Acessibilidade / Reportar erro

A preliminary evaluation of shallow-water rhodolith beds in Bahia Magdalena, Mexico

Abstracts

The aim of the present study was to describe the structure of shallow-water rhodolith beds from Bahia Magdalena, one of the most productive estuarine systems of the Mexican Pacific coasts. From September 2008 to May 2009 four rhodolith beds were found (between 1 and 3 m depth) and population descriptors such as rhodolith density, size classes, branch density, volume and weight were determined. The dominant rhodolith forming species was Lithophyllum margaritae. The size of beds ranged from 7,600 to 17,800 m2 approximately with densities from 42.2 to 215.9 ind.m-2. In these beds, L. margaritae shows fruticose and foliose growth forms, from which spherical forms were predominant (81-99%). Branch density (from 3.0 to 13.3 branches.cm-2) varied significantly (p < 0.05) among beds. The average volume (from 2.0 to 400 mL) and wet weight (from 32.4 to 84.8 g) was not significantly different among sites, but a significant positive correlation (r = 0.95, p < 0.05) was found between these parameters. The size of plants ranged from 2.0 to 11.5 cm with predominant size classes of 40.1-60 mm. Differences in rhodolith density, branch density and sphericity were attributed to possible differences in hydrodynamic conditions among sites. These beds were also a suitable habitat for high diversity of associated sponges. A non-metric multidimensional scaling (MDS) analysis using sponge species data revealed variability in the distribution of sponge assemblages among sites, which is likely the result of differences in environmental conditions. Although these rhodolith beds are not as extensive as those of other regions, our preliminary surveys revealed that they are a common habitat in Bahía Magdalena and likely have an important role in the productivity of this estuarine system.

Rhodolith beds; Lithophyllum margaritae; distribution; Bahia Magdalena; Baja California; México


O objetivo do presente estudo foi descrever a estrutura de bancos de rodolitos de áreas rasas da Bahia Magdalena, um dos sistemas estuarinos mais produtivos da costa pacífica mexicana. Quatro bancos de rodolitos situados entre 1 e 3m de profundidade foram avaliados em relação a densidade, classes de tamanho, densidade dos ramos, volume e peso no período de setembro de 2008 a maio de 2009. A espécie dominante no local foi Lithophyllum margaritae. O tamanho dos bancos variou de 7,600 a 17,800 m² aproximadamente, com densidades de 42.2-215.9 ind.m-2 . Foram observadas formas de crescimento fruticosa e folhosa em L. margaritae, sendo a forma esférica predominante (81-99%). A densidade dos ramos (3.0-13.3 ramos.cm-2) variou significativamente (p < 0.05) entre os bancos. O volume médio (2.0-400 ml) e o peso úmido (32.4-84.8 g) não tiveram diferenças significativas entre os locais, mas uma correlação positiva significativa (r = 0.95, p < 0.05) foi encontrada entre os parâmetros. O tamanho das plantas variou de 2.0 a 11.5 centímetros predominando o padrão entre 40.1-60 mm. As diferenças na densidade de rodolitos, densidade dos ramos e a esfericidade foram atribuídas às condições hidrodinâmicas diferenciadas nos locais. Estes bancos também foram um importante habitat para uma grande diversidade de esponjas associadas. A ordenação das amostras com o escalonamento multidimensional não-métrico (MDS) indicou grande variabilidade na distribuição das assembléias de esponjas entre os bancos, estas diferenças provavelmente são resultado de diferenças nas condições ambientais. Embora estes bancos de rodolitos não sejam tão extensos quanto os de outras regiões, nossas pesquisas preliminares revelaram que estes bancos são um habitat comum na Bahia Magdalena e provavelmente têm um papel importante na produtividade do sistema estuarino da região.

Bancos de rodolitos; Lithophyllum margaritae; distribuição; Bahia Magdalena; Baja California; México


  • ALVAREZ-BORREGO, S.; GALINDO-BECT, L. A.; CHEE-BARRAGAN A. Características hidroquímicas de Bahía Magdalena, B.C.S. Cienc. Mar, v.2,n.2,p. 94-110, 1975.
  • AMADO-FILHO, G. M.; MANEVELDT, G.; MANSO, R. C. C.; MARINS-ROSA, B. V.; PACHECO, M. R.; GUIMARAES, S. M. P. B. Estructura de los mantos de rodolitos de 4 a 55 metros de profundidad en la costa sur del estado de Espíritu Santo, Brasil. Cienc. Mar, v. 33, n. 4, p. 399-410, 2007.
  • ATHANASIADIS, A.; LEBEDNIK, P. A.; ADEY, W. H. The genus Mesophyllum (Melobesioideae, Corallinales, Rhodophyta) on the Northern Pacific coast of North America. Phycologia, v. 43, p. 126-165, 2004.
  • BARBERA, C.; BORDEHORE, C.; BORG, J. A.; GLÉMAREC, M.; GRAS, J.; HALL-SPENCER, J. M.; DE LA HUZ, CH.; LANFRANCO, E.; LASTRA, M.; MOORE, P. G.; MORA, J.; PITA, M. E.; RAMOS-ESPLÁ, A. A.; RIZZO, M.; SÁNCHEZ-MATA, A.; SEVA, A.; SCHEMBRI, P. J.; VALLE, C. Conservation and management of northeast Atlantic and Mediterranean maërl beds. Aquat. Conserv.: Mar. Freshw. Ecosyst., v. 13, p. 65-76, 2003.
  • BASSO, D. Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeogr., Palaeoclimatol., Palaeoecol., v. 137, p. 172-187, 1998.
  • BELL, J. J.; BARNES, D. K. A. Effect of disturbance on assemblages: an example using Porifera. Biol. Bull, v. 205, p. 114-159, 2003.
  • BERMAN, J.; BELL, J. J. Spatial variability of sponge assemblages on the Wellington south coast, New Zealand. Open Mar. Biol. J v. 4, p. 12-25, 2010.
  • BIRKETT, D. A.; MAGGS, C. A.; DRING, M. J. Maërl: An overview of dynamic and sensitivity characteristics for conservation management of marine SACs v. 6. Scottish Assoc. Marine Science/UK Marine SACs Project, 1998.
  • BLUNDEN, G.; FARNHAM, W. F.; JEPHSON, N.; BARWELL, C. J.; FENN, R. H.; PLUNKETT, B. A. The composition of maerl beds of economic interest in northern Brittany, Cornwall and Ireland. Proc. Int. Seaweed Symp v. 10, p. 651-656, 1981.
  • BLUNDEN, G.; FARHAM, W. F.; JEPHSON, N.; FENN, R. H.; PLUNKETT, B. A. The composition of maerl from the Glenan Islands of Southern Brittany. Bot. Mar, v. 20, p. 121-125, 1977.
  • BOSENCE, D. W. J. Ecological studies on two unattached coralline algae from western Ireland. Paleontology v. 19, p. 365-395, 1976.
  • BOSCENCE, D. W. J.; PEDLEY, H. M. Sedimentology and palaeoecology of Miocene coralline algal biostrome from the Maltese Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol, v. 38, p. 9-43, 1982.
  • BOSENCE, D. W. J. The occurrence and ecology of recent rhodoliths-a review, In: TADEUSZ, M. P. (Ed.). Coated grains. Springer-Verlag, p. 225-242, 1983.
  • BRAY, J. R.; CURTIS, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr, v. 27, p. 325-349, 1957.
  • CANALS, M.; BALLESTEROS, E. Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep Sea Res, v. 44, p. 611-629, 1997.
  • CARBALLO, J. L.; NAVA, H. A comparison of sponge assemblage patterns in two adjacent rocky habitats (tropical Pacific Ocean, Mexico). Ecoscience, v. 14, p. 92-102, 2007.
  • FIELD, J. G.; CLARKE, K. R.; WARWICK, R. M. A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser, v. 8, p. 3752, 1982.
  • FRANTZ, B. R.; KENNETH, M. K.; COALE, H.; FOSTER, M. S. Growth rate and potential climate record from a rhodolith using 14C accelerator mass Spectrometry. Limnol. Oceanogr, v. 45, n. 8, p. 1773-1777, 2000.
  • FOSTER, M. S. Rhodoliths: Between rocks and soft places. J. Phycol, v. 37, p. 659-667, 2001.
  • FOSTER, M. S.; RIOSMENA-RODRIGUEZ, R.; STELLER, D. L.; WOELKERLING, W. J. Living rhodolith beds in the Gulf of California and their implications for paleoenvironmental interpretation. Geol. Soc. Am. Spec. Pap, v. 318, p. 127-139, 1997.
  • GLYN, P. W. Rolling stones among the Scleractinia: mobile coralliths in the Gulf of Panama. Proc. 2nd Int. Coral Reef Symp., v. 2, p. 183-198, 1974.
  • GRAHAM, D. J.; MIDGLEY, N. G. Graphical representation of particle shape using triangular diagrams: an excel spreadsheet method. Earth Surf. Proc. Land., v. 25, p. 1473-1477, 2000.
  • GRALL, J. Fiche de synthèse sur les biocénoses: les bancs de maërl. Institut français de recherche pour lexploitation de la mer (IFREMER). p. 1-20, 2003.
  • GRALL, J.; HALL-SPENCER, J. M. Problems facing maërl conservation in Brittany. Aquat. Conserv. Mar. Freshw. Ecosyst, v. 13, p. 55-64, 2003.
  • GRAY, S.; KINROSS, J.; READ, P.; MARLAND, A. The nutrient assimilative capacity of maërl as a substrate in constructed wetland systems for waste treatment. Water Res, v. 34, n. 8, p. 2183-2190, 2000.
  • HALL-SPENCER, J. M. Conservation issues relating to maërl beds as habitats for molluscs. J. Conchiol. Spec. Publ, v. 2, p. 271-286. 1998.
  • HALL-SPENCER, J. M.; MOORE, P. G. Scallop dredging has profound, long-term impacts on maerl habitats. ICES J. Mar. Sci, v. 57, p. 1407-1415. 2000.
  • HINOJOSA-ARANGO, G.; RIOSMENA-RODRÍGUEZ, R. Influence of rhodolith-forming species and growth-form on associated fauna of rhodolith beds in the central-west Gulf of California, Mexico. PSZN: Mar. Ecol, v. 25, p. 109-127, 2004.
  • HILY, C.; POTIN, P.; FLOCH, J. Y. Structure of subtidal algal assemblages on soft-bottom sediments: fauna/flora interactions and role of disturbances in the Bay of Brest, France. Mar. Ecol. Prog. Ser., v. 85, p. 115-130, 1992.
  • KAMENOS, N. A.; MOORE, P. G.; HALL-SPENCER, J. M. The attachment of the juvenile queen scallop (Aequipecten opercularis) to maërl in mesocosm conditions: juvenile habitat selection. J. Exp. Mar. Biol. Ecol, v. 306, p. 139-155, 2004.
  • KONAR, B.; RIOSMENA-RODRIGUEZ, R.; IKEN, K. Rhodolith bed: a newly discovered habitat in the North Pacific Ocean. Bot. Mar, v. 49, p. 355-359, 2006.
  • KRUSKAL, J. B.; WISH, M. (Ed). Multidimensional scaling. Beverly Hills, CA: Sage Publications, 1978.
  • LANKFORD, R. R. Coastal lagoons of Mexico: Their origin and classification. In: WILEY, M. (Ed.). Estuarine Processes. New York: Academic Press, 1977. p. 182-215.
  • LITTLER, M. M.; LITTLER, D. S. Coralline algal rhodoliths form extensive benthic communities in the Gulf of Chiriquí, Pacific Panama. Coral Reefs, v. 27, n. 3, p. 553, 2008.
  • LITTLER, M. M.; LITTLER, D. S.; HANISAK, M. D. Deepwater rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol, v. 150, p. 163-182, 1991.
  • LLUCH-BELDA, D.; HERNANDEZ-RIVAS, M.; SALDIERNA-MARTINEZ, R.; GUERRERO-CABALLERO, R. Variabilidad de la temperatura superficial del mar en Bahía Magdalena, B.C.S. Oceánides, v. 15, p. 11-23, 2000.
  • LÓPEZ-BENITO, M. Estudio de la composición química del Lithothamnion calcareum (Aresch.) y su aplicación como corrector de cultivo. Inv. Pesq, v. 23, p. 53-70, 1963.
  • OBESO-NIEBLAS, M.; GAVINO-RODRIGUEZ, J. H.; JIMENEZ-ILLESCAS, A. R. Modelación de la marea en el sistema lagunar Bahía Magdalena-Almejas, B.C.S., Mexico. Oceánides, v. 14, n. 2, p. 79-88, 1999.
  • MARRACK, E. C. The relationship between water motion and living rhodolith beds in the southwestern Gulf of California, Mexico. Palaios, v. 14, p. 159-171. 1999.
  • MARTINEZ-GUTIERREZ, G.; MAYER, L. Huracanes en Baja California, México y sus implicaciones en la sedimentación en el Golfo de California. Geos, v. 24, n. 1, p. 56-64, 2004.
  • PEÑA, V.; BÁRBARA, I. Biological importance of an Atlantic European maërl bed in the Benencia Island (northwest Iberian Peninsula). Botanica mar., v. 51, n. 6, p. 493-505, 2008.
  • RIOSMENA-RODRIGUEZ, R.; WOELKERLING, W. J.; FOSTER, M. S. Taxonomic reassessment of rhodolithforming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico. Phycologia, v. 38, p. 401-417, 1999.
  • RIUL, P.; TARGINO, C. H.; FARIAS, J. N.; VISSCHER, P. T.; HORTA, P. A. Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. J. Mar. Biol. Ass. UK, v. 88, p. 17-19, 2008.
  • ROBINSON, C.J.; GÓMEZ-AGUIRRE, S.; GÓMEZ-GUTIÉRREZ J. Pacific sardine behaviour related to tidal current dynamics in Bahía Magdalena, Mexico. J. Fish Biol, v. 71, p. 1-19, 2007.
  • SCHWEERS, T.; WOLFF, M.; KOCH, V.; SINSEL-DUARTE, F. Population dynamics of Megapitaria squalida (Bivalvia: Veneridae) at Magdalena Bay, Baja California Sur, Mexico. Rev. Biol. trop, v. 54, p. 1003-1017, 2006.
  • SCOFFIN, T. P.; STODDART, D. R.; TUDHOPE, A. W.; WOODROFFE, C. Rhodoliths and coralliths of Muri Lagoon, Rarotonga, Cook Islands. Coral Reefs, v. 4, n. 2, p. 71-80, 1985.
  • SNEED, E. D.; FOLK, R. L. Pebbles in the lower Colorado River, Texas, a study in particle morphogenesis. J. Geol, v. 66, n. 2, p. 114-150, 1958.
  • STELLER, D. L.; CÁCERES-MARTÍNEZ, C. Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus. Mar. Ecol. Progr. Ser, v. 396, p. 49-60, 2009.
  • STELLER, D. L.; FOSTER, M. S. Environmental factors influencing distribution and morphology of rhodoliths in Bahía Concepción, B.C.S., Mexico. J. Exp. Mar. Biol. Ecol, v. 194, p. 201-212, 1995.
  • STELLER, D. L.; RIOSMENA-RODRÍGUEZ, R.; FOSTER, M. S., ROBERTS, C. A. Rhodolith bed diversity in the Gulf of California: The importance of rhodolith structure and consequences of disturbance. Aquat. Conserv.: Mar. Freshw. Ecosyst, v. 13, p. S5-S20, 2003.
  • STELLER, D. L.; HERNÁNDEZ-AYÓN, J. M.; CABELLO-PASINI, A. Effect of temperature on photosynthesis, growth and calcification rates of the free-living coralline alga Lithophyllum margaritae Cienc. Mar, v. 33, p. 443-448, 2007.
  • STELLER, D. L.; FOSTER, M. S.; RIOSMENA-RODRÍGUEZ, R. Living rhodolith bed ecosystems in the Gulf of California, In: JOHNSON, J. M., LEDESMA-VÁZQUEZ, J. (Eds.). Atlas of Coastal Ecosystems in the Gulf of California: Past and Present. University of Arizona Press, p. 72-82, 2009.
  • UNDERWOOD, A. J.; KINGSFORD, M. J.; ANDREW, N. L. Patterns in shallow subtidal marine assemblages along the coast of New South Wales. Aust. Ecol, v. 16,p. 231-49, 1991.

Publication Dates

  • Publication in this collection
    03 Feb 2012
  • Date of issue
    Dec 2011

History

  • Received
    22 Jan 2011
  • Reviewed
    30 Mar 2011
  • Accepted
    09 June 2011
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br