bn
Biota Neotropica
Biota Neotrop.
1676-0611
Instituto Virtual da Biodiversidade | BIOTA - FAPESP
Resumo
Jaguatiricas possuem um papel fundamental em comunidades ecológicas como mesopredadores, afetando níveis tróficos inferiores e também outros mesopredadores. Esta espécie possui uma grande variabilidade em suas características ecológicas em toda a sua distribuição, no entanto, o conhecimento desta espécie possui lacunas em vários locais onde ela ocorre. Neste trabalho, nós apresentamos o primeiro estudo desta espécie no semiárido brasileiro da Caatinga. Ambientes áridos podem afetar negativamente as espécies carnívoras e, aliado a alterações antrópicas, esta espécie pode ser levada a extinção local se sua densidade populacional é baixa. Portanto, para verificar o nível populacional da jaguatirica em uma região protegida da Caatinga, instalamos armadilhas fotográficas, entre setembro de 2009 e janeiro de 2010. Com os dados obtidos, calculamos a densidade desta espécie através de métodos espacialmente explícitos (SECR). A densidade estimada da jaguatirica foi de 3.16 ± 0.46 indivíduos por 100 km2. Esta estimativa é muito baixa para esta espécie, o que pode ser um reflexo das condições áridas deste ambiente. Um estudo populacional de maior duração pode ajudar a responder se esta baixa densidade é o suficiente para a persistência desta espécie a longo prazo tanto neste, quanto em outros ambientes áridos onde ela ocorre.
Introduction
The ocelot (Leopardus pardalis) occurs from southern Texas to north Argentina (Murray & Gardner 1997) in open environments, flood plains, dry coniferous forests, and rainforests (Emmons & Feer 1997). Besides the existence of many studies focused on this species through its distribution (de Villa Meza et al. 2002, Haines et al. 2005, Maffei & Noss 2008, Kolowski & Alonso 2010), very few have addressed this species in arid habitats (Laack 1991, González et al. 2003, Harveson et al. 2004, Maffei et al. 2005).
Ocelot densities vary across its distribution, ranging from 2.3 to 75.2 individuals per 100 km2 (Table 1) and are thought to decrease with lower precipitation and increasing distance from the equator (Di Bitetti et al. 2008). This is because a lower precipitation may decrease productivity (Chesson et al. 2004) which in turn, might decrease carnivore prey densities (Herfindal et al. 2005, Pettorelli et al. 2009, Sandom et al. 2013), and higher latitudes often correlates with a lower precipitation (Prince & Goward 1995, Di Bitetti et al. 2008). However, arid environments might present different challenges to species in those regions.
Table 1
Ocelot density estimated in different studies and regions
Country
Habitat
Density (individuals/ 100 km2)
Method1
Source
Peru
Amazon Forest
75,2
Non-spatial
Kolowski & Alonso (2010)
Brazil
Pantanal
56,4
Non-spatial
Trolle & Kery (2003)
Bolivia
Chaco dry forest
1.6-51.7
Spatially-explicit
Noss et al. (2012)
Peru
Amazon Forest
43,5
Non-spatial
Kolowski & Alonso (2010)
U. S. A.
Coastal grasslands
30
Non-spatial
Haines et al. (2006)
Belize
Tropical Rainforest
25,88
Non-spatial
Dillon & Kelly (2007)
Brazil
Atlantic Forest
21
Non-spatial
Fusco-Costa et al. (2010)
Argentina
Atlantic Forest
19,99
Non-spatial
Di Bitetti et al (2006)
Argentina
Atlantic Forest
13,36
Non-spatial
Di Bitetti et al (2006)
Argentina
Atlantic Forest
12,84
Non-spatial
Di Bitetti et al (2006)
Belize
Tropical Rainforest
12,61
Non-spatial
Dillon & Kelly (2008)
Argentina
Atlantic Forest
7,71
Non-spatial
Di Bitetti et al (2006)
Mexico
Sonora Desert
5,7
Non-spatial
González et al (2003)
Brazil
Caatinga
3,16
Spatially-explicit
This study
Brazil
Atlantic Forest
4
Non-spatial
Goulart et al. (2009)
Belize
Tropical Pine Forest
2.3-3.8
Non-spatial
Dillon & Kelly (2007)
1
Density estimation method: Spatially-Explicity Capture-Recapture (SECR) or Non-spatial methods.
The semiarid of the Caatinga, in northeastern Brazil (Figure 1), for instance, is a harsh environment where ocelots occurs (Oliveira & Cassaro 2005). This region has a high annual mean temperature (26o to 30o) and the lowest precipitation (300-1,000 mm/year) of Brazil (Prado 2008). Furthermore, this habitat is under heavily negative human induced changes like deforestation for ranches and plantations (Castelletti et al. 2004). However, there is almost no knowledge of ocelots' population status in the Caatinga.
Figure 01
Map of Serra da Capivara National Park with camera locations.
Ocelots are ecologically important as mesopredators, not only affecting prey species, but potentially other carnivore species as well (de Oliveira & Pereira 2013), it is essential to conduct studies in this region where not only the ocelot, but also others species, faces a harsh environment that is being severely modified by human activities (Leal et al. 2008). Therefore, this study aims to contribute to the knowledge of ocelot populations in arid habitats by estimating its abundance and density in one of the few conservation units in the Caatinga (Leal et al. 2008).
Material and Methods
The study was conducted at the Serra da Capivara National Park (SCNP), in southern Piauí state (Figure 1), covering an area of 1,291 km2 (FUMDHAM 1994). Local mean annual rainfall is approximately 644 mm with temperatures ranging from 12-45oC and annual mean of 26oC (Pellerin 1991). To make up for the lack of permanent natural water sources, the park's administration conducts artificial water hole management in which a water truck fills, periodically, artificial ponds distributed in the park.
We deployed 70 camera trap stations between September 1st 2009 and January 19th 2010 in roads and trails inside the park (Figure 1). We chose to install the stations in this way because several studies have demonstrated that big cats (Emmons 1988, Carbone & Christie 2001, Maffei et al. 2005) and ocelots (Trolle & Kéry 2005) have higher capture rates on roads and trails than on forested habitats. Additionally, the dense thorny vegetation and dramatic relief present in the park made it very difficult to install trap stations in other areas. Each station had two cameras (LeafRiver – Leaf River Outdoor Products, Taylorville, MS, US) facing each other in order to photograph both sides of the animal, which facilitates posterior individual identification. Cameras were set to operate continuously, with a 5-minute delay between consecutive photos. Each trap was spaced from the others by a mean distance of 2.9 ± 0.4 km (SD). Like other ocelot studies (Maffei et al. 2005, Di Bitetti et al. 2006, Maffei & Noss 2008), the present study was originally designed for jaguars (Silveira et al. 2009) and we opportunistically gathered important data on ocelots.
To estimate density we applied spatially explicit capture-recapture (SECR) Maximum-likelihood methods (Borchers & Efford 2008) implemented in software R 3.0.1 through the package "secr" (Efford 2011). These models estimates the density (D^), assuming the existence of a relation of the animal detection probability to the distance (d) from each animal home range center. This follows a two-parameters function, g(d), with g0
being the detection probability when d = 0, and a spatial scale σ, related to home range diameter (O'Brien & Kinnaird 2011). We considered six models with different effects on detection: (1) No variation in detection [g0
(.)σ(.)], (2) variation after the first capture [g0
(b)σ(.)], (3) variation with time [g0
(T)σ(.)], (4) differences between sexes [g0
(sex)σ(.)] (5) The conjoint effect of sex and time [g0
(sex+T)σ(.)] and (6) behavior and time [g0
(b+T)σ(.)]. We selected between models by using the Akaike Information Criterion adjusted for small samples (AICc).
Results
We registered 316 pictures of ocelots comprising 51 individuals. (Two researchers identified each picture independently). It is possible to identify sex easily in ocelot's pictures due the conspicuousness of the male's scrotum, and we found a sex ratio of 1.5:1 males to females (31 males and 20 females). We found 38 individuals (74.5%) at more than one station, 27 at more than two (52.9%) and 11 individuals (21.5%) had no recaptures (i.e. registered at only one photograph). There were also several pictures of juveniles and cubs; however, we did not include them in the analysis because we could not identify them individually. Model selection highlighted the difference between sexes on detection probability (Table 2), consistent with other studies that find ocelots are a territorial species with variation in home range and activity between sexes (Dillon & Kelly 2008). The highest-ranked model estimated 3.16 ± 0.46 ocelots/100 km2.
Table 2
Model selection results for different density models.
Model
AICc
ΔAICc
AIC weight
[g(sex)σ(.)]
1998,5
0
0,67
[g(sex + T)σ(.)]
2000,1
1,56
0,3
[g(b)σ(.)]
2005,7
7,24
0,01
[g(b + T)σ(.)]
2008,5
10,06
0
[g(.)σ(.)]
2012,1
13,64
0
Discussion
Ocelot density in our study area was at the lower end for this species in relation to other regions (Table 1), which could make this population especially prone to environmental changes – man made or not – and local extinction (Purvis et al. 2000). Several characteristics of this arid region could be affecting ocelot populations. The first environmental factor that might play a role keeping this ocelot population at lower levels is the low productivity. In some regions, low productivity can limit prey species (East 1984, McNaughton et al. 1989), which in turn may suppresses carnivore populations, because of the lower density of prey (Carbone & Gittleman 2002). This bottom-up effect, was hypothesized to be a main driver of ocelot density throughout its distribution (Di Bitetti et al. 2008). However, dry environments may affect ocelots adversely. Other studies on ocelots densities in arid regions estimated highly varying densities: 1.6 to 51.7 ocelots/100 km2 in the Bolivian dry forests (Noss et al. 2012), 30 ocelots/100 km2 in Texas (Haines et al. 2006) and 5.7 ocelots/100 km2 .In Sonora, Mexico (González et al. 2003).
It is also interesting to note that the lowest density estimated for ocelots (2.3 individuals per 100 km2) comes from a tropical pine forest in Belize (Dillon & Kelly 2007). These same authors, however, found a higher ocelot density in forests that were not pine-dominated (25 individuals per 100 km2). Hence, vegetation structure may play an important role of this carnivore density across different regions. In our study, we estimated a low density in a region with a low productivity in an area with a dense vegetation structure, suggesting that in arid environments the productivity is a strong factor for ocelot density. However, we observed a high presence of rock cavies (Kerodon rupestris) during our survey. If this small rodent is an important part of ocelot's diet in this site, we do not believe low productivity is a main factor affecting ocelot density here. Unfortunately, the number of ocelot studies in arid regions are insufficient to verify a connection between productivity and density, as suggested by previously (Di Bitetti et al. 2008).
Several other factors may be relevant in arid landscapes. The interaction with other carnivore species can affect a species population (Palomares & Caro 1999, Caro & Stoner 2003, Dayan & Simberloff 2005, Donadio & Buskirk 2006). Ocelots co-occur with Jaguars and Pumas in the SCNP. These apex carnivores have a relatively high density in this park (Silveira et al. 2009) and they might negatively affect ocelot densities through intraguild killing (Ritchie & Johnson 2009).
Continuous monitoring of this species would help elucidate whether this low density is the natural state of ocelots in the Caatinga or whether the population is declining. Even if the density remains constant during different years, it is still a very low estimative and likely to be subject to local extinction with environmental changes or increase in human activities in the region. This study provides background for future research concerning ocelots in these and other arid habitats.
Acknowledgments
This study was funded by the Jaguar Conservation Fund (JCF), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF – Pronex 193000563-2009). We also would like to thank the reviewers that offered invaluable suggestions to improve this paper. We appreciate the support provided by the Fundação do Homem Americano and Park administration of Instituto Brasileiro de Meio Ambiente e Recursos Naturais Renováveis. A Scholarship grant to G.P. was provided by Coordenação de Aperfeiçoamento de Pesssoal de Nível Superior (CAPES) and to S.A. by CAPES and CNPQ.
References
CARBONEC. & CHRISTIES.
2001
The use of photographic rates to estimate densities of tigers and other cryptic mammals
Anim. Conserv.
4
75
79
CARBONE, C. & CHRISTIE, S. 2001. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim. Conserv. 4:75–79.
CARBONEC. & GITTLEMANJ.L.
2002
A common rule for the scaling of carnivore density
Science
295
2273
6
CARBONE, C. & GITTLEMAN, J.L. 2002. A common rule for the scaling of carnivore density. Science 295:2273–6.
CASTELLETTI
C
SILVA
JMC
TABARELLI
M
SANTOS
AMM
2004
Quanto ainda resta da Caatinga? Uma estimativa preliminar. Biodiversidade da Caatinga áreas e ações prioritárias para a Conservação
UFPE
Petrolina, Brazil
CASTELLETTI C, SILVA JMC, TABARELLI M, SANTOS AMM (2004) Quanto ainda resta da Caatinga? Uma estimativa preliminar. Biodiversidade da Caatinga áreas e ações prioritárias para a Conservação. UFPE, Petrolina, Brazil.
CHAOA.LEES.M. & JENGS.L.
1992
Estimating population size for capture-recapture data when capture probabilities vary by time and individual animal
Biometrics
48
201
16
CHAO, A., LEE, S.M. & JENG, S.L. 1992. Estimating population size for capture-recapture data when capture probabilities vary by time and individual animal. Biometrics 48:201–16.
CHESSONP.GEBAUERR.L.E.SCHWINNINGS.HUNTLYN.WIEGANDK.ERNESTM.S.K.SHERA.NOVOPLANSKYA. & WELTZINJ.F.
2004
Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments
Oecologia
141
236
53
CHESSON, P., GEBAUER, R.L.E., SCHWINNING, S., HUNTLY, N., WIEGAND, K., ERNEST, M.S.K., SHER, A., NOVOPLANSKY, A. & WELTZIN, J.F. 2004. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–53.
DE VILLA MEZAA.MEYERE.M. & GONZÁLEZC.L.
2002
Ocelot (Leopardus pardalis) food habits in a tropical deciduous forest of Jalisco, Mexico
Am. Midl. Nat.
148
146
154
DE VILLA MEZA, A., MEYER, E.M. & GONZÁLEZ, C.L. 2002. Ocelot (Leopardus pardalis) food habits in a tropical deciduous forest of Jalisco, Mexico. Am. Midl. Nat. 148:146–154.
DI BITETTIM.S.PAVIOLOA. & DE ANGELOC.
2006
Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina
J. Zool.
270
153
163
DI BITETTI, M.S., PAVIOLO, A. & DE ANGELO, C. 2006. Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. J. Zool. 270:153–163.
DI BITETTIM.S.PAVIOLOA.DE ANGELOC.D. & DI BLANCOY.E.
2008
Local and continental correlates of the abundance of a neotropical cat, the ocelot (Leopardus pardalis)
J. Trop. Ecol.
24
189
200
DI BITETTI, M.S., PAVIOLO, A., DE ANGELO, C.D. & DI BLANCO, Y.E. 2008. Local and continental correlates of the abundance of a neotropical cat, the ocelot (Leopardus pardalis). J. Trop. Ecol. 24:189–200.
DILLONA. & KELLYM.J.
2008
Ocelot home range, overlap and density: comparing radio telemetry with camera trapping
J. Zool.
275
391
398
DILLON, A. & KELLY, M.J. 2008. Ocelot home range, overlap and density: comparing radio telemetry with camera trapping. J. Zool. 275:391–398.
DILLONA. & KELLYM.J.
2007
Ocelot Leopardus pardalis in Belize: the impact of trap spacing and distance moved on density estimates
Oryx
41
469
477
DILLON, A. & KELLY, M.J. 2007 Ocelot Leopardus pardalis in Belize: the impact of trap spacing and distance moved on density estimates. Oryx 41:469–477.
EAST
R.
1984
Rainfall, soil nutrient status and biomass of large African savanna mammals
Afr. J. Ecol.
22
245
270
EAST, R. 1984. Rainfall, soil nutrient status and biomass of large African savanna mammals. Afr. J. Ecol. 22:245–270.
EMMONS
L.
1988
A field study of ocelots (Felis pardalis) in Peru
Rev. Ecol. (Terre Vie)
43
133
158
EMMONS, L. 1988. A field study of ocelots (Felis pardalis) in Peru. Rev. Ecol. (Terre Vie) 43:133–158.
EMMONSL.H. & FEERF.
1997
Neotropical Rainforest Mammals: A Field Guide
2
University of Chicago Press
Chicago
EMMONS, L.H. & FEER, F. 1997. Neotropical Rainforest Mammals: A Field Guide, 2nd ed. University of Chicago Press, Chicago.
FUMDHAM (Fundação Museu do Homem Americano)
1994
Parque Nacional da Serra da Capivara
Alinea Publicações Editora
Teresina
FUMDHAM (Fundação Museu do Homem Americano).1994. Parque Nacional da Serra da Capivara. Alinea Publicações Editora, Teresina.
FUSCO-COSTAR.INGBERMANB.DO COUTOH.T.Z.NAKANO-OLIVEIRAE. & MONTEIRO-FILHOE.L.A.
2010
Population density of a coastal island population of the ocelot in Atlantic Forest, southeastern Brazil
Mamm. Biol.
75
358
362
FUSCO-COSTA, R., INGBERMAN, B., DO COUTO, H.T.Z., NAKANO-OLIVEIRA, E. & MONTEIRO-FILHO, E.L.A. 2010. Population density of a coastal island population of the ocelot in Atlantic Forest, southeastern Brazil. Mamm. Biol. 75:358–362.
GOULARTF.V.B.GRAIPELM.E.TORTATOM.GHIZONI-JRI.R.OLIVEIRA-SANTOSL.G.R. & CÁCERESN.C.
2009
Ecology of the ocelot (Leopardus pardalis) in the Atlantic Forest of Southern Brazil
Neotrop. Biol. Conserv.
4
137
143
GOULART, F.V.B., GRAIPEL, M.E., TORTATO, M., GHIZONI-JR, I.R., OLIVEIRA-SANTOS, L.G.R. & CÁCERES, N.C. 2009. Ecology of the ocelot (Leopardus pardalis) in the Atlantic Forest of Southern Brazil. Neotrop. Biol. Conserv. 4:137–143.
HAINESA.M.TEWESM.E. & LAACKL.L.
2005
Survival and sources of mortality in ocelots
J. Wildl. Manage.
69
255
263
HAINES, A.M., TEWES, M.E. & LAACK, L.L. 2005. Survival and sources of mortality in ocelots. J. Wildl. Manage. 69:255–263.
HAINESA.M.TEWESM.E.LAACKL.L.HORNEJ.S. & YOUNGJ.H.
2006
A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States
Biol. Conserv.
132
424
436
HAINES, A.M., TEWES, M.E., LAACK, L.L., HORNE, J.S. & YOUNG, J.H. 2006. A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States. Biol. Conserv. 132:424–436.
HERFINDALI.LINNELLJ.D.C.ODDENJ.NILSENE.B. & ANDERSENR.
2005
Prey density, environmental productivity and home-range size in the Eurasian lynx (Lynx lynx)
J. Zool.
265
63
71
HERFINDAL, I., LINNELL, J.D.C., ODDEN, J., NILSEN, E.B. & ANDERSEN, R. 2005. Prey density, environmental productivity and home-range size in the Eurasian lynx (Lynx lynx). J. Zool. 265:63–71.
IBGE
1985
Atlas Nacional do Brasil. Região Nordeste
Fundação Instituto Brasileiro de Geografia e Estatística
Rio de Janeiro. Brazil
IBGE (1985) Atlas Nacional do Brasil. Região Nordeste. Fundação Instituto Brasileiro de Geografia e Estatística. Rio de Janeiro. Brazil.
KOLOWSKIJ. & ALONSOA.
2010
Density and activity patterns of ocelots (Leopardus pardalis) in northern Peru and the impact of oil exploration activities
Biol. Conserv.
143
917
925
KOLOWSKI, J. & ALONSO, A. 2010. Density and activity patterns of ocelots (Leopardus pardalis) in northern Peru and the impact of oil exploration activities. Biol. Conserv. 143:917–925.
LEALI.R.TABARELLIM. & DA SILVAJ.M.C.
2008
Ecologia e conservação da caatinga
3rd
Editora Universitária da UFPE
Recife
LEAL, I.R., TABARELLI, M. & DA SILVA, J.M.C. (2008) Ecologia e conservação da caatinga. 3rd ed. Editora Universitária da UFPE, Recife.
MAFFEIL. & NOSSA.J.
2008
How Small is too Small? Camera Trap Survey Areas and Density Estimates for Ocelots in the Bolivian Chaco
Biotropica
40
71
75
MAFFEI, L. & NOSS, A.J. 2008. How Small is too Small? Camera Trap Survey Areas and Density Estimates for Ocelots in the Bolivian Chaco. Biotropica 40: 71-75.
MAFFEIL.NOSSA.J.CUÉLLARE. & RUMIZD.I.
2005
Ocelot (Felis pardalis) population densities, activity, and ranging behaviour in the dry forests of eastern Bolivia: data from camera trapping
J. Trop. Ecol.
21
349
353
MAFFEI, L., NOSS, A.J., CUÉLLAR, E. & RUMIZ, D.I. 2005. Ocelot (Felis pardalis) population densities, activity, and ranging behaviour in the dry forests of eastern Bolivia: data from camera trapping. J. Trop. Ecol. 21:349–353.
MCNAUGHTONS.OESTERHELDM.FRANKD. & WILLIAMSK.
1989
Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats
Nature
341
142
144
MCNAUGHTON, S., OESTERHELD, M., FRANK, D. & WILLIAMS, K. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142-144.
MURRAYJ.L. & GARDNERG.L.
1997
Leopardus pardalis
Mamm. Species
1
10
MURRAY, J.L. & GARDNER, G.L. 1997. Leopardus pardalis. Mamm. Species 1–10.
NILSENE.B.HERFINDALI. & LINNELLJ.D.C.
2005
Can intra-specific variation in carnivore home-range size be explained using remote-sensing estimates of environmental productivity?
Ecoscience
12
68
75
NILSEN, E.B., HERFINDAL, I. & LINNELL, J.D.C. 2005. Can intra-specific variation in carnivore home-range size be explained using remote-sensing estimates of environmental productivity? Ecoscience 12:68–75.
OLIVEIRAT.G. & CASSAROK.
2005
Guia de campo dos felinos do Brasil
Instituto Pró-Carnivoros
Brazil
OLIVEIRA, T.G. & CASSARO, K. 2005. Guia de campo dos felinos do Brasil. Instituto Pró-Carnivoros, Brazil.
OTISD.L.BURNHAMK.P.WHITEG.C. & ANDERSOND.R.
1978
Statistical inference from capture data on closed animal populations
Wildl. Monogr.
3
135
OTIS, D.L., BURNHAM, K.P., WHITE, G.C. & ANDERSON, D.R. 1978. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 3–135.
PELLERIN
J.
1991
Aspectos Físicos. Plano Manejo Parque Nacional da Serra da Capivara
IBAMA
Brasília
PELLERIN, J. 1991. Aspectos Físicos. Plano Manejo Parque Nacional da Serra da Capivara. IBAMA, Brasília.
PRADO
D.E.
2008
As caatingas da America do Sul
Ecologia e Conservação da caatinga
LealI.R.TabarelliM. & SilvaJ.M.C.
3rd
Editora Universitária da UFPE
Recife
3
74
PRADO, D.E. 2008 As caatingas da America do Sul. In: Ecologia e Conservação da caatinga (Leal, I.R., Tabarelli, M. & Silva, J.M.C., eds) 3rd ed. Editora Universitária da UFPE, Recife, p. 3–74.
PURVISA.GITTLEMANJ.L.COWLISHAWG. & MACEG.M.
2000
Predicting extinction risk in declining species
Proc. Biol. Sci.
267
1947
52
PURVIS, A., GITTLEMAN, J.L., COWLISHAW, G. & MACE, G.M. 2000. Predicting extinction risk in declining species. Proc. Biol. Sci. 267:1947–52.
RITCHIEE.G. & JOHNSONC.N.
2009
Predator interactions, mesopredator release and biodiversity conservation
Ecol. Lett.
12
982
98
RITCHIE, E.G. & JOHNSON, C.N. 2009. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12:982–98.
SILVEIRAL.JÁCOMOA.T.A.ASTETES.SOLLMANNR.TORRESN.M.FURTADOM.M. & MARINHO-FILHOJ.
2009
Density of the Near Threatened jaguar Panthera onca in the caatinga of north-eastern Brazil
Oryx
44
104
SILVEIRA, L., JÁCOMO, A.T.A., ASTETE, S., SOLLMANN, R., TORRES, N.M., FURTADO, M.M. & MARINHO-FILHO, J. 2009. Density of the Near Threatened jaguar Panthera onca in the caatinga of north-eastern Brazil. Oryx 44:104.
SOLLMANNR.FURTADOM.M.GARDNERB.HOFERH.JACOMOA.T.A.TORRESN.M. & SILVEIRAL.
2011
Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil
Biol. Conserv.
144
1017
1024
SOLLMANN, R., FURTADO, M.M., GARDNER, B., HOFER, H., JACOMO, A.T.A., TORRES, N.M. & SILVEIRA, L. 2011. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biol. Conserv. 144:1017–1024.
TROLLEM. & KÉRYM.
2003
Estimation of Ocelot Density in the Pantanal Using Capture–Recapture Analysis of Camera-Trapping Data
J. Mammal.
84
607
614
TROLLE, M. & KÉRY, M. 2003. Estimation of Ocelot Density in the Pantanal Using Capture–Recapture Analysis of Camera-Trapping Data. J. Mammal. 84:607–614.
TROLLEM. & KÉRYM.
2005
Camera-trap study of ocelot and other secretive mammals in the northern Pantanal
Mammalia
69
409
416
TROLLE, M. & KÉRY, M. 2005. Camera-trap study of ocelot and other secretive mammals in the northern Pantanal. Mammalia 69:409–416.
Autoria
Gabriel Penido **Corresponding author: gpdoliveira@gmail.com
Universidade de Brasília, Departamento de Ecologia, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, BrazilUniversidade de BrasíliaBrazilBrasília, DF, BrazilUniversidade de Brasília, Departamento de Ecologia, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
Samuel Astete
Universidade de Brasília, Departamento de Ecologia, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, BrazilUniversidade de BrasíliaBrazilBrasília, DF, BrazilUniversidade de Brasília, Departamento de Ecologia, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
Mariana Malzoni Furtado
Universidade de São Paulo, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP, BrazilUniversidade de São PauloBrazilSão Paulo, SP, BrazilUniversidade de São Paulo, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP, Brazil
Instituto Onça-Pintada, Mineiros, GO, BrazilInstituto Onça-PintadaBrazilMineiros, GO, BrazilInstituto Onça-Pintada, Mineiros, GO, Brazil
Anah Tereza de Almeida Jácomo
Instituto Onça-Pintada, Mineiros, GO, BrazilInstituto Onça-PintadaBrazilMineiros, GO, BrazilInstituto Onça-Pintada, Mineiros, GO, Brazil
Rahel Sollmann
US Forest Service, Pacific Southwest Research Station Davis, California, USAUS Forest ServiceUSACalifornia, USAUS Forest Service, Pacific Southwest Research Station Davis, California, USA
Natalia Torres
Instituto Onça-Pintada, Mineiros, GO, BrazilInstituto Onça-PintadaBrazilMineiros, GO, BrazilInstituto Onça-Pintada, Mineiros, GO, Brazil
Leandro Silveira
Instituto Onça-Pintada, Mineiros, GO, BrazilInstituto Onça-PintadaBrazilMineiros, GO, BrazilInstituto Onça-Pintada, Mineiros, GO, Brazil
Jader Marinho Filho
Universidade de Brasília, Departamento de Zoologia, Brasília, DF, BrazilUniversidade de BrasíliaBrazilBrasília, DF, BrazilUniversidade de Brasília, Departamento de Zoologia, Brasília, DF, Brazil
Universidade de Brasília, Departamento de Ecologia, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, BrazilUniversidade de BrasíliaBrazilBrasília, DF, BrazilUniversidade de Brasília, Departamento de Ecologia, Campus Universitário Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
Universidade de São Paulo, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP, BrazilUniversidade de São PauloBrazilSão Paulo, SP, BrazilUniversidade de São Paulo, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP, Brazil
Instituto Onça-Pintada, Mineiros, GO, BrazilInstituto Onça-PintadaBrazilMineiros, GO, BrazilInstituto Onça-Pintada, Mineiros, GO, Brazil
US Forest Service, Pacific Southwest Research Station Davis, California, USAUS Forest ServiceUSACalifornia, USAUS Forest Service, Pacific Southwest Research Station Davis, California, USA
Universidade de Brasília, Departamento de Zoologia, Brasília, DF, BrazilUniversidade de BrasíliaBrazilBrasília, DF, BrazilUniversidade de Brasília, Departamento de Zoologia, Brasília, DF, Brazil