large rafted blocks point to the deposition origin associated with slides from the collapse of an unstable shelf edge or deltaic slope. In turn, the presence of plant debris inside blocks suggests a deglaciated shoreline during the failure. The occurrence of striated and faceted clasts indicates the contribution of ice rafting (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
) and/or the remobilization of prodeltaic facies such as thin-bedded rhythmites with dropstones (Rodrigues et al. 2021Rodrigues M.C.N.L., Trzaskos B., Alsop G.I., Vesely F.F., Mottin T.E., Schemiko D.C.B. 2021. Statistical analysis of structures commonly used to determine palaeoslopes from within mass transport deposits. Journal of Structural Geology, 151:104421. https://doi.org/10.1016/j.jsg.2021.104421
https://doi.org/10.1016/j.jsg.2021.10442...
).

Unit B upper

The Unit B upper overlies the MTD and/or noncohesive density-flow deposits and composes coarsening and thickening-upward parasequences (Figs. 3-5). At the base, there are laminated mudstones (Fl) overlain by linsen-bedded heterolithic deposits (Hl, Figs. 8C and 9E). Upwards, the succession becomes coarse grained, showing wavy to flaser heterolithic packages (Hw, Hw(w) Hf, Hf(w)), followed by laminated and stratified sandstones in tabular beds at the top (Figs. 8B, 8C and 9A-9D). The heterolithic packages may appear amalgamated with sandstone bodies. These sandstones display hummocky (Shc), trough and low-angle cross-stratification (St and Sl), as well as plane bedding (Sh), convoluted folds (Sd), and wave and current ripples (Sr and Sr(w)), with or without muddy- and organic-rich drapes. In this context, bioturbations are common, such as Skolithos. Clasts with basement affinity are present in the muddy facies but are scarce (e.g., P71, Presidente Getúlio locality). The basal, muddy facies may be interpreted as prodeltaic deposits, and the uppermost sandier facies are ascribed to the delta-front and shoreface deposits (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
). The occasional clasts with basement affinity are understood as dropstones and point to some glacial influence (e.g., Castro 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p.).

Towards the top, the delta-front and shoreface deposits are replaced by a facies association characterized by the presence of poorly sorted sandstones with trough and planar cross-stratification, bioturbations (Skolithos), and paleosols with Bk horizon (Schoeneberger et al. 2012Schoeneberger P.J., Wysocki D.A., Benham E.C., Soil Survey Staff. 2012. Field book for describing and sampling soils, version 3.0. Lincoln: Natural Resources Conservation Service, National Soil Survey Center, p. 9-14.). The sandstones are interbedded with thin and lenticular heterolithic packages associated with coal layers (C). In this context, plant fragments and pyrite concretions are also frequent. Particularly, the sandstones are feldspathic and medium to coarse grained, comprising amalgamated and nonamalgamated beds (0.3–1-m thick) with an erosive and concave base forming cut-and-fill structures. These features suggest deposition on the delta-plain environment (Bhattacharya 2006Bhattacharya J.P. 2006. Deltas. In: Posamentier H.W., Walker R.G (Eds.). Facies models revisited. Oklahoma: Society for Sedimentary Geology, p. 237-292., 2010Bhattacharya J.P. 2010. Deltas. In: James N., Dalrymple R. (Eds.). Facies models. Canada: Geological Association of Canada, p. 233-264., Rossi and Steel 2016Rossi V.M., Steel R.J. 2016. The role of tidal, wave and river currents in the evolution of mixed-energy deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63(4):824-864. https://doi.org/10.1111/sed.12240
https://doi.org/10.1111/sed.12240...
).

In addition, in the Trombudo Central region, nearby Rio do Sul area, and in the same stratigraphic level of the shallow-marine deposits (e.g., shoreface), there are thinly laminated sandstones with sinusoidal current ripples and till pellets rhythmically alternated with black mudstones or siltstones with dropstones, some of them oversized (Fig. 10). It contains raindrop craters and jumping trackway assigned to arthropods (Silva et al. 2021Silva D.C.D., Vega C.S., Vesely F.F., Schemiko D.C.B., Bolzon R.T. 2021. First occurrence of jumping trackway in upper Paleozoic glacially-related deposits, Paraná Basin, Brazil, and paleoenvironmental implications. Ichnos, 28(4):259-270. https://doi.org/10.1080/10420940.2021.1998036
https://doi.org/10.1080/10420940.2021.19...
) and microbial mats (Noll and Netto 2018Noll S.H., Netto R.G. 2018. Microbially induced sedimentary structures in late Pennsylvanian glacial settings: A case study from the Gondwanan Paraná Basin. Journal of South American Earth Sciences, 88:385-398. https://doi.org/10.1016/j.jsames.2018.09.010
https://doi.org/10.1016/j.jsames.2018.09...
). These rhythmites may be interpreted as TBT (e.g., Santos et al. 1992Santos P.R., Rocha-Campos A.C., Canuto J.R. 1992. Estruturas de arrasto de ice-bergs em ritmitos do Subgrupo Itararé (Neo-Paleozóico), Trombudo Central, SC. Boletim IG-USP. Série Científica, 23:1-18. https://doi.org/10.11606/issn.2316-8986.v23i0p1-18
https://doi.org/10.11606/issn.2316-8986....
, Tedesco et al. 2020Tedesco J., Cagliari J., Aquino C.D. 2020. Late Paleozoic Ice-Age rhythmites in the southernmost Paraná Basin: A sedimentological and paleoenvironmental analysis. Journal of Sedimentary Research, 90(8):969-979. https://doi.org/10.2110/jsr.2020.54
https://doi.org/10.2110/jsr.2020.54...
) due to the freshwater input from glaciers melting into the supratidal environment (Lima et al. 2015Lima J.H.D., Netto R.G., Corrêa C.G., Lavina E.L.C. 2015. Ichnology of deglaciation deposits from the Upper Carboniferous Rio do Sul Formation (Itararé Group, Paraná Basin) at central-east Santa Catarina State (southern Brazil). Journal of South American Earth Sciences, 63:137-148. https://doi.org/10.1016/j.jsames.2015.07.008
https://doi.org/10.1016/j.jsames.2015.07...
, Noll and Netto 2018Noll S.H., Netto R.G. 2018. Microbially induced sedimentary structures in late Pennsylvanian glacial settings: A case study from the Gondwanan Paraná Basin. Journal of South American Earth Sciences, 88:385-398. https://doi.org/10.1016/j.jsames.2018.09.010
https://doi.org/10.1016/j.jsames.2018.09...
) with fluctuating water levels and consequently temporary exposure of the substrate (Silva et al. 2021Silva D.C.D., Vega C.S., Vesely F.F., Schemiko D.C.B., Bolzon R.T. 2021. First occurrence of jumping trackway in upper Paleozoic glacially-related deposits, Paraná Basin, Brazil, and paleoenvironmental implications. Ichnos, 28(4):259-270. https://doi.org/10.1080/10420940.2021.1998036
https://doi.org/10.1080/10420940.2021.19...
). The turbidites are interbedded with beds of a flat base and asymmetric concave top (> 50 cm wide and < 50 cm thick) disposed in multiple lateral arrangements (Fig. 10A). It is composed of roughly stratified material of sandy-muddy composition with dispersed granules and pebbles (of compositional affinity with the basement). We interpret these beds as deposition-related structures from iceberg-released sediments named iceberg-dump structure (Thomas and Connell 1985Thomas G.S.P., Connell R.J. 1985. Iceberg drop, dump and grounding structures from Pleistocene glaciolacustrine sediments, Scotland. Journal of Sedimentary Research, 55(2):243-249. https://doi.org/10.1306/212F8689-2B24-11D7-8648000102C1865D
https://doi.org/10.1306/212F8689-2B24-11...
). Soft-sediment glacial surfaces occur between the layers of the TBT (Figs. 10B and 10C), which were previously reported and interpreted as iceberg scour marks resulting from scouring of floating ice on subaqueous sediments (Santos et al. 1992Santos P.R., Rocha-Campos A.C., Canuto J.R. 1992. Estruturas de arrasto de ice-bergs em ritmitos do Subgrupo Itararé (Neo-Paleozóico), Trombudo Central, SC. Boletim IG-USP. Série Científica, 23:1-18. https://doi.org/10.11606/issn.2316-8986.v23i0p1-18
https://doi.org/10.11606/issn.2316-8986....
).

Unit C: postglacial, fluvio-deltaic to deep-marine deposits

Unit C is up to 50-m thick and rests on Unit B by means of an erosive surface (Figs. 3-5, 8, and 9F). This unit is like the uppermost shallow-marine deposits of the previous one; however, it shows a fining-upward stacking pattern. Thus, the upper Unit B is covered by strata composed of poorly sorted and stratified sandstones (St, Sl, and Sp) with muddy intraclasts and a concave-up base. It configures amalgamated bedsets that can reach thicknesses greater than 6 m and is understood as fluvial deposits, usually ascribed to the Triunfo Member of the Rio Bonito Formation (Zacharias and Assine 2005Zacharias A.A., Assine M.L. 2005. Modelo de preenchimento de vales incisos por associações de fácies estuarinas, Formação Rio Bonito no norte do estado do Paraná. Revista Brasileira de Geociências, 35(4):573-583.).

These fluvial deposits cut down mainly the delta-plain (Presidente Getúlio locality, Fig. 3) and shoreface deposits (Ituporanga locality, Fig. 8C), or even it can erode prodeltaic deposits (Rio do Oeste locality, Fig. 8B), MTD (Figs. 3 and 4), and proglacial deposits (Trombudo Central locality, Fig. 8A). Therefore, we interpret this erosive surface as a subaerial unconformity that is recognized throughout the study area, configuring an incised valley (e.g., Zacharias and Assine 2005Zacharias A.A., Assine M.L. 2005. Modelo de preenchimento de vales incisos por associações de fácies estuarinas, Formação Rio Bonito no norte do estado do Paraná. Revista Brasileira de Geociências, 35(4):573-583., Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
). After fluvial expression, tidal-influenced delta deposits (and/or estuarine deposits — Zacharias and Assine 2005Zacharias A.A., Assine M.L. 2005. Modelo de preenchimento de vales incisos por associações de fácies estuarinas, Formação Rio Bonito no norte do estado do Paraná. Revista Brasileira de Geociências, 35(4):573-583., Tognoli 2006Tognoli F.M.W. 2006. Estratigrafia das seqüências deposicionais do Grupo Guatá, borda leste da Bacia do Paraná. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 112 p.) and mud-rich strata fill the incised valley, as observed in the Alfredo Wagner region (P36, Fig. 5). The mud-rich interval is assumed here as distal offshore deposits of Paraguaçu Member (Rio Bonito Formation, e.g., Tognoli 2006Tognoli F.M.W. 2006. Estratigrafia das seqüências deposicionais do Grupo Guatá, borda leste da Bacia do Paraná. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 112 p.).

Stratigraphic correlation

The stratigraphic stacking patterns recognized in outcrops for the study interval at Rio do Sul region were also detected in wells (Petrobras and CPRM) throughout hundreds of kilometers into the basin (Figs. 3 and 4).

The proglacial to deep-marine deposits of Unit A are correlated to a basal interval with fining-upward pattern, in which the coarse-grained facies have low radioactivity at the base of the unit, showing bell or cylindrical shape. The succession progressively becomes an interval with an irregular (saw tooth) shape pattern at the top, which has relatively higher gamma-ray counts and correlates to the topmost rhythmites of Unit A.

The contact between Units A and B is characterized by the peak of high radioactivity at the top of the lowermost unit that defines the correlation datum, corresponding to the Lontras Shale. The peak is followed by succession with a coarsening-upward pattern that characterizes the Unit B stacking. This pattern is well marked in outcrops and well logs. Usually, the peak of high radioactivity is followed by boxcar and/or cleaning-up trend (irregular or funnel shape) related to the TBT and thick-bedded turbidites or hyperconcentrated density-flow deposit and CDFD. It grades upward (or is laterally disposed of) to the irregular shape corresponding to the diamictites. The diamictites, in turn, are followed by a cleaning-up trend (funnel shape) related to the deltaic progradation. Based on outcrop data, the diamictites hold rafted blocks composed of deltaic facies, showing a clear genetic relationship with the upper deltaic facies (shelf-margin delta, Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
). Thus, the low radioactivity peaks within the irregular shape may represent deltaic sandstones by means of interbeds or allochthonous blocks.

The mud-rich interval corresponding to the Lontras Shale (Rio do Sul Formation) is a commonly used regional datum (Vesely and Assine 2006Vesely F.F. 2006. Dinâmica sedimentar e arquitetura estratigráfica do Grupo Itararé (Carbonífero-Permiano) no centro-leste da Bacia do Paraná. Thesis, Universidade Federal do Paraná, Curitiba, 226 p.) understood here as the last level of black shale with the highest radioactive peak before the uppermost deltaic progradation frequently referenced as Rio Bonito Formation. In this way, the Passinho Shale (Santos et al. 1996Santos P.R., Rocha-Campos A.C., Canuto J.R. 1996. Patterns of Late Palaeozoic deglaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 125(1-4):165-184. https://doi.org/10.1016/S0031-0182(96)00029-6
https://doi.org/10.1016/S0031-0182(96)00...
) documented above the Lontras Shale (Daemon and Quadros 1970Daemon R.F., Quadros L.P. 1970. Bioestratigrafia do Neopaleozoico da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 24, 1970, Brasília. Anais… Brasília: SBG, 1, p. 359-412., Rocha-Campos and Rössler 1978Rocha-Campos A.C., Rössler O. 1978. Late Paleozoic faunal and floral successions in the Paraná Basin, southeastern Brazil. Boletim IG. Instituto de Geociências, USP, 9:1-16., Santos et al. 1996Santos P.R., Rocha-Campos A.C., Canuto J.R. 1996. Patterns of Late Palaeozoic deglaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 125(1-4):165-184. https://doi.org/10.1016/S0031-0182(96)00029-6
https://doi.org/10.1016/S0031-0182(96)00...
, Vesely 2006Vesely F.F. 2006. Dinâmica sedimentar e arquitetura estratigráfica do Grupo Itararé (Carbonífero-Permiano) no centro-leste da Bacia do Paraná. Thesis, Universidade Federal do Paraná, Curitiba, 226 p.) is here assigned to the prodeltaic muddy strata of the Rio Bonito Formation (e.g., Popp 1983Popp J.H. 1983. Fácies, ambientes e carvões na Formação Rio Bonito no sul do Estado do Paraná: uma análise estratigráfica. Revista Brasileira de Geociências, 13(1):27-36., Castro 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p.; Fig. 3). Stratigraphic correlations recorded in the literature show these shales superimposed by the sandstone-rich deltaic deposits of the Rio Bonito Formation (Vesely 2006Vesely F.F. 2006. Dinâmica sedimentar e arquitetura estratigráfica do Grupo Itararé (Carbonífero-Permiano) no centro-leste da Bacia do Paraná. Thesis, Universidade Federal do Paraná, Curitiba, 226 p.) or laterally disposed to the deltaic sandstones (Rocha-Campos and Rössler 1978Rocha-Campos A.C., Rössler O. 1978. Late Paleozoic faunal and floral successions in the Paraná Basin, southeastern Brazil. Boletim IG. Instituto de Geociências, USP, 9:1-16.). According to this approach, the Lontras Shale does not necessarily correspond to the range of shales slightly above the Precambrian basement as proposed by Fallgatter and Paim (2017)Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
, although it is often arranged in this way (Fig. 6F).

The inversion of the stacking pattern characterizes the passage from Unit B to Unit C, highlighting the subaerial unconformity from which starts a retrogradational stacking pattern that delineates Unit C. At the base of this interval, the low radioactivity peaks represent fluvial sandstones with cylindrical or funnel shapes. It grades upward to relatively higher gamma-ray counts, corresponding to estuary deposits that culminate with the siltstones and shales correlated with the Paraguaçu Member (e.g., Tognoli 2006Tognoli F.M.W. 2006. Estratigrafia das seqüências deposicionais do Grupo Guatá, borda leste da Bacia do Paraná. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 112 p.). In this context, nearby Rio do Sul area, there is the preservation of delta-plain deposits under subaerial unconformity (Fig. 3), while on other localities the basal fluvial deposits of Unit C occur directly over the MTD, prodelta or shoreface deposits of Unit B (Figs. 3-5 and 8).

Sediment transport and fill patterns

Paleocurrent patterns for Unit A were not recorded in this study once previous works have documented it satisfactorily. A detailed study of the basal nonconformity carried out by Fallgatter and Paim (2017)Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
shows partially exhumed glacial troughs and gouges into the Precambrian basement associated with lodgment tillites. These features have a consistent NW orientation. According to Aquino et al. (2016)Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
and Fallgatter and Paim (2017)Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
, the conglomeratic facies association (subaqueous outwash fans) is also exposed around Pedrinho and Alfredo Wagner, respectively, and shows paleocurrents mainly toward NW, where NE and SW are secondary components (Fig. 3). Likewise, Rodrigues et al. (2021)Rodrigues M.C.N.L., Trzaskos B., Alsop G.I., Vesely F.F., Mottin T.E., Schemiko D.C.B. 2021. Statistical analysis of structures commonly used to determine palaeoslopes from within mass transport deposits. Journal of Structural Geology, 151:104421. https://doi.org/10.1016/j.jsg.2021.104421
https://doi.org/10.1016/j.jsg.2021.10442...
point to general paleoflows toward the N for uppermost folded rhythmites (classified as incipient MTDs) at Presidente Getúlio locality.

About 700 paleocurrent measurements were obtained from cross-stratifications and current ripples in sandstones and sandy rhythmites of Unit B. In general, these data refer to TBD and thick-bedded turbidites, hyperconcentrated density-flow deposit and CDFD (hyperpycnites), shoreface, and delta-plain deposits. Based on the trends of the sediment transport in this depositional unit, the studied area can be subdivided into three major sectors (regions):

  • Presidente Getúlio-Witmarsum (north-northeastern), where paleocurrents are to the south-southwest;

  • Rio do Sul (center-eastern) with paleocurrents toward the west;

  • Vidal Ramos-Alfredo Wagner (southern), showing paleocurrents mainly to the northwest and, secondarily to the southwest (Figs. 2 and 3).

Conglomeratic facies of noncohesive density-flow deposits are present mainly in the Presidente Getúlio (northern sector) locality and are genetically associated with uppermost thick turbidites showing paleocurrents toward the south-southwest (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
). In this locality, the paleocurrents of TBT are chiefly toward the northwest, which is the same orientation obtained from thick-bedded turbidites and TBT present in the localities of Vidal Ramos and Alfredo Wagner (southern sector), where the conglomeratic facies are absent. Consequently, the TBT seem to be genetically related to a slope-parallel paleoflow direction sourced from areas farther to the SE.

In the Witmarsum locality (northern sector), the kinematic analysis of the MTD carried out by Rodrigues et al. (2021)Rodrigues M.C.N.L., Trzaskos B., Alsop G.I., Vesely F.F., Mottin T.E., Schemiko D.C.B. 2021. Statistical analysis of structures commonly used to determine palaeoslopes from within mass transport deposits. Journal of Structural Geology, 151:104421. https://doi.org/10.1016/j.jsg.2021.104421
https://doi.org/10.1016/j.jsg.2021.10442...
points to paleoflows toward the NW for more evolved mass flow diamictites (Figs. 2 and 3). In the south-southeast portion of the study area, in the Alfredo Wagner locality, the paleoflow pattern ranges from WNW to SW (Fig. 3), according to Rodrigues et al. (2021)Rodrigues M.C.N.L., Trzaskos B., Alsop G.I., Vesely F.F., Mottin T.E., Schemiko D.C.B. 2021. Statistical analysis of structures commonly used to determine palaeoslopes from within mass transport deposits. Journal of Structural Geology, 151:104421. https://doi.org/10.1016/j.jsg.2021.104421
https://doi.org/10.1016/j.jsg.2021.10442...
. Additionally, these data agree with the flow directions obtained through anisotropy of magnetic susceptibility (AMS) by Amato (2017)Amato J. 2017. Using AMS to help interpret glaciogenic deposits of the Late Paleozoic ice age in the Paraná Basin, Brazil. Master Thesis, University of Wisconsin, Milwaukee, 161 p. for these deposits in the regions of Aurora (NNW), nearby Vidal Ramos locality, and Alfredo Wagner (NW and W).

In the center-eastern, the soft-sediment glacial surfaces (iceberg scour marks) that occur in the stratigraphic level of shallow-marine deposits of Unit B have a WSW-ENE direction (Fig. 10), a similar direction obtained by Santos et al. (1992)Santos P.R., Rocha-Campos A.C., Canuto J.R. 1992. Estruturas de arrasto de ice-bergs em ritmitos do Subgrupo Itararé (Neo-Paleozóico), Trombudo Central, SC. Boletim IG-USP. Série Científica, 23:1-18. https://doi.org/10.11606/issn.2316-8986.v23i0p1-18
https://doi.org/10.11606/issn.2316-8986....
for these features (WNW) at the same locality (Trombudo Central). In this context, the TBT with till pellets present paleocurrents to the WSW (Fig. 2).

Overall, the fluvial packages of Unit C, displayed above the subaerial unconformity, have paleocurrents (about 100 readings) toward the SW and, less common, northwest directions (Figs. 2, 3, and 5). On the contrary, subsequent delta deposits have southwestern paleocurrent directions (e.g., P36), but with a northeast component that can be attributed to the tidal process (drapes, Fig. 5, e.g., Mottin et al. 2018Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
https://doi.org/10.1016/j.palaeo.2017.11...
).

DEPOSITIONAL HISTORY

The deposition of study interval occurred in paleoenvironments ranging from shallow to relatively deep-marine deposits under different levels of glacial influence or with a lack of such influence. Glacial contribution during the sedimentation is evidenced by dropstones in distinct stratigraphic levels (Units A and B), striated and faceted clasts within mass flow diamictites and noncohesive density-flow deposits, and structures associated with floating ice, such as till pellets. Features that point to the tide activity evidence the marine environment (Units B and C). Marine setting is also supported by the presence of marine fossils like conodonts (Rocha-Campos and Rössler 1978Rocha-Campos A.C., Rössler O. 1978. Late Paleozoic faunal and floral successions in the Paraná Basin, southeastern Brazil. Boletim IG. Instituto de Geociências, USP, 9:1-16., Simões et al. 2012Simões M.G., Neves J.P., Anelli L.E., Weinschutz L.C. 2012. Permian bivalves of the Taciba Formation, Itararé Group, Parana Basin, and their Biostratigraphic significance. Geologia USP. Série Científica, 12(1):71-82. https://doi.org/10.5327/Z1519-874X2012000100006
https://doi.org/10.5327/Z1519-874X201200...
, Wilner et al. 2012Wilner E., Weinschütz L.C., Ricetti J.H.Z. 2012. Análise geoquímica do folhelho Lontras em Mafra, SC; Interpretações preliminares e constatações de sua fossildiagênese. Boletim Informativo da Sociedade Brasileira de Paleontologia, 66:107-108., 2016Wilner E., Lemos V.B., Scomazzon A.K. 2016. Associações naturais de conodontes Mesogondolella spp., Grupo Itararé, Cisuraliano da Bacia do Paraná. Gaea, 9(1):30-36. https://doi.org/10.4013/gaea.2016.91.02
https://doi.org/10.4013/gaea.2016.91.02...
, Scomazzon et al. 2013Scomazzon A.K., Wilner E., Purnell M., Nascimento S., Weinschütz L.C., Lemos V.B., Souza F.L., Silva C.P. 2013. First report of conodont apparatuses from Brazil – Permian of Paraná Basin, Itararé Group, Lontras shale – Evidence of Gondwana Deglaciation. Associación Paleontológica Argentina, Publicación Especial, (13):99-102., Neves et al. 2014Neves J.P., Anelli L.E., Simões M.G. 2014. Early Permian post-glacial bivalve faunas of the Itararé Group, Parana Basin, Brazil: Paleoecology and biocorrelations with South American intraplate basins. Journal of South American Earth Sciences, 52:203-233. https://doi.org/10.1016/j.jsames.2014.03.001
https://doi.org/10.1016/j.jsames.2014.03...
) in the Lontras Shale (Unit A).

Through the recognition of depositional trends of each unit associated with the sediment transport pattern and spatial distribution, it is possible to reconstruct the depositional history of the study area. Therefore, three evolutionary stages are defined in this study. Yet, the depositional trends of each unit were recognized and traced up to 400 km into the basin. It points to the regional expression of these events, supporting the interpretation of the stratigraphic architecture and depositional evolution of the Rio do Sul depocenter (Figs. 3 and 4).

The first stage has the subglacial tillites and CDFD (Aquino et al. 2016Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
, Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
, Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
) of Unit A as the expression of the maximum glacial advance over the Precambrian basement or on irregular surface scoured into the previous deposits (Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
), respectively, configuring a sequence stratigraphy boundary named as SB1 (Figs. 3, 4, and 11A). Mass flow diamictites and rhythmites superimposing these basal deposits point to deglacial process, whereas the following glacially influenced deepwater shales (Lontras Shale) record the marine maximum flooding (MFS1). In this scenario, the mean paleocurrents of the CDFD toward the NW (Aquino et al. 2016Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
, Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
) coincide with the mean vector to the north of the striated surfaces on the lowermost unconformity described in Santa Catarina State (Rocha-Campos et al. 1988Rocha-Campos A.C., Machado L.C.R., Santos P.R., Canuto J.R., Castro J.C. 1988. Pavimento estriado da glaciação Neo-Paleozóica em Alfredo Wagner, SC, Brasil. Boletim IG. Instituto de Geociências, USP, 19:39-46., Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
) as elsewhere in the Itararé Group (Vesely and Assine 2002Vesely F.F., Assine M.L. 2002. Superfícies estriadas em arenitos do Grupo Itararé produzidas por gelo flutuante, sudeste do Estado do Paraná. Revista Brasileira Geosciências, 32(4):587-594., 2006Vesely F.F. 2006. Dinâmica sedimentar e arquitetura estratigráfica do Grupo Itararé (Carbonífero-Permiano) no centro-leste da Bacia do Paraná. Thesis, Universidade Federal do Paraná, Curitiba, 226 p., Vesely et al. 2015Vesely F.F., Trzaskos B., Kipper F., Assine M.L., Souza P.A. 2015. Sedimentary record of a fluctuating ice margin from the Pennsylvanian of western Gondwana: Paraná Basin, southern Brazil. Sedimentary Geology, 326:45-63. https://doi.org/10.1016/j.sedgeo.2015.06.012
https://doi.org/10.1016/j.sedgeo.2015.06...
, Rosa et al. 2016Rosa E.L.M., Vesely F.F., França A.B. 2016. A review on late Paleozoic ice-related erosional landforms of the Paraná Basin: origin and paleogeographical implications. Brazilian Journal of Geology, 46(2):147-166. https://doi.org/10.1590/2317-4889201620160050
https://doi.org/10.1590/2317-48892016201...
).

Figure 11
Evolutionary history and interpreted paleogeographic models for the Depocenter Rio do Sul, Pennsylvanian-Permian of the Paraná Basin, southern Brazil, with emphasis on the transition between Stage I and Stage II, which is time-equivalent of Cycle III of the Late Paleozoic Ice Age (LPIA). Glacial advance from SE (A) during the early Stage I that culminates with deposition of Lontras Shale. Sedimentation of turbidites after the development of Lontras Shale (B) toward NW. After, mass transport deposits (MTD) and genetically related fluvio-deltaic deposits were developed, with (C) NW and (D) W paleocurrents. (C) A new ice source is suggested from NE, based on striated and faceted clasts within concentrated density-flow deposits, (D) with paleocurrents to SW. (E) These deposits are genetically related to the MTD and the overlain fluvio-deltaic deposits, with the same sediment transport direction, configuring centripetal filling to the Rio do Sul depocenter over time.

In turn, the second stage, referring to Unit B, is characterized by a change in the stacking pattern and paleoflows (Figs. 11B-11E). The Lontras Shale is covered by a coarsening-upward succession that starts with deglacial (proglacial) deepwater deposits and includes thin and thick turbidites, hyperconcentrated density-flow deposit, and/or CDFD. It is followed by MTD and fluvio-deltaic deposits, showing a progradational pattern. In this setting, the genetic relationship between the uppermost shelf-margin deposits (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
) and mass flow diamictites is evidenced by shallow-water sedimentary structures present within the allochthonous blocks of the MTD, such as wave ripples. In this way, the mass flow diamictites represent the remobilization of delta-front deposits to the relatively deepwater environment (e.g., D’Ávila 2009D’Ávila R.S.F. 2009. Sequências deposicionais do Grupo Itararé (Carbonífero e Eopermiano), Bacia do Paraná, na área de Doutor Pedrinho e cercanias, Santa Catarina, Brasil: turbiditos, pelitos e depósitos caóticos. Thesis, Unisinos, São Leopoldo, 245 p., Suss et al. 2014Suss J.F., Vesely P.S.G., Catharina A.S., Assine M.L., Paim P.S.G. 2014. O Grupo Itararé (Neocarbonífero-Eopermiano) entre Porto Amazonas (PR) e Mafra (SC): Sedimentação gravitacional em contexto marinho deltaico sob a influência glacial. Geociências, 33(4):701-719., Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
). Based on this, we support the hypothesis of the conformable transition between the Rio do Sul Formation and the lowermost Rio Bonito Formation (Triunfo Member). At the top, incised fluvial valleys bound this succession, configuring the second sequence stratigraphy boundary (SB2, Figs. 3-5 and 8).

Regarding the initiation of the mass transport, we argue that meltwater discharge was the trigger mechanism for slope instability due to the rapid input of sediments. It does not exclude that the faceted and striated clasts would have ice-rafted debris as a primary source during the early stages of deglaciation prior to incorporation into mass flow diamictites (e.g., Mottin and Vesely 2017Mottin T.E., Vesely F.F. 2017. Controls on the Emplacement of Mass-Transport Diamictites in the Upper Itararé Group, Paraná Basin, Brazil. X Simpósio Sul-Brasileiro de Geologia. Anais… Curitiba, p. 1.). At the same time, those major floods may also be related to the development of concentrated and hyperconcentrated density flows by means of meltwater discharge bypassing the shelf to the deepwater (e.g., Mutti et al. 1996Mutti E., Davoli G., Tinterri R., Zavala C. 1996. The importance of ancient fluviodeltaic systems dominated by catastrophic flooding in tectonically active basins. Estratto da Memorie di Scienze Geologiche, 48:233-291., Hubbard et al. 2010Hubbard S.M., Fildani A., Romans B.W., Covault J.A., McHargue T.R. 2010. High-relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. Journal of Sedimentary Research, 80(5):357-375. https://doi.org/10.2110/jsr.2010.042
https://doi.org/10.2110/jsr.2010.042...
, Zavala et al. 2011Zavala C., Arcuri M., Di Meglio M., Gamero Diaz H., Contreras C. 2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In: Slatt R.M., Zavala C. (Eds.). Sediment transfer from shelf to deep water: revisiting the delivery system. AAPG Studies in Geology, v. 61, p. 31-51.), leading to the slope instability and sedimentation of the uppermost MTD. In this context, the quasi-steady density flows deposited those noncohesive density-flow deposits implying in relatively constant discharge for long periods (Kneller and Branney 1995Kneller B.C., Branney M.J. 1995. Sustained high-density turbidity currents and the deposition of thick massive beds. Sedimentology, 42(4):607-616. https://doi.org/10.1111/j.1365-3091.1995.tb00395.x
https://doi.org/10.1111/j.1365-3091.1995...
, Mulder and Alexander 2001Mulder T., Alexander J. 2001. The physical character of sedimentary density currents and their deposits. Sedimentology, 48(2):269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x
https://doi.org/10.1046/j.1365-3091.2001...
). Thus, the sediment supply possibly was from semi-continuous flood events produced by glaciofluvial discharge to deep-marine setting (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
) instead of grounding-line fan systems as recorded elsewhere in the Itararé Group (e.g., Aquino et al. 2016Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
, Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
).

The genetic relationship between deglacial deepwater deposits and fluvio-deltaic strata within Unit B is also evidenced by paleocurrent and paleoflow patterns. All facies associations have the same sediment transport showing a trend toward the northwest in the southern sector (Vidal Ramos-Alfredo Wagner region), west-northwest in the central sector (Rio do Sul –– Trombudo Central region), and south-southwest in the northern sector (Vitor Meireles-Presidente Getúlio region). However, within this unit, we can still suggest some diachronism between the depositions of the center-southeastern and northern sectors. A progradational succession with south-southwest paleoflows in the northern sector seems to be developed over the basal TBT with NW paleocurrent genetic related to a primary progradational succession formed at central and southern regions (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
). In those places, the stratigraphic relationship with the lowermost fluvial beds of Unit C indicates a transition between normal and forced regression, since the platform deposits as delta-front and shoreface beds occur under the fluvial-incised valley (SB2, Figs. 3-5 and 8). Likewise, fluvial beds (Unit C) rest on erosive and sharp-base contact with prodeltaic deposits (Rio do Oeste and Trombudo Central localities) and MTD (e.g., 1AL well, Fig. 4).

On the contrary, the second depositional succession from the north points to progradational-aggradational stacking pattern of co-genetic facies associations within clinoforms that offlap on the fluvial subaerial unconformity SB2 (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
, Fig. 3), once the preservation of delta-plain deposits with tide influence evidence the normal regression conditions (highstand system tract, Catuneanu 2006Catuneanu O. 2006. Principles of sequence stratigraphy. Amsterdam: Elsevier, 375 p.). Consequently, the emplacement of MTD took place during the sea-level rise (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
, Fig. 3). It is opposite to the classical sequence stratigraphic models (cf. Catuneanu 2006Catuneanu O. 2006. Principles of sequence stratigraphy. Amsterdam: Elsevier, 375 p.), in which thicker MTD are related to forced regression. Incised valley down-cutting interglacial highstand deposits were also documented by Blum and Price (1998)Blum M.D., Price D.M. 1998. Quaternary alluvial plain construction in response to glacio-eustatic and climatic controls, Texas Gulf Coastal Plain. In: Shanley K.W., McCabe P.J. (Eds.). Relative role of eustasy climate and tectonism in continental rocks. SEPM Special Publication, 59, p. 31-48. for Texas Gulf Coastal Plain (Pleistocene Beaumont Formation).

The third stage that corresponds to the retrogradational stacking pattern developed over the SB2 began with fluvio-deltaic beds (Triunfo Member) deposition, followed by fine-grained deposits concerning the Paraguaçu Member (Fig. 5). The depositional trend suggests a transition from normal regression (lowstand) to transgression characterized by early infills of the incised valleys composed of tidal-influenced fluvial deposits (coastal plain, e.g., Rossi and Steel 2016Rossi V.M., Steel R.J. 2016. The role of tidal, wave and river currents in the evolution of mixed-energy deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63(4):824-864. https://doi.org/10.1111/sed.12240
https://doi.org/10.1111/sed.12240...
) followed by estuary channels, composing the valley fill backstepping (Paraguaçu Member, e.g., Zacharias and Assine 2005Zacharias A.A., Assine M.L. 2005. Modelo de preenchimento de vales incisos por associações de fácies estuarinas, Formação Rio Bonito no norte do estado do Paraná. Revista Brasileira de Geociências, 35(4):573-583.). No feature related to glacial influence was observed in this stage.

According to the previous sequence analysis (Holz et al. 2006Holz M., Küchle J., Philipp R.P., Bischoff A.P., Arima, N. 2006. Hierarchy of control on stratigraphic signatures: base-level changes during Early Perminan in the Paraná Basin, southernmost Brazil. Journal of South American Earth Sciences, 22(3-4):185-204. https://doi.org/10.1016/j.jsames.2006.09.007
https://doi.org/10.1016/j.jsames.2006.09...
, 2010Holz M., França A.B., Souza P.A., Iannuzzi R., Rohn R. 2010. A stratigraphic chart of the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil, South America. Journal of South American Earth Science, 29(2):381-399. https://doi.org/10.1016/j.jsames.2009.04.004
https://doi.org/10.1016/j.jsames.2009.04...
, Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
), the stacking pattern of each unit may be part of the two third-order depositional sequence in the Santa Catarina State (Fig. 1). Like Canuto et al. (2001)Canuto J.R., Santos P.R., Rocha-Campos A.C. 2001. Estratigrafia de sequências do Subgrupo Itararé (Neopaleozóico) no leste da Bacia do Paraná, nas regiões sul do Paraná e norte de Santa Catarina, Brasil. Revista Brasileira de Geociências, 31(1):107-116., Valdez Buso et al. (2019)Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
distinguished five deglacial cycles in the upper Itararé Group. Unit A corresponds to the depositional sequence 2 (Glacial Subcycle S2) of Valdez Buso et al. (2019)Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
, where the Lontras Shale expresses the marine maximum flooding from a deglacial process. After Lontras Shale deposition, the authors recognized additional three Glacial Subcycles (S3, S4, and S5). However, our findings suggest a genetic relationship between the glacially influenced deepwater deposits, developed slightly above Lontras Shales, and the upper shallow-water deposits under the incised valley. Thus, even assuming further Glacial Subcycles above the Lontras Shale at Rio do Sul depocenter, as proposed by Valdez Buso et al. (2019)Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
, we can still point to the genetic relationship between the last deglacial deposits (Itararé Group) and the superposed fluvio-deltaic deposits, usually assigned to Rio Bonito Formation.

PALEOGEOGRAPHY

The LPIA glaciation comprised major events (or cycles) also recognized across the Paraná Basin (Fielding et al. 2008Fielding C.R., Frank T.D., Isbell J.L. 2008. Resolving the Late Paleozoic ice age intime and space. Geological Society of America Special Publication, 441:343-354., Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
). In this context, the evolutionary Stage I is time-equivalent to the upper Cycle II, whereas Stage II is related to Cycle III of the LPIA, the last major glacial event in the southern Gondwana supercontinent (Isbell et al. 2003Isbell J.L., Miller M.F., Wolfe K.L., Lenaker P.A. 2003. Timing of Late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclotherms? Geological Society of America Special Papers, 370:5-24. https://doi.org/10.1130/0-8137-2370-1.5
https://doi.org/10.1130/0-8137-2370-1.5...
, López-Gamundí and Buatois 2010López-Gamundí O.R., Buatois L.A. 2010. Introduction: Late Paleozoic glacial events and postglacial transgressions. In: López-Gamundí O.R., Buatois L.A. (Eds.), Late paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper, 468:v-viii., Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
). Paleogeography of multiple glacial lobes flowing into the Paraná Basin has been supported by several sedimentary features such as paleo-ice flow directions from subglacial landforms and soft-sediment grooving (Gesicki et al. 2002Gesicki A.L.D., Riccomini C., Boggiani P.C. 2002. Ice flow direction during the late Paleozoic glaciation in western Paraná Basin, Brazil. Journal of South American Earth Sciences, 14(8):933-939. https://doi.org/10.1016/S0895-9811(01)00076-1
https://doi.org/10.1016/S0895-9811(01)00...
, Rosa et al. 2016Rosa E.L.M., Vesely F.F., França A.B. 2016. A review on late Paleozoic ice-related erosional landforms of the Paraná Basin: origin and paleogeographical implications. Brazilian Journal of Geology, 46(2):147-166. https://doi.org/10.1590/2317-4889201620160050
https://doi.org/10.1590/2317-48892016201...
, 2019Griffis N.P., Montañez I.P., Mundil R., Richey J., Isbell J., Fedorchuk N., Linol B., Iannuzzi R., Vesely F., Mottin T., Rosa E., Keller B., Yin Q.Z. 2019. Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-togreenhouse turnover in south-central Gondwana. Geology, 47(12):1146-1150. https://doi.org/10.1130/G46740.1
https://doi.org/10.1130/G46740.1...
, Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
) and paleocurrent patterns from deglacial deposits (e.g., Vesely et al. 2015Vesely F.F., Trzaskos B., Kipper F., Assine M.L., Souza P.A. 2015. Sedimentary record of a fluctuating ice margin from the Pennsylvanian of western Gondwana: Paraná Basin, southern Brazil. Sedimentary Geology, 326:45-63. https://doi.org/10.1016/j.sedgeo.2015.06.012
https://doi.org/10.1016/j.sedgeo.2015.06...
, Aquino et al. 2016Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
, Carvalho and Vesely 2017Carvalho A.H., Vesely F.F. 2017. Facies relationship recorded in a Late Paleozoic fluvio-deltaic system (Parana Basin, Brazil): insights into the timing and triggers of subaqueous sediment gravity flows. Sedimentary Geology, 352:45-62. https://doi.org/10.1016/j.sedgeo.2016.12.004
https://doi.org/10.1016/j.sedgeo.2016.12...
, Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
, Mottin et al. 2018Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
https://doi.org/10.1016/j.palaeo.2017.11...
, Mottin and Vesely 2021Mottin T.E., Vesely F.F. 2021. Formação Taciba: última manifestação glacial no Paraná. Boletim Paranaense de Geociências, 78:65-82. https://doi.org/10.5380/geo.v78i0.79352
https://doi.org/10.5380/geo.v78i0.79352...
).

Similarly, there is a growth in studies supporting an NE-glacial source associated with the upper Itararé sedimentation (Mottin et al. 2018Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
https://doi.org/10.1016/j.palaeo.2017.11...
, Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
, Mottin and Vesely 2021Mottin T.E., Vesely F.F. 2021. Formação Taciba: última manifestação glacial no Paraná. Boletim Paranaense de Geociências, 78:65-82. https://doi.org/10.5380/geo.v78i0.79352
https://doi.org/10.5380/geo.v78i0.79352...
). In this context, the results from this study would point to a change in the main paleo-ice flow direction between the upper Cycle II and Cycle III of the LPIA in the Paraná Basin. Striations related to SB1 with NW direction and associated deglacial CDFD flowing toward NW (Figs. 3 and 6; Aquino et al. 2016Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
, Fallgatter and Paim 2017Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
https://doi.org/10.1016/j.palaeo.2017.02...
, Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
) of Unit A indicate a sediment entry and glacial source area located at SE during the upper Cycle II (Stage I). However, faceted and striated clasts immersed in hyperpycnal density flows within Unit B in the north sector with paleoflows to the southwest also evidence an ice source to the NE at the end of the LPIA — Cycle III (Stage II; Figs. 2, 3, and 7).

Still, the study area comprises a particular paleogeography setting during the development of Stage II (Figs. 11B-11E). The transport pattern of co-genetic facies associations with the glacial influence of Unit B displays centripetal sediment feeding and glacial sources. In addition to the NE source, there are pieces of evidence of glacial sources to the E and SE. The upper Unit B in Trombudo Central locality (central sector) encompasses features pointing to the glacial source to the east-northeast and an extensive advance of ice to the W, such as TBT comprising till pellets and dropstones with paleocurrents to the west and southwest, as well as iceberg-dump structure associated iceberg scour marks with main ice flow direction toward the west (e.g., Santos et al. 1992Santos P.R., Rocha-Campos A.C., Canuto J.R. 1992. Estruturas de arrasto de ice-bergs em ritmitos do Subgrupo Itararé (Neo-Paleozóico), Trombudo Central, SC. Boletim IG-USP. Série Científica, 23:1-18. https://doi.org/10.11606/issn.2316-8986.v23i0p1-18
https://doi.org/10.11606/issn.2316-8986....
; Figs. 2 and 10). In the south sector, the SE-glacial source is corroborated by TBT with dropstones and MTD with glacially derived faceted/striated clasts showing paleoflows to the NW (Figs. 2 and 7).

A northern source for diamictites with glacially derived faceted/striated clast of the Rio do Sul Formation is also present in the basin-scale lithofacies distribution as reported by França and Potter (1988)França A.B., Potter P.E. 1988. Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permocarbonífero), Bacia do Paraná (parte 1). Boletim de Geociências da Petrobras, 2:147-191. and Eyles et al. (1993)Eyles N., Eyles C.H., França A.B. 1993. Glaciation and tectonics in an active intracratonic basin: The Late Paleozoic Itararé Group, Paraná Basin, Brazil. Sedimentology, 40(1):1-25. https://doi.org/10.1111/j.1365-3091.1993.tb01087.x
https://doi.org/10.1111/j.1365-3091.1993...
, based on subsurface data. In the central-northern sector of the Paraná Basin, this diamictite-bearing unit is up to 200-m thick, extending horizontally over 700,000 km2 (Eyles et al. 1993Eyles N., Eyles C.H., França A.B. 1993. Glaciation and tectonics in an active intracratonic basin: The Late Paleozoic Itararé Group, Paraná Basin, Brazil. Sedimentology, 40(1):1-25. https://doi.org/10.1111/j.1365-3091.1993.tb01087.x
https://doi.org/10.1111/j.1365-3091.1993...
). According to França and Potter (1988)França A.B., Potter P.E. 1988. Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permocarbonífero), Bacia do Paraná (parte 1). Boletim de Geociências da Petrobras, 2:147-191., the passage toward the south of diamictite to dropstone-bearing shales and rhythmites points to the presence of a depocenter in the Santa Catarina State, configuring a proximal to distal architecture. Our results based on regional stratigraphic correlations and transport pattern also report the catchment area located to the NE but a further sediment feeding from E and NE for the diamictites, which pass to fine-grained deposits with glacial influence toward a main center nearby Rio do Sul locality (Figs. 3 and 4). This fill pattern is kept in the fluvio-deltaic deposition of Unit C (Triunfo Member). It would corroborate the hypothesis of a subsiding area in the south of the Paraná Basin, configuring the so-called “Rio do Sul” sub-basin (Canuto 1993Canuto J.R. 1993. Fácies e ambientes deposicionais da Formação Rio do Sul (Permiano), Bacia do Paraná, na região de Rio do Sul, Estado de Santa Catarina. Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 183 p.).

Previous studies discussed the rate influence of tectonic and sea-level changes on the bounding relationships of the upper Itararé Group and lower Rio Bonito Formation. Tectonic uplift of the northeastern basin has been suggested based on fluvial paleocurrents to the SW of Rio Bonito Formation (Castro 1991Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb. Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p., Milani and Ramos 1998Milani E.J., Ramos V. 1998. Orogenias Paleozóicas no domínio sul-ocidental do Gondwana e os ciclos de subsidência da Bacia do Paraná. Revista Brasileira de Geociências, 28(4):527-544., Milani 2004Milani E.J. 2004. Comentários sobre a origem e a evolução tectônica da Bacia do Paraná. In: Autoria (Ed.). Geologia do continente sul-americano. São Paulo: editora, p. 266-279., Holz et al. 2006Holz M., Küchle J., Philipp R.P., Bischoff A.P., Arima, N. 2006. Hierarchy of control on stratigraphic signatures: base-level changes during Early Perminan in the Paraná Basin, southernmost Brazil. Journal of South American Earth Sciences, 22(3-4):185-204. https://doi.org/10.1016/j.jsames.2006.09.007
https://doi.org/10.1016/j.jsames.2006.09...
, 2010Holz M., França A.B., Souza P.A., Iannuzzi R., Rohn R. 2010. A stratigraphic chart of the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil, South America. Journal of South American Earth Science, 29(2):381-399. https://doi.org/10.1016/j.jsames.2009.04.004
https://doi.org/10.1016/j.jsames.2009.04...
, Mottin et al. 2018Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
https://doi.org/10.1016/j.palaeo.2017.11...
). Therefore, in all hierarchical levels discussed here, regional and local, as well as based on both outcrop and subsurface data, it appears to be a tectonic overprinting on the eustatic signature creating space particularly recorded in the Rio do Sul depocenter, justifying the thickness and the transitional contact between those units. Thus, the possible tectonic uplift began even during Itararé Group sedimentation, after Lontras Shales deposition, as can be observed by stratigraphic architecture and fill pattern of Unit B, not just after warm conditions of uppermost Rio Bonito Formation, as proposed by Holz et al. (2006)Holz M., Küchle J., Philipp R.P., Bischoff A.P., Arima, N. 2006. Hierarchy of control on stratigraphic signatures: base-level changes during Early Perminan in the Paraná Basin, southernmost Brazil. Journal of South American Earth Sciences, 22(3-4):185-204. https://doi.org/10.1016/j.jsames.2006.09.007
https://doi.org/10.1016/j.jsames.2006.09...
.

Tectonic and deglacial processes may have provided a high rate of sediment influx. According to Porebski and Steel (2006)Porebski S.J., Steel R.J. 2006. Deltas and sea-level change. Journal of Sedimentary Research, 76(3):390-403. https://doi.org/10.2110/jsr.2006.034
https://doi.org/10.2110/jsr.2006.034...
, deltas are likely to form shelf-wide sand bodies within highstand systems tract mainly for fourth-order sequences (e.g., highstand shelf-margin deltas), on narrow and high-gradient shelves related to extremely high-discharge rivers from glaciated terrains or rising mountain belts. The late Quaternary Ganges-Brahmaputra delta is an excellent example of delta progradation, derived from high and sustained sediment supply combined result of tectonically active catchment and postglacial conditions, despite significant sea-level rise (e.g., Goodbred Jr. and Kuehl 2000Goodbred Jr. S.L., Kuehl S.A. 2000. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sedimentary Geology, 133(3-4):227-248. https://doi.org/10.1016/S0037-0738(00)00041-5
https://doi.org/10.1016/S0037-0738(00)00...
, Goodbred Jr. et al. 2003Goodbred Jr. S.L., Kuehl S.A., Steckler M.S., Sarker M.H. 2003. Controls on facies distribution and stratigraphic preservation in the Ganges–Brahmaputra delta sequence. Sedimentary Geology, 155(3-4):301-316. https://doi.org/10.1016/S0037-0738(02)00184-7
https://doi.org/10.1016/S0037-0738(02)00...
), similar to the deltaic progradation-aggradation recorded in the north sector (Schemiko et al. 2019Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
https://doi.org/10.1016/j.jsames.2019.10...
).

Also, the ages of the study interval are still an open matter for debate. The stratigraphic level regarding the genetic relationship between the shallow deposits of the lower Rio Bonito Formation and deep-marine deposits of the upper Rio do Sul (Taciba) Formation under SB2 is correspondent to Cycle S5 of Valdez Buso et al. (2019)Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
. According to recent dating, this interval is late Moscovian-early Kasimovian (Fig. 1, Cagliari et al. 2016Cagliari J., Philipp R.P., Valdez B.V., Netto R.G., Hillebrand P., Lopes C.R., Basei M.A.S., Faccini U.F. 2016. Age constraints of the glaciation in the Paraná Basin: evidence from new U–Pb dates. Journal of the Geological Society, 173(6):871-874. https://doi.org/10.1144/jgs2015-161
https://doi.org/10.1144/jgs2015-161...
, Valdez Buso et al. 2019Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
, 2020Valdez Buso V., Milana J.P., di Pasquo M., Paim P.S.G., Philipp R.P., Aquino C.D., Cagliari J., Junior F.C., Kellner B. 2020. Timing of the Late Paleozoic glaciation in western Gondwana: New ages and correlations from Paganzo and Paraná Basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 544:109-624. https://doi.org/10.1016/j.palaeo.2020.109624
https://doi.org/10.1016/j.palaeo.2020.10...
). In this way, we can place the lower Rio Bonito Formation into Carboniferous, or we must assume that the upper fluvio-deltaic genetically related to the deep-marine deposits with glacial influence refers to Itararé Group, as employed by Aquino et al. (2016)Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
https://doi.org/10.1016/j.jsames.2016.02...
and Valdez Buso et al. (2019)Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
https://doi.org/10.1016/j.palaeo.2017.09...
in the study area (Fig. 5). Thus, we argue that Rio Bonito Formation would correspond to the truly postglacial deposits developed above the upper fluvial-incised valley, dating Early Permian. Despite it, the development of the glacial or glacially influenced and postglacial deposits of Paraná Basin during the Late Paleozoic remains transitional in the Rio do Sul depocenter.

CONCLUSIONS

The registered stratigraphic framework reflects a complex paleogeographic scenario in the SW Gondwana during the deposition of the upper Itararé Group and the lower Rio Bonito Formation (Guatá Group), with a depocenter located in the region of Rio do Sul, Santa Catarina State, southern Brazil.

The examined succession comprises three evolutionary stages in which each depositional trend was recognized and traced in the subsurface, implying the regional expression of these events. Also, the stratigraphic stacking defined in the State of Santa Catarina reveals the presence of a glacial margin dynamic in the SW Gondwana, marked by cycles of advance and retreat. The first stage records a glacial advance from south-southwest configurated by an erosional surface and the presence of subglacial tillites, whereas the gravitational deposits represent the ice retreat (upper Mafra Formation), and the following Lontras Shales is the marine maximum flooding. The following stages point to a centripetal sediment feeding and glaciated source areas located NE, E, and SE. The least deglacial (Stage II) process of the Itararé Group is stratigraphically transitional to postglacial conditions of the Rio Bonito Formation, revealed by co-genetic glacially influenced deepwater to shallow deposits. The postglacial conditions were established in the third stage configurated by the fill of the fluvial-incised valley, corresponding to upper Triunfo and Paraguaçu Members of the Rio Bonito Formation.

Features such as the fill pattern, thickness, and the transitional contact between Rio do Sul and Rio Bonito Formation establish the Rio do Sul depocenter. Besides the sea-level rising due to deglacial processes, it appears to be a tectonic overprinting on the eustatic signature creating space particularly recorded in the Rio do Sul depocenter. Likewise, the change of NW feeding to the centripetal pattern points to the tectonic uplift of NE area during the upper Itararé instead of just the arm conditions of the uppermost Rio Bonito Formation as previously described.

ACKNOWLEDGMENTS

The Brazilian National Council for Scientific and Technological Development (CNPq, grant 461650/2014–2) funded this research. The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) Foundation and the Human Resource Program of the Brazilian National Agency of Petroleum (PRH24-ANP) for the graduate scholarship to D. C. B. Schemiko and M. C. N. L. Rodrigues. Fernando Vesely has a CNPq fellowship. We thank Giorgio Basilici and Francisco M.W. Tognoli for comments and suggestions to improve the text.

REFERENCES

  • Amato J. 2017. Using AMS to help interpret glaciogenic deposits of the Late Paleozoic ice age in the Paraná Basin, Brazil Master Thesis, University of Wisconsin, Milwaukee, 161 p.
  • Aquino C.D., Valdez B.V., Faccini U.F., Milana J.P., Paim P.S.G. 2016. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding line system from the Itararé Group (Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 67:180-200. https://doi.org/10.1016/j.jsames.2016.02.008
    » https://doi.org/10.1016/j.jsames.2016.02.008
  • Bhattacharya J.P. 2006. Deltas. In: Posamentier H.W., Walker R.G (Eds.). Facies models revisited Oklahoma: Society for Sedimentary Geology, p. 237-292.
  • Bhattacharya J.P. 2010. Deltas. In: James N., Dalrymple R. (Eds.). Facies models Canada: Geological Association of Canada, p. 233-264.
  • Blum M.D., Price D.M. 1998. Quaternary alluvial plain construction in response to glacio-eustatic and climatic controls, Texas Gulf Coastal Plain. In: Shanley K.W., McCabe P.J. (Eds.). Relative role of eustasy climate and tectonism in continental rocks SEPM Special Publication, 59, p. 31-48.
  • Bouma A.H. 1962. Sedimentology of some flysh deposits, a graphic approach to facies interpretation Amsterdam: Elsevier, p. 168.
  • Cagliari J., Lavina E.L.C., Philipp R.P., Tognoli F.M.W., Basei M.A.S., Faccini U.F. 2014. New Sakmarian ages for the Rio Bonito formation (Paraná Basin, southern Brazil) based on LA-ICP-MS U–Pb radiometric dating of zircons crystals. Journal of South American Earth Sciences, 56:265-277. http://doi.org/10.1016/j.jsames.2014.09.013
    » http://doi.org/10.1016/j.jsames.2014.09.013
  • Cagliari J., Philipp R.P., Valdez B.V., Netto R.G., Hillebrand P., Lopes C.R., Basei M.A.S., Faccini U.F. 2016. Age constraints of the glaciation in the Paraná Basin: evidence from new U–Pb dates. Journal of the Geological Society, 173(6):871-874. https://doi.org/10.1144/jgs2015-161
    » https://doi.org/10.1144/jgs2015-161
  • Campos L., Milani E., Toledo M., Queiroz R., Catto A., Selke S. 1998. Barra Bonita: a primeira acumulação comercial de hidrocarboneto da Bacia do Paraná. In: Rio Oil & Gas Conference. Anais… Rio de Janeiro: Brazilian Petroleum Institute (IBP), p. 1-7.
  • Canuto J.R. 1993. Fácies e ambientes deposicionais da Formação Rio do Sul (Permiano), Bacia do Paraná, na região de Rio do Sul, Estado de Santa Catarina Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 183 p.
  • Canuto J.R., Santos P.R., Rocha-Campos A.C. 2001. Estratigrafia de sequências do Subgrupo Itararé (Neopaleozóico) no leste da Bacia do Paraná, nas regiões sul do Paraná e norte de Santa Catarina, Brasil. Revista Brasileira de Geociências, 31(1):107-116.
  • Carvalho A.H., Vesely F.F. 2017. Facies relationship recorded in a Late Paleozoic fluvio-deltaic system (Parana Basin, Brazil): insights into the timing and triggers of subaqueous sediment gravity flows. Sedimentary Geology, 352:45-62. https://doi.org/10.1016/j.sedgeo.2016.12.004
    » https://doi.org/10.1016/j.sedgeo.2016.12.004
  • Castro J.C. 1980. Fácies, ambientes e sequências deposicionais das formações Rio do Sul e Rio Bonito, leste de Santa Catarina. In: XXXI Congresso Brasileiro de Geologia. Anais… Camboriú, p. 283-299.
  • Castro J.C. 1991. A evolução dos sistemas glacial, marinho e deltaico das formações Rio do Sul e Rio Bonito/Mb Triunfo (Eopermiano), sudeste da Bacia do Paraná. Rio Claro. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 147 p.
  • Castro J.C., Weinschütz L.C., Castro M.R. 2004. Estratigrafia de sequências das Formações Taciba e Rio Bonito (Membro Triunfo) na região de Mafra/SC, leste da Bacia do Paraná. Boletim de Geociências da Petrobras, 13(1):27-42.
  • Catuneanu O. 2006. Principles of sequence stratigraphy Amsterdam: Elsevier, 375 p.
  • Daemon R.F., Quadros L.P. 1970. Bioestratigrafia do Neopaleozoico da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 24, 1970, Brasília. Anais… Brasília: SBG, 1, p. 359-412.
  • D’Ávila R.S.F. 2009. Sequências deposicionais do Grupo Itararé (Carbonífero e Eopermiano), Bacia do Paraná, na área de Doutor Pedrinho e cercanias, Santa Catarina, Brasil: turbiditos, pelitos e depósitos caóticos Thesis, Unisinos, São Leopoldo, 245 p.
  • D’Ávila R.S.F., Paim P.S.G. 2003. Mecanismos de transporte e deposição de turbiditos. In: Paim P.S.G., Faccini U.F., Netto R.G. (Eds.). Geometria, arquitetura e heterogeneidades de corpos sedimentares São Leopoldo: Unisinos, p. 93-121.
  • Evans D.J.A., Phillips E.R., Hiemstra J.F., Auton C.A. 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1-2):115-176. https://doi.org/10.1016/j.earscirev.2006.04.001
    » https://doi.org/10.1016/j.earscirev.2006.04.001
  • Eyles N., Eyles C.H., França A.B. 1993. Glaciation and tectonics in an active intracratonic basin: The Late Paleozoic Itararé Group, Paraná Basin, Brazil. Sedimentology, 40(1):1-25. https://doi.org/10.1111/j.1365-3091.1993.tb01087.x
    » https://doi.org/10.1111/j.1365-3091.1993.tb01087.x
  • Eyles N., Eyles C.H., Miall A.D. 1983. Lithofacies types and vertical profile models: an alternative approach to the description and environmental interpretation of glacial diamictite and diamictite sequences. Sedimentology, 30(3):393-410. https://doi.org/10.1111/j.1365-3091.1983.tb00679.x
    » https://doi.org/10.1111/j.1365-3091.1983.tb00679.x
  • Fallgatter C., Paim P.S.G. 2017. On the origin of the Itararé group basal unconformity and its implications for the late Paleozoic glaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108225. https://doi.org/10.1016/j.palaeo.2017.02.039
    » https://doi.org/10.1016/j.palaeo.2017.02.039
  • Fielding C.R., Frank T.D., Isbell J.L. 2008. Resolving the Late Paleozoic ice age intime and space. Geological Society of America Special Publication, 441:343-354.
  • Flint R.F., Sanders J.E., Rodgers J. 1960. Diamictite, a substitute term for symmictite. Geological Society of America Bulletin, 71(12):1809-1810. https://doi.org/10.1130/0016-7606(1960)71[1809:DASTFS]2.0.CO;2
    » https://doi.org/10.1130/0016-7606(1960)71[1809:DASTFS]2.0.CO;2
  • França A.B., Potter P.E. 1988. Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permocarbonífero), Bacia do Paraná (parte 1). Boletim de Geociências da Petrobras, 2:147-191.
  • Gesicki A.L.D., Riccomini C., Boggiani P.C. 2002. Ice flow direction during the late Paleozoic glaciation in western Paraná Basin, Brazil. Journal of South American Earth Sciences, 14(8):933-939. https://doi.org/10.1016/S0895-9811(01)00076-1
    » https://doi.org/10.1016/S0895-9811(01)00076-1
  • Goodbred Jr. S.L., Kuehl S.A. 2000. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sedimentary Geology, 133(3-4):227-248. https://doi.org/10.1016/S0037-0738(00)00041-5
    » https://doi.org/10.1016/S0037-0738(00)00041-5
  • Goodbred Jr. S.L., Kuehl S.A., Steckler M.S., Sarker M.H. 2003. Controls on facies distribution and stratigraphic preservation in the Ganges–Brahmaputra delta sequence. Sedimentary Geology, 155(3-4):301-316. https://doi.org/10.1016/S0037-0738(02)00184-7
    » https://doi.org/10.1016/S0037-0738(02)00184-7
  • Griffis N.P., Montañez I.P., Mundil R., Le Heron R.D., Dietrich P., Kettler C., Linol B., Mottin T., Vesely F., Iannuzzi R., Huyskens M., Yin Q.-Z. 2021. High-latitude ice and climate control on sediment supply across SW Gondwana during the late Carboniferous and early Permian. Geological Society of America Bulletin, 133(9-10):2113-2124. https://doi.org/10.1130/B35852.1
    » https://doi.org/10.1130/B35852.1
  • Griffis N.P., Montañez I.P., Mundil R., Richey J., Isbell J., Fedorchuk N., Linol B., Iannuzzi R., Vesely F., Mottin T., Rosa E., Keller B., Yin Q.Z. 2019. Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-togreenhouse turnover in south-central Gondwana. Geology, 47(12):1146-1150. https://doi.org/10.1130/G46740.1
    » https://doi.org/10.1130/G46740.1
  • Griffis N.P., Mundil R., Montañez I.P., Isbell J., Fedorchuk N., Vesely F., Iannuzzi R., Yin Q. 2018. A new stratigraphic framework built on U-Pb singlezircon TIMS ages and implications for the timing of the penultimate icehouse (Paraná Basin, Brazil). The Geological Society of America Bulletin, 130(5-6):848-858. https://doi.org/10.1130/B31775.1
    » https://doi.org/10.1130/B31775.1
  • Guerra-Sommer M., Cazzulo-Klepzig M., Menegat R., Formoso M.L.L., Basei M.A.S., Barboza E.G., Simas M.W. 2008a. Geochronological data from Faxinal coal succession in southern Paraná Basin: a preliminary approach combining radiometric U/Pb age and palynostratigraphy. Journal of South American Earth Sciences, 25(2):246-256. https://doi.org/10.1016/j.jsames.2007.06.007
    » https://doi.org/10.1016/j.jsames.2007.06.007
  • Guerra-Sommer M., Cazzulo-Klepzig M., Santos J.O.S., Hartmann L.A., Ketzer J.M.M., Formoso M.L.L. 2008b. Radiometric age determination of tonsteins and stratigraphic constrains for the Lower Permian coal succession in southern Paraná Basin, Brazil. International Journal of Coal Geology, 74(1):13-27. https://doi.org/10.1016/j.coal.2007.09.005
    » https://doi.org/10.1016/j.coal.2007.09.005
  • Holz M., França A.B., Souza P.A., Iannuzzi R., Rohn R. 2010. A stratigraphic chart of the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil, South America. Journal of South American Earth Science, 29(2):381-399. https://doi.org/10.1016/j.jsames.2009.04.004
    » https://doi.org/10.1016/j.jsames.2009.04.004
  • Holz M., Küchle J., Philipp R.P., Bischoff A.P., Arima, N. 2006. Hierarchy of control on stratigraphic signatures: base-level changes during Early Perminan in the Paraná Basin, southernmost Brazil. Journal of South American Earth Sciences, 22(3-4):185-204. https://doi.org/10.1016/j.jsames.2006.09.007
    » https://doi.org/10.1016/j.jsames.2006.09.007
  • Hubbard S.M., Fildani A., Romans B.W., Covault J.A., McHargue T.R. 2010. High-relief slope clinoform development: insights from outcrop, Magallanes Basin, Chile. Journal of Sedimentary Research, 80(5):357-375. https://doi.org/10.2110/jsr.2010.042
    » https://doi.org/10.2110/jsr.2010.042
  • Hunt D., Tucker M.E. 1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during baselevel fall. Sedimentary Geology, 81(1-2):1-9. https://doi.org/10.1016/0037-0738(92)90052-S
    » https://doi.org/10.1016/0037-0738(92)90052-S
  • Iannuzzi R. 2010. The flora of Early Permian coal measures from the Paraná Basin in Brazil: a review. International Journal of Coal Geology, 83(2-3):229-247. https://doi.org/10.1016/j.coal.2010.05.009
    » https://doi.org/10.1016/j.coal.2010.05.009
  • Isbell J.L., Miller M.F., Wolfe K.L., Lenaker P.A. 2003. Timing of Late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclotherms? Geological Society of America Special Papers, 370:5-24. https://doi.org/10.1130/0-8137-2370-1.5
    » https://doi.org/10.1130/0-8137-2370-1.5
  • Kneller B.C., Branney M.J. 1995. Sustained high-density turbidity currents and the deposition of thick massive beds. Sedimentology, 42(4):607-616. https://doi.org/10.1111/j.1365-3091.1995.tb00395.x
    » https://doi.org/10.1111/j.1365-3091.1995.tb00395.x
  • Lima J.H.D., Netto R.G., Corrêa C.G., Lavina E.L.C. 2015. Ichnology of deglaciation deposits from the Upper Carboniferous Rio do Sul Formation (Itararé Group, Paraná Basin) at central-east Santa Catarina State (southern Brazil). Journal of South American Earth Sciences, 63:137-148. https://doi.org/10.1016/j.jsames.2015.07.008
    » https://doi.org/10.1016/j.jsames.2015.07.008
  • López-Gamundí O.R., Buatois L.A. 2010. Introduction: Late Paleozoic glacial events and postglacial transgressions. In: López-Gamundí O.R., Buatois L.A. (Eds.), Late paleozoic glacial events and postglacial transgressions in Gondwana Geological Society of America Special Paper, 468:v-viii.
  • Lowe D.R., Guy M. 2000. Slurry-low deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47(1):31-70. https://doi.org/10.1046/j.1365-3091.2000.00276.x
    » https://doi.org/10.1046/j.1365-3091.2000.00276.x
  • Matos S.L.F, Yamamoto J.K., Hachiro J., Coimbra A.M. 2000. Tonsteins da Formação Rio Bonito no depósito de carvão de candiota, RS. Revista Brasileira de Geociências, 30(4):679-684. https://doi.org/10.25249/0375-7536.2000304679684
    » https://doi.org/10.25249/0375-7536.2000304679684
  • Matos S.L.F., Yamamoto J.K., Riccomini C., Hachiro J., Tassinari C.C.G. 2001. Absolute dating of Permian ash-fall in the Rio Bonito Formation, Paraná Basin, Brazil. Gondwana Research, 4(3):421-426. https://doi.org/10.1016/S1342-937X(05)70341-5
    » https://doi.org/10.1016/S1342-937X(05)70341-5
  • Medeiros R.A., Thomaz Filho A. 1973. Facies e ambientes deposicionais da Formação Rio Bonito. XXVII Congresso Brasileiro de Geologia. Anais… Salvador, v. 3, p. 3-32.
  • Miall A.D. 1978. Lithofacies types and vertical profile models of braided river deposits, a summary. In: Miall A.D. (Ed.). Fluvial sedimentology Calgary: Canadian Society of Petroleum Geologists, p. 597-604.
  • Miall A.D. 1996. The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology. New York, Springer-Verlag, p. 582.
  • Miall A.D. 2006. The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology. Berlin, Springer, pp. 582.
  • Middleton G.V., Hampton M.A. 1973. Sediment gravity flows: mechanics of flow and deposition. In: Middleton G.V., Bouma A.H. (Eds.). Turbidity and deep-water sedimentation Los Angeles: SEPM, p. 1-38.
  • Milani E.J. 2004. Comentários sobre a origem e a evolução tectônica da Bacia do Paraná. In: Autoria (Ed.). Geologia do continente sul-americano São Paulo: editora, p. 266-279.
  • Milani E.J., Melo J.H.G., Souza P.L., Fernandes L.A., França A.B. 2007. Bacia do Paraná. Boletim de Geociências da Petrobras, 1:265-287.
  • Milani E.J., Ramos V. 1998. Orogenias Paleozóicas no domínio sul-ocidental do Gondwana e os ciclos de subsidência da Bacia do Paraná. Revista Brasileira de Geociências, 28(4):527-544.
  • Mori A.L.O., Souza P.A., Marques J.C., Lopes R.C. 2012. A new U e Pb age dating and palynological data from a Lower Permian section of the southernmost Paraná a Basin, Brazil: biochronostratigraphical and geochronological implications for Gondwanan correlations. Gondwana Research, 21(2-3):654-669. https://doi.org/10.1016/j.gr.2011.05.019
    » https://doi.org/10.1016/j.gr.2011.05.019
  • Mottin T.E., Vesely F.F. 2017. Controls on the Emplacement of Mass-Transport Diamictites in the Upper Itararé Group, Paraná Basin, Brazil. X Simpósio Sul-Brasileiro de Geologia. Anais… Curitiba, p. 1.
  • Mottin T.E., Vesely F.F. 2021. Formação Taciba: última manifestação glacial no Paraná. Boletim Paranaense de Geociências, 78:65-82. https://doi.org/10.5380/geo.v78i0.79352
    » https://doi.org/10.5380/geo.v78i0.79352
  • Mottin T.E., Vesely F.F., Lima Rodrigues M.C.N., Kipper F., Souza P.A. 2018. The paths and timing of late Paleozoic ice revisited: New stratigraphic and paleo-ice flow interpretations from a glacial succession in the upper Itararé Group (Paraná Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 490:488-504. https://doi.org/10.1016/j.palaeo.2017.11.031
    » https://doi.org/10.1016/j.palaeo.2017.11.031
  • Mulder T., Alexander J. 2001. The physical character of sedimentary density currents and their deposits. Sedimentology, 48(2):269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x
    » https://doi.org/10.1046/j.1365-3091.2001.00360.x
  • Mulder T., Syvitski J.P.M., Migeon S., Faugères J.C., Savoye B. 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6-8):861-882. https://doi.org/10.1016/j.marpetgeo.2003.01.003
    » https://doi.org/10.1016/j.marpetgeo.2003.01.003
  • Mutti E. 1962. Turbidite sandstones Parma: AGIP and Universita di Parma, 275 p.
  • Mutti E., Davoli G., Tinterri R., Zavala C. 1996. The importance of ancient fluviodeltaic systems dominated by catastrophic flooding in tectonically active basins. Estratto da Memorie di Scienze Geologiche, 48:233-291.
  • Neves J.P., Anelli L.E., Simões M.G. 2014. Early Permian post-glacial bivalve faunas of the Itararé Group, Parana Basin, Brazil: Paleoecology and biocorrelations with South American intraplate basins. Journal of South American Earth Sciences, 52:203-233. https://doi.org/10.1016/j.jsames.2014.03.001
    » https://doi.org/10.1016/j.jsames.2014.03.001
  • Noll S.H., Netto R.G. 2018. Microbially induced sedimentary structures in late Pennsylvanian glacial settings: A case study from the Gondwanan Paraná Basin. Journal of South American Earth Sciences, 88:385-398. https://doi.org/10.1016/j.jsames.2018.09.010
    » https://doi.org/10.1016/j.jsames.2018.09.010
  • Northfleet A.A., Medeiros R.A., Mühlmann H. 1969. Reavaliação dos dados geológicos da Bacia do Paraná. Boletim Técnico da Petrobras, 12:291-346.
  • Popp J.H. 1983. Fácies, ambientes e carvões na Formação Rio Bonito no sul do Estado do Paraná: uma análise estratigráfica. Revista Brasileira de Geociências, 13(1):27-36.
  • Porebski S.J., Steel R.J. 2006. Deltas and sea-level change. Journal of Sedimentary Research, 76(3):390-403. https://doi.org/10.2110/jsr.2006.034
    » https://doi.org/10.2110/jsr.2006.034
  • Puigdomenech C.N., Carvalho B., Paim P.S.G., Faccini U.F. 2014. Lowstand Turbidites and delta systems of the Itararé Group in the Vidal Ramos region (SC), southern Brazil. Revista Brasileira de Geociências, 44(4):529-544. https://doi.org/10.5327/Z23174889201400040002
    » https://doi.org/10.5327/Z23174889201400040002
  • Ramos A.N. 1967. Análise estratigráfica da Formação Rio Bonito. Boletim Técnico da Petrobras, 10:307-407.
  • Riccomini C., Almeida R.P., Turra B.B., Chamani M.A.C., Fairchild T.R., Hachiro J. 2005. Reativação de falha do embasamento causa sismicidade no Permotriássico da Bacia do Paraná. In: Simpósio Nacional de Estudos Tectônicos, 10., 2005. Boletim de Resumos Expandidos…, p. 18-20.
  • Rocha-Campos A.C., Machado L.C.R., Santos P.R., Canuto J.R., Castro J.C. 1988. Pavimento estriado da glaciação Neo-Paleozóica em Alfredo Wagner, SC, Brasil. Boletim IG. Instituto de Geociências, USP, 19:39-46.
  • Rocha-Campos A.C., Rössler O. 1978. Late Paleozoic faunal and floral successions in the Paraná Basin, southeastern Brazil. Boletim IG. Instituto de Geociências, USP, 9:1-16.
  • Rodrigues M.C.N.L., Trzaskos B., Alsop G.I., Vesely F.F., Mottin T.E., Schemiko D.C.B. 2021. Statistical analysis of structures commonly used to determine palaeoslopes from within mass transport deposits. Journal of Structural Geology, 151:104421. https://doi.org/10.1016/j.jsg.2021.104421
    » https://doi.org/10.1016/j.jsg.2021.104421
  • Rosa E.L.M., Vesely F.F., França A.B. 2016. A review on late Paleozoic ice-related erosional landforms of the Paraná Basin: origin and paleogeographical implications. Brazilian Journal of Geology, 46(2):147-166. https://doi.org/10.1590/2317-4889201620160050
    » https://doi.org/10.1590/2317-4889201620160050
  • Rosa E.L.M., Vesely F.F., Isbell J.L., Kipper F., Fedorchuk N.D., Souza P.A. 2019. Constraining the timing, kinematics and cyclicity of Mississippian-early Pennsylvanian glaciations in the Paraná Basin, Brazil. Sedimentary Geology, 384:29-49. https://doi.org/10.1016/j.sedgeo.2019.03.001
    » https://doi.org/10.1016/j.sedgeo.2019.03.001
  • Rossi V.M., Steel R.J. 2016. The role of tidal, wave and river currents in the evolution of mixed-energy deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63(4):824-864. https://doi.org/10.1111/sed.12240
    » https://doi.org/10.1111/sed.12240
  • Rostirolla S.P., Assine M.L., Fernandes L.A., Artur P.C. 2000. Reativação de paleolineamentos durante a evolução da Bacia do Paraná - o exemplo do alto estrutural de Quatiguá. Revista Brasileira de Geociências, 30(4):639-648.
  • Santos P.R. 1987. Fácies e evolução paleogeográfica do Sub-Grupo Itararé/Grupo Aquidauana (Neopaleozoico) na Bacia do Paraná, Brasil. Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo.
  • Santos P.R., Rocha-Campos A.C., Canuto J.R. 1992. Estruturas de arrasto de ice-bergs em ritmitos do Subgrupo Itararé (Neo-Paleozóico), Trombudo Central, SC. Boletim IG-USP. Série Científica, 23:1-18. https://doi.org/10.11606/issn.2316-8986.v23i0p1-18
    » https://doi.org/10.11606/issn.2316-8986.v23i0p1-18
  • Santos P.R., Rocha-Campos A.C., Canuto J.R. 1996. Patterns of Late Palaeozoic deglaciation in the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 125(1-4):165-184. https://doi.org/10.1016/S0031-0182(96)00029-6
    » https://doi.org/10.1016/S0031-0182(96)00029-6
  • Schemiko D.C.B., Vesely F.F., Rodrigues M.C.N.L., 2019. Deepwater to fluvio-deltaic stratigraphic evolution of a deglaciated depocenter: The early Permian Rio do Sul and Rio Bonito formations, southern Brazil. Journal of South American Earth Sciences, 95:102260. https://doi.org/10.1016/j.jsames.2019.102260
    » https://doi.org/10.1016/j.jsames.2019.102260
  • Schneider R.L., Muhlmann H., Tommasi E., Medeiros R.A., Daemon R.A., Nogueira A.A. 1974. Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro de Geologia, 27., 1974. Anais… Porto Alegre, p. 41-65.
  • Schoeneberger P.J., Wysocki D.A., Benham E.C., Soil Survey Staff. 2012. Field book for describing and sampling soils, version 3.0 Lincoln: Natural Resources Conservation Service, National Soil Survey Center, p. 9-14.
  • Scomazzon A.K., Wilner E., Purnell M., Nascimento S., Weinschütz L.C., Lemos V.B., Souza F.L., Silva C.P. 2013. First report of conodont apparatuses from Brazil – Permian of Paraná Basin, Itararé Group, Lontras shale – Evidence of Gondwana Deglaciation. Associación Paleontológica Argentina, Publicación Especial, (13):99-102.
  • Shanmugam G. 2006. Deep-water processes and facies models, implications for sandstone petroleum reservoirs Amsterdam: Elsevier, 476 p.
  • Shanmugam G., Moiola R.J. 1988. Submarine fans: characteristics, models, classification, and reservoir potential. Earth-Science Reviews, 24(6):383-428. https://doi.org/10.1016/0012-8252(88)90064-5
    » https://doi.org/10.1016/0012-8252(88)90064-5
  • Shanmugam G., Wang Y. 2015. The landslide problem. Journal of Palaeogeography, 4(2):109-166. https://doi.org/10.3724/SP.J.1261.2015.00071
    » https://doi.org/10.3724/SP.J.1261.2015.00071
  • Silva D.C.D., Vega C.S., Vesely F.F., Schemiko D.C.B., Bolzon R.T. 2021. First occurrence of jumping trackway in upper Paleozoic glacially-related deposits, Paraná Basin, Brazil, and paleoenvironmental implications. Ichnos, 28(4):259-270. https://doi.org/10.1080/10420940.2021.1998036
    » https://doi.org/10.1080/10420940.2021.1998036
  • Simões M.G., Neves J.P., Anelli L.E., Weinschutz L.C. 2012. Permian bivalves of the Taciba Formation, Itararé Group, Parana Basin, and their Biostratigraphic significance. Geologia USP. Série Científica, 12(1):71-82. https://doi.org/10.5327/Z1519-874X2012000100006
    » https://doi.org/10.5327/Z1519-874X2012000100006
  • Souza P.A. 2006. Late Carboniferous palynostratigraphy of the Itararé Subgroup, northeastern Paraná Basin, Brazil. Review of Paleobotany and Palynology, 138(1):9-29. https://doi.org/10.1016/j.revpalbo.2005.09.004
    » https://doi.org/10.1016/j.revpalbo.2005.09.004
  • Souza P.A., Boardman D.R., Premaor E., Félix C.M., Bender R.R., Oliveira E.J. 2021. The Vittatina costabilis Zone revisited: New characterization and implications on the Pennsylvanian-Permian icehouse-to-greenhouse turnover in the Paraná Basin, Western Gondwana. Journal of South American Earth Sciences, 106:102968. https://doi.org/10.1016/j.jsames.2020.102968
    » https://doi.org/10.1016/j.jsames.2020.102968
  • Souza P.A., Marques-Toigo M. 2005. Progress on the palynostratigraphy of the Permian strata in Rio Grande do Sul State, Paraná Basin, Brazil. Anais da Academia Brasileira de Ciências, 77(2):353-365. https://doi.org/10.1590/S0001-37652005000200012
    » https://doi.org/10.1590/S0001-37652005000200012
  • Souza P.A., Vesely F.F., Assine M.L. 1999. Contribuição palinológica ao conhecimento do Subgrupo Itararé na Serra dos Paes, sul do Estado de São Paulo. Revista do Instituto Geológico, 20(1-2):21-27. https://doi.org/10.5935/0100-929X.19990002
    » https://doi.org/10.5935/0100-929X.19990002
  • Suss J.F., Vesely P.S.G., Catharina A.S., Assine M.L., Paim P.S.G. 2014. O Grupo Itararé (Neocarbonífero-Eopermiano) entre Porto Amazonas (PR) e Mafra (SC): Sedimentação gravitacional em contexto marinho deltaico sob a influência glacial. Geociências, 33(4):701-719.
  • Tedesco J., Cagliari J., Aquino C.D. 2020. Late Paleozoic Ice-Age rhythmites in the southernmost Paraná Basin: A sedimentological and paleoenvironmental analysis. Journal of Sedimentary Research, 90(8):969-979. https://doi.org/10.2110/jsr.2020.54
    » https://doi.org/10.2110/jsr.2020.54
  • Thomas G.S.P., Connell R.J. 1985. Iceberg drop, dump and grounding structures from Pleistocene glaciolacustrine sediments, Scotland. Journal of Sedimentary Research, 55(2):243-249. https://doi.org/10.1306/212F8689-2B24-11D7-8648000102C1865D
    » https://doi.org/10.1306/212F8689-2B24-11D7-8648000102C1865D
  • Tognoli F.M.W. 2006. Estratigrafia das seqüências deposicionais do Grupo Guatá, borda leste da Bacia do Paraná Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 112 p.
  • Tucker M.E. 2003. Sedimentary rocks in the field Chichester: Wiley, 250 p. (The Geological Field Guide Series.)
  • Valdez Buso V., Aquino C.D., Paim P.S.G., Souza P.A., Mori A.L., Fallgatter C., Milana J.P., Kneller B. 2019. Late Palaeozoic glacial cycles and subcycles in western Gondwana: correlation of surface and subsurface data of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 531(Part B):108435. https://doi.org/10.1016/j.palaeo.2017.09.004
    » https://doi.org/10.1016/j.palaeo.2017.09.004
  • Valdez Buso V., Milana J.P., di Pasquo M., Paim P.S.G., Philipp R.P., Aquino C.D., Cagliari J., Junior F.C., Kellner B. 2020. Timing of the Late Paleozoic glaciation in western Gondwana: New ages and correlations from Paganzo and Paraná Basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 544:109-624. https://doi.org/10.1016/j.palaeo.2020.109624
    » https://doi.org/10.1016/j.palaeo.2020.109624
  • Vesely F.F. 2006. Dinâmica sedimentar e arquitetura estratigráfica do Grupo Itararé (Carbonífero-Permiano) no centro-leste da Bacia do Paraná Thesis, Universidade Federal do Paraná, Curitiba, 226 p.
  • Vesely F.F., Assine M.L. 2002. Superfícies estriadas em arenitos do Grupo Itararé produzidas por gelo flutuante, sudeste do Estado do Paraná. Revista Brasileira Geosciências, 32(4):587-594.
  • Vesely F.F., Assine M.L. 2006. Deglaciation sequences in the Permo-Carboniferous Itararé Group Paraná Basin, southern Brazil. Journal of South American Earth Sciences, 22(3-4):156-168. https://doi.org/10.1016/j.jsames.2006.09.006
    » https://doi.org/10.1016/j.jsames.2006.09.006
  • Vesely F.F., Trzaskos B., Kipper F., Assine M.L., Souza P.A. 2015. Sedimentary record of a fluctuating ice margin from the Pennsylvanian of western Gondwana: Paraná Basin, southern Brazil. Sedimentary Geology, 326:45-63. https://doi.org/10.1016/j.sedgeo.2015.06.012
    » https://doi.org/10.1016/j.sedgeo.2015.06.012
  • Visser J.N.J. 1990. Glacial bedforms at the base of the Permo-Carboniferous Dwyka Formation along the western margin of the Karoo Basin, South Africa. Sedimentology, 37(2):231-245. https://doi.org/10.1111/j.1365-3091.1990.tb00957.x
    » https://doi.org/10.1111/j.1365-3091.1990.tb00957.x
  • Wilner E., Lemos V.B., Scomazzon A.K. 2016. Associações naturais de conodontes Mesogondolella spp., Grupo Itararé, Cisuraliano da Bacia do Paraná. Gaea, 9(1):30-36. https://doi.org/10.4013/gaea.2016.91.02
    » https://doi.org/10.4013/gaea.2016.91.02
  • Wilner E., Weinschütz L.C., Ricetti J.H.Z. 2012. Análise geoquímica do folhelho Lontras em Mafra, SC; Interpretações preliminares e constatações de sua fossildiagênese. Boletim Informativo da Sociedade Brasileira de Paleontologia, 66:107-108.
  • Zacharias A.A., Assine M.L. 2005. Modelo de preenchimento de vales incisos por associações de fácies estuarinas, Formação Rio Bonito no norte do estado do Paraná. Revista Brasileira de Geociências, 35(4):573-583.
  • Zavala C., Arcuri M., Di Meglio M., Gamero Diaz H., Contreras C. 2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In: Slatt R.M., Zavala C. (Eds.). Sediment transfer from shelf to deep water: revisiting the delivery system. AAPG Studies in Geology, v. 61, p. 31-51.

Appendix 1
Localities described to construct this article.

Publication Dates

  • Publication in this collection
    09 Jan 2023
  • Date of issue
    2022

History

  • Received
    28 Mar 2022
  • Accepted
    05 Aug 2022
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br