Acessibilidade / Reportar erro

The dynamics of fluorescent dissolved organic matter in the Paranaguá estuarine system, Southern Brazil

Abstracts

The aim of this study was to investigate the dynamics of the fluorescent dissolved organic matter (FDOM) in Paranaguá Estuarine System (PES) as to infer about the contribution of allochthonous FDOM to the estuarine waters in relation to tidal condition and seasons. Fluorescence spectroscopy was used for such purpose and DOM characterization through fluorescence emission was performed using excitation wavelengths of λex 350 nm and λex 450 nm, the two main fluorescence groups known to be present in natural DOM. Relations between emission wavelength (λem) and environmental variables, and the relevance of these variables to the different tides and seasons were identified by principal component analysis. The results showed that the first class of fluorophores (λex 350 nm) changed from the river (freshwater) towards the estuary, whilst the second class (λex 450 nm) has a more conservative nature and does not change as significantly as the first. Allochthonous DOM contribution to the estuarine system is intensified during the rainy season, especially in spring tides, whereas in the dry season the ratio of autochthonous DOM to total DOM in PES waters increased. We concluded that the variation of maximum λem of the first class of fluorophores (λex 350 nm) is mainly related to allochthonous contribution, whilst the maximum of emission for the second class of fluorophores (λex 450 nm) is dependent on the contribution of the different sources of organic matter (freshwater and marine water DOM contribution).

Humic substances; Estuaries; FDOM's source; Tidal cycle; Estuarine turbidity maximum; Fluorescence spectroscopy


O objetivo deste estudo foi investigar a dinâmica da matéria orgânica fluorescente (FMOD) no Complexo Estuarino de Paranaguá (CEP) para inferir sobre a contribuição da FMOD alóctone nas águas estuarinas em relação à condição de maré e estações do ano (seca e chuvosa). Empregou-se a técnica de espectroscopia de fluorescência, através da utilização de dois comprimentos de onda de excitação, os quais correspondem a duas classes conhecidas de fluoróforos, λex 350 nm e λex 450 nm, para desta forma determinar o comprimento de onda de máxima emissão (λem) da fluorescência da MOD. Relações entre λem e variáveis ambientais e a relevância das relações nas diferentes condições de maré (sizígia e quadratura) e estações do ano (seca e chuvosa) foram identificadas com o uso de análise de componentes principais. Os resultados demonstraram que a primeira classe de fluoróforos (λex 350 nm) foi alterada durante a transição rio estuário, enquanto a segunda classe (λex 450 nm) apresentou um comportamento mais conservativo. A contribuição da MOD alóctone no estuário foi intensificada durante a estação chuvosa, especialmente durante as marés de sizígia, enquanto na estação seca a MOD autóctone é preponderante na composição da MOD total no CEP. Conclui-se que a variação nos λem da primeira classe de fluoróforos (λex 350 nm) é principalmente relacionada à contribuição alóctone, enquanto as diferenças nos λem da segunda classe (λex 450 nm) estão relacionadas com as flutuações nas contribuições das diferentes fontes de MOD no CEP.

Substâncias húmicas; Estuários; Fonte de FMOD; Ciclos de maré; Máximo de turbidez estuarina; Espectroscopia de fluorescência


  • BAKER, A.; SPENCER, R. G. M. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci. Tot. Environ, v. 33, p. 217-232, 2004.
  • BAKER, A.; ELLIOTT, S., LEAD, J.R. Effects of filtration and pH perturbation on freshwater organic matter fluorescence. Chemosphere, v. 67, n. 10, p. 2035-2043, 2007.
  • BENNER, R. Cycling of dissolved organic matter in the ocean. In: HESSEN, D. O.; TRANVIK, L. J. (Ed.). Aquatic humic substances: ecology and biogeochemistry.
  • Ecol. Stud, v. 133, n. 12, p. 317-331, 1998.
  • BENNER, R., Chemical composition and reactivity, in HANSELL D. A.; CARLSON, C. A. (Ed.). Biogeochemistry of marine dissolved organic matter. New York: Academic Press, 2002. p. 59-90.
  • BIGARELLA J.J.; BECKER R.D.; MATOS D.J.; WERNER A. A Serra do Mar e a porção oriental do Estado do Paraná. Curitiba: Secretaria de Estado do Planejamento, Governo do Paraná, 1978.
  • BLOOM, P. R.; LEENHEER. J. A. Vibrational, electronic, and high-energy spectroscopic methods for characterizing humic substances. In: HAYES, M. H. B.; MACCARTHY, P.; MALCOLM, R. L.; SWIFT, R. S. (Ed.). Humic substances: II. In search of structure. New York: John Wiley & Sons, 1989.
  • BLOUGH N. V.; DEL VECCHIO, R. Chromophoric DOM in the coastal environment. In: HANSELL D. A.; CARLSON, C. A. (Ed.). Biogeochemistry of marine dissolved organic matter. San Diego: Academic press, 2002. p 509-546.
  • BOEHME, J.; COBLE, P. G.; CONMY, R.; STOVALL-LEONARD, A. Examining CDOM fluorescence variability using principal component analysis: seasonal and regional modeling of three-dimensional fluorescence in the Gulf of Mexico. Mar. Chem, v. 89, p. 3-14, 2004.
  • BOYD, T. J.; OSBURN, C. L. Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Mar. Chem v. 89, p. 189-210, 2004.
  • BOWERS, D.; BRETT, H. L. The relationship between CDOM and salinity in estuaries: an analytical and graphical solution. J. mar. Sys, v. 73, p. 1-7, 2008.
  • BURDIGE, D. J.; KLINE, S. W.; CHEN, H. Fluorescent dissolved organic matter in marine sediment pore waters. Mar. Chem, v. 89, n. 1-4, p. 289-311, 2004.
  • CHEN, J.; LEBOEUF, E. J.; DAI, S.; GU, B. Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere, v. 50, p. 639-647, 2003.
  • CHOUERI, R. B.; MELÃO, M. G. G.; LOMBARDI, A. T.; VIEIRA, A. A. H. The effects of a cyanobacterium exopolysaccharides on the life-history of Ceriodaphnia cornuta SARS. J. Plankt. Res, v. 29, p. 339-345, 2007.
  • CHOUERI, R. B.; GUSSO-CHOUERI, P. K.; MELÃO, M. G. G.; LOMBARDI, A. T.; VIEIRA, A. A. H. The influence of cyanobacterium exudates on copper uptake and toxicity to a tropical freshwater cladoceran. J. Plankt. Res, v. 31, p. 1225-1233, 2009.
  • CLARK, C. D.; JIMENEZ-MORAIS, J.; JONES, G.; ZANARDI-LAMARDO, E.; MOORE, C. A.; ZIKA, R. G. A time-resolved fluorescence study of dissolved organic matter in a riverine to marine transition zone. Mar. Chem, v. 78, p. 121-135, 2002.
  • COBLE, P. G. Characterization of marine and terrestrial DOM in seawater using excitation-emission spectroscopy. Mar. Chem, v. 51, p. 325-346, 1996.
  • COBLE, P. G. Marine Optical Biogeochemistry -The chemistry of ocean color. Chem. Rev, v. 107, p. 402418, 2007
  • COBLE, P. G.; GREEN, S.A.; BLOUGH, N.V.; GAGOSIAN, R.B. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, v. 348, p. 432-35, 1990.
  • COBLE, P. G.; DEL CASTILLO, C. E.; AVRIL, B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 summer monsoon. Deep-Sea Res. II, v. 45, p. 2195-2223, 1998.
  • DE-SOUZA- SIERRA, M. M.; DONARD, O. F. X.; LAMOTTE, M.; BELIN, C.; EWALD, M. Fluorescence spectroscopy of coastal and marine waters. Mar. Chem, v. 47, p. 127-144, 1994.
  • DE-SOUZA-SIERRA, M. M.; DONARD, O. F. X.; LAMOTTE M. Spectral identification and behavior of dissolved organic fluorescent materials during estuarine mixing processes. Mar. Chem, v. 58, p. 51-58, 1997.
  • DEL-CASTILLO, C. E.; COBLE, R. E.; MORELL, J. M.; LOPEZ, J. M.; CORREDOR, J. E. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar. Chem., v. 66, p. 35-51, 1999.
  • DIAMOND, S. A.; MOUNT, D. R.; BURKHARD, L. P.; ANKLEY, G. T.; MAKYNEN, E. A.; LEONARD, E. N. Effect of irradiance spectra on the photo induced toxicity of three polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., v. 19, p. 1389-1396, 2000.
  • DONARD, O. R. X.; LAMOTTE, M.; BELIN, C.; EWALD, M. High-sensitivity fluorescence spectroscopy of Mediterranean waters using a conventional or a pulsed laser excitation source. Mar. Chem, v. 27, p. 117-136, 1989.
  • DORSCH, J. E.; BIDLEMAN, T. F. Natural organics as fluorescent tracers of river -sea mixing. Estuar. coast. Shelf Sci, v. 15, p. 701-707, 1982.
  • GRASSHOFF, K.; EHRHARDT, M.; KREMLING, K. Methods of seawater analysis. Germany: Verlag Chemie, 1983.
  • HARVEY, G. B.; BORAN, D. A.; CHESAL, L. A.; TOKAR, J. M. The structure of marine fulvic and humic acids. Mar. Chem, v. 12, p. 119-132, 1983.
  • HAYASE, K.; YAMAMOTO, M.; NAKAZAWA, I.; TSUBOTA, H. Behavior of natural fluorescence in Sagami Bay and Tokyo Bay Japan: vertical and lateral distribution. Mar. Chem, v. 20, p. 265-276, 1987.
  • HEAD, P.C. Practical estuarine chemistry: A handbook. Cambridge: University Press, 1985.
  • HEDGES, J. I. Why dissolved organic matter? in HANSELL, D. A.; CARLSON, C. A. (Ed.). Biogeochemistry of marine dissolved organic matter. San Diego: Academic Press, 2002.774 p.
  • HEMMINGSEN, S. L.; MCGOWN, L. B. Phase-resolved fluorescence spectral and lifetime characterization of commercial humic substances. Appl. Spectrosc, v. 51, p. 921-929, 1997.
  • IBAMA. 2008. APA Cananéia-Iguape-Peruíbe. Available from www.ibama.gov.br/apacip Accessed June 5th 2009.
  • KNOPPERS, B. A.; MACHADO, E. C.; BRANDINI, N.; SOUZA, W. F. L.; Sediment, oxygen and nutrient fluxes in three estuarine systems of SE Brazil. In: LACERDA, R.; SANTELLI, E.; DUURSMA, E.; ABRÃO, J. (Ed.). Facets of environmental Geochemistry in tropical and subtropical environments. Berlin: Springer Verlag, 2004. p. 253-275.
  • LAANE, R. W. P. M.; KRAMER, K. J. M. Natural fluorescence in the North Sea and its major estuaries. Neth. J. Sea Res, v. 26, p. 1-9, 1990.
  • LICHT, O.A.B.; PIEKARZ, G.F.; CALDASSO DA SILVA, J.C.; LOPES Jr.; I. Levantamento geoquímico multielementar de baixa densidade no estado do Paraná (Hidrogeoquímica -resultados preliminares). A Terra em revista: Rev. Técn. informat. CPRM , n. 3, p. 3446, 1997.
  • LOMBARDI, A. T.; JARDIM W. F. Fluorescence spectroscopy of high performance liquid chromatography fractionated marine and terrestrial organic materials. Water Res, v. 33, p. 512-520, 1999.
  • LUCIANI, X.; MOUNIER, S.; PARAQUETTI, H. H. M.; REDON, R.; LUCAS, Y.; BOIS, A.; LACERDA, L. D.; RAYNAUD, M.; RIPERT, M. Tracing of dissolved organic matter from the Sepetiba Bay (Brazil) by PARAFAC analysis of total luminescence matrices. Mar. environ. Res, v. 68, p. 148-157, 2008.
  • MANN, K.H. Ecology of coastal waters. Malden: Blackwell Science, 2000.
  • MANTOVANELLI, A. Caracterização da dinâmica hídrica e do material particulado em suspensão na Baía de Paranaguá e em sua bacia de drenagem. 1999. 152 p. Dissertação (Mestrado) -Universidade Federal do Paraná, Curitiba, Paraná, 1999.
  • MANTOVANELLI, A.; MARONE, E.; DA SILVA, E. T.; LAUTERT, L. F.; KLINGENFUSS, M. S.; PRATA JR, V. P.; NOERNBERG, M. A.; KNOPPERS, B.A.; ANGULO, J. Combined tidal velocity and duration asymmetries as a determinant of water transport and residual flow in Paranaguá Bay estuary. Estuar. coast.Shelf Sci, v. 59, p. 523-537, 2004.
  • MARONE, E.; JAMIYANAA, D. Tidal characteristics and a numerical model for the M2 tide at the Estuarine Complex of the Bay of Paranaguá, Paraná, Brazil. Nerítica, v. 11, n. 1-2, p. 95-107, 1997.
  • MAYER, L. M.; SCHICK, L. L.; LODER, T. C. Dissolved protein fluorescence in two Maine estuaries. Mar. Chem, v. 64, p, 171-9, 1999.
  • MOPPER, K.; ZHOU, X.; KIEBER, R. J.; KIEBER, D. J.; SIKORSKI, R. J.; JONES, R. D. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature, v. 353, p. 60-62, 1991.
  • NOGUEIRA, P. F. M.; MELÃO, M. G. G.; LOMBARDI, A. T.; NOGUEIRA, M. M. Natural DOM Affects Copper speciation and bioavailability to Bacteria and Ciliate. Archs environ.Contamin. Toxicol, v. 57, p. 274-281, 2009.
  • PERSSON, T.; WEDBORG, M. Multivariate evaluation of the fluorescence of aquatic organic matter. Anal. Chim. Acta, v. 434, p. 179-192, 2001.
  • RAYMOND, P. A.; BAUER, J. E. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature, v. 409, p. 497-500, 2001.
  • ROCHELLE-NEWALL, E. J.; FISHER, T. R. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Mar. Chem, v. 77, p. 23-41, 2002.
  • SANTOS, M. A. P. F.; MELÃO, M. G. G.; LOMBARDI, A. T. The effects of humic substances on copper toxicity to Ceriodaphnia silvestrii Daday (Crustacea, Cladocera). Ecotoxicology, v. 17, p. 449-454, 2008.
  • SIEGEL, D. A.; MICHAELS, A. F. Quantification of nonalgal light attenuation in the Sargasso Sea: implications for biogeochemistry and remote sensing. Deep-Sea Res, v. 43, p. 321-345, 1996.
  • SMART, P. L.; FINLAYSON, B. L.; RYLANDS, W. D.; BALL, C. M. The relation of fluorescence to dissolved organic carbon in surface waters. Water Res., v. 10, p. 805-811, 1976.
  • STEDMON, C. A.; MARKAGER, S.; BRO, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem, v. 82, n. 3/4, p. 239-254, 2003.
  • STEDMON, C. A.; MARKAGER, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis.Limnol. Oceanogr, v. 50, p. 686-97, 2005.
  • STRICKLAND, J. D. H.; PARSONS. T. R. A practical handbook of sea-water analysis. J. Fish.Res. Bd Can, v.2, p. 167-311, 1972.
  • TABACHNIC, B. G.; FIDELL, L. S. Using multivariate statistics. New York: Harper Collins College Publishers, 1996.
  • TRANVIK, L.; BERTILSSON, S. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol.Lett, v. 4, p. 458-463, 2001.
  • UNDERWOOD, G. J. C.; KROMKAMP, J. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res, v. 29, p. 3-153, 1999.
  • WILLIAMSON, C. E.; NEALE, P. J.; GRAD, G.; DE LANGE, H. J.; HARGREAVES, B. R. Beneficial and detrimental effects of UV on aquatic organisms: implications of spectral variation. J. appl. Ecol, v.11, p. 1843-1857, 2001.
  • ZIEGLER S.; BENNER R. Effects of solar radiation on microbial production and dissolved organic matter cycling in a shallow, subtropical lagoon. Limnol. Oceanogr., v. 45, p. 257-266, 2000.

Publication Dates

  • Publication in this collection
    03 Feb 2012
  • Date of issue
    Dec 2011

History

  • Reviewed
    13 Dec 2010
  • Received
    14 June 2010
  • Accepted
    23 May 2011
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br