Acessibilidade / Reportar erro

Prevalence of Guillain-Barré syndrome among Zika virus infected cases: a systematic review and meta-analysis

ABSTRACT

Zika virus (ZIKV) is an emergent flavivirus transmitted mainly through Aedes spp. mosquitoes that is posing challenge to healthcare services in countries experiencing an outbreak. Usually ZIKV infection is mild, but in some cases it has been reported to progress into neurological diseases such as microcephaly in infants and Guillain-Barré syndrome (GBS) in adults. GBS is a debilitating autoimmune disorder that affects peripheral nerves. Since ZIKV caused massive outbreaks in South America in the past few years, we aimed to systematically review the literature and perform a meta-analysis to estimate the prevalence of GBS among ZIKV-infected individuals. We searched PubMed and Cochrane databases and selected three studies for a meta-analysis. We estimated the prevalence of ZIKV-associated GBS to be 1.23% (95% CI = 1.17–1.29%). Limitations include paucity of data regarding previous flavivirus infections and ZIKV-infection confirmation issues. Our estimate seems to be low, but cannot be ignored, since ZIKV outbreaks affects an overwhelming number of individuals and GBS is a life-threatening debilitating condition, especially in pregnant women. ZIKV infection cases must be closely followed to assure prompt care to reduce the impact of GBS associated-sequelae on the quality of life of those affected.

Keywords:
Arboviruses; Zika virus; Guillain-Barré syndrome; Epidemiology; Emergent diseases

Introduction

Zika virus (ZIKV) is an arbovirus that belongs to the Flaviviridae family, the same of Dengue (DENV) virus.11 de Oliveira WK, Carmo EH, Henriques CM, et al. Zika virus infection and associated neurologic disorders in Brazil. N Engl J Med. 2017;376:1591-3. ZIKV is mainly transmitted through Aedes spp. mosquitoes’ bites, but transmission by blood transfusion and sexual intercourse can also occur.22 Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122-30. Non-human primates seem to be the reservoir hosts for ZIKV, but the primary species have not yet been identified.33 Blazquez AB, Saiz JC. Neurological manifestations of Zika virus infection. World J Virol. 2016;5:135-43.

Until 2007, ZIKV was limited to Africa and Asia, and only mild cases were reported.44 Broutet N, Krauer F, Riesen M, et al. Zika virus as a cause of neurologic disorders. N Engl J Med. 2016;374:1506-9. After 2007, ZIKV cases started to increase remarkably, causing outbreaks in many different countries. The first major outbreak of ZIKV infection was recorded in French Polynesia in October 2013.22 Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122-30. The virus subsequently spread through the Pacific reaching Brazil in mid-2015; the largest outbreak was reported in this country, and up to date the World Health Organization (WHO) has estimated approximately 3–4 million cases of ZIKV.33 Blazquez AB, Saiz JC. Neurological manifestations of Zika virus infection. World J Virol. 2016;5:135-43.

ZIKV infection is thought to be symptomatic only between 18% and 35% of the cases, resulting in a mild illness with symptoms such as fever, myalgia, maculopapular rash, and arthralgia.33 Blazquez AB, Saiz JC. Neurological manifestations of Zika virus infection. World J Virol. 2016;5:135-43.,55 Flamand C, Fritzell C, Matheus S, et al. The proportion of asymptomatic infections and spectrum of disease among pregnant women infected by Zika virus: systematic monitoring in French Guiana, 2016. Euro Surveill. 2017;22.,66 Lozier MJ, Burke RM, Lopez J, et al. Differences in prevalence of symptomatic Zika virus infection by age and sex-Puerto Rico. J Infect Dis. 2016:2017. However, there is now growing evidence that ZIKV infection is related to a range of neurologic disorders, such as Guillain-Barré syndrome (GBS) in adults77 Cao-Lormeau V-M, Blake A, Mons S, et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case–control study. Lancet. 2016;387:1531-9. and microcephaly in infants.22 Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122-30. This link has been hypothesized after the parallel upsurge of Zika cases along cases of GBS and microcephaly, particularly during the Brazilian outbreak. Consequently, the increase in the number of cases led the WHO to declare a public health emergency of international concern. However, it is relevant to mention that some cases of ZIKV have been probably misclassified because of the molecular similarity of the virus with DENV11 de Oliveira WK, Carmo EH, Henriques CM, et al. Zika virus infection and associated neurologic disorders in Brazil. N Engl J Med. 2017;376:1591-3. leading to serological cross reactivity in serologic tests employing antibodies for laboratory diagnosis; the RT-PCR based molecular test is more effective but only useful during the first week of infection.

GBS is a rare but serious autoimmune syndrome that attacks the peripheral nerves, causing a progressive paralysis. Typically, an infection eventually triggers autoantibodies targeting gangliosides in the membrane of nervous cells, causing respiratory or gastrointestinal symptoms before more obvious neurologic/motor impairment.88 Pacheco LD, Saad AF, Hankins GD, Chiosi G, Saade G. Guillain-Barre syndrome in pregnancy. Obstet Gynecol. 2016;128:1105-10. It has a mortality rate of approximately 5%, and 20% of the patients affected usually are left with significant disability.33 Blazquez AB, Saiz JC. Neurological manifestations of Zika virus infection. World J Virol. 2016;5:135-43. This syndrome was already associated with ZIKV infection during the outbreak in French Polynesia. Indeed, the rise and fall of Zika cases was followed by a similar trend in the onset of GBS.44 Broutet N, Krauer F, Riesen M, et al. Zika virus as a cause of neurologic disorders. N Engl J Med. 2016;374:1506-9. However, the mechanisms by which ZIKV infection causes GBS have not yet been established; it has been suggested that the virus could exacerbate the immune response triggering an immunopathogenic process that determines, in turn, the onset of GBS.33 Blazquez AB, Saiz JC. Neurological manifestations of Zika virus infection. World J Virol. 2016;5:135-43. Some patients “developed neurological symptoms during or immediately after the [ZIKV] infection, suggesting a parainfectious rather than postinfectious pattern that is typically seen in GBS”, as noted in a recent review.99 Uncini A, Shahrizaila N, Kuwabara S. Zika virus infection and Guillain-Barre syndrome: a review focused on clinical and electrophysiological subtypes. J Neurol Neurosurg Psychiatry. 2017;88:266-71. These symptoms include muscle weakness, inability to walk, facial palsy, and respiratory distress. In 2015, 1708 cases of GBS were reported in Brazil representing a 19% increase in comparison to the previous year.22 Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122-30.

Therefore, we aimed to systematically review the literature and perform a meta-analysis to estimate the prevalence of GBS among ZIKV-infected individuals and discuss the most recent findings regarding the relation between ZIKV and GBS.

Methods

Literature search and systematic review

Following the recommendations of the PRISMA statement for conducting systematic reviews,1010 Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100. we searched for studies published on international journals regarding ZIKV infection and its relationship with GBS. Our inclusion criteria were epidemiological/observational studies, such as case series, epidemiological surveys, cross-sectional or cohort studies, which should have involved adult individuals. Exclusion criteria were review studies, studies written in languages other than English, Portuguese or Spanish and papers without explicit numerical data needed for the calculation of the meta-analysis.

The used keywords were “Zika” and “neurological defects”. We searched for papers published anytime until early November 2017 in two databases: PubMed and Cochrane Library. On the PubMed database, 53 abstracts were found. On the Cochrane Library database, the keyword used was only “Zika”, retrieving 23 papers, since the combination with “neurological defects” did not result in any paper.

Thus, the initial systematic review strategy found 76 abstracts. Among these, 56 abstracts were not relevant to our objective. The remaining 20 studies full-text were further reviewed. Among those, seven were review studies, two did not report number of individuals affected by GBS, and we could not extract the necessary data from eight studies. Therefore, three studies (totaling nine samples) were selected for further meta-analysis.1111 French Polynesia. Direction de la Santé. Bureau de Veille sanitaire. Point de situation au 7 février 2014 sur les épidémies de dengue et zika en cours; 2014. Available from: http://www.hygiene-publique.gov.pf/IMG/pdf/bulletin_dengue07-02-14.pdf
http://www.hygiene-publique.gov.pf/IMG/p...
1313 dos Santos T, Rodriguez A, Almiron M, et al. Zika Virus and the Guillain–Barré Syndrome – case series from Seven Countries. N Engl J Med. 2016;375:1598-601.

Two of the authors performed data collection independently and registered studies’ data in electronic spreadsheets. Additionally, each author critically reviewed the quality of the studies by answering a CASP checklist1414 Critical Appraisal Skills Programme. CASP Cohort Study Checklist; 2017. Available from: http://www.casp-uk.net/checklists15
http://www.casp-uk.net/checklists15...
and the studies were deemed to have satisfactory quality.

The authors unified the data, resolving any inconsistencies or omissions before further analysis. The data collected from the studies included year of sampling/publication, country where the study was performed, and sample sizes (number of ZIKV infection cases and number of GBS cases). These data were used to calculate the outcome of interest, which was the observed GBS prevalence among ZIKV-infected individuals (in other words, the number of GBS cases divided by the number of ZIKV infected cases). The individual observed GBS prevalence were then included in a meta-analysis for the calculation of a pooled ZIKV infection-associated GBS prevalence.

Meta-analysis

The GBS prevalence estimates (proportions) were log-transformed for the pooled estimation through inverse-variance weighting method1515 DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105-14. and back transformed to simple proportions alongside 95% confidence intervals (95% CI). The meta-analysis was conducted with a fixed effect model assumption.

The heterogeneity between studies’ sample sizes was expressed through I2 measure and τ2 statistic. A Cochran's Q test with n − 1 degrees of freedom (in which n is the number of studies included, and with significance level α = 0.10 for this test) was conducted to assess if heterogeneity was significantly different from zero. If so, the heterogeneity was classified according to the observed I 2 measure: ≤25%, between 25 and 50%, between 50 and 75%, and between 75 and 100%, respectively considered as low, moderate, high, and very high heterogeneity.

The meta-analysis was performed through the “meta” package1616 Schwarzer G. meta: Meta-Analysis with R. R package version 3.7-1; 2014. for R software, version 3.4.1 (R Core Team, Vienna, Austria) (June 2017).1717 R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017 https://www.R-project.org/Vienna
https://www.R-project.org/Vienna...

Results

Summary of the selected studies

As mentioned before, three studies were selected for inclusion in a meta-analysis.1111 French Polynesia. Direction de la Santé. Bureau de Veille sanitaire. Point de situation au 7 février 2014 sur les épidémies de dengue et zika en cours; 2014. Available from: http://www.hygiene-publique.gov.pf/IMG/pdf/bulletin_dengue07-02-14.pdf
http://www.hygiene-publique.gov.pf/IMG/p...
1313 dos Santos T, Rodriguez A, Almiron M, et al. Zika Virus and the Guillain–Barré Syndrome – case series from Seven Countries. N Engl J Med. 2016;375:1598-601. Fig. 1 is a flowchart showing studies selection. At the time of reporting of the first study (February 2014), which was conducted in French Polynesia, DENV seropositivity was around 23.2%, with an estimated number of 12,400–25,700 people infected by DENV during the 2013–2014 French Polynesian outbreak. The estimated number of ZIKV infected individuals during this outbreak was 29,000 individuals. However, just 8262 suspected cases of ZIKV infection were reported, since most infected individuals did not search healthcare and the diagnosis was not laboratory confirmed; among these, 396 cases were confirmed by RT-PCR. Out of the 38 French Polynesian GBS-affected patients, 16 needed intensive care unit hospitalization. At the time of reporting, five were still hospitalized. No GBS-associated deaths occurred.1111 French Polynesia. Direction de la Santé. Bureau de Veille sanitaire. Point de situation au 7 février 2014 sur les épidémies de dengue et zika en cours; 2014. Available from: http://www.hygiene-publique.gov.pf/IMG/pdf/bulletin_dengue07-02-14.pdf
http://www.hygiene-publique.gov.pf/IMG/p...

Fig. 1
Flowchart of studies selected for full-text review and inclusion on the meta-analysis.

The second study was conducted in the Netherlands and was an observational study that conducted a follow-up of 18 ZIKV infected adult Dutch individuals (mean age 49 years, range 8 to 61 years; 12 females) who had traveled to Suriname and Dominican Republic. A single case of GBS was observed, in a 60-year-old woman. The authors reported that she had an “underlying illness”, but it was not clear what this condition was, and they did not elaborate further if it was preexistent or could have predisposed to GBS occurrence. Dengue virus-specific immunoglobulin G (IgG) positive serology was present in four patients and weak IgM positive serology was present in three individuals out of 13 with available data among the 18 Dutch individuals; eight of them had previously received yellow fever vaccination.1212 Duijster JW, Goorhuis A, van Genderen PJ, et al. Zika virus infection in 18 travellers returning from Surinam and the Dominican Republic, The Netherlands, November 2015–March 2016. Infection. 2016;44:797-802.

The third study summarized case series from seven South American, Central American and Caribbean countries. The authors analyzed health reports and observed an aggregated number of 164,237 cases of ZIKV infection reported between January 2015 and March 2016 in Brazil (state of Bahia), Colombia, Dominican Republic, El Salvador, Honduras, Suriname, and Venezuela. Among these cases, 1474 cases of GBS were reported.1313 dos Santos T, Rodriguez A, Almiron M, et al. Zika Virus and the Guillain–Barré Syndrome – case series from Seven Countries. N Engl J Med. 2016;375:1598-601.

Meta-analysis results

The total sample number polled by the meta-analysis was 164,651 ZIKV-infected individuals. Among them, 1513 developed GBS. According to a fixed effect meta-analysis model, an estimated 1.23% of ZIKV infection cases could progress to GBS (95% CI = 1.17–1.29%). A very high sample size heterogeneity was observed, I2 = 99.1% and τ2 = 0.86 (Cochran's Q = 932.3 with eight degrees of freedom, p < 0.001).

These results are summarized in Fig. 2, which is a Forest plot displaying the studies, their sample sizes and confidence intervals, and in Table 1, which lists the characteristics of the studies included in the meta-analysis.

Fig. 2
Forest plot of the prevalence of GBS associated with ZIKV infection. The plot displays pooled sample size (164,651 ZIKV-infected individuals), individual prevalence estimates by each study, pooled prevalence estimate (fixed effects model), the corresponding 95% confidence intervals, study weighting (fixed effects model) and sample size heterogeneity measures and Cochran's Q test for heterogeneity p-value.

Table 1
Summary of studies' characteristics.

Discussion

ZIKV infection usually has a mild presentation, but recently it has been demonstrated its relationship with central nervous system sequelae, such as microcephaly in newborns, encephalitis, and GBS, which are being regarded as the “neurological syndrome of ZIKV infection”.1818 da Silva IRF, Frontera JA, Bispo de Filippis AM, Nascimento O. Neurologic complications associated with the Zika virus in Brazilian adults. JAMA Neurol. 2017;74:1190-8. Therefore, any ZIKV suspected infection must be closely followed,1919 Sebastian UU, Ricardo AVA, Alvarez BC, et al. Zika virus-induced neurological critical illness in Latin America: Severe Guillain-Barre Syndrome and encephalitis. J Crit Care. 2017;42:275-81. especially in pregnant women, since several studies indicate that ZIKV impairs central nervous system development of fetuses.2020 Garcez PP, Loiola EC, Madeiro da Costa R, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016;352:816-8. Moreover, whereas GBS mortality occurs in around 5% of the cases, this number rises to 10–35% if the GBS-affected person is a pregnant woman.88 Pacheco LD, Saad AF, Hankins GD, Chiosi G, Saade G. Guillain-Barre syndrome in pregnancy. Obstet Gynecol. 2016;128:1105-10.

Despite the growing evidence, currently there are no results from prospective cohort studies about ZIKV neurological consequences. Therefore, we performed a systematic review of studies and conducted meta-analysis modeling to estimate the prevalence of GBS associated with ZIKV infection.

We estimated the prevalence of GBS to be 1.23% of all ZIKV infection cases in adults. This small number is deceptive, because GBS occurrence in the general population is rare, but when considering ZIKV infected cohorts, the incidence is several times larger. As remarked in a previous publication,2121 Coelho AVC, Crovella S. Microcephaly prevalence in infants born to Zika virus-infected women: a systematic review and meta-analysis. Int J Mol Sci. 2017;18. ZIKV can infect a substantial number of individuals, which brings a new perspective to these seemingly small numbers. To illustrate this, we highlight the findings of a case series (included in our meta-analysis) with data from seven countries of South and Central America in 2015 and early 2016. In El Salvador, the number of GBS diagnosis was 100% (two times) higher than pre-ZIKV infection outbreak. In Venezuela, this increase was an impressive 877% (almost 10 times higher). In the state of Bahia, Brazil, one of the most affected countries by the epidemics, the number of GBS diagnosis almost tripled during the same period (increase of 171%).1313 dos Santos T, Rodriguez A, Almiron M, et al. Zika Virus and the Guillain–Barré Syndrome – case series from Seven Countries. N Engl J Med. 2016;375:1598-601. Therefore, if new outbreaks of ZIKV are expected, then the occurrence of GBS cases will likewise accompany them, bringing new burden to individuals and healthcare services in the affected countries.

Our meta-analysis has some limitations. First, we could not assess if the individuals had previous flavivirus infections (such as DENV or yellow fever virus), because suitable clinical and/or laboratory data were lacking. GBS in association with DENV and other flavivirus has also been reported,99 Uncini A, Shahrizaila N, Kuwabara S. Zika virus infection and Guillain-Barre syndrome: a review focused on clinical and electrophysiological subtypes. J Neurol Neurosurg Psychiatry. 2017;88:266-71. but it is currently unknown if previous infections could increase the risk for ZIKV-associated GBS occurrence due to cross-reactivity. More research is needed to address this issue. Second, some of the reported ZIKV infection are just suspected (not confirmed by RT-PCR or other methods).1313 dos Santos T, Rodriguez A, Almiron M, et al. Zika Virus and the Guillain–Barré Syndrome – case series from Seven Countries. N Engl J Med. 2016;375:1598-601. Besides these two limitations, it is important to remark that symptomatic ZIKV infection are the minority among the cases.33 Blazquez AB, Saiz JC. Neurological manifestations of Zika virus infection. World J Virol. 2016;5:135-43.,55 Flamand C, Fritzell C, Matheus S, et al. The proportion of asymptomatic infections and spectrum of disease among pregnant women infected by Zika virus: systematic monitoring in French Guiana, 2016. Euro Surveill. 2017;22.,66 Lozier MJ, Burke RM, Lopez J, et al. Differences in prevalence of symptomatic Zika virus infection by age and sex-Puerto Rico. J Infect Dis. 2016:2017. Therefore, our ZIKV infection-associated GBS prevalence estimate may be underestimated, in theory.

Conclusion

We performed a meta-analysis to obtain a prevalence estimate of GBS caused by ZIKV infection. This estimate seems to be low, but cannot be ignored, since ZIKV outbreaks affects an overwhelming number of individuals, mostly in South and Central America, posing a challenge to healthcare services. ZIKV infection cases must be closely followed to assure prompt care to reduce the impact of GBS associated-sequelae on the quality of life of those affected.

  • Funding
    This work was supported by grants 88881.130808/2016.1 from Comissão de Aperfeiçoamento de Pessoal do Nível Superior (CAPES) and 440371/2016-3 from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), from the Brazilian public notice Chamada 14/2016 – Prevenção e Combate ao vírus Zika, both granted to SC. AVCC was supported by stipends by CAPES (88887.137992/2017-00) from the same public notice and by Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE – BFP-0018-2.02/17).

REFERENCES

  • 1
    de Oliveira WK, Carmo EH, Henriques CM, et al. Zika virus infection and associated neurologic disorders in Brazil. N Engl J Med. 2017;376:1591-3.
  • 2
    Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122-30.
  • 3
    Blazquez AB, Saiz JC. Neurological manifestations of Zika virus infection. World J Virol. 2016;5:135-43.
  • 4
    Broutet N, Krauer F, Riesen M, et al. Zika virus as a cause of neurologic disorders. N Engl J Med. 2016;374:1506-9.
  • 5
    Flamand C, Fritzell C, Matheus S, et al. The proportion of asymptomatic infections and spectrum of disease among pregnant women infected by Zika virus: systematic monitoring in French Guiana, 2016. Euro Surveill. 2017;22.
  • 6
    Lozier MJ, Burke RM, Lopez J, et al. Differences in prevalence of symptomatic Zika virus infection by age and sex-Puerto Rico. J Infect Dis. 2016:2017.
  • 7
    Cao-Lormeau V-M, Blake A, Mons S, et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case–control study. Lancet. 2016;387:1531-9.
  • 8
    Pacheco LD, Saad AF, Hankins GD, Chiosi G, Saade G. Guillain-Barre syndrome in pregnancy. Obstet Gynecol. 2016;128:1105-10.
  • 9
    Uncini A, Shahrizaila N, Kuwabara S. Zika virus infection and Guillain-Barre syndrome: a review focused on clinical and electrophysiological subtypes. J Neurol Neurosurg Psychiatry. 2017;88:266-71.
  • 10
    Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.
  • 11
    French Polynesia. Direction de la Santé. Bureau de Veille sanitaire. Point de situation au 7 février 2014 sur les épidémies de dengue et zika en cours; 2014. Available from: http://www.hygiene-publique.gov.pf/IMG/pdf/bulletin_dengue07-02-14.pdf
    » http://www.hygiene-publique.gov.pf/IMG/pdf/bulletin_dengue_07-02-14.pdf
  • 12
    Duijster JW, Goorhuis A, van Genderen PJ, et al. Zika virus infection in 18 travellers returning from Surinam and the Dominican Republic, The Netherlands, November 2015–March 2016. Infection. 2016;44:797-802.
  • 13
    dos Santos T, Rodriguez A, Almiron M, et al. Zika Virus and the Guillain–Barré Syndrome – case series from Seven Countries. N Engl J Med. 2016;375:1598-601.
  • 14
    Critical Appraisal Skills Programme. CASP Cohort Study Checklist; 2017. Available from: http://www.casp-uk.net/checklists15
    » http://www.casp-uk.net/checklists
  • 15
    DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105-14.
  • 16
    Schwarzer G. meta: Meta-Analysis with R. R package version 3.7-1; 2014.
  • 17
    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017 https://www.R-project.org/Vienna
    » https://www.R-project.org/Vienna
  • 18
    da Silva IRF, Frontera JA, Bispo de Filippis AM, Nascimento O. Neurologic complications associated with the Zika virus in Brazilian adults. JAMA Neurol. 2017;74:1190-8.
  • 19
    Sebastian UU, Ricardo AVA, Alvarez BC, et al. Zika virus-induced neurological critical illness in Latin America: Severe Guillain-Barre Syndrome and encephalitis. J Crit Care. 2017;42:275-81.
  • 20
    Garcez PP, Loiola EC, Madeiro da Costa R, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016;352:816-8.
  • 21
    Coelho AVC, Crovella S. Microcephaly prevalence in infants born to Zika virus-infected women: a systematic review and meta-analysis. Int J Mol Sci. 2017;18.

Publication Dates

  • Publication in this collection
    Mar-Apr 2018

History

  • Received
    6 Nov 2017
  • Accepted
    9 Feb 2018
Brazilian Society of Infectious Diseases Rua Augusto Viana, SN, 6º., 40110-060 Salvador - Bahia - Brazil, Telefax: (55 71) 3283-8172, Fax: (55 71) 3247-2756 - Salvador - BA - Brazil
E-mail: bjid@bjid.org.br