Acessibilidade / Reportar erro

Efficacy of stem cells on bone consolidation of distraction osteogenesis in animal models: a systematic review

Abstract

Distraction osteogenesis (DO) relies on the recruitment and proliferation of mesenchymal stem cells (MSC) to the target site, where they differentiate into osteoblasts to promote bone formation. Nevertheless, MSC recruitment appears to be slow and limits bone formation in DO defects. Thus, this systematic review aims to evaluate the ability of locally applied MSC to enhance bone formation in DO preclinical models. Databases were searched for quantitative pre-clinical controlled studies that evaluated the effect of local administration of MSC on DO bone formation. Eligible studies were identified and data regarding study characteristics, outcome measures and quality were extracted. Nine studies met the inclusion criteria. Autogenous and xenogenous MSC were used to promote DO bone formation. These included bone marrow-derived MSC, adipose tissue-derived MSC and MSC derived from human exfoliated deciduous teeth. Meta-analysis was not possible due to heterogeneities in study designs. Local MSC implantation was not associated with adverse effects. In 4 out of the 5 studies, locally delivered undifferentiated bone-marrow MSC had a positive effect on DO bone formation. Few studies evaluated the therapeutic effects of MSC from other sources. The adjunct use of biologically active molecules or forced expression of key genes involved in osteogenesis further boosted the ability of bone-marrow MSC to promote DO bone formation. While risk of bias and heterogeneity limited the strength of this systematic review, our results suggest that the use of MSC is safe and may provide beneficial effects on DO bone formation.

Mesenchymal Stromal Cells; Osteogeneses, Distraction; Osteogenesis; Review

Introduction

Distraction osteogenesis (DO) is a method that induces osseous neoformation between two bone segments surgically separated in response to the application of graduated and controlled traction force throughout the bony gap.11. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989 Jan;(238):249-81.,22. Swennen G, Schliephake H, Dempf R, Schierle H, Malevez C. Craniofacial distraction osteogenesis: a review of the literature: Part 1: clinical studies. Int J Oral Maxillofac Surg. 2001 Apr;30(2):89-103. https://doi.org/10.1054/ijom.2000.0033
https://doi.org/10.1054/ijom.2000.0033...
This technique have been used in treatment of congenital and acquired craniofacial deformations, as it provides some advantages over traditional autogenic bone grafts, including no need for a second surgical site, reduced operating time and post-operative morbidity.22. Swennen G, Schliephake H, Dempf R, Schierle H, Malevez C. Craniofacial distraction osteogenesis: a review of the literature: Part 1: clinical studies. Int J Oral Maxillofac Surg. 2001 Apr;30(2):89-103. https://doi.org/10.1054/ijom.2000.0033
https://doi.org/10.1054/ijom.2000.0033...
Craniofacial DO outcome depends on multiple factors, including patient´s age, the surgical technique (corticotomy or osteotomy), distraction rate and rhythm, latency period, contention period, and the type of the distraction device used (i.e. intraoral, subcutaneous or extraoral).11. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989 Jan;(238):249-81.,22. Swennen G, Schliephake H, Dempf R, Schierle H, Malevez C. Craniofacial distraction osteogenesis: a review of the literature: Part 1: clinical studies. Int J Oral Maxillofac Surg. 2001 Apr;30(2):89-103. https://doi.org/10.1054/ijom.2000.0033
https://doi.org/10.1054/ijom.2000.0033...
,33. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989 Feb;(239):263-85.,44. Ilizarov GA. The principles of the Ilizarov method. Bull Hosp Jt Dis Orthop Inst. 1988;48(1):1-11.

DO relies on the recruitment and proliferation of mesenchymal stem cells (MSC) to the target site, where they differentiate into osteoblasts to promote bone formation/mineralization.55. Junqueira L, Carneiro J. Tecido cartilaginoso. In: Junqueira L, Carneiro J. Histologia básica. 11th ed. Rio de Janeiro: Guanabara Koogan; 2008. p. 129-34. MSC recruitment into DO defects is stimulated endogenously by the fracture healing process and exogenously by mechanical distraction.66. Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013 Dec;37(12):2491-8. https://doi.org/10.1007/s00264-013-2059-2
https://doi.org/10.1007/s00264-013-2059-...
Nevertheless, under standard circumstances, MSC recruitment appears to be slow and limits the amount of DO bone formation.77. Yang ZH, Wu BL, Ye C, Jia S, Yang XJ, Hou R et al. Targeting P38 pathway regulates bony formation. Int J Med Sci. 2016;13(10):783-9. https://doi.org/10.7150/ijms.16663
https://doi.org/10.7150/ijms.16663...
Moreover, MSC migration may be further compromised in elderly and under conditions such as poor vascularity, severe trauma and radiotherapy. Along with these lines, DO animal models were developed to evaluate the effect of locally applied MSC on DO bone formation.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
Thus, this systematic review aims to evaluate the following PICO question: “In animals submitted to DO (Participant), how does local MSC administration (Intervention), compared to no MSC administration (Comparison), influence bone consolidation (Outcome)?”

Methodology

Focused question

We conducted a systematic review of the literature to address the following PICO question: “In animals submitted to DO (Participant), how does local MSC administration (Intervention), compared to no MSC administration (Comparison), influence bone consolidation (Outcome)?” This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.1717. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009 Jul;339 jul21 1:b2700. https://doi.org/10.1136/bmj.b2700
https://doi.org/10.1136/bmj.b2700...

Eligibility criteria

Type of studies

Only pre-clinical controlled animal model studies using MSC locally in association with DO were eligible.

Study population

The population of interest included animals that underwent DO.

Type of intervention and comparison

DO sites treated with MSC were compared to control DO sites that did not receive cells. The protocol of control groups varied according to the type of intervention in each study.

Outcome measures

The primary outcome was the amount of new bone formation, measured histologically, radiographically or by micro-computed tomography (micro-CT) in DO sites.

Search strategy

Search strategies were developed for MEDLINE, EMBASE, LILACS, SCIELO, SCOPUS, WEB OF SCIENCE databases, as well as the grey literature. Medical subject headings (MesH) terms were combined with Boolean operators and used to search databases. All searches were performed up to August 2017. The following MeSH terms were used: ((((“stem cells” OR “stem cell” OR “progenitor cells” OR “progenitor cell” OR “induced pluripotent stem cells” OR “IPS cells” OR “IPS cell” OR “adult stem cells” OR “pluripotent stem cells” OR “pluripotent stem cell” OR “multipotent stem cells” OR “multipotent stem cell” OR “totipotent stem cells” OR “totipotent stem cell” OR “hematopoietic stem cells” OR “hematopoietic stem cell” OR “mesenchymal stromal cells” OR “mesenchymal stromal cell” OR “mesenchymal stem cells” OR “mesenchymal stem cell” OR “mesenchymal progenitor cells” OR “mesenchymal progenitor cell” OR “bone marrow stromal cells” OR “bone marrow stromal cell” OR “stromal cells” OR “stromal cell” OR “bone marrow cells” OR “bone marrow cell” OR “epithelial mesenchymal transition” OR “cell transplantation” OR “stem cell transplantation” OR “mesenchymal stem cell transplantation” OR “hematopoietic stem cell transplantation” OR “peripheral blood stem cell transplantation”)) AND “bone regeneration”) AND (“distraction osteogenesis” OR “osteogenic distraction “)) AND (oral OR intraoral), NOT review. Manual searches of reference lists from selected full articles complemented the electronic search. Potentially eligible studies were limited to articles published in English, Spanish, and Portuguese.

Exclusion criteria

Reviews, in vitro, human studies, animal studies without controls were excluded.

Screening methods and data extraction

Two calibrated reviewers (CMR and FG) screened independently the titles and abstracts. Studies appearing to meet the inclusion criteria, or those with insufficient information in the title and abstract to make a clear decision, were selected for evaluation of the full manuscript, which was done independently by the same reviewers to determine study eligibility. Disagreements were solved by discussion and agreement. Reasons for rejecting studies were recorded for each study. Agreement between reviewers was described by kappa coefficient. The following data were extracted independently by the same reviewers and recorded: citation, year of the publication, MSC origin, characterization, state of differentiation at application, time of transplantation, number of cells transplanted, animal model, number of animals, number of defects, defect type, size, location, scaffold experimental groups, length of follow-up, healing period and results.

Quality assessment

Quality assessment of included studies was performed independently by two reviewers (CMR and FG), blinded to the name of the authors. Studies were categorized according to the SYRCLE’s risk of bias tool for animal studies.1818. Hooijmans CR, Rovers MM, Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014 Mar;14(1):43. https://doi.org/10.1186/1471-2288-14-43
https://doi.org/10.1186/1471-2288-14-43...

Results

Study selection

The computerized search strategy yielded 29 citations, of which 14 were screened for potentially meeting the inclusion criteria (κ = 0.791; Figure 1). Independent screening of abstracts led to the rejection of 4 articles (κ = 0.837; Figure 1). Full texts of the remaining 10 publications were reviewed for possible inclusion. Of these, one article1919. Zeng JJ, Guo P, Zhou N, Xie QT, Liao FC. Treatment of large bone defects with a novel biological transport disc in non-vascular transport distraction osteogenesis. Int J Oral Maxillofac Surg. 2016 May;45(5):670-7. https://doi.org/10.1016/j.ijom.2015.12.012
https://doi.org/10.1016/j.ijom.2015.12.0...
was further excluded for reasons indicated in Table 1 (κ = 1.00) reference. A manual search of reference lists of selected studies yielded no additional studies (Figure 1). Characteristics of the final nine retained studies are reported in Tables 2 and 3.

Figure 1
Simplified search strategy outline.

Table 1
Excluded study.

Table 2
Description of the models used in the included studies.

Table 3
Summarized outcomes of the included studies.

Study characteristics

Experimental animals

Most studies (6 of 9) used New Zealand white rabbits,88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
one study use Japanese white rabbits.1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
Finally, two use Sprague-Dawley rats.1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...

Experimental models

DO defects were surgically created in all studies. Nonetheless, differences in defect location and morphology were identified among the studies. In five studies, the osteotomy line was made between the first premolar and the mental foramen.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
In other two studies, the osteotomy line was made from the upper border of the anterior ramus to the inferior border of the mandible.1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
Finally, in the remaining two studies, the osteotomy cut was made anterior to the first molar99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
and bilaterally on the zygomatic process of the maxilla.1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...

The activation rate also varied among the studies. More specifically, activation rates of 0.4 mm/day,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
0.8 mm/day,99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
0.9 mm/day,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
1 mm/day88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
and 2 mm/day1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
were reported. The resulting DO gap defect measured 10 mm,88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
8 mm,99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
6 mm,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
4.8 mm,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
and 3.2 mm1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
in the included studies.

Mesenchymal stem cells and scaffolds

Both autogenous99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
and xenogenous1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
MSC were used in the studies. Two trials failed to inform the donor origin of the cells.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
In regard to the source of the cells, bone marrow-derived MSC (BM-MSC) were utilized in seven trials,88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
while adipocyte-derived MSC (ADSC)99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
and stem cells derived from human exfoliated deciduous teeth (SHED)1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
were used in one trial each. In most studies, MSC were characterized by plastic adherent capacity,88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
fibroblast-like morphology,99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
colony forming1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
and multipotency88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
abilities. In only two studies, MSC were phenotypically characterized using flow cytometry to detect expression of mesenchymal markers. MSC were characterized as positive for CD29,88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
CD44,88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
CD115,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
CD166,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
and negative for CD3488. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
and CD45.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...

In all but one study, MSC were locally injected at the end of DO period.99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
The exception was the study from Alkaisi et al.1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
in which SHED cells were locally delivered at the surgical appointment. Scaffolds were only employed in two studies.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...

Owing to the high degree of methodological heterogeneity among the included studies no meta-analysis was performed.

Safety

Overall, the majority of experimental procedures were well tolerated by most animals. Nonetheless, some authors refer to develop of infections,99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
mobility of the distraction devices,99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
changes in occlusal relationships1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
and overgrowth of the incisors.1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
Most of these reported adverse effects appeared to be related exclusively to the DO procedure. Two studies failed to provide information on adverse effects.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...

Quality Assessment

The use of the SYRCLE risk of bias tool to assess quality of animal studies indicated a high risk of bias for most studies in the majority of categories (Table 4 and Figure 2). Only two categories, baseline characteristics and reporting bias, were assessed as having a low risk of bias for the majority of studies.

Table 4
Risk of bias in individual studies, assessed using the SYRCLE tool.

Figure 2
Risk of bias score for each risk item in animal studies, as assessed using the SYRCLE tool.

Effect of mesenchymal stem cells on DO bone formation

Effect of undifferentiated mesenchymal stem cells on bone formation following DO

Most of the studies included in this systematic review report the effect of undifferentiated MSC on DO bone formation.99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
More specifically, five studies evaluated the effect of undifferentiated BM-MSC on DO bone formation, one study used undifferentiated ADSM and another used undifferentiated SHED cells.

Out of the five studies that evaluated undifferentiated BM-MSC, four showed a positive effect of these cells on DO bone formation.1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
The positive effect of undifferentiated BM-MSC on DO bone formation was demonstrated by radiographic determination of cortical bone formation,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
bone mineral content1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
and bone density.1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
Moreover, histological demonstration of increased bone formation by undifferentiated BM-MSC was shown by increased a. cortical bone formation;1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,33. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989 Feb;(239):263-85.,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
b. cancellous bone formation;1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
and c. trabecular thickness.1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
Corroborating these results, micro-CT analysis also showed that the use of undifferentiated BM-MSC was associated with increased new bone, bone volume ratio, connectivity density, trabecular thickness and trabecular number1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
in DO defects. In sharp contrast, in one study, BM-MSC failed to promote increased bone formation in DO gaps, as compared to the control treatment.1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...

Only one study evaluated the effect of undifferentiated SHED cells on new bone formation in DO gap defects. Histological and radiographic analysis demonstrated that the use of these cells resulted in increased bone formation and bone density, respectively.1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
Finally, a micro-CT study failed to demonstrated a positive effect of undifferentiated ADSC on DO bone formation, as compared to a control group.99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...

Effect of pre-differentiated MSC on bone formation following DO

Only one study reported on the use of osteogenically differentiated BM-MSC for DO bone formation. In this study, micro-CT analysis demonstrated that osteogenically pre-differentiated BM-MSC arranged in cell sheets promoted greater bone formation than undifferentiated BM-MSC sheets and negative control treatment.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
Moreover, according to histological evaluations, the use of osteogenically differentiated BM-MSC cell sheets induced the formation of a more mature cortical bone.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...

The combined effect of undifferentiated MSC and biologically active factors

Biologically active factors used in association with undifferentiated MSC included: transcription factors Runt-related transcription factor 2 (Runx2)99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
and Osterix (OSX),1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
bone morphogenetic protein (BMP)1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
and basic fibroblast growth factor (bFGF).1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...

A micro-CT study demonstrated that Runx2 transfected ADSC promoted increased bone mineral density, bone volume, trabecular number and trabecular thickness in DO defects, as compared to control treatment with no adjunct use of cells.99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
Moreover, the same study showed that forced expression of Runx2 increased the ability of ADSC to promote bone formation.99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
Likewise, OSX transfected BM-MSC promoted increased cortical and cancellous bone formation, trabecular thickness and radiographic bone density in DO defects, as compared to control treatment.1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
Forced OSX expression also increased the ability of BM-MSC to promote bone formation in DO defects.1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...

Conflicting results were reported on the use of BMP. While one micro-CT study showed that undifferentiated BM-MSC transfected with BMP-2 and BMP-7 failed to promote increased bone formation in DO defects in a rabbit model,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
another demonstrated that forced BMP-7 expression improved the ability of BM-MSC to promote bone formation in a rat model of DO, as demonstrated by radiographic and histomorphometric analyses.1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...

Finally, bFGF transfected BM-MSC promoted greater bone mineral content and bone volume, higher bone density and increased trabecular number and thickness as compared to non-transfected BM-MCS and negative control treatment.1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...

The combined effect of pre-differentiated MSC and biologically active molecules

A combination of osteogenically differentiated MSC and platelet rich plasma (PRP) has been tested for the treatment of DO defects in only one study. In a rabbit model, the adjunctive use osteogenically differentiated BM-MSC significantly enhanced new bone formation and radiographic bone density in DO defects treated with PRP.1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...

Discussion

Tissue engineering has been proposed as an adjunct therapy to boost and overcome limitations associated with DO. Along with these lines, the use of MSC has been evaluated in several studies in an attempt to accelerate ossification and consolidation processes, and therefore, increase bone formation.2020. Watanabe Y, Harada N, Sato K, Abe S, Yamanaka K, Matushita T. Stem cell therapy: is there a future for reconstruction of large bone defects? Injury. 2016 Jan;47 Suppl 1:S47-51. https://doi.org/10.1016/S0020-1383(16)30012-2.
https://doi.org/10.1016/S0020-1383(16)30...
Thus, this systematic review provides evidence on the efficacy of locally applied MSC in preclinical models of maxillary and mandibular DO. The included studies, however, exhibited an overall high risk of bias. This in turn, seriously weakens confidence in the results and may curtail potential clinical applications of stem cell-based therapies in DO.

Cell source is expected to impact the ability of MSC to efficiently differentiate in bone forming cells.2121. Zomorodian E, Baghaban Eslaminejad M. Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int. 2012;2012:980353. https://doi.org/10.1155/2012/980353
https://doi.org/10.1155/2012/980353...
Because of their ability to differentiate into multiple different cell types, BM-MSCs are frequently employed as a source of regenerative cells in various tissues, including bone.2222. Potier E, Noailly J, Ito K. Directing bone marrow-derived stromal cell function with mechanics. J Biomech. 2010 Mar;43(5):807-17. https://doi.org/10.1016/j.jbiomech.2009.11.019
https://doi.org/10.1016/j.jbiomech.2009....
Seven trials evaluated the effect of locally applied BM-MSC on DO outcomes.1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
,1717. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009 Jul;339 jul21 1:b2700. https://doi.org/10.1136/bmj.b2700
https://doi.org/10.1136/bmj.b2700...
,1818. Hooijmans CR, Rovers MM, Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014 Mar;14(1):43. https://doi.org/10.1186/1471-2288-14-43
https://doi.org/10.1186/1471-2288-14-43...
Among those, five used undifferentiated BM-MSC.1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
Four of these studies demonstrated that local application of undifferentiated BM-MSC resulted in increased bone formation in DO gap defects.1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1616. Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
https://doi.org/10.1016/j.jcms.2006.02.0...
One micro-CT study, however, concluded that undifferentiated BM-MSC failed to promote increased DO bone formation, as compared to the control treatment.1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
Although the basis for this difference remains unknown, it is important to highlight that the conclusions of the last study were solely based on microtomographic data.1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
This is of relevance, as the correlation between microtomographic and histomorphometry data for assessment of new bone formation has been reported as weak.2323. Yeom H, Blanchard S, Kim S, Zunt S, Chu TM. Correlation between micro-computed tomography and histomorphometry for assessment of new bone formation in a calvarial experimental model. J Craniofac Surg. 2008 Mar;19(2):446-52. https://doi.org/10.1097/SCS.0b013e318052fe05
https://doi.org/10.1097/SCS.0b013e318052...
Interestingly, a gross description of the histological findings from the above mentioned study revealed that BM-MSC-treated sites exhibited more mature medullary and cortical bones than control defects.1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
Further supporting the notion that micro CT still needs to improve to differentiate woven from lamellar bone.2424. Rühli FJ, Kuhn G, Evison R, Müller R, Schultz M. Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human skull bone pathologies. Am J Phys Anthropol. 2007 Aug;133(4):1099-111. https://doi.org/10.1002/ajpa.20611
https://doi.org/10.1002/ajpa.20611...
Finally, the number of transplanted cells and the origin of BM-MSCs (autogenous or allogenous) used in the micro-CT study were not informed.1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
Thus, it is not possible to exclude the possibility that the lower results reported in the micro-CT study might be explained by differences related to cell numbers and cell populations.

Recent evidence has highlighted that the high heterogeneity of clonally expanded MSC, characterized by differences in stages of lineage commitment, expansion capabilities and phenotypes, are expected to determine their regenerative potential and clinical efficacy.2525. Sivasubramaniyan K, Lehnen D, Ghazanfari R, Sobiesiak M, Harichandan A, Mortha E et al. Phenotypic and functional heterogeneity of human bone marrow- and amnion-derived MSC subsets. Ann N Y Acad Sci. 2012 Aug;1266(1):94-106. https://doi.org/10.1111/j.1749-6632.2012.06551.x
https://doi.org/10.1111/j.1749-6632.2012...
The studies included in this systematic review used cells from different sources, with distinct phenotypes and isolated under various protocols, all of which may impact their bone forming efficacy. Additionally, protocols also varied according to the time of the delivery and the use of scaffolds. Thus, future studies should focus on defining ideal in vitro MSC phenotypes and clinical protocols to boost DO bone formation.

Only one study compared the use of undifferentiated and osteogenically differentiated BM-MSC on DO bone formation.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
Results from this study showed that osteogenically differentiated BM-MSC arranged in cell sheets promoted greater bone formation and remodeling into mature cortical bone, than undifferentiated BM-MSC sheets and negative control treatment.88. Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
https://doi.org/10.1016/j.joms.2016.08.0...
This finding suggests the hypothesis that locally delivered of osteogenically pre-differentiated MSC may have a positive effect on promoting DO bone formation; nevertheless further investigations are needed to validate this finding.

Only two studies employed MSC other than BM-MSC in DO defects.99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
In one of these studies, locally administered SHED had a positive effect on DO bone formation.1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
Although SHED are multipotent and highly proliferative cells,2626. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003 May;100(10):5807-12. https://doi.org/10.1073/pnas.0937635100
https://doi.org/10.1073/pnas.0937635100...
,2727. Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007 Apr;13(4):767-73. https://doi.org/10.1089/ten.2006.0192
https://doi.org/10.1089/ten.2006.0192...
BM-MSCs are still the mostly used cells for bone regeneration due to their greater potential for osteogenic differentiation.2828. Isobe Y, Koyama N, Nakao K, Osawa K, Ikeno M, Yamanaka S et al. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg. 2016 Jan;45(1):124-31. https://doi.org/10.1016/j.ijom.2015.06.022
https://doi.org/10.1016/j.ijom.2015.06.0...
Therefore, despite the positive outcomes of locally delivered SHED cells in the treatment of DO defects,1010. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
https://doi.org/10.1016/j.joms.2013.05.0...
additional studies are needed to validate these preliminary results and to compare their effectiveness to the one of BM-MSC for DO bone formation. The second study failed to demonstrate a positive effect of locally delivered ADSC on DO bone formation as compared to the control group.99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
Although ADSC undergo osteogenic differentiation and have been used for bone regeneration due to their wide availability and easy to obtain,2929. Folgiero V, Migliano E, Tedesco M, Iacovelli S, Bon G, Torre ML et al. Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transplant. 2010;19(10):1225-35. https://doi.org/10.3727/09638910X519265
https://doi.org/10.3727/09638910X519265...
,3030. Xu Y, Malladi P, Wagner DR, Tataria M, Chiou M, Sylvester KG et al. Adipose-derived mesenchymal cells (AMCs): a promising future for skeletal tissue engineering. Biotechnol Genet Eng Rev. 2006;23(1):291-308. https://doi.org/10.1080/02648725.2006.10648089
https://doi.org/10.1080/02648725.2006.10...
these cells have been reported to have a lower osteogenic potential as compared to BM-MSC.3131. Wu W, Le AV, Mendez JJ, Chang J, Niklason LE, Steinbacher DM. Osteogenic performance of donor-matched human adipose and bone marrow mesenchymal cells under dynamic culture. Tissue Eng Part A. 2015 May;21(9-10):1621-32. https://doi.org/10.1089/ten.tea.2014.0115
https://doi.org/10.1089/ten.tea.2014.011...
,3232. Ceccarelli G, Bloise N, Mantelli M, Gastaldi G, Fassina L, De Angelis MG et al. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Biores Open Access. 2013 Aug;2(4):283-94. https://doi.org/10.1089/biores.2013.0016
https://doi.org/10.1089/biores.2013.0016...

The combined effect of locally delivered MSC and biologically active molecules has been tested in six studies.99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
,1515. Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
https://doi.org/10.1010.1097/scs.0b013e3...
MSC gene transfection has become an exciting and promising strategy in MSC regenerative therapy.3333. Park JS, Yi SW, Kim HJ, Kim SM, Park KH. Regulation of cell signaling factors using plga nanoparticles coated/loaded with genes and proteins for osteogenesis of human mesenchymal stem cells. ACS Appl Mater Interfaces. 2016 Nov;8(44):30387-97. https://doi.org/10.1021/acsami.6b08343
https://doi.org/10.1021/acsami.6b08343...
Along with these lines, a few DO studies used Runx2,99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
OSX,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
BMP-2/7,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
BMP-21313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
and bFGF1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
genetically modified MSC to favor their differentiation into osteogenic cell lineages, and further improve bone formation.99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
Runx2 is an essential gene required for the osteoblastic differentiation and bone tissue formation,3434. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem. 2003 Feb;88(3):446-54. https://doi.org/10.1002/jcb.10369
https://doi.org/10.1002/jcb.10369...
,3535. Zhang X, Yang M, Lin L, Chen P, Ma KT, Zhou CY et al. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose: derived stem cells in vitro and in vivo. Calcif Tissue Int. 2006 Sep;79(3):169-78. https://doi.org/10.1007/s00223-006-0083-6
https://doi.org/10.1007/s00223-006-0083-...
whose expression can be induced both by BMP-2 and BMP-7.3636. Sharff KA, Song WX, Luo X, Tang N, Luo J, Chen J, et al. Hey1 basic helix-loop-helix protein plays an important role in mediating BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. J Biol Chem. 2009 Jan;284(1):649-59. https://doi.org/10.1074/jbc.M806389200
https://doi.org/10.1074/jbc.M806389200...
Forced expression of Runx2 increased the ability of ADSC to promote bone formation in DO defects,99. Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
https://doi.org/10.1002/jor.22590...
supporting the role of Runx2 in bone formation. OSX is a zinc finger-containing transcription factor essential for osteoblast differentiation, endochondral and intramembranous bone formation.3737. Javed A, Chen H, Ghori FY. Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am. 2010 Aug;22(3):283-93. https://doi.org/10.1016/j.coms.2010.05.001
https://doi.org/10.1016/j.coms.2010.05.0...
,3838. Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, Zhang H et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci USA. 2010 Jul;107(29):12919-24. https://doi.org/10.1073/pnas.0912855107
https://doi.org/10.1073/pnas.0912855107...
,3939. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002 Jan;108(1):17-29. https://doi.org/10.1016/S0092-8674(01)00622-5
https://doi.org/10.1016/S0092-8674(01)00...
,4040. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005 May;8(5):739-50. https://doi.org/10.1016/j.devcel.2005.03.016
https://doi.org/10.1016/j.devcel.2005.03...
In line with its biological activity, OSX forced expression also increased the ability of BM-MSC to promote bone formation in DO defects.1212. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
https://doi.org/10.1016/j.tripleo.2010.0...

BMPs form the most extensive subgroup of the transforming growth factors-β (TGF-β) superfamily of cytokines,4141. Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013 Aug;6(08 8A):32-52. https://doi.org/10.4236/jbise.2013.68A1004
https://doi.org/10.4236/jbise.2013.68A10...
,4242. Hinck AP. Structural studies of the TGF-βs and their receptors: insights into evolution of the TGF-β superfamily. FEBS Lett. 2012 Jul;586(14):1860-70. https://doi.org/10.1016/j.febslet.2012.05.028
https://doi.org/10.1016/j.febslet.2012.0...
whose main function is to promote bone formation by directing MSC differentiation into osteoblasts.4343. Einhorn TA, Majeska RJ, Mohaideen A, Kagel EM, Bouxsein ML, Turek TJ et al. A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair. J Bone Joint Surg Am. 2003 Aug;85-A(8):1425-35. https://doi.org/10.2106/00004623-200308000-00002
https://doi.org/10.2106/00004623-2003080...
Among all the bone morphogenetic proteins, BMP-2 and BMP-7 have been tested alone or in combination with MSC in different experimental models of bone regeneration with variable results.4444. Oreffo RO, Cooper C, Mason C, Clements M. Mesenchymal stem cells: lineage, plasticity, and skeletal therapeutic potential. Stem Cell Rev. 2005;1(2):169-78. https://doi.org/10.1385/SCR:1:2:169
https://doi.org/10.1385/SCR:1:2:169...
In this systematic review, two studies reported conflicting results on the efficacy of BMP to further improve the osteogenic results of undifferentiated MSC in DO defects.1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
,1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
While one study showed that undifferentiated BM-MSC transfected with BMP-2 and BMP-7 failed to improve bone formation in DO defects in a rabbit model,1111. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
https://doi.org/10.1016/j.joms.2012.01.0...
another demonstrated that forced BMP-7 expression improved the ability of BM-MSC to promote DO bone formation in a rat model.1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...
These conflicting results might be explained by methodological differences between the studies, such as: the animal models, DO defect sizes, DO latency period and observation time, distraction rate and rhythm. On the last matter, it has been demonstrated that distinct distraction rates differentially regulate BMP expression in DO defect, which ultimately, have a therapeutic impact on DO outcomes.4545. Cheung LK, Zheng LW, Ma L. Effect of distraction rates on expression of bone morphogenetic proteins in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg. 2006 Jul;34(5):263-9. https://doi.org/10.1016/j.jcms.2006.02.004
https://doi.org/10.1016/j.jcms.2006.02.0...
Lastly, these studies also differed in their method of analysis for the bone formation, with histological analysis being employed only in the study that supported the therapeutic benefits of BMP-7 gene therapy.1313. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
https://doi.org/10.1002/jor.20288...

Finally, one study evaluated the therapeutic efficacy of bFGF transfected BM-MSC in DO bone formation.1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
bFGF is a pleiotropic growth factor that normalize cell proliferation, migration, and differentiation in various organs, including bone.4646. Takei Y, Minamizaki T, Yoshiko Y. Functional diversity of fibroblast growth factors in bone formation. Int J Endocrinol. 2015;2015:729352. https://doi.org/10.1155/2015/729352PMID:25873956
https://doi.org/10.1155/2015/729352PMID:...
bFGF enhances RUNX2 phosphorylation and functional activity.3737. Javed A, Chen H, Ghori FY. Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am. 2010 Aug;22(3):283-93. https://doi.org/10.1016/j.coms.2010.05.001
https://doi.org/10.1016/j.coms.2010.05.0...
FGF-2 is expressed in osteoblast-lineage cells,4646. Takei Y, Minamizaki T, Yoshiko Y. Functional diversity of fibroblast growth factors in bone formation. Int J Endocrinol. 2015;2015:729352. https://doi.org/10.1155/2015/729352PMID:25873956
https://doi.org/10.1155/2015/729352PMID:...
and its deficiency inhibits bone formation in animal models.4747. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002 Jun;16(12):1446-65. https://doi.org/10.1101/gad.990702
https://doi.org/10.1101/gad.990702...
bFGF transfected BM-MSC promoted greater DO bone formation than non-transfected BM-MCS and negative control treatment,1414. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
https://doi.org/10.1016/j.bone.2009.12.0...
further supporting its role on bone formation.

Conclusion

It is possible to conclude that while risk of bias and heterogeneity limited the strength of this systematic review, our results suggest that the therapeutic use of MSC is safe and may provide beneficial effects on DO bone formation. Moreover, it is reasonable to propose that genetic modification of these cells increase their ability to further induce DO bone formation. Finally, findings of this systematic review revealed that identification of ideal MSC populations for DO bone formation remains largely unknown. Future studies should be of high methodological quality, with a particular emphasis on identifying MSC phenotypes with higher potential to boost DO bone formation.

Acknowledgements

The authors have reported no conflicts of interest. This systematic review was self-funded.

References

  • 1
    Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989 Jan;(238):249-81.
  • 2
    Swennen G, Schliephake H, Dempf R, Schierle H, Malevez C. Craniofacial distraction osteogenesis: a review of the literature: Part 1: clinical studies. Int J Oral Maxillofac Surg. 2001 Apr;30(2):89-103. https://doi.org/10.1054/ijom.2000.0033
    » https://doi.org/10.1054/ijom.2000.0033
  • 3
    Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989 Feb;(239):263-85.
  • 4
    Ilizarov GA. The principles of the Ilizarov method. Bull Hosp Jt Dis Orthop Inst. 1988;48(1):1-11.
  • 5
    Junqueira L, Carneiro J. Tecido cartilaginoso. In: Junqueira L, Carneiro J. Histologia básica. 11th ed. Rio de Janeiro: Guanabara Koogan; 2008. p. 129-34.
  • 6
    Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013 Dec;37(12):2491-8. https://doi.org/10.1007/s00264-013-2059-2
    » https://doi.org/10.1007/s00264-013-2059-2
  • 7
    Yang ZH, Wu BL, Ye C, Jia S, Yang XJ, Hou R et al. Targeting P38 pathway regulates bony formation. Int J Med Sci. 2016;13(10):783-9. https://doi.org/10.7150/ijms.16663
    » https://doi.org/10.7150/ijms.16663
  • 8
    Ma G, Zhao JL, Mao M, Chen J, Dong ZW, Liu YP. Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. J Oral Maxillofac Surg. 2017 Jan;75(1):92-104. https://doi.org/10.1016/j.joms.2016.08.014
    » https://doi.org/10.1016/j.joms.2016.08.014
  • 9
    Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF et al. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res. 2014 May;32(5):709-20. https://doi.org/10.1002/jor.22590
    » https://doi.org/10.1002/jor.22590
  • 10
    Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013 Oct;71(10):1758.e1-13. https://doi.org/10.1016/j.joms.2013.05.016
    » https://doi.org/10.1016/j.joms.2013.05.016
  • 11
    Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenetic protein 2/7. J Oral Maxillofac Surg. 2012 Jul;70(7):1711-6. https://doi.org/10.1016/j.joms.2012.01.022
    » https://doi.org/10.1016/j.joms.2012.01.022
  • 12
    Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):412-9. https://doi.org/10.1016/j.tripleo.2010.05.012
    » https://doi.org/10.1016/j.tripleo.2010.05.012
  • 13
    Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007 Feb;25(2):241-51. https://doi.org/10.1002/jor.20288
    » https://doi.org/10.1002/jor.20288
  • 14
    Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010 Apr;46(4):1156-61. https://doi.org/10.1016/j.bone.2009.12.017
    » https://doi.org/10.1016/j.bone.2009.12.017
  • 15
    Kinoshita K, Hibi H, Yamada Y, Ueda M. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material. J Craniofac Surg. 2008 Jan;19(1):80-7. https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
    » https://doi.org/10.1010.1097/scs.0b013e31815c93e316/j.bone.2009.12.017
  • 16
    Qi M, Hu J, Zou S, Zhou H, Han L. Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. J Craniomaxillofac Surg. 2006 Jul;34(5):283-9. https://doi.org/10.1016/j.jcms.2006.02.002
    » https://doi.org/10.1016/j.jcms.2006.02.002
  • 17
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009 Jul;339 jul21 1:b2700. https://doi.org/10.1136/bmj.b2700
    » https://doi.org/10.1136/bmj.b2700
  • 18
    Hooijmans CR, Rovers MM, Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014 Mar;14(1):43. https://doi.org/10.1186/1471-2288-14-43
    » https://doi.org/10.1186/1471-2288-14-43
  • 19
    Zeng JJ, Guo P, Zhou N, Xie QT, Liao FC. Treatment of large bone defects with a novel biological transport disc in non-vascular transport distraction osteogenesis. Int J Oral Maxillofac Surg. 2016 May;45(5):670-7. https://doi.org/10.1016/j.ijom.2015.12.012
    » https://doi.org/10.1016/j.ijom.2015.12.012
  • 20
    Watanabe Y, Harada N, Sato K, Abe S, Yamanaka K, Matushita T. Stem cell therapy: is there a future for reconstruction of large bone defects? Injury. 2016 Jan;47 Suppl 1:S47-51. https://doi.org/10.1016/S0020-1383(16)30012-2
    » https://doi.org/10.1016/S0020-1383(16)30012-2
  • 21
    Zomorodian E, Baghaban Eslaminejad M. Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int. 2012;2012:980353. https://doi.org/10.1155/2012/980353
    » https://doi.org/10.1155/2012/980353
  • 22
    Potier E, Noailly J, Ito K. Directing bone marrow-derived stromal cell function with mechanics. J Biomech. 2010 Mar;43(5):807-17. https://doi.org/10.1016/j.jbiomech.2009.11.019
    » https://doi.org/10.1016/j.jbiomech.2009.11.019
  • 23
    Yeom H, Blanchard S, Kim S, Zunt S, Chu TM. Correlation between micro-computed tomography and histomorphometry for assessment of new bone formation in a calvarial experimental model. J Craniofac Surg. 2008 Mar;19(2):446-52. https://doi.org/10.1097/SCS.0b013e318052fe05
    » https://doi.org/10.1097/SCS.0b013e318052fe05
  • 24
    Rühli FJ, Kuhn G, Evison R, Müller R, Schultz M. Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human skull bone pathologies. Am J Phys Anthropol. 2007 Aug;133(4):1099-111. https://doi.org/10.1002/ajpa.20611
    » https://doi.org/10.1002/ajpa.20611
  • 25
    Sivasubramaniyan K, Lehnen D, Ghazanfari R, Sobiesiak M, Harichandan A, Mortha E et al. Phenotypic and functional heterogeneity of human bone marrow- and amnion-derived MSC subsets. Ann N Y Acad Sci. 2012 Aug;1266(1):94-106. https://doi.org/10.1111/j.1749-6632.2012.06551.x
    » https://doi.org/10.1111/j.1749-6632.2012.06551.x
  • 26
    Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003 May;100(10):5807-12. https://doi.org/10.1073/pnas.0937635100
    » https://doi.org/10.1073/pnas.0937635100
  • 27
    Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007 Apr;13(4):767-73. https://doi.org/10.1089/ten.2006.0192
    » https://doi.org/10.1089/ten.2006.0192
  • 28
    Isobe Y, Koyama N, Nakao K, Osawa K, Ikeno M, Yamanaka S et al. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg. 2016 Jan;45(1):124-31. https://doi.org/10.1016/j.ijom.2015.06.022
    » https://doi.org/10.1016/j.ijom.2015.06.022
  • 29
    Folgiero V, Migliano E, Tedesco M, Iacovelli S, Bon G, Torre ML et al. Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transplant. 2010;19(10):1225-35. https://doi.org/10.3727/09638910X519265
    » https://doi.org/10.3727/09638910X519265
  • 30
    Xu Y, Malladi P, Wagner DR, Tataria M, Chiou M, Sylvester KG et al. Adipose-derived mesenchymal cells (AMCs): a promising future for skeletal tissue engineering. Biotechnol Genet Eng Rev. 2006;23(1):291-308. https://doi.org/10.1080/02648725.2006.10648089
    » https://doi.org/10.1080/02648725.2006.10648089
  • 31
    Wu W, Le AV, Mendez JJ, Chang J, Niklason LE, Steinbacher DM. Osteogenic performance of donor-matched human adipose and bone marrow mesenchymal cells under dynamic culture. Tissue Eng Part A. 2015 May;21(9-10):1621-32. https://doi.org/10.1089/ten.tea.2014.0115
    » https://doi.org/10.1089/ten.tea.2014.0115
  • 32
    Ceccarelli G, Bloise N, Mantelli M, Gastaldi G, Fassina L, De Angelis MG et al. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Biores Open Access. 2013 Aug;2(4):283-94. https://doi.org/10.1089/biores.2013.0016
    » https://doi.org/10.1089/biores.2013.0016
  • 33
    Park JS, Yi SW, Kim HJ, Kim SM, Park KH. Regulation of cell signaling factors using plga nanoparticles coated/loaded with genes and proteins for osteogenesis of human mesenchymal stem cells. ACS Appl Mater Interfaces. 2016 Nov;8(44):30387-97. https://doi.org/10.1021/acsami.6b08343
    » https://doi.org/10.1021/acsami.6b08343
  • 34
    Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem. 2003 Feb;88(3):446-54. https://doi.org/10.1002/jcb.10369
    » https://doi.org/10.1002/jcb.10369
  • 35
    Zhang X, Yang M, Lin L, Chen P, Ma KT, Zhou CY et al. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose: derived stem cells in vitro and in vivo. Calcif Tissue Int. 2006 Sep;79(3):169-78. https://doi.org/10.1007/s00223-006-0083-6
    » https://doi.org/10.1007/s00223-006-0083-6
  • 36
    Sharff KA, Song WX, Luo X, Tang N, Luo J, Chen J, et al. Hey1 basic helix-loop-helix protein plays an important role in mediating BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. J Biol Chem. 2009 Jan;284(1):649-59. https://doi.org/10.1074/jbc.M806389200
    » https://doi.org/10.1074/jbc.M806389200
  • 37
    Javed A, Chen H, Ghori FY. Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am. 2010 Aug;22(3):283-93. https://doi.org/10.1016/j.coms.2010.05.001
    » https://doi.org/10.1016/j.coms.2010.05.001
  • 38
    Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, Zhang H et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci USA. 2010 Jul;107(29):12919-24. https://doi.org/10.1073/pnas.0912855107
    » https://doi.org/10.1073/pnas.0912855107
  • 39
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002 Jan;108(1):17-29. https://doi.org/10.1016/S0092-8674(01)00622-5
    » https://doi.org/10.1016/S0092-8674(01)00622-5
  • 40
    Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005 May;8(5):739-50. https://doi.org/10.1016/j.devcel.2005.03.016
    » https://doi.org/10.1016/j.devcel.2005.03.016
  • 41
    Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013 Aug;6(08 8A):32-52. https://doi.org/10.4236/jbise.2013.68A1004
    » https://doi.org/10.4236/jbise.2013.68A1004
  • 42
    Hinck AP. Structural studies of the TGF-βs and their receptors: insights into evolution of the TGF-β superfamily. FEBS Lett. 2012 Jul;586(14):1860-70. https://doi.org/10.1016/j.febslet.2012.05.028
    » https://doi.org/10.1016/j.febslet.2012.05.028
  • 43
    Einhorn TA, Majeska RJ, Mohaideen A, Kagel EM, Bouxsein ML, Turek TJ et al. A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair. J Bone Joint Surg Am. 2003 Aug;85-A(8):1425-35. https://doi.org/10.2106/00004623-200308000-00002
    » https://doi.org/10.2106/00004623-200308000-00002
  • 44
    Oreffo RO, Cooper C, Mason C, Clements M. Mesenchymal stem cells: lineage, plasticity, and skeletal therapeutic potential. Stem Cell Rev. 2005;1(2):169-78. https://doi.org/10.1385/SCR:1:2:169
    » https://doi.org/10.1385/SCR:1:2:169
  • 45
    Cheung LK, Zheng LW, Ma L. Effect of distraction rates on expression of bone morphogenetic proteins in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg. 2006 Jul;34(5):263-9. https://doi.org/10.1016/j.jcms.2006.02.004
    » https://doi.org/10.1016/j.jcms.2006.02.004
  • 46
    Takei Y, Minamizaki T, Yoshiko Y. Functional diversity of fibroblast growth factors in bone formation. Int J Endocrinol. 2015;2015:729352. https://doi.org/10.1155/2015/729352PMID:25873956
    » https://doi.org/10.1155/2015/729352PMID:25873956
  • 47
    Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002 Jun;16(12):1446-65. https://doi.org/10.1101/gad.990702
    » https://doi.org/10.1101/gad.990702

Publication Dates

  • Publication in this collection
    14 Nov 2018
  • Date of issue
    2018

History

  • Received
    11 Apr 2018
  • Accepted
    27 June 2018
  • Reviewed
    10 July 2018
Sociedade Brasileira de Pesquisa Odontológica - SBPqO Av. Prof. Lineu Prestes, 2227, 05508-000 São Paulo SP - Brazil, Tel. (55 11) 3044-2393/(55 11) 9-7557-1244 - São Paulo - SP - Brazil
E-mail: office.bor@ingroup.srv.br