Acessibilidade / Reportar erro

Macrobenthos of the coastal Budi Lagoon, southern Chile: Changes associated with seasonal environmental variation

Abstract

The purpose of the present study was to investigate the seasonal relationship of macrobenthos richness and abundance with sediment characteristics (i.e. texture and organic material) for the coastal Budi Lagoon in southern Chile. Physicochemical measurements and macrobenthos samples were taken over the course of a year at nine sampling stations. Sandy-muddy sediment was the most common, and high percentages of organic material were registered, varying significantly between seasons and stations. The recorded organic material was related to natural (resident wild birds) and anthropogenic (agriculture) sources. Regarding fauna, 28 benthonic taxa and 7092 individuals were identified, with temporal and spatial variations. The most abundant taxa year-round were the molluscs Littoridina cumingii and Kingiella chilenica and the bristle worm Prionospio patagonica. Together, the obtained results evidence the important impact of organic material on the macrobenthos, with macrobenthic richness and abundance decreasing in conditions of high organic material content. The recorded variations for different taxa may indicate a response to the land use around the Budi Lagoon, which is intensely subjected to agricultural and tourist activities.

Descriptors:
Macrobenthos; Budi Lagoon; Araucania; Sediments; Spatial variability

Resumo

O objetivo do presente estudo foi investigar a relação sazonal entre macrobentos e características do sedimento, tais como textura e material orgânico, na lagoa costeira Budi Lagoon, sul do Chile. Medidas físico-químicas e amostragem do macrobentos foram realizadas durante um ano em nove localidades. Sedimento arenoso-lodoso foi o mais comum na lagoa, e percentagens elevadas de material orgânico foram registradas, variando significativamente entre as estações e locais de coleta. Em relação a fauna, foram identificados 28 taxas bentônicos e 7092 indivíduos, que apresentaram variação temporal e espacial. As espécies mais abundantes durante todo o ano foram os moluscos Littoridina cumingii e Kingiella chilenica, e o poliqueta Prionospio patagonica. Os resultados obtidos evidenciaram o importante impacto da matéria orgânica sobre o macrobentos, com riqueza e abundância da fauna diminuindo em presença de alto teor de matéria. As variações encontradas para os diferentes taxons indicaram resposta da fauna ao uso da terra ao redor de Budi Lagoon, que intensamente utilizada para agricultura e atividades turísticas.

Descritores:
Macrobentos; Budi Lagoon; Araucanía; Sedimentos; Variabilidade espacial

INTRODUCTION

Most animal populations show considerable spatial and temporal fluctuations in distribution and abundance (UNDERWOOD; CHAPMAN, 1996UNDERWOOD, A. J.; CHAPMAN, M. G. Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia, v. 107, n. 2, p. 212-224, 1996.; BENEDETTI-CECCHI et al., 2001BENEDETTI-CECCHI, L.; RINDI, F.; BERTOCCI, I.; BULLERI, F.; CINELLI, F. Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon. Estuar. Coast. Shelf Sci., v. 52, n. 5, p. 659-668, 2001.; BERTRÁN et al., 2001BERTRÁN, C.; ARENAS, J.; PARRA, O. Macrofauna del curso inferior y estuario del río Biobío (Chile): cambios asociados a variabilidad estacional del caudal hídrico. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 331-340, 2001.; FIERRO et al., 2014FIERRO, P.; BERTRÁN, C.; MARTINEZ, D.; VALDOVINOS, C.; VARGAS-CHACOFF, L. Ontogenetic and temporal changes in the diet of the Chilean silverside Odontesthes regia (Atherinidae) in southern Chile. Cah. Biol. Mar., v. 55, n. 3, p. 323-332, 2014.; FIERRO et al., 2015FIERRO, P.; BERTRÁN, C.; MERCADO, M.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; CAPUTO, L.; VARGAS-CHACOFF, L. Landscape composition as a determinant of diversity and functional feeding groups of aquatic macroinvertebrates in southern rivers of the Araucanía, Chile. Lat. Am. J. Aquat. Res., v. 43, n. 1, p. 186-200, 2015.). In the case of benthic macrofauna, distribution and abundance are mainly related to certain variables of the sediment-water interface, where multiple effects of contamination and organic enrichment are exerted (GLÉMAREC, 1986GLÉMAREC, M. Ecological impact of an oil spill: utilization of biological indicators. Water Sci. Technol., v. 18, n. 4/5, p. 203-211, 1986.). The principal physicochemical variables that determine macrobenthic distribution are temperature, salinity, suspended solids, nitrates (HOLLAND et al., 1987HOLLAND, A. F.; SHAUGHNESSY, A. T.; HIEGEL, M. H. Long-term variation in mesohaline Chesapeake bay macrobenthos: Spatial and temporal patterns. Estuaries, v. 10, n. 3, p. 227-245, 1987.; BEUKEMA, 1990BEUKEMA, J. J. Expected effects of change in winter temperatures on benthic animals living in soft sediment in coastal North Sea areas. In: BEUKEMA, J. J.; WOLFF W. J., BROUNS, J. J. W. M. (Eds). Expected Effects of climatic Change on Marine Coastal Ecosystems. Dordrecht: Springer Science, 1990. p. 83-92.; FIERRO et al., 2015FIERRO, P.; BERTRÁN, C.; MERCADO, M.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; CAPUTO, L.; VARGAS-CHACOFF, L. Landscape composition as a determinant of diversity and functional feeding groups of aquatic macroinvertebrates in southern rivers of the Araucanía, Chile. Lat. Am. J. Aquat. Res., v. 43, n. 1, p. 186-200, 2015.), and sediment characteristics, such as texture and organic material content (RITCHER, 1985; NICHOLS et al., 1986NICHOLS, F. H.; CLOERN, J. E.; LUOMA, S. N.; PETERSON, D. H. The modification of an estuary. Science, v. 231, n. 4738, p. 567-573, 1986.). Macrobenthic organisms inhabit different types of sediments (HYNES, 1970HYNES, H. B. N. The ecology of running waters. Liverpool: Liverpool University Press, 1970. 555 p.) over the course of the year (BERTRÁN, 1989BERTRÁN, C. Zonación y dinámica temporal de la macrofauna intermareal en el estuario del Río Lingue (Valdivia, Chile). Rev. Chil. Hist. Nat., v. 62, p. 19-32, 1989.; BERTRÁN et al., 2001BERTRÁN, C.; ARENAS, J.; PARRA, O. Macrofauna del curso inferior y estuario del río Biobío (Chile): cambios asociados a variabilidad estacional del caudal hídrico. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 331-340, 2001.; FIERRO et al., 2012FIERRO, P.; BERTRÁN, C.; MERCADO, M.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; VARGAS-CHACOFF, L. Benthic macroinvertebrate assemblages as indicators of water quality applying a modified biotic index in a spatio-seasonal context in a coastal basin of Southern Chile. Rev. Biol. Mar. Oceanogr., v. 47, n. 1, p. 23-33, 2012.), generating varied distribution and abundance patterns (JARAMILLO et al., 2001JARAMILLO, E.; CONTRERAS, H.; QUIJÓN, P. Variabilidad estacional e interanual en las abundancias poblacionales de la macrofauna intermareal del estuario del río Queule, centro-sur de Chile. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 455-468, 2001.).

The distribution of the macrobenthos has possible application in estimating the spatial and temporal variations of different ecosystems, such as coastal lakes and estuaries. Lagoons are a non-continental, transitional ecosystem temporally influenced by seawater (KJERFVE, 1994KJERFVE, B. Coastal lagoon processes. Amsterdam: Elsevier, 1994.; PÉREZ-RUZAFA et al., 2011PÉREZ-RUZAFA, A.; MARCOS, C.; PÉREZ-RUZAFA, I. M.; PÉREZ-MARCOS, M. Coastal lagoons: "transitional ecosystems" between transitional and coastal waters. J. Coast. Conservat., v. 15, n. 3, p. 369-392, 2011.). The entrance of high-salinity water into lagoons sufficiently sustains fauna with estuarine traits (DÍAZ-JARAMILLO et al., 2008DÍAZ-JARAMILLO, M.; MUÑOZ, P.; DELGADO-BLAS, V.; BERTRÁN, C. Spatio-temporal distribution of spionids (Polychaeta-Spionidae) in an estuarine system in south-central Chile. Rev. Chil. Hist. Nat., v. 81, n. 4, p. 501-514, 2008.). Additionally, lagoons and estuaries both present high environmental variability, leading some authors to consider both as a single ecosystem unit (STUARDO; VALDOVINOS, 1989STUARDO, J.; VALDOVINOS, C. Estuarios y lagunas costeras: ecosistemas importantes de Chile central. Amb. Des., v. 5, n. 1, p. 107-115, 1989.; BERTRÁN et al., 2010BERTRÁN, C.; VARGAS-CHACOFF, L.; PEÑA-CORTÉS, F.; SCHLATTER, R.; TAPIA, J.; HAUENSTEIN, E. Distribución de la macrofauna bentónica en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 45, n. 2, p. 235-243, 2010.).

One such ecosystem unit is the Budi Lagoon, where the periodic entrance of seawater largely and seasonally modifies water parameters (BERTRÁN et al., 2010BERTRÁN, C.; VARGAS-CHACOFF, L.; PEÑA-CORTÉS, F.; SCHLATTER, R.; TAPIA, J.; HAUENSTEIN, E. Distribución de la macrofauna bentónica en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 45, n. 2, p. 235-243, 2010.). Furthermore, the permanent presence of aquatic birds and anthropic activity in the watershed, particularly near the shoreline, means that this lagoon is constantly incorporating organic material (PEÑA-CORTÉS et al., 2006aPEÑA-CORTÉS, F.; GUTIÉRREZ, P.; REBOLLEDO, G.; ESCALONA, M.; HAUENSTEIN, E.; BERTRÁN, C.; SCHLATTER, R.; TAPIA, J. Determinación del nivel de antropización de humedales como criterio para la planificación ecológica de la cuenca del lago Budi, IX Región de La Araucanía, Chile. Rev. Geogr. Norte Gd., n. 36, 75-91, 2006a.; 2006bPEÑA-CORTÉS F.; REBOLLEDO, G.; HERMOSILLA, K.; HAUENSTEIN, E.; BERTRÁN, C.; SCHLATTER, R.; TAPIA, J. Dinámica del paisaje para el período 1980-2004 en la cuenca costera del Rio-Lago Budi, Chile. Consideraciones para la conservación de sus humedales. Ecol. Austral, v. 16, n. 2, p. 183-196, 2006b., 2011PEÑA-CORTÉS, F.; PINCHEIRA-ULBRICH, J.; BERTRÁN, C.; TAPIA, J.; HAUENSTEIN, E.; FERNÁNDEZ, E.; ROZAS, D. A study of the geographic distribution of swamp forest in the coastal zone of the Araucanía Region, Chile. Appl. Geogr., v. 31, n. 2, p. 545-555, 2011.). The objective of this study was to explore the relationship between seasonal variations in benthic macrofauna communities and fluctuations in water characteristics of the coastal Budi Lagoon, including sediment texture and organic material content.

MATERIAL AND METHODS

Study site

The Budi Lagoon (38º49'30" S, 73º23'30" W) begins about one mile south of the Imperial River estuary in southern Chile. The Budi Lagoon sporadically connects with the Pacific Ocean, specifically from the end of autumn until the beginning of spring. This lagoon has a surface area of 57.4 km2, and its basin has a dry coastal landscape that is highly fragmented by anthropogenic activities, with native oak-laurel-lingue and temo-pitra forests (BERTRÁN et al., 2006BERTRÁN, C.; VARGAS-CHACOFF, F.; PEÑA-CORTÉS, F.; MULSOW, S.; TAPIA, J.; HAUENSTEIN, E.; SCHLATTER, R.; BRAVO, A. Macrofauna bentónica de los humedales de tres lagos salinos en el borde costero del sur de Chile. Cien. Mar., v. 32, n. 3, p. 589-596, 2006.; 2010BERTRÁN, C.; VARGAS-CHACOFF, L.; PEÑA-CORTÉS, F.; SCHLATTER, R.; TAPIA, J.; HAUENSTEIN, E. Distribución de la macrofauna bentónica en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 45, n. 2, p. 235-243, 2010.).

Sampling and analytical method

Sampling was performed in 2005 during each of the four seasons at nine sampling stations: Budi River (E1), Temo (E2), Deume 1 (E3), Deume 2 (E4), Deume 3 (E5), Comue (E6), Bolleco (E7), Allipen (E8), and Botapulli (E9) (Figure 1). At each station, water was sampled using a Ruhtner bottle, and the temperature and salinity of the bottom layer was measured. Sediment samples (5 replicates per station) were also collected using an Emery Dredge (0.25 m2) to sample the macrobenthos, characterize sediment texture (FOLK, 1980FOLK, R. L. Petrology of sedimentary rocks. Austin: Hemphill, 1980. 184 p.), and determine organic material (BYERS et al., 1978BYERS, S. C.; MILLS, E. L.; STEWART, P. L. A comparison of methods to determining organic carbon in marine sediments, with suggestion for a standard method. Hydrobiologia, v. 58, n. 1, p. 43-47, 1978.). Macrobenthos samples were sieved through a 0.5 mm mesh, fixed in 10% formalin, transported to the Bentos Laboratory of the Universidad Austral de Chile, and preserved in 70% ethanol. In the laboratory, samples were examined under a stereoscopic microscope, and taxa were identified to the lowest possible taxonomic level using specialized literature.

Figure 1
Location of the Budi Lagoon and sampling stations (black circle). Arrow indicates connection between the lagoon and sea.

Statistical analysis

The community structure of the Budi Lagoon macrobenthos was described for each site and season based on the following indexes: Number of taxa, Abundance, and Shannon-Wiener diversity (H'), following BROWER et al. (1990)BROWER, J.; ZAR, J.; VON ENDE, C. N. Field Laboratory methods for General Ecology. Dubuque: Wm. C. Brown Company Publishers, 1990. 237 p.. Community structure and organic material were analysed using non-metric multidimensional scaling analysis as the ordination method, and similitude between sampling stations was based on a similarity matrix constructed using the Bray-Curtis similarity index. This analysis was performed in PRIMER v.6 (Plymouth Routines in Multivariate Ecological Research) (CLARKE et al., 2005CLARKE, K. R.; WARWICK, R. M.; SOMERFIELD, P. J.; GORLEY, R. N. Change in marine communities: an approach to statistical analysis and interpretation. 3rd ed. Plymouth: PRIMER-E Ltd, 2005. 144 p.).

For the variables that fulfilled assumptions of normality, independence, and homoscedasticity, a two-way ANOVA was performed. In all cases, the two factors were space (sampling stations) and time (season). Sediment values were first arcsine transformed. Since abundances were non-parametric, this variable was assessed using the Kruskal-Wallis test. Significant differences (p<0.05) were further analysed using the Tukey's HSD a posteriori test.

RESULTS

Physicochemical characteristics

The water temperature of the lagoon bottom varied from 10 ºC (autumn and winter) to 15 ºC (spring) and 21 ºC (summer), following a seasonal cycle with maximum temperatures in the summer and minimums in the winter. The lowest values of salinity were measured in winter-spring (1.7%), and the highest values were in the summer (2.66%) and autumn (4.2%).

Sediment characteristics

Sandy-muddy sediment was the most common in the lagoon. The highest percentage of sand was registered in station E8 (97% in winter and autumn), while mud was the most abundant at station E2 (87% in spring). Gravel sediment was the least common, with the highest percentages registered at stations E5 (18.3% in autumn) and E7 (16.9% in winter) (Table 1).

Table 1
Mean percentage (± SD) of sediment textures (i.e. Gravel, Sandy, and Muddy) and organic material (Org. Mat.) recorded at the nine Budi Lagoon sampling stations.

Organic material content significantly differed between seasons (p<0.05). The highest seasonal mean was 23.5% (station E8 in spring), and the lowest seasonal means were 1.2% and 1.34% (stations E7 and E8 in winter, respectively). Considering all stations together, the highest mean organic content occurred in spring (13.2%; Table 1).

To examine the patterns in organic material, non-metric multidimensional scaling and cluster analyses were performed (Figure 2). During the summer, stations E9 and E1 were the most different from the other sampling stations; while in the autumn, stations E9 and E8 were the most different. In the winter, stations E7, E8, and E4 were the most different, but in spring, station E9 was once again the most different from all other stations.

Figure 2
Non-metric multidimensional scaling ordination plot for Budi Lagoon organic material calculated for the four seasons of 2005 (A: summer, B: autumn, C: winter, D: spring).

Description of the macrobenthos community

During the sampling period, a total of 28 taxa were recorded: Polychaeta (4), Gastropoda (3), Oligochaeta (1), Bivalvia (3), Amphipoda (1), Isopoda (2), Ostracoda (1), Nematoda (1), Nemertinea (1), Platyhelminthes (1) and Insecta (10) (Table 2). A total of 7092 individuals were sampled, of which, the most frequent taxon was the Mollusca phylum (47.14%, 3343 individuals), followed by Annelida (40.65%, 2883 individuals). Together, these taxons constituted more than 80% of the macrobenthos (Table 2). The most abundant mollusc was the gastropod Littoridina cumingii, especially in the winter at stations E4 (588 ind. m-2) and E8 (695 ind. m-2). Other abundant molluscs included the bivalve Kingiella chilenica, particularly at station E5 in the autumn (413 ind. m-2). The most abundant annelid species was Prionospio patagonica (Spionidae), which was present at all stations during all seasons, with the greatest abundance of this species recorded at station E7 in the spring (798 ind.m-2; Table 2). There were considerable increases in abundance between seasons, especially at station E5 (1482 total individuals). The opposite tendency was found at stations E3 and E2, which were significantly different from the rest of the stations (Figure 3). Specifically, the total individuals sampled at these stations over the year were 24 and 187 individuals, respectively (Table 2).

Table 2
Mean seasonal density (ind. m-2) of the macrobenthos recorded for the Budi Lagoon (n = 5 replicates).

Figure 3
Non-metric multidimensional scaling ordination plot for Budi Lagoon macrobenthos abundance calculated for the four seasons of 2005 (A: summer, B: autumn, C: winter, D: spring).

There was a significant difference between the total abundances recorded in different seasons (p<0.05). The greatest total abundance was found in autumn (2375 ind. m-2), and the lowest abundance was recorded in summer (1196 ind. m-2). The season-station interaction was also significant (p<0.05). The greatest abundances were found at stations E5 in the autumn, E7 in the spring, E8 in the winter, and E9 in the summer (Figure 4A). The non-metric multidimensional scaling analysis cluster analyses (Figure 3) separated station E3 from the rest of the sampling stations in all seasons, a result due mainly to the low abundance of macrobenthic organisms at this station.

Figure 4A
Number of taxa.

Community parameters

The greatest species richness was found in autumn, especially at station E8, where 12 species were recorded. Among the sampling stations, station E3 had the lowest number of species during all seasons.

There were significant differences in diversity for stations E3 and E1. Station E3 was different from all other stations, while station E1 was different from stations E3, E5, and E6. Diversity in the spring and summer was greater than in the autumn and winter. The highest diversity values were found in the summer and ranged from 0.89 to 2.37 (Figure 4B, C, D).

Figure 4B
Abundance.

Figure 4C
Shannon-Wiener Diversity (H´).

Figure 4D
% of Organic Material at the nine Budi Lagoon sampling stations, calculated for the four seasons of year.

DISCUSSION

The high amount of organic material found in the sediment of the Budi Lagoon is due to its semi-closed condition and the large amount of nutrients that enter the lagoon via agricultural runoff from the adjacent town (PEÑA-CORTÉS et al., 2006aPEÑA-CORTÉS, F.; GUTIÉRREZ, P.; REBOLLEDO, G.; ESCALONA, M.; HAUENSTEIN, E.; BERTRÁN, C.; SCHLATTER, R.; TAPIA, J. Determinación del nivel de antropización de humedales como criterio para la planificación ecológica de la cuenca del lago Budi, IX Región de La Araucanía, Chile. Rev. Geogr. Norte Gd., n. 36, 75-91, 2006a.;bPEÑA-CORTÉS F.; REBOLLEDO, G.; HERMOSILLA, K.; HAUENSTEIN, E.; BERTRÁN, C.; SCHLATTER, R.; TAPIA, J. Dinámica del paisaje para el período 1980-2004 en la cuenca costera del Rio-Lago Budi, Chile. Consideraciones para la conservación de sus humedales. Ecol. Austral, v. 16, n. 2, p. 183-196, 2006b.) and from resident wild birds (BERTRÁN et al., 2010BERTRÁN, C.; VARGAS-CHACOFF, L.; PEÑA-CORTÉS, F.; SCHLATTER, R.; TAPIA, J.; HAUENSTEIN, E. Distribución de la macrofauna bentónica en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 45, n. 2, p. 235-243, 2010.). Indeed, more than 10,000 birds were registered in a 2014 census of the lagoon area. The levels of organic material at Budi Lagoon were quite high compared to the lower levels of other aquatic ecosystems, such as the lagoon in the Cádiz Bay, Spain (DRAKE; ARIAS, 1997DRAKE, P.; ARIAS, A. M. The effect of aquaculture practices on the benthic macroinvertebrate community of a lagoon system in the Bay of Cadiz (southwestern Spain). Estuaries, v. 20, n. 4, p. 677-688, 1997.), the lower course of the Biobio River, Chile (BERTRÁN et al., 2001BERTRÁN, C.; ARENAS, J.; PARRA, O. Macrofauna del curso inferior y estuario del río Biobío (Chile): cambios asociados a variabilidad estacional del caudal hídrico. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 331-340, 2001.), and the estuary of the Queule River, Chile (JARAMILLO et al., 1984JARAMILLO, E.; MULSOW, S.; PINO, M.; FIGUEROA, H. Subtidal benthic macrofauna in an estuary of south of Chile: distribution pattern in relation to sediment types. Mar. Ecol., v. 5, n. 2, p. 119-133, 1984.).

The temporal variations in organic material and texture characteristics of the sediment were similar to patterns of variation found in other studies, where. For example, the Queule River (QUIJÓN; JARAMILLO, 1993QUIJÓN, P.; JARAMILLO, E. Temporal Variability in the Intertidal Macroinfauna in the Queule River Estuary, South-central Chile. Estuar. Coast. Shelf Sci., v. 37, n. 6, p. 655-667, 1993.) and Biobio River (BERTRÁN et al., 2001BERTRÁN, C.; ARENAS, J.; PARRA, O. Macrofauna del curso inferior y estuario del río Biobío (Chile): cambios asociados a variabilidad estacional del caudal hídrico. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 331-340, 2001.), similar to the Budi Lagoon, registered a predominance of sand and less organic material in winter while summer was predominated by fine sediment and high organic contents. These seasonal fluctuations in texture and organic content at the Budi Lagoon may be due mainly to the input of biogenic and terrigenous material produced by intense precipitations, which, during 2005, occurred in autumn and winter, particularly between May and August (DGAC, 2006DIRECCIÓN GENERAL DE AERONÁUTICA CIVIL. (DGAC). Anuario Climatologico 2005. Santiago, 2006. 189 p.). In turn, the summer months lacked rain, a situation that has been associated with greater deposition and, consequently, increased organic material (BERTRÁN et al., 2001BERTRÁN, C.; ARENAS, J.; PARRA, O. Macrofauna del curso inferior y estuario del río Biobío (Chile): cambios asociados a variabilidad estacional del caudal hídrico. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 331-340, 2001.).

The observed macrobenthic richness of the Budi Lagoon was similar to that described for other coastal lakes, lagoons, and estuaries (STONER; ACEVEDO, 1990STONER, A. W.; ACEVEDO, C. The macrofaunal community of a tropical estuarine lagoon. Estuaries, v. 13, n. 2, p. 174-181, 1990.; BERTRÁN et al., 2001BERTRÁN, C.; ARENAS, J.; PARRA, O. Macrofauna del curso inferior y estuario del río Biobío (Chile): cambios asociados a variabilidad estacional del caudal hídrico. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 331-340, 2001.; SFRISO et al., 2001SFRISO, A.; BIRKEMEYER, T.; GHETTI, P. F. Benthic macrofauna changes in areas of Venice lagoon populated by seagrasses or seaweeds. Mar. Environ. Res., v. 52, n. 4, p. 323-349, 2001.; PEQUEÑO et al., 2010PEQUEÑO, G.; PAVÉS, H.; BERTRÁN, C.; VARGAS-CHACOFF, L. Seasonal limnetic feeding regime of the "robalo" Eleginops maclovinus (Valenciennes 1830), in the Valdivia river, Chile. Gayana (Concepc.), v. 74, n. 1, p. 47-56, 2010.; FIERRO et al., 2014FIERRO, P.; BERTRÁN, C.; MARTINEZ, D.; VALDOVINOS, C.; VARGAS-CHACOFF, L. Ontogenetic and temporal changes in the diet of the Chilean silverside Odontesthes regia (Atherinidae) in southern Chile. Cah. Biol. Mar., v. 55, n. 3, p. 323-332, 2014.), showing relatively low density and high dominance (MISTRI et al., 2001MISTRI, M.; ROSSI, R.; FANO, E. A. Structure and Secondary Production of a Soft Bottom Macrobenthic Community in a Brackish Lagoon (Sacca di Goro, north-eastern Italy). Estuar. Coast. Shelf Sci., v. 52, n. 5, p. 605-616, 2001.; BERTRÁN et al., 2013BERTRÁN, C.; JIMÉNEZ, C.; FIERRO, P.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; VARGAS-CHACOFF, L. Alimentación de Micropogonias furnieri (Osteichtyes: Scianidae) en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 48, n. 1, p. 193-197, 2013.). The Budi Lagoon macrobenthos increased in abundance in the autumn, similar to findings in other soft-bottom ecosystems, such as the estuary of the Berg River, South Africa (KALEJTA; HOCKEY, 1991KALEJTA, B.; HOCKEY, P. A. R. Distribution, abundance and productivity of benthic invertebrates at the Berg River estuary, South Africa. Estuar. Coast. Shelf Sci., v. 33, n. 2, p. 175-191, 1991.) and the Cádiz Bay (ARIAS; DRAKE, 1994ARIAS, A.; DRAKE, P. Structure and production of the benthic macroinvertebrate community in a shallow lagoon in the Bay of Cádiz. Mar. Ecol. Prog. Ser., v. 115, p. 151-167, 1994.), where abundance was greatest in the spring, closely followed by autumn. These patterns were also comparable to those of rivers near the study area, with FIERRO et al. (2015)FIERRO, P.; BERTRÁN, C.; MERCADO, M.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; CAPUTO, L.; VARGAS-CHACOFF, L. Landscape composition as a determinant of diversity and functional feeding groups of aquatic macroinvertebrates in southern rivers of the Araucanía, Chile. Lat. Am. J. Aquat. Res., v. 43, n. 1, p. 186-200, 2015. reporting the highest abundance of macroinvertebrates in the summer-autumn. This tendency could represent transitional periods related to increased primary production in the summer and the increased precipitation, decreased salinity, and increased re-suspension of deposited materials as a consequence of forceful winds in the winter. The increases in abundance may also be related to reproductive and recruitment periods, which normally occur in the summer and autumn (GALLARDO, 1993GALLARDO, C. S. Reproductive habits and life cycle of the small clam Kingiella chilenica (Bivalvia: Cyamiidae) in an estuarine sand flat from the South of Chile. Mar. Biol., v. 115, n. 4, p. 595-603, 1993.; CONTRERAS et al., 2003CONTRERAS, H.; JARAMILLO, E.; DUARTE, C.; MCLACHLAN, A. Population abundances, growth and natural mortality of the crustacean macrofauna at two sand beach morphodynamic types in southern Chile. Rev. Chil. Hist. Nat., v. 76, n. 4, p. 543-561, 2003.). Notably, the diversity and species richness values recorded in these seasons mainly corresponded to immature insects.

The temporal variation of the macrobenthos showed differences compared to reports for estuaries (BERTRÁN et al., 2001BERTRÁN, C.; ARENAS, J.; PARRA, O. Macrofauna del curso inferior y estuario del río Biobío (Chile): cambios asociados a variabilidad estacional del caudal hídrico. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 331-340, 2001.; JARAMILLO et al., 2001JARAMILLO, E.; CONTRERAS, H.; QUIJÓN, P. Variabilidad estacional e interanual en las abundancias poblacionales de la macrofauna intermareal del estuario del río Queule, centro-sur de Chile. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 455-468, 2001.; PEQUEÑO et al., 2010PEQUEÑO, G.; PAVÉS, H.; BERTRÁN, C.; VARGAS-CHACOFF, L. Seasonal limnetic feeding regime of the "robalo" Eleginops maclovinus (Valenciennes 1830), in the Valdivia river, Chile. Gayana (Concepc.), v. 74, n. 1, p. 47-56, 2010.; FIERRO et al., 2014FIERRO, P.; BERTRÁN, C.; MARTINEZ, D.; VALDOVINOS, C.; VARGAS-CHACOFF, L. Ontogenetic and temporal changes in the diet of the Chilean silverside Odontesthes regia (Atherinidae) in southern Chile. Cah. Biol. Mar., v. 55, n. 3, p. 323-332, 2014.), an ecosystem in which the greatest abundances were found in the summer. One possible reason for this difference is that estuaries are subject to the effects of tides, which periodically create physicochemical variations (BERTRÁN et al., 2010BERTRÁN, C.; VARGAS-CHACOFF, L.; PEÑA-CORTÉS, F.; SCHLATTER, R.; TAPIA, J.; HAUENSTEIN, E. Distribución de la macrofauna bentónica en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 45, n. 2, p. 235-243, 2010.). In contrast, the Budi Lagoon is only connected with the sea during winter. Changes in the salinity of the study area would indirectly affect the macrobenthic communities (ARENAS, 1971ARENAS, J. Distribución de Elminius kingii Gray (Cirr.) en el estuario del río Valdivia. Beitr. Neotrop. Fauna, v. 6, n. 3, p. 199-206, 1971.; BRAVO, 1984BRAVO, A. Distribución de la macrofauna submareal en los fondos blandos de la Bahía Queule y estuario del río Queule. Medio Amb., v. 7, n. 1, p. 37-46, 1984.; ENCALADA et al., 2010ENCALADA, E.; BERTRÁN, C.; VARGAS-CHACOFF, L. Changes to the benthic assemblage associated with mollusc and seaweed cultivation in the Quempillén estuary, north Patagonia, Chile. Gayana (Concepc.), v. 74, n. 2, p. 147-151, 2010.). Furthermore, agricultural labours near the shoreline increase during summer (BERTRÁN et al., 2010BERTRÁN, C.; VARGAS-CHACOFF, L.; PEÑA-CORTÉS, F.; SCHLATTER, R.; TAPIA, J.; HAUENSTEIN, E. Distribución de la macrofauna bentónica en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 45, n. 2, p. 235-243, 2010.), which could be related to the spatial variation of increased muddy sediment and organic material. In turn, these variations would cause eutrophication in the system, reducing organism diversity and abundance (FIERRO et al., 2012FIERRO, P.; BERTRÁN, C.; MERCADO, M.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; VARGAS-CHACOFF, L. Benthic macroinvertebrate assemblages as indicators of water quality applying a modified biotic index in a spatio-seasonal context in a coastal basin of Southern Chile. Rev. Biol. Mar. Oceanogr., v. 47, n. 1, p. 23-33, 2012.).

The different levels in organic material between the stations may be due to biological interactions, although the effects of anthropic activities near the shore cannot be discounted. Biological interactions were observed at stations E2 and E3, which were located in a sector acting as a habitat for a large number of birds, which, in turn, provided high organic content via faeces. Anthropic activities (e.g. agriculture, forest plantations) also contribute a runoff and considerable increase in sediments with high organic content in coastal zones, mainly as a result of soil erosion (SYVITISKI et al., 2005SYVITSKI, J. P.; VÖRÖSMARTY, C. J.; KETTNER, A. J.; GREEN, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, v. 308, n. 5720, p. 376-380, 2005.). This situation was apparent along most of the Budi Lagoon shoreline, where cereals, legumes, and especially potatoes are cultivated (BERTRÁN et al., 2010BERTRÁN, C.; VARGAS-CHACOFF, L.; PEÑA-CORTÉS, F.; SCHLATTER, R.; TAPIA, J.; HAUENSTEIN, E. Distribución de la macrofauna bentónica en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 45, n. 2, p. 235-243, 2010.). The cultivation techniques likely promote the runoff of terrigenous material to the Bondi lagoon.

The variable inputs of terrigenous material into the lagoon sediment could produce the observed differences between sampling stations, in addition to directly influencing the richness and distribution of the macrobenthos. Indeed, FIERRO et al. (2015)FIERRO, P.; BERTRÁN, C.; MERCADO, M.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; CAPUTO, L.; VARGAS-CHACOFF, L. Landscape composition as a determinant of diversity and functional feeding groups of aquatic macroinvertebrates in southern rivers of the Araucanía, Chile. Lat. Am. J. Aquat. Res., v. 43, n. 1, p. 186-200, 2015. demonstrated that the macrobenthos assemblage of streams was altered by different land use practices. In the Bondi Lagoon, there was a strong connection between organic material content and macrobenthos abundance, with higher organic material (> 20%) related to a decrease in abundance. A high percentage of organic material and the existence of vast sectors of black reducing sediments generate poor conditions for the subsistence of macrobenthic organisms (STUARDO; VALDOVINOS, 1989STUARDO, J.; VALDOVINOS, C. Estuarios y lagunas costeras: ecosistemas importantes de Chile central. Amb. Des., v. 5, n. 1, p. 107-115, 1989.), as was the situation at stations with a lower number of species and individuals. The agricultural activities near the Budi Lagoon shoreline result in excessive nutrient load inputs, which would consequently cause eutrophication and even episodic crises of anoxia (MCCOMB, 1995MCCOMB, A. J. Eutrophic shallow estuaries and lagoons. Boca Raton: CRC Press, 1995. 252 p.; CASTEL et al., 1996CASTEL, J.; CAUMETTE, P.; HERBERT, R. Eutrophication gradients in coastal lagoons as exemplified by the bassin d'Arcachon and the Étang du Prévost. Hydrobiologia, v. 329, n. 1, p. 9-28, 1996.).

On the other hand, the organic load recorded for the Budi Lagoon likely facilitated that the most abundant taxa were molluscs and polychaetes. Both taxa were represented, especially by L. cumingii (Gastropoda) and P. patagonica (Polichaeta). However, L. cumingii snails were most abundant in sectors with low percentages of organic materials and sandy-muddy sediments. This result contrast that registered by MISTRI et al. (2001)MISTRI, M.; ROSSI, R.; FANO, E. A. Structure and Secondary Production of a Soft Bottom Macrobenthic Community in a Brackish Lagoon (Sacca di Goro, north-eastern Italy). Estuar. Coast. Shelf Sci., v. 52, n. 5, p. 605-616, 2001. in the Sacca di Goro Lagoon of northeast Italy, who found Hidrobia sp. (Gastropoda) in sectors with substrates characterized by high organic material and slow water movements that favoured sedimentation rates.

In turn, the polychaete P. patagonica was abundant in sectors with high organic material content, which can be related to its habits as a detritus feeder (DÍAZ-JARAMILLO et al., 2008DÍAZ-JARAMILLO, M.; MUÑOZ, P.; DELGADO-BLAS, V.; BERTRÁN, C. Spatio-temporal distribution of spionids (Polychaeta-Spionidae) in an estuarine system in south-central Chile. Rev. Chil. Hist. Nat., v. 81, n. 4, p. 501-514, 2008.). The Quele River, located near the Bondi Lagoon, also presents high abundances of P. patagonica (> 140,000 ind. m-2) in sandy-muddy substrates with not greater than 10% organic material (QUIJÓN; JARAMILLO, 1993QUIJÓN, P.; JARAMILLO, E. Temporal Variability in the Intertidal Macroinfauna in the Queule River Estuary, South-central Chile. Estuar. Coast. Shelf Sci., v. 37, n. 6, p. 655-667, 1993.; JARAMILLO et al., 2001JARAMILLO, E.; CONTRERAS, H.; QUIJÓN, P. Variabilidad estacional e interanual en las abundancias poblacionales de la macrofauna intermareal del estuario del río Queule, centro-sur de Chile. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 455-468, 2001.). Likewise, FIERRO et al. (2014)FIERRO, P.; BERTRÁN, C.; MARTINEZ, D.; VALDOVINOS, C.; VARGAS-CHACOFF, L. Ontogenetic and temporal changes in the diet of the Chilean silverside Odontesthes regia (Atherinidae) in southern Chile. Cah. Biol. Mar., v. 55, n. 3, p. 323-332, 2014. registered high polychaete abundances in the Valdivia River estuary, which was probably the result of high organic material quantities in the estuary.

Other species worth mentioning, although present in low densities, were the Diptera of the Chironomidae family. These organisms were found in habitats with high organic content, specifically at stations E2 and E7. These results were similar to those of MISTRI et al. (2001)MISTRI, M.; ROSSI, R.; FANO, E. A. Structure and Secondary Production of a Soft Bottom Macrobenthic Community in a Brackish Lagoon (Sacca di Goro, north-eastern Italy). Estuar. Coast. Shelf Sci., v. 52, n. 5, p. 605-616, 2001. for the Sacca di Goro Lagoon. Likewise, species were found that are associated with the mixohaline ecosystem, such as K. chilenica, Paracorophium hartmannorum, and the oligochaete Tubifex sp., findings that concur with reports by JARAMILLO et al. (2001)JARAMILLO, E.; CONTRERAS, H.; QUIJÓN, P. Variabilidad estacional e interanual en las abundancias poblacionales de la macrofauna intermareal del estuario del río Queule, centro-sur de Chile. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 455-468, 2001. for the Queule River estuary and by FIERRO et al. (2014)FIERRO, P.; BERTRÁN, C.; MARTINEZ, D.; VALDOVINOS, C.; VARGAS-CHACOFF, L. Ontogenetic and temporal changes in the diet of the Chilean silverside Odontesthes regia (Atherinidae) in southern Chile. Cah. Biol. Mar., v. 55, n. 3, p. 323-332, 2014. for the Valdivia River estuary. These species are somewhat tolerant to organic contamination (FIERRO et al., 2012FIERRO, P.; BERTRÁN, C.; MERCADO, M.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; VARGAS-CHACOFF, L. Benthic macroinvertebrate assemblages as indicators of water quality applying a modified biotic index in a spatio-seasonal context in a coastal basin of Southern Chile. Rev. Biol. Mar. Oceanogr., v. 47, n. 1, p. 23-33, 2012.), which could explain the presence of this taxa in the Bondi Lagoon.

In conclusion, the present results suggest that the low salinity and high organic material input (e.g. resident and migratory bird faeces, abundant aquatic vegetation growth, and nearby agriculture) contribute to excessive nutrients, thereby directly affecting the richness, diversity, distribution, and variation of the Budi Lagoon macrobenthos.

  • 1
    Financial Support: This study was possible due to the support of FONDECYT projects 1110798 and 1151375.

ACKNOWLEDGMENTS

The authors thank R. Arriagada for helping in field work. This study was made possible through the support of FONDECYT projects 1110798 and 1151375.

REFERENCES

  • ARENAS, J. Distribución de Elminius kingii Gray (Cirr.) en el estuario del río Valdivia. Beitr. Neotrop. Fauna, v. 6, n. 3, p. 199-206, 1971.
  • ARIAS, A.; DRAKE, P. Structure and production of the benthic macroinvertebrate community in a shallow lagoon in the Bay of Cádiz. Mar. Ecol. Prog. Ser., v. 115, p. 151-167, 1994.
  • BENEDETTI-CECCHI, L.; RINDI, F.; BERTOCCI, I.; BULLERI, F.; CINELLI, F. Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon. Estuar. Coast. Shelf Sci., v. 52, n. 5, p. 659-668, 2001.
  • BERTRÁN, C. Zonación y dinámica temporal de la macrofauna intermareal en el estuario del Río Lingue (Valdivia, Chile). Rev. Chil. Hist. Nat., v. 62, p. 19-32, 1989.
  • BERTRÁN, C.; ARENAS, J.; PARRA, O. Macrofauna del curso inferior y estuario del río Biobío (Chile): cambios asociados a variabilidad estacional del caudal hídrico. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 331-340, 2001.
  • BERTRÁN, C.; VARGAS-CHACOFF, F.; PEÑA-CORTÉS, F.; MULSOW, S.; TAPIA, J.; HAUENSTEIN, E.; SCHLATTER, R.; BRAVO, A. Macrofauna bentónica de los humedales de tres lagos salinos en el borde costero del sur de Chile. Cien. Mar., v. 32, n. 3, p. 589-596, 2006.
  • BERTRÁN, C.; VARGAS-CHACOFF, L.; PEÑA-CORTÉS, F.; SCHLATTER, R.; TAPIA, J.; HAUENSTEIN, E. Distribución de la macrofauna bentónica en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 45, n. 2, p. 235-243, 2010.
  • BERTRÁN, C.; JIMÉNEZ, C.; FIERRO, P.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; VARGAS-CHACOFF, L. Alimentación de Micropogonias furnieri (Osteichtyes: Scianidae) en el lago costero Budi, Sur de Chile. Rev. Biol. Mar. Oceanogr., v. 48, n. 1, p. 193-197, 2013.
  • BEUKEMA, J. J. Expected effects of change in winter temperatures on benthic animals living in soft sediment in coastal North Sea areas. In: BEUKEMA, J. J.; WOLFF W. J., BROUNS, J. J. W. M. (Eds). Expected Effects of climatic Change on Marine Coastal Ecosystems. Dordrecht: Springer Science, 1990. p. 83-92.
  • BRAVO, A. Distribución de la macrofauna submareal en los fondos blandos de la Bahía Queule y estuario del río Queule. Medio Amb., v. 7, n. 1, p. 37-46, 1984.
  • BROWER, J.; ZAR, J.; VON ENDE, C. N. Field Laboratory methods for General Ecology. Dubuque: Wm. C. Brown Company Publishers, 1990. 237 p.
  • BYERS, S. C.; MILLS, E. L.; STEWART, P. L. A comparison of methods to determining organic carbon in marine sediments, with suggestion for a standard method. Hydrobiologia, v. 58, n. 1, p. 43-47, 1978.
  • CASTEL, J.; CAUMETTE, P.; HERBERT, R. Eutrophication gradients in coastal lagoons as exemplified by the bassin d'Arcachon and the Étang du Prévost. Hydrobiologia, v. 329, n. 1, p. 9-28, 1996.
  • CLARKE, K. R.; WARWICK, R. M.; SOMERFIELD, P. J.; GORLEY, R. N. Change in marine communities: an approach to statistical analysis and interpretation. 3rd ed. Plymouth: PRIMER-E Ltd, 2005. 144 p.
  • CONTRERAS, H.; JARAMILLO, E.; DUARTE, C.; MCLACHLAN, A. Population abundances, growth and natural mortality of the crustacean macrofauna at two sand beach morphodynamic types in southern Chile. Rev. Chil. Hist. Nat., v. 76, n. 4, p. 543-561, 2003.
  • DIRECCIÓN GENERAL DE AERONÁUTICA CIVIL. (DGAC). Anuario Climatologico 2005. Santiago, 2006. 189 p.
  • DÍAZ-JARAMILLO, M.; MUÑOZ, P.; DELGADO-BLAS, V.; BERTRÁN, C. Spatio-temporal distribution of spionids (Polychaeta-Spionidae) in an estuarine system in south-central Chile. Rev. Chil. Hist. Nat., v. 81, n. 4, p. 501-514, 2008.
  • DRAKE, P.; ARIAS, A. M. The effect of aquaculture practices on the benthic macroinvertebrate community of a lagoon system in the Bay of Cadiz (southwestern Spain). Estuaries, v. 20, n. 4, p. 677-688, 1997.
  • ENCALADA, E.; BERTRÁN, C.; VARGAS-CHACOFF, L. Changes to the benthic assemblage associated with mollusc and seaweed cultivation in the Quempillén estuary, north Patagonia, Chile. Gayana (Concepc.), v. 74, n. 2, p. 147-151, 2010.
  • FIERRO, P.; BERTRÁN, C.; MERCADO, M.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; VARGAS-CHACOFF, L. Benthic macroinvertebrate assemblages as indicators of water quality applying a modified biotic index in a spatio-seasonal context in a coastal basin of Southern Chile. Rev. Biol. Mar. Oceanogr., v. 47, n. 1, p. 23-33, 2012.
  • FIERRO, P.; BERTRÁN, C.; MARTINEZ, D.; VALDOVINOS, C.; VARGAS-CHACOFF, L. Ontogenetic and temporal changes in the diet of the Chilean silverside Odontesthes regia (Atherinidae) in southern Chile. Cah. Biol. Mar., v. 55, n. 3, p. 323-332, 2014.
  • FIERRO, P.; BERTRÁN, C.; MERCADO, M.; PEÑA-CORTÉS, F.; TAPIA, J.; HAUENSTEIN, E.; CAPUTO, L.; VARGAS-CHACOFF, L. Landscape composition as a determinant of diversity and functional feeding groups of aquatic macroinvertebrates in southern rivers of the Araucanía, Chile. Lat. Am. J. Aquat. Res., v. 43, n. 1, p. 186-200, 2015.
  • FOLK, R. L. Petrology of sedimentary rocks. Austin: Hemphill, 1980. 184 p.
  • GALLARDO, C. S. Reproductive habits and life cycle of the small clam Kingiella chilenica (Bivalvia: Cyamiidae) in an estuarine sand flat from the South of Chile. Mar. Biol., v. 115, n. 4, p. 595-603, 1993.
  • GLÉMAREC, M. Ecological impact of an oil spill: utilization of biological indicators. Water Sci. Technol., v. 18, n. 4/5, p. 203-211, 1986.
  • HOLLAND, A. F.; SHAUGHNESSY, A. T.; HIEGEL, M. H. Long-term variation in mesohaline Chesapeake bay macrobenthos: Spatial and temporal patterns. Estuaries, v. 10, n. 3, p. 227-245, 1987.
  • HYNES, H. B. N. The ecology of running waters. Liverpool: Liverpool University Press, 1970. 555 p.
  • JARAMILLO, E.; MULSOW, S.; PINO, M.; FIGUEROA, H. Subtidal benthic macrofauna in an estuary of south of Chile: distribution pattern in relation to sediment types. Mar. Ecol., v. 5, n. 2, p. 119-133, 1984.
  • JARAMILLO, E.; CONTRERAS, H.; QUIJÓN, P. Variabilidad estacional e interanual en las abundancias poblacionales de la macrofauna intermareal del estuario del río Queule, centro-sur de Chile. Rev. Chil. Hist. Nat., v. 74, n. 2, p. 455-468, 2001.
  • KALEJTA, B.; HOCKEY, P. A. R. Distribution, abundance and productivity of benthic invertebrates at the Berg River estuary, South Africa. Estuar. Coast. Shelf Sci., v. 33, n. 2, p. 175-191, 1991.
  • KJERFVE, B. Coastal lagoon processes. Amsterdam: Elsevier, 1994.
  • MCCOMB, A. J. Eutrophic shallow estuaries and lagoons. Boca Raton: CRC Press, 1995. 252 p.
  • MISTRI, M.; ROSSI, R.; FANO, E. A. Structure and Secondary Production of a Soft Bottom Macrobenthic Community in a Brackish Lagoon (Sacca di Goro, north-eastern Italy). Estuar. Coast. Shelf Sci., v. 52, n. 5, p. 605-616, 2001.
  • NICHOLS, F. H.; CLOERN, J. E.; LUOMA, S. N.; PETERSON, D. H. The modification of an estuary. Science, v. 231, n. 4738, p. 567-573, 1986.
  • PEQUEÑO, G.; PAVÉS, H.; BERTRÁN, C.; VARGAS-CHACOFF, L. Seasonal limnetic feeding regime of the "robalo" Eleginops maclovinus (Valenciennes 1830), in the Valdivia river, Chile. Gayana (Concepc.), v. 74, n. 1, p. 47-56, 2010.
  • PEÑA-CORTÉS, F.; GUTIÉRREZ, P.; REBOLLEDO, G.; ESCALONA, M.; HAUENSTEIN, E.; BERTRÁN, C.; SCHLATTER, R.; TAPIA, J. Determinación del nivel de antropización de humedales como criterio para la planificación ecológica de la cuenca del lago Budi, IX Región de La Araucanía, Chile. Rev. Geogr. Norte Gd., n. 36, 75-91, 2006a.
  • PEÑA-CORTÉS F.; REBOLLEDO, G.; HERMOSILLA, K.; HAUENSTEIN, E.; BERTRÁN, C.; SCHLATTER, R.; TAPIA, J. Dinámica del paisaje para el período 1980-2004 en la cuenca costera del Rio-Lago Budi, Chile. Consideraciones para la conservación de sus humedales. Ecol. Austral, v. 16, n. 2, p. 183-196, 2006b.
  • PEÑA-CORTÉS, F.; PINCHEIRA-ULBRICH, J.; BERTRÁN, C.; TAPIA, J.; HAUENSTEIN, E.; FERNÁNDEZ, E.; ROZAS, D. A study of the geographic distribution of swamp forest in the coastal zone of the Araucanía Region, Chile. Appl. Geogr., v. 31, n. 2, p. 545-555, 2011.
  • PÉREZ-RUZAFA, A.; MARCOS, C.; PÉREZ-RUZAFA, I. M.; PÉREZ-MARCOS, M. Coastal lagoons: "transitional ecosystems" between transitional and coastal waters. J. Coast. Conservat., v. 15, n. 3, p. 369-392, 2011.
  • QUIJÓN, P.; JARAMILLO, E. Temporal Variability in the Intertidal Macroinfauna in the Queule River Estuary, South-central Chile. Estuar. Coast. Shelf Sci., v. 37, n. 6, p. 655-667, 1993.
  • SFRISO, A.; BIRKEMEYER, T.; GHETTI, P. F. Benthic macrofauna changes in areas of Venice lagoon populated by seagrasses or seaweeds. Mar. Environ. Res., v. 52, n. 4, p. 323-349, 2001.
  • STONER, A. W.; ACEVEDO, C. The macrofaunal community of a tropical estuarine lagoon. Estuaries, v. 13, n. 2, p. 174-181, 1990.
  • STUARDO, J.; VALDOVINOS, C. Estuarios y lagunas costeras: ecosistemas importantes de Chile central. Amb. Des., v. 5, n. 1, p. 107-115, 1989.
  • SYVITSKI, J. P.; VÖRÖSMARTY, C. J.; KETTNER, A. J.; GREEN, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, v. 308, n. 5720, p. 376-380, 2005.
  • UNDERWOOD, A. J.; CHAPMAN, M. G. Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia, v. 107, n. 2, p. 212-224, 1996.

Publication Dates

  • Publication in this collection
    Jul-Sep 2016
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br