Acessibilidade / Reportar erro

Ecomorphological relations of sympatric juveniles of Clupeiformes from a Brazilian sandy beach

Relações ecomorfológicas de juvenis simpátricos de Clupeiformes de uma praia arenosa brasileira

ABSTRACT

Surf zones are important for early life stages of several fish species for presenting characteristics such as high phytoplanktonic production, diverse food availability and shelter against predators. The action of waves in this environment provides nutrient cycling and increase the turbidity making surf zones ideal nursery environments for diverse species of fish, including clupeiforms. Clupeiform species have a great ecological and economic value for being abundant fish in tropical sandy beaches surf zones with significant fisheries importance. Studies about their feeding ecology and environment use are relevant, and one of the methods improving this knowledge is the application of ecomorphological analyses, which helps understanding species ecological interactions and their adaptations. In this context, the present study aimed to identify the ecomorphological relations and infer about the feeding ecology of eight sympatric clupeiform species in a Brazilian tropical sandy beach. Ten ecomorphological variables were analyzed of individuals belonging to the species Anchoa tricolor (Spix & Agassiz, 1829), Anchoa januaria (Steindachner, 1879), Anchovia clupeoides (Swainson, 1839), Anchoviella lepidentostole (Fowler, 1911), Lycengraulis grossidens (Spix & Agassiz, 1829), Chirocentrodon bleekerianus (Poey, 1867), Harengula clupeola (Cuvier, 1829) and Opisthonema oglinum (Lesueur, 1818), whose values were employed in a principal component analysis (PCA) with the two first axis explaining 58.92% of the total variance. A high morphological overlap between the species of Engraulidae was observed with the exception of A. clupeoides, which differed from the others for presenting higher values of the compression index and caudal peduncle compression index. The Clupeidae species differed from the other families due to higher values of relative height and relative head length which also showed differences between the species themselves, having H. clupeola presented the highest values of these variables. The representative of Pristigasteridae showed an intermediate overlap between the species of the other families because of its highly compressed body but with low scores of relative height, caudal peduncle relative length and mouth aspect ratio. The morphological differentiation between the families and even between species from the same family indicates niche divergences, showing that besides their phylogenetical proximity there are differences in their ecological interactions which possibly contribute to their coexistence.

KEYWORDS
Morphological overlap; coexistence strategy; interspecific competition

RESUMO

Zonas de arrebentação são importantes para os estágios iniciais de várias espécies de peixes por apresentarem características como alta produção fitoplanctônica, disponibilidade alimentar diversificada e abrigo contra predadores. A ação das ondas nestes ambientes proporciona a ciclagem de nutrientes e eleva a turbidez, tornando as zonas de arrebentação ambientes de berçário ideais para diversas espécies de peixes, incluindo os clupeiformes. Espécies de Clupeiformes possuem alto valor ecológico e econômico, por serem peixes abundantes em zonas de arrebentação em praias arenosas tropicais com significativa importância pesqueira. Estudos sobre sua ecologia alimentar e utilização do ambiente são relevantes, e um dos métodos para aprimorar este conhecimento é a aplicação de análises ecomorfológicas, que auxiliam no entendimento das interações ecológicas das espécies e suas adaptações. Nesse contexto, o presente estudo teve como objetivo identificar as relações ecomorfológicas e inferir sobre a ecologia alimentar de oito espécies de clupeiformes simpátricas em uma praia arenosa tropical Brasileira. Foram analisadas dez variáveis ecomorfológicas de indivíduos pertencentes as espécies Anchoa tricolor (Spix & Agassiz, 1829), Anchoa januaria (Steindachner, 1879), Anchovia clupeoides (Swainson, 1839), Anchoviella lepidentostole (Fowler, 1911), Lycengraulis grossidens (Spix & Agassiz, 1829), Chirocentrodon bleekerianus (Poey, 1867), Harengula clupeola (Cuvier, 1829) e Opisthonema oglinum (Lesueur, 1818), cujos valores foram empregados em uma análise de componentes principais (PCA) com os dois primeiros eixos explicando 58,92% da variância total. Uma elevada sobreposição morfológica entre as espécies de Engraulidae foi observada, com exceção de A. clupeoides, que se diferenciou das demais por apresentar maiores valores do índice de compressão e índice de compressão do pedúnculo caudal. As espécies de Clupeidae diferiram das demais famílias devido aos elevados valores de altura relativa e comprimento relativo da cabeça, o que também mostrou diferenças entre as próprias espécies, tendo H. clupeola apresentado maiores valores destas variáveis. O representante de Pristigasteridae apresentou sobreposição intermediária entre as espécies das demais famílias, devido ao seu corpo altamente comprimido, mas com baixos escores de altura relativa, comprimento relativo do pedúnculo e aspecto da boca. A diferenciação morfológica entre as famílias, e até mesmo entre espécies de uma mesma família, indica divergências de nicho, mostrando que apesar de sua proximidade filogenética, existem diferenças em suas interações ecológicas, possivelmente contribuindo para a sua coexistência.

PALAVRAS-CHAVE
Sobreposição morfológica; estratégias de coexistência; competição interespecífica

Surf zones are highly energetic environments where much of the waves’ energy is dissipated as they break on the shore (Peregrine, 1998Peregrine, D. H. 1998. Surf zone currents. Theoretical and Computational Fluid Dynamics 10(1):195-309.). Despite presenting intense wave action over the communities that live there (McLachlan, 1990McLachlan, A. 1990. Dissipative beaches and macrofauna communities on exposed intertidal sands. Journal of Coastal Research 6(1):57-71.), surf zones serve as nursery environments to several marine species as they present high phytoplankton productivity, elevated turbidity, nutrients cycling and shelter against predators (Salant & Shanks, 2018Salant, C. D. & Shanks, A. L. 2018. Surf-zone hydrodynamics alter phytoplankton subsidies affecting reproductive output and growth of tidal filter feeders. Ecology 99(8):1878-1889.; Izumiyama et al., 2020Izumiyama, M.; Westphal, M. F. & Crow, K. D. 2020. In the surf zone: reproductive strategy of the calico surfperch (Amphistichus koelzi) in a comparative context. Journal of Fish Biology 96(1):939-949.). In this way, they serve as an adequate habitat to larval stages of fish species which develop into adult phase in this environment (Godefroid et al., 1999Godefroid, R. S.; Hofstaetter, M. & Spach, H. L. 1999. Larval fish in the surf zone of Pontal do Sul beach, Pontal do Paraná, Paraná, Brazil. Revista Brasileira de Zoologia 16(4):1005-1011.), and for others that complete their life cycle in surf zones (Monteiro-Neto et al., 2003Monteiro-Neto, C.; Cunha, L. P. R. & Musick, J. A. 2003. Community structure of surf-zone fishes at Cassino Beach, Rio Grande do Sul, Brazil. Journal of Coastal Research 35(1):492-501.). Among these, representative of Clupeiforme with slender body, which provides good swimming ability in turbulent waters, such as sardines, anchovies and pilchards are included (Watson & Balon, 1984Watson, D. J. & Balon, E. K. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. Journal of Fish Biology 25(1):371-384.; Silva & Araújo, 2000Silva, M. A. & Araújo, F. G. 2000. Distribution and relative abundance of anchovies (Clupeiformes-Engraulididae) in the Sepetiba Bay, Rio de Janeiro, Brazil. Brazilian Archives of Biology and Technology 43(1):379-385.; Nascimento et al., 2019Nascimento, L. A. S.; Teixeira, D. I. A.; Santana, F. M. S. & Pontes, C. S. 2019. Characterization of fauna and flora associated with the seaweed mariculture system developed on Pitangui, Extremoz/RN beach. Revista Ibero-Americana de Ciências Ambientais 10(5):250-259.; Reis et al., 2020Reis, A. R. R.; Santos, L. R. B.; Oliveira, L. S. & Zacardi, D. M. 2020. Variação temporal de larvas de Clupeiformes (Pisces, Teleostei) em um lago de várzea no Baixo Amazonas, Pará, Brasil. Brazilian Journal of Development 6(9):72877-72887.).

Clupeiformes species present long and often numerous gill rakers and a predominantly planktonic feeding habit, in addition to having high importance for the industrial and artisanal fisheries around the world (Nelson et al., 2016Nelson, J. S.; Grande, T. C. & Wilson, M. V. H. 2016. Fishes of the world. 5ed. Hoboken, Wiley. 707p.; Juliani et al., 2019Juliani; Anggoro, S.; Saputra, S. W. & Helminuddin. 2019. Sustainability assessment of Devis’ anchovy (Encrasicholina devisi (Whitley, 1940)) (Clupeiformes: Engraulidae) fisheries based on biology aspects, Kutai Kartanegara, Indonesia. Aquaculture, Aquarium, Conservation & Legislation 12(5):1938-1950.; Wang et al., 2021Wang, X.; Yagi, Y.; Tojima, S.; Kinoshita, I.; Hirota, Y. & Fujita, S. 2021. Early life history of Ilisha elongata (Pristigasteridae, Clupeiformes, Pisces) in Ariake Sound, Shimabara Bay, Japan. Plankton & Benthos Research 16(3):210-220.). Members of this order are found in many different habitats along their life cycle, with juveniles being more commonly found in estuarine environments and surf zones, while adults are found in deeper portions of coastal areas. Several species deserve conservation concern due to threats by pollution, habitat modification and overexploitation (Araújo et al., 2008Araújo, F. G.; Silva, M. A.; Santos, J. N. S. & Vasconcellos, R. M. 2008. Habitat selection by anchovies (Clupeiformes: Engraulidae) in a tropical bay at Southeastern Brazil. Neotropical Icthiology 6(4):583-590.; Mai et al., 2014Mai, A. C. G.; Condini, M. V.; Albuquerque, C. Q.; Loebmann, D.; Saint’Pierre, T. D.; Miekeley, N. & Vieira, J. P. 2014. High plasticity in habitat use of Lycengraullis grossidens (Clupeiformes, Engraulidae). Estuarine, Coastal and Shelf 141(1):17-25.; Birge et al., 2020Birge, T. L.; Ralph, G. M.; Di Dario, F.; Munroe, T. A.; Bullock, R. W.; Maxwell, S. M.; Santos, M. D.; Hata, H. & Carpenter, K. E. 2020. Global conservation status of the world’s most prominent forage fishes (Teleostei: Clupeiformes). Biological Conservation 253(1):1-9.).

Despite species belonging to the same order tend to present similar phenotypical characteristics, even those from a same family may have different osteological development or explore distinct habitats during their life cycle, what can lead to distinct adaptations to the environment among species (Bloom & Egan, 2018Bloom, D. D. & Egan, J. P. 2018. Systematics of Clupeiformes and testing for ecological limits on species richness in a trans-marine/freshwater clade. Neotropical Ichthyology 16(3):e180095; Dizaj et al., 2020Dizaj, L. P.; Esmaeili, H. R.; Jawad, L.; Ebrahimi, M.; Gholamhosseini, A. & Valinasab, T. 2020. Taxonomic significance of vertebral column and caudal skeleton of clupeid fishes (Teleostei: Clupeiformes) of Iran. Acta Zoologica 2020:1-14.).

Fish feeding ecology brings up a range of information relating species body shape, prey selection and predation (Nikolskii, 1963Nikolskii, G. V. 1963. The ecology of fishes. London, Academic Press. 352p. ), which are valuable for a responsible exploitation of fish stocks and development of conservation strategies for threatened species (Boyle & Horn, 2006Boyle, K. S. & Horn, M. H. 2006. Comparison of feeding guild structure and ecomorphology of intertidal fish assemblages from central California and central Chile. Marine Ecology Progress Series 319:65-84.; Simpfendorfer et al., 2011Simpfendorfer, C. A.; Heupel, M. R.; White, W. T. & Dulvy, N. K. 2011. The importance of research and public opinion to conservation management of sharks and rays: a synthesis. Marine and Freshwater Research 62:518-527.; Braga et al., 2012Braga, R. R.; Bornatowski, H. & Vitule, J. R. S. 2012. Feeding ecology of fishes: an overview of worldwide publications. Reviews Fish Biology Fisheries 22:915-929.; Karachler & Stergiou, 2013Karachler, P. K. & Stergiou, K. I. 2013. Feeding and ecomorphology of three clupeoids in the North Aegean Sea. Mediterranean Marine Science 15(1):9-26.)

The coexistence of fish species with similar body shape and feeding preferences leads to niche partitioning (Correa & Winemiller, 2014Correa, S. B. & Winemiller, K. O. 2014. Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95(1):210-224), which promotes different interactions with the environment, and exploitation of food resources in a different way in order to avoid competition. A good approach to understand such interactions is the use of ecomorphological analysis (Wikramanayake, 1990Wikramanayake, E. D. 1990. Ecomorpholoy and biogeography of a tropical stream fish assemblage: Evolution of assemblage structure. Ecology 75(5):1756-1764.; Adite & Winemiller, 1997Adite, A. & Winemiller, K. O. 1997. Trophic ecology of fish assemblages in coastal lakes of Benin, West Africa. Écoscience 4(1):6-23.; Olivier et al., 2019Olivier, D.; Lepoint, G.; Aguilar-medrano, R.; Díaz, A. H. R.; Sánchez-gonzález, A. & Sturaro, N. 2019. Ecomorphology, trophic niche, and distribution divergences of two common damselfishes in the Gulf of California, Ecology 342(1):309-321.).

Ecomorphological studies in teleost fish have been developed as an important tool to understanding how morphology influences feeding patterns and environment use, assuming that there is correlation between species shape and life cycle (Winemiller, 1991Winemiller, K. O. 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61(4):343-365.; Teixeira & Bennemann, 2007Teixeira, I. & Bennemann S. T . 2007. Ecomorfologia refletindo a dieta dos peixes em um reservatório no sul do Brasil. Biota Neotropica 7(1):67-76.). In a short period of time body morphology is expected to influence fish diet, although in a larger period diet may influence the morphology due to factors, such as phenotypic plasticity, according to the environmental conditions in which species thrive and their ecological interactions (Mittelbach et al., 1999Mittelbach, G. C.; Osenberg, C. W. & Wainwright, P. C. 1999. Variation in feeding morphology between pumpkinseed populations: phenotypic plasticity or evolution? Evolutionary Ecology Research 1(1):111-128.; Svanbäck & Eklöv, 2002Svanbäck, R. & Eklöv, P. 2002. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131(1):61-70.).

Ecomorphology may be an important indicator of species diet and trophic position (Blasina et al., 2016Blasina, G.; Molina, J.; Cazorla, A. L. & Astarloa, J. D. 2016. Relationship between ecomorphology and trophic segregation in four closely related sympatric fish species (Teleostei, Sciaenidae). Comptes Rendus Biologies 339(1):498-506.), being able to identify adaptative convergence in phylogenetically distant species, and adaptative divergences in phylogenetically close ones (Reilly & Wainwright, 1994Reilly, S. M. & Wainwright P. C . 1994. Conclusion: ecological morphology and the power of integration. In: Wainwright, P. C. & Reilly, S. M. eds. Ecological Morphology: Integrative Organismal Biology. Chicago, University Chicago Press, p. 339-354.; Cassati & Castro, 2006Cassati, L. & Castro, R. M. C. 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the Rio São Francisco, southeastern Brazil. Neotropical Ichthyology 4(2):203-214.). It helps classifying the feeding habits associated with linear models, identifying possible changes in species feeding patterns and trophic levels according to the phase of the life cycle and infer about swimming ability (Vorsatz et al., 2019Vorsatz, L. D.; Lingen, C. D. V. D. & Gibbons, M. J. 2019. Observations on the biology and seasonal variation in feeding of the east coast round herring Etrumeus wongratanai (Clupeiformes), off Scottburgh, KwaZulu-Natal, South Africa. Journal of Fish Biology 94:498-511.; Souza & Pompeu, 2020Souza, R. C. R. & Pompeu, P. S. 2020. Ecological separation by ecomorphology and swimming performance between two congeneric fish species. Zoologia 37:1-8.; Podder et al., 2021aPodder, A.; Panja, S.; Chaudhuri, A.; Roy, A.; Biswas, M. & Homechaudhuri, S. 2021a. Patterns of morphological traits shaping the feeding guilds in the intertidal mudflat fishes of the Indian Sundarbans. Journal of Fish Biology 99:1010-1031.,bPodder, A.; Panja, S.; Chaudhuri, A.; Roy, A.; Biswas, M. & Homechaudhuri, S. 2021b. Role of morphology in shaping the feeding niche of fishes inhabiting Eastern Himalayan torrential rivers of West Bengal, India. Ecology of Freshwater Fish 30:444-465.; Santos et al., 2021Santos, L. V.; Vasconcelos-Filho, J. E.; Lira, A. S.; Soares, A.; Eduardo, L. A.; Passarone, R.; Le-Loc’h, F. & Lucena-Frédou, F. 2021. Trophic ecology and ecomorphology of the shorthead drum, Larimus breviceps (Acanthuriformes: Sciaenidae), from the northeastern Brazil. Thalassas: An International Journal of Marine Sciences. Available at https://doi.org/10.1007/s41208-021-00365-6.
https://doi.org/10.1007/s41208-021-00365...
).

In this context, the present study aimed to identify the morphological relations and infer about the feeding ecology of Anchoa januaria (Steindachner, 1879), Anchoa tricolor (Spix & Agassiz, 1829), Anchovia clupeoides (Swainson, 1839), Anchoviella lepidentostole (Fowler, 1911), Lycengraulis grossidens (Spix & Agassiz, 1829), Harengula clupeola (Cuvier, 1829), Opisthonema oglinum (Lesueur, 1818) and Chirocentrodon bleekerianus (Poey, 1867), common syntopic Clupeiformes representatives in a sandy beach surf zone in northeastern Brazil.

MATERIAL AND METHODS

The clupeiform individuals used are part of the Fish Collection of the Ichthyology Laboratory of Universidade Federal Rural de Pernambuco. They were collected in the Jaguaribe Beach, a sandy beach located in the north part of Itamaracá Island (Northern Coast of Pernambuco), located 50 km from the capital Recife, and separated from mainland by an estuarine channel called Santa Cruz Channel (Almeida & Vasconcelos-Filho, 1997Almeida, Z. S. & Vasconcelos-Filho, A. L. 1997. Contribuição ao conhecimento de peixes Pleuronectiformes da área de Itamaracá - PE (Brasil). Trabalhos Oceanográficos da Universidade Federal de Pernambuco 25(1):69-82.). The beach substrate is mainly compound by a sand substrate with dead or inactive coral formations and calcareous algae supported on a sandstone foundation (Medeiros & Kjerfve, 1993Medeiros, C. & Kjerfve, B. 1993. Hydrology of a tropical estuarine system: Itamaracá, Brazil. Estuarine, Coastal and Shelf Science 36(1):495-515.) with a well-documented fish fauna composition (Santana & Severi, 2009Santana, F. M. S.; Silva-Falcão, E. C. & Severi, W. 2009. Ocorrência de Chirocentrodon bleekerianus (Teleostei; Pristigasteridae) na costa do estado de Pernambuco - Brasil. Revista Brasileira de Engenharia de Pesca 4(1):144-154.; Santana et al., 2009Santana, F. M. S. & Severi, W. 2009. Composição e estrutura da assembleia de peixes da zona de arrebentação da praia de Jaguaribe, Itamaracá (PE). Bioikos 23(1):3-17.).

The specimens were collected monthly between March 2005 and February 2006 in new and crescent moon phases, during the day and the night in low tide. The samples were obtained using a “picaré” beach seine net, 20 meters long, 2.5 meters high and 5 mm mesh internodes [see Santana & Severi (2009Santana, F. M. S.; Silva-Falcão, E. C. & Severi, W. 2009. Ocorrência de Chirocentrodon bleekerianus (Teleostei; Pristigasteridae) na costa do estado de Pernambuco - Brasil. Revista Brasileira de Engenharia de Pesca 4(1):144-154.) for more details about the sampling]. The specimens were fixed in 4% formaldehyde, preserved in 70% ethanol and identified according to Figueiredo & Menezes (1978Figueiredo, J. L. & Menezes, N. A. 1978. Manual de peixes marinhos do sudeste do Brasil. II. Teleostei. São Paulo, Museu de Zoologia da Universidade de São Paulo. 110p. ) and Carpenter (2002Carpenter, K. E. 2002. The living marine resources of the Western Central Atlantic. Volume 2: Bony fishes part 1 (Acipenseridae to Grammatidae). FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. Rome, FAO, p. 601-1374.).

Twenty individuals from each species, except A. januaria and H. clupeola (respectively 14 and seven individuals) were measured with the aid of a digital caliper (0.01 mm), to their standard length (SL), body height (BH), medium body height (MHB), body width (BW), head length (HL), head height (HH), relative eye height (ERH), pectoral fin length (PFL), pectoral fin width (PFW), caudal fin height (CFH), caudal peduncle length (CPL), caudal peduncle height (CPH), caudal peduncle width (CPW), mouth width (MW) and mouth diameter (MD) (Fig. 1, adapted from Albouy et al., 2011Albouy, C.; Guilhaumon, F.; Villéger, S.; Mouchet, M.; Mercier, L.; Culioli, J. M.; Tomasini, J. A.; Le-Loc’h, F. & Mouillot, D. 2011. Predicting trophic guild and diet overlap from functional traits: statistics, opportunities and limitations for marine ecology. Marine Ecology Progress Series 436:17-28.) (Keast & Webb, 1966Keast, A. & Webb, D. 1966. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. Journal of the Fisheries Research Board of Canada 23(1):1845-1874.; Gatz, 1979Gatz, A. J. 1979. Community organization in fishes as indicated by morphological features. Ecology 60(4):711-718.; Watson & Balon, 1984Watson, D. J. & Balon, E. K. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. Journal of Fish Biology 25(1):371-384.; Beaumord & Petrere Jr, 1994Beaumord, A. C. & Petrere-Jr., M. 1994. Fish communities of Manso river, Chapada dos Guimarães, MT, Brasil. Acta Biologica Venezuelica 15(2):21-35.).

Fig. 1.
Morphological measures taken to calculate the ecomorphological variables (adapted from Albouy et al., 2011Albouy, C.; Guilhaumon, F.; Villéger, S.; Mouchet, M.; Mercier, L.; Culioli, J. M.; Tomasini, J. A.; Le-Loc’h, F. & Mouillot, D. 2011. Predicting trophic guild and diet overlap from functional traits: statistics, opportunities and limitations for marine ecology. Marine Ecology Progress Series 436:17-28.) (SL, standard length; BH, body height; MHB, medium body height; BW, body width; HL, head length; HH, head height; ERH, relative eye height; PFL, pectoral fin length; PFW, pectoral fin width; CFH, caudal fin height; CPL, caudal peduncle length; CPH, caudal peduncle height; CPW, caudal peduncle width; MW, mouth width; MD; mouth diameter).

Based on the measurements taken from each individuals, the following ecomorphological variables were calculated: Compression index (CI=BH/BW) (Watson & Balon, 1984Watson, D. J. & Balon, E. K. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. Journal of Fish Biology 25(1):371-384.): indicate the fish’s position in the water column; high scores indicating laterally compressed fish; Relative height (HR=BH/SL) (Gatz, 1979Gatz, A. J. 1979. Community organization in fishes as indicated by morphological features. Ecology 60(4):711-718.): directly related to the ability to make vertical turns; low scores indicating elongated fish; Relative peduncle length (RPL=CPL/SL) (Watson & Balon, 1984): elongated peduncles indicate fish with good swimming ability; Caudal peduncle compression index (CPCI=CPH/CPW) (Gatz, 1979): high scores are typical in less active swimmers; Index of ventral flattening (IVF=MHB/BH) (Watson & Balon, 1984): low scores indicate fish inhabitants of waters with high hydrodynamics; Aspect of pectoral fin ratio (APFR=PFL/PFW) (Keast & Webb, 1966Keast, A. & Webb, D. 1966. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. Journal of the Fisheries Research Board of Canada 23(1):1845-1874.): high scores indicate long and narrow fins; Relative eye position (REP=ERH/BH) (Gatz, 1979): indicate the vertical habitat preference, benthic fish have eyes localized more dorsally and nektonic fish eyes localized laterally; Relative head length (RHL=HL/SL) (Watson & Balon, 1984): relatively longer heads indicate that the fish is able to handle larger prey items; Relative mouth width (RMW=MW/SL) (Gatz, 1979): indicate the relative size of the prey items; and Mouth aspect ratio (MAR=MD/MW) (Beaumord & Petrere Jr, 1994Beaumord, A. C. & Petrere-Jr., M. 1994. Fish communities of Manso river, Chapada dos Guimarães, MT, Brasil. Acta Biologica Venezuelica 15(2):21-35.): the mouth aspect ratio is related to the shape of the feed items; elevated scores indicating narrow but wide-open mouths.

In order to check the development phase of the individuals used, their length of first maturity (L50) of all species was based on literature (Osorio & Acero, 1996Osorio, C. A. & Acero, P. A. 1996. Reproducción de Anchovia clupeoides y Anchoa parva (Pisces: Engraulidae) en dos ciénagas del Caribe Colombiano. Revista de Biologia Tropical 44(2):781-793; Silva-Junior et al., 2013Silva-Junior, C. A. B. S.; Araújo, M. E. & Feitosa, C. V. 2013. Sustainability of capture of fish bycatch in the prawn trawling in northeastern Brazil. Neotropical Ichthyology 11(1):133-142.; Mai & Vieira, 2013Mai, A. C. G. & Vieira, J. P. 2013. Review and consideration on habitat use, distribution and life history of Lycengraulis grossidens (Agassiz, 1829) (Actinopterygii, Clupeiformes, Engraulididae). Biota Neotropica 13(3):121-130.; Petermann & Schwingel, 2016Petermann, A. & Schwingel, P. R. 2016. Overlap of the reproductive cycle and recruitment of the four main species caught by the purse seine fleet in Brazil. Latin America Journal of Aquatic Research 44(5):1069-1079.; Costa et al., 2018Costa, M. R.; Tubino, R. A. & Monteiro-Neto, C. 2018. Length-weight relations of juvenile and adult fishes (Actinopterygii) from shallow waters in the lower Guanabara Bay Estuary, Brazil. Acta Ichthyologica et Piscatoria 48(2):199-204.; Froese & Pauly, 2022Froese, R. & Pauly, D. 2022. FishBase. World Wide Web electronic publication. Available at Available at http://www.fishbase.org . Accessed on 07 March 2022.
http://www.fishbase.org...
).

To evaluate eventual correlations between morphological similarities, the species and feeding were classified into the following trophic guilds: carnivore first order (Favero et al., 2019Favero, F. L. T.; Araujo, I. M. S. & Severi, W. 2019. Structure of the fish assemblage and functional guilds in the estuary of Maracaípe, northeasthern coast of Brazil. Boletim do Instituto de Pesca 45(1):1-14.): individuals that feed primarily of benthic invertebrates; carnivore second order (Favero et al., 2019): fish with the diet based on invertebrates which may occasionally consume fish; planktivore (Favero et al., 2019): species that feed predominantly on phytoplankton occasionally also feeding on zooplankton; zoobenthivore (Elliott et al., 2007Elliott, M.; Whitfield, A. K.; Potter, I. C.; Blaber, S. J. M.; Cyrus, D. P.; Nordlie, F. G. & Harrison, T. D. 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8(3):241-268.): fish species that feed predominantly on invertebrates associated with the substrate, specially animals that live just above the sediment; and zooplanktivore (Elliott et al., 2007): fish species with diet predominantly composed by zooplankton, such as planktonic crustaceans and fish eggs and larvae. Species feeding guilds classification was based on literature (Mai & Vieira, 2013Mai, A. C. G. & Vieira, J. P. 2013. Review and consideration on habitat use, distribution and life history of Lycengraulis grossidens (Agassiz, 1829) (Actinopterygii, Clupeiformes, Engraulididae). Biota Neotropica 13(3):121-130.; Andrade-Tubino et al., 2019Andrade-Tubino, M. F.; Azevedo, M. C. C.; Franco, T. P. & Araújo, F. G. 2019. How are fish assemblages and feeding guilds organized in different tropical coastal systems? Comparisons among oceanic beaches, bays and coastal lagoons. Hydrobiologia 847(1):1-17.; Favero et al., 2019; Lira et al., 2021Lira, S. L.; Lucena-Frédou, F.; Ménard, F.; Frédou, T.; Gonzalez, J. G.; Ferreira, V.; Filho, J. S. R.; Munaron, J. M. & Le-Loc’h, F. 2021. Trophic structure of a nektobenthic community exploited by a multispecific bottom trawling fishery in Northeastern Brazil. Plos One 16(2):1-18.).

With the aid of the software R (version 4.0.3) the normality of the ecomorphological variables was checked using a Shapiro-Wilk test followed by a Kruskall-Wallis test, to identify significant differences of each measured value between species, and a Dunn multiple comparison test (R Core Team, 2009). The scores of the ten variables were examined through a principal component analysis (PCA) through the R built-in function “prcomp()” (R Development Core Team, 2009R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org.) to calculate the principal components, use the package “factoextra” (Kassambara & Mundt, 2020Kassambara, A. & Mundt, F. 2020. Factoextra: extract and visualize the results of multivariate data analysis. R package version 1.0.7. URL: https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=facto...
) to graphically visualize the affinity of the ecomorphological attributes with the axes of the PCA and the clusterization of the species based on the scores of their ecomorphological attributes.

RESULTS

Individuals of all species were considered juveniles, since they presented standard length lower than their reported length at first maturity (L50), and were classified into distinct trophic guilds. Anchoa januaria, A. clupeoides and H. clupeola were classified as planktivore fishes, L. grossidens and O. oglinum as zooplanktivore, C. bleekerianus as zoobenthivore, A. lepidentostole as carnivore first order and A. tricolor as carnivore second order (Tab. I).

Tab. I.
Range of the species standard length, their respective length of first maturity (L50) and trophic guild. *References to L50: 1, Froese & Pauly, 2022Froese, R. & Pauly, D. 2022. FishBase. World Wide Web electronic publication. Available at Available at http://www.fishbase.org . Accessed on 07 March 2022.
http://www.fishbase.org...
; 2, Silva-Junior et al., 2013Silva-Junior, C. A. B. S.; Araújo, M. E. & Feitosa, C. V. 2013. Sustainability of capture of fish bycatch in the prawn trawling in northeastern Brazil. Neotropical Ichthyology 11(1):133-142.; 3, Osorio & Acero, 1996Osorio, C. A. & Acero, P. A. 1996. Reproducción de Anchovia clupeoides y Anchoa parva (Pisces: Engraulidae) en dos ciénagas del Caribe Colombiano. Revista de Biologia Tropical 44(2):781-793; 4, Mai & Vieira, 2013Mai, A. C. G. & Vieira, J. P. 2013. Review and consideration on habitat use, distribution and life history of Lycengraulis grossidens (Agassiz, 1829) (Actinopterygii, Clupeiformes, Engraulididae). Biota Neotropica 13(3):121-130.; 5, Costa et al., 2018Costa, M. R.; Tubino, R. A. & Monteiro-Neto, C. 2018. Length-weight relations of juvenile and adult fishes (Actinopterygii) from shallow waters in the lower Guanabara Bay Estuary, Brazil. Acta Ichthyologica et Piscatoria 48(2):199-204.; 6, Petermann & Scwingel, 2016Petermann, A. & Schwingel, P. R. 2016. Overlap of the reproductive cycle and recruitment of the four main species caught by the purse seine fleet in Brazil. Latin America Journal of Aquatic Research 44(5):1069-1079.. #References to trophic guild: 1, Andrade-Tubino et al., 2019Andrade-Tubino, M. F.; Azevedo, M. C. C.; Franco, T. P. & Araújo, F. G. 2019. How are fish assemblages and feeding guilds organized in different tropical coastal systems? Comparisons among oceanic beaches, bays and coastal lagoons. Hydrobiologia 847(1):1-17.; 2, Favero et al., 2019Favero, F. L. T.; Araujo, I. M. S. & Severi, W. 2019. Structure of the fish assemblage and functional guilds in the estuary of Maracaípe, northeasthern coast of Brazil. Boletim do Instituto de Pesca 45(1):1-14.; 3, Mai & Vieira, 2013; 4, Lira et al., 2021Lira, S. L.; Lucena-Frédou, F.; Ménard, F.; Frédou, T.; Gonzalez, J. G.; Ferreira, V.; Filho, J. S. R.; Munaron, J. M. & Le-Loc’h, F. 2021. Trophic structure of a nektobenthic community exploited by a multispecific bottom trawling fishery in Northeastern Brazil. Plos One 16(2):1-18..

Based on the ecomorphological data, higher values of CI were found in A. clupeoides, indicating its larger compression in relation to the other species, besides presenting the second smallest scores of HR, and together with C. bleekerianus, O. oglinum and H. clupeola had the smallest values of RPL and CPCI (Tab. II). There were statistical significant differences of all ecomorphological variables between species.

Tab. II.
Median, minimum, maximum and p values of the ecomorphological attributes of the analyzed species (CI, Compression index; HR, Relative height; RPL, Relative peduncle length; CPCI, Caudal peduncle compression index; IVF, Index of ventral flattening; APFR, Aspect of pectoral fin ratio; REP, Relative eye position; RHL, Relative head length; RMW, Relative mouth width; MAR, Mouth aspect ratio).

The first two axis of the PCA explained together 58.92% of the total variance (Tab. III), the first axis representing 34.14% of the total and correlating more positively with HR, RHL and APFR, what differentiated H. clupeola and O. oglinum from all other species (Fig. 2). The second axis represented 24.78% of the total, and evidenced positive relations with CI, CPCI and IVF and a strong negative correlation with MAR, differentiating A. clupeoides from the other engraulids and positioning C. bleekerianus in an intermediate position between the species, besides presenting high scores of CI, CPCI and IVF, and also intermediate scores of MAR.

Tab. III.
Resulting values of the PCA first two axis scores for the ecomorphological attributes of the clupeiform species analyzed (CI, Compression index; HR, Relative height; RPL, Relative peduncle length; CPCI, Caudal peduncle compression index; IVF, Index of ventral flattening; APFR, Aspect of pectoral fin ratio; REP, Relative eye position; RHL, Relative head length; RMW, Relative mouth width; MAR, Mouth aspect ratio).

Fig. 2.
Ordination diagram of the ecomorphological variables and clusters of the analyzed clupeiform species according to their relation with the first two axis of the PCA (CI, Compression index; HR, Relative height; RPL, Relative peduncle length; CPCI, Caudal peduncle compression index; IVF, Index of ventral flattening; APFR, Aspect of pectoral fin ratio; REP, Relative eye position; RHL, Relative head length; RMW, Relative mouth width; MAR, Mouth aspect ratio).

A considerable morphological overlap of some species was evidenced by the PCA (Fig. 2), and a strong correlation between the Engraulidae with the exception of A. clupeoides, because of its deeper body and higher caudal peduncle compression in relation to the other members of the family. The Clupeidae differentiated from the remainders, and the representative of Pristigasteridae occupied an intermediate position between the other families, due to its low scores of RHL and HR when compared with the clupeids, and low scores of MAR and elevated values of IVF, CI and CPCI when compared with the engraulids.

Despite the engraulids, with the exception of A. clupeoides, had presented high morphological overlap, they all belonged to distinct trophic guilds, clupeids presented morphological differences and belonged to different guilds, and the representative of Pristigasteridae was morphologically different from the other families and was the only zoobenthivore fish among the analyzed species.

DISCUSSION

The first two axis of the PCA showed a clear separation of H. clupeola and O. oglinum from the other clupeiforms, owing to their high scores of relative height and relative head length. These variables are directly related to the body stretching and to the ability to feed on bigger prey items (Gatz, 1979Gatz, A. J. 1979. Community organization in fishes as indicated by morphological features. Ecology 60(4):711-718.; Watson & Balon, 1984Watson, D. J. & Balon, E. K. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. Journal of Fish Biology 25(1):371-384.). This not only morphologically differentiated these clupeids, for being species of carnivorous food habit, but also showed differences between them, since H. clupeola presents a more planktivore habit than O. oglinum which has a feeding preference for crustaceans (Vega-Candejas et al., 1997Vega-Candejas, M. E.; Mexicano-Cíntora, G. & Arce, A. M. 1997. Biology of the thread herring Opisthonema oglinum (Pisces:Clupeidae) from a beach seine fishery of the Campeche Bank, Mexico. Fisheries Research 30(1):117-126.; Chaves & Vendel, 2008Chaves, P. T. & Vendel, A. L. 2008. Análise comparativa da alimentação de peixes (Teleostei) entre ambientes de marisma e de manguezal num estuário do sul do Brasil (Baía de Guaratuba, Paraná). Revista Brasileira de Zoologia 25(1):10-15.; Soares et al., 2018Soares, L. S. H.; Arantes, L. P. L.; Lamas, R. A.; Lima, F. A.; Pucci, M. C. J. & Rossi-Wongtschowslki, C. L. D. B. 2018. Fish feeding interactions in a subtropical coastal system in the southwestern Atlantic. Ocean and Coastal Management 164 (1):115-127.; Favero et al., 2019Favero, F. L. T.; Araujo, I. M. S. & Severi, W. 2019. Structure of the fish assemblage and functional guilds in the estuary of Maracaípe, northeasthern coast of Brazil. Boletim do Instituto de Pesca 45(1):1-14.; Bomfim et al., 2020Bomfim, A. C.; Farias, D. S. D.; Mourão-Júnior, H. B.; Morais, I. C. C.; Rossi, S.; Gavilan, S. A. & Silva, F. J. L. 2020. Diet and histological features of digestive tube from four discarded fish species by trawl by catch in Northeastern Brazil. Biota Neotropica 20(3):1-11.).

It was also observed the separation of engraulids, as group with higher scores of mouth aspect ratio, whose big scores indicate fishes with wide-open but narrow mouths (Beaumord & Petrere Jr, 1994Beaumord, A. C. & Petrere-Jr., M. 1994. Fish communities of Manso river, Chapada dos Guimarães, MT, Brasil. Acta Biologica Venezuelica 15(2):21-35.), thus contributing to the similarity between their species. In contrast, the second axis of the PCA grouped positively species with the highest scores of compression index, index of ventral flattening and caudal peduncle compression index, which are respectively related to body compression, occupation of environments with high hydrodynamics and to swimming intensity (Gatz, 1979Gatz, A. J. 1979. Community organization in fishes as indicated by morphological features. Ecology 60(4):711-718.; Watson & Balon, 1984Watson, D. J. & Balon, E. K. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. Journal of Fish Biology 25(1):371-384.). This differentiated A. clupeoides from the remaining engraulids for being more compressed, corroborating with the data found by Pessanha et al. (2015Pessanha, A. L. M.; Araujo, F. G.; Oliveira, R. E. M. C. C.; Silva, A. F. & Sales, N. S. 2015. Ecomorphology and resource use by dominant species of tropical estuarine juvenile fishes. Neotropical Ichthyology 13(3):401-412.), who registered the compression index as a responsible for the differentiation of A. clupeoides from all the other fish species analyzed from the surf zone estuary of the Mamanguape River (Paraíba, Brazil). The species with the highest scores of the relative peduncle length reinforced the ecomorphological resemblance between A. januaria, A. tricolor, A. lepidentostole and L. grossidens.

Although fish species belonging to the same taxonomic group tend to have similar body shape (Catella & Petrere Jr, 1998Catella, A. C. & Petrere Jr, M. 1998. Body-shape and food habits of fish from Baía da Onça, a Pantanal flood plain lake, Brazil. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 26(5):2203-2208.), ecomorphological analyses can infer differences between them and their way of life, according to differences of their morphological variables (Piet, 1998Piet, G. J. 1998. Ecomorphology of a size-structured tropical freshwater fish community. Environmental Biology of Fish 51(1):67-86. ; Garcia et al., 2020Garcia, T. D.; Quirino, B. A.; Pessoa, L. A.; Cardozo, A. L. P. & Goulart, E. 2020. Differences in ecomorphology of two sympatric heptapterids (Teleosteii: Siluriformes). Acta Scientiarum. Biological Sciences 42(1):1-12.). In the studies of Nunes & Hartz (2006Nunes, D. M. & Hartz, S. M. 2006. Feeding dynamics and ecomorphology of Oligosarcus jenynsii (Günther, 1864) and Oligosarcus robustus (Menezes, 1969) in the Lagoa Fortaleza, southern Brazil. Brazilian Journal of Biology 66(1):121-132.) about two Characidae species inhabiting the Fortaleza Lake (State of Rio Grande do Sul, Brazil), the authors observed differences in their morphology and diet besides their morphological similarity. Such differences were also found in the present study, since although the species belong to the same order, morphological differences are perceived even in species from the same family, such as A. clupeoides and the other engraulids, and the separation between the clupeids.

Despite the ecomorphological similarity of engraulids, except for A. clupeoides, it can be said that species belonging to this family have distinct ecological niches in the Jaguaribe Beach. Lycengraulis grossidens and A. lepidentostole have a more generalist feeding habit depending on the food source available in the environment (Beneditto, 2020Beneditto, A. P. M. 2020. Perfil isotópico da fauna associada ao estuário interno do Rio Paraíba do Sul, norte do estado do Rio de Janeiro, Sudeste do Brasil. Revista Ibero Americana de Ciências Ambientais 11(6):747-753.), thus indicating plasticity in their diet. In addition, exclusion mechanisms can be observed between species, such as species abundance seasonal variability, as reported by Santana & Severi (2009Santana, F. M. S.; Silva-Falcão, E. C. & Severi, W. 2009. Ocorrência de Chirocentrodon bleekerianus (Teleostei; Pristigasteridae) na costa do estado de Pernambuco - Brasil. Revista Brasileira de Engenharia de Pesca 4(1):144-154.) in the Jaguaribe Beach surf zone, where A. tricolor is more abundant in the rainy season, A. clupeoides in the drought season, whereas L. grossidens is commonly found in both seasons.

Morphological differences may be an excellent proxy for variation in the diet of fish belonging to the same family or to species living in distinct environments without genetical exchange (Delariva & Neves, 2020Delariva, R. L. & Neves, M. P. 2020. Morphological traits correlated with resource partitioning among small characin fish species coexisting in a Neotropical River. Ecology of Freshwater Fish 29(1):640-653.). Temporal variation of environment conditions can be an explanation to the coexistence of morphologically similar species, because disturbances in the environmental variables such as temperature, pluviosity, luminosity and food supply can significantly alter interspecific interactions in consonance with distinct species’ response to these variations (Meffe, 1984Meffe, G. K. 1984. Effects of abiotic disturbance on coexistence of predator-prey fish species. Ecology 65(5):1525-1534.; Godinho et al., 2000Godinho, F. M.; Ferreira, M. T. & Santos, J. M. 2000. Variation in fish community composition along an Iberian river basin from low to high discharge: relative contributions of environmental and temporal variables. Ecology of Freshwater Fish 9(1):22-29.; Beyst et al., 2001Beyst, B.; Hostens, K. & Mees, J. 2001. Factors influencing fish and macrocrustacean communities in the surf zone of sandy beaches in Belgium: temporal variation. Journal of Sea Research 46(1):281-294.; Helland et al., 2011Helland, I. P.; Finstad, A. G.; Forseth, T.; Hesthagen, T. & Ugedal, O. 2011. Ice-cover effects on competitive interactions between two fish species. Journal of Animal Ecology 80(1):539-547.).

These variations may result in changes in species abundances which may imply different use of environmental food resources, altering the feeding habit of some species according to the food resources’ availability and use based on prey behavior or size (Meffe, 1984Meffe, G. K. 1984. Effects of abiotic disturbance on coexistence of predator-prey fish species. Ecology 65(5):1525-1534.; Winemiller, 1990Winemiller, K. O. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60(3):331-367.). Therefore, the choice for different prey items is one of the factors that may allow the coexistence of species (Robertson, 1996Robertson, D. R. 1996. Interspecific competition controls abundance and habitat use of territorial Caribbean damselfishes. Ecology 77(3):885-899.; Grossman et al., 1998Grossman, G. D.; Ratajczak, R. E. J.; Crawford, M. & Freeman, M. C. 1998. Assemblage organization in stream fishes: effects of environmental variation and interspecific interactions. Ecological Monographs 68(3):395-420.; Sánchez-Hernández et al., 2011Sánchez-Hernández, J.; Vieira-Lanero, R.; Servia, M. J. & Cobo, F. 2011. Feeding habits of four sympatric fish species in the Iberian Peninsula: keys to understanding coexistence using prey traits. Hydrobiologia 667(1):119-132.).

Such difference in the choice of prey among clupeiforms was observed by Medeiros et al. (2017Medeiros, A. P. M.; Xavier, J. H. A. & Rosa, I. M. L. 2017. Diet and trophic organization of the fish assemblage from the Mamanguape River Estuary, Brazil. Latin American Journal of Aquatic Research 45(5):879-890.) for A. clupeoides, A. tricolor, H. clupeola and O. oglinum. These authors observed distinct feeding preferences between species, A. clupeoides being a piscivorous one, H. clupeola showing a phytoplanktonic preference in its diet, and A. tricolor together with O. oglinum a zooplanktonic preference. These differences in feeding habit between the species corroborate with literature, as they are reported to belong to distinct trophic guilds (Mai & Vieira, 2013Mai, A. C. G. & Vieira, J. P. 2013. Review and consideration on habitat use, distribution and life history of Lycengraulis grossidens (Agassiz, 1829) (Actinopterygii, Clupeiformes, Engraulididae). Biota Neotropica 13(3):121-130.; Andrade-Tubino et al., 2019Andrade-Tubino, M. F.; Azevedo, M. C. C.; Franco, T. P. & Araújo, F. G. 2019. How are fish assemblages and feeding guilds organized in different tropical coastal systems? Comparisons among oceanic beaches, bays and coastal lagoons. Hydrobiologia 847(1):1-17.; Favero et al., 2019Favero, F. L. T.; Araujo, I. M. S. & Severi, W. 2019. Structure of the fish assemblage and functional guilds in the estuary of Maracaípe, northeasthern coast of Brazil. Boletim do Instituto de Pesca 45(1):1-14.; Lira et al., 2021Lira, S. L.; Lucena-Frédou, F.; Ménard, F.; Frédou, T.; Gonzalez, J. G.; Ferreira, V.; Filho, J. S. R.; Munaron, J. M. & Le-Loc’h, F. 2021. Trophic structure of a nektobenthic community exploited by a multispecific bottom trawling fishery in Northeastern Brazil. Plos One 16(2):1-18.) coupled with differences in ecomorphological attributes which possibly contribute to their coexistence.

Surf zone environments are used by several fish species in their early life stages due to their dynamism that provides nutrient cycling and stimulates the phytoplanktonic activity. This provides a considerable availability of food, not only for fishes alone but also for their potential prey items, such as microcrustaceans (Beyst et al., 1999Beyst, B.; Cattrijsse, A. & Mees, J. 1999. Feeding ecology of juvenile flatfishes of the surf zone of a sandy beach. Journal of Fish Biology 55:1171-1186.; Yu et al., 2003Yu, O. H.; Suh, H. L. & Shirayama, Y. 2003. Feeding ecology of three amphipod species Synchelidium lenorostralum, S. trioostegitum and Gitanopsis japonica in the surf zone of a sandy shore. Marine Ecology Progress Series 258:189-199; Salant & Shanks, 2018Salant, C. D. & Shanks, A. L. 2018. Surf-zone hydrodynamics alter phytoplankton subsidies affecting reproductive output and growth of tidal filter feeders. Ecology 99(8):1878-1889.; Izumiyama et al., 2020Izumiyama, M.; Westphal, M. F. & Crow, K. D. 2020. In the surf zone: reproductive strategy of the calico surfperch (Amphistichus koelzi) in a comparative context. Journal of Fish Biology 96(1):939-949.; Guerreiro et al., 2021Guerreiro, M. A.; Marques, S. C.; Martinho, F.; Azeiteiro, U. M.; Pardal, M. A. & Primo, A. L. 2021. Surf zone zooplankton communities from the west coast of the Iberian Peninsula - Influence of season, substrate type and environmental factors. Regional Studies in Marine Science 48:102050.), an important factor for the occurrence of Clupeiformes juveniles in such environment. Besides their phylogenetic proximity, their morphological differences and temporal variation in abundance throughout the year imply in distinct environmental interactions and resource use (Chesson, 1985Chesson, P. L. 1985. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different of variability. Theoretical Population Biology 28(1):263-287.; Mouchet et al., 2013Mouchet, M. A.; Burns, M. D. M.; Garcia, A. M.; Vieira, J. P. & Mouillot, D. 2013. Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): environmental filtering consistently overshadows competitive exclusion. Oikos 122(1):247-257.; Silva et al., 2017Silva, J. C.; Gubiani, E. A.; Neves, M. P. & Delariva, R. L. 2017. Coexisting small fish in lotic Neotropical environments: evidence of trophic niche differentiation. Aquatic Ecology 51(1):275-288.) responsible for the coexistence of these clupeiforms in coastal areas.

It is concluded that besides their phylogenetic proximity, the clupeiform species of the Jaguaribe Beach have distinct ecomorphological characteristics, indicating adaptative responses to the environment, such as the variation of their abundances along the year and occupation of distinct portions of the water column, as indicated by their ecomorphological attributes. Further studies of the feeding ecology of clupeiforms are necessary to better assess other aspects contributing to their coexistence in surf zones, and the role of these environments for the survival of their early life stages in these environments.

Acknowledgments

To the Ichthyology Laboratory of the Universidade Federal Rural de Pernambuco (UFRPE) for providing the material used in this research and logistical support, and to CNPq for grating the Scientific Initiation scholarship (PIBIC) to the first author.

REFERENCES

  • Adite, A. & Winemiller, K. O. 1997. Trophic ecology of fish assemblages in coastal lakes of Benin, West Africa. Écoscience 4(1):6-23.
  • Albouy, C.; Guilhaumon, F.; Villéger, S.; Mouchet, M.; Mercier, L.; Culioli, J. M.; Tomasini, J. A.; Le-Loc’h, F. & Mouillot, D. 2011. Predicting trophic guild and diet overlap from functional traits: statistics, opportunities and limitations for marine ecology. Marine Ecology Progress Series 436:17-28.
  • Almeida, Z. S. & Vasconcelos-Filho, A. L. 1997. Contribuição ao conhecimento de peixes Pleuronectiformes da área de Itamaracá - PE (Brasil). Trabalhos Oceanográficos da Universidade Federal de Pernambuco 25(1):69-82.
  • Andrade-Tubino, M. F.; Azevedo, M. C. C.; Franco, T. P. & Araújo, F. G. 2019. How are fish assemblages and feeding guilds organized in different tropical coastal systems? Comparisons among oceanic beaches, bays and coastal lagoons. Hydrobiologia 847(1):1-17.
  • Araújo, F. G.; Silva, M. A.; Santos, J. N. S. & Vasconcellos, R. M. 2008. Habitat selection by anchovies (Clupeiformes: Engraulidae) in a tropical bay at Southeastern Brazil. Neotropical Icthiology 6(4):583-590.
  • Beaumord, A. C. & Petrere-Jr., M. 1994. Fish communities of Manso river, Chapada dos Guimarães, MT, Brasil. Acta Biologica Venezuelica 15(2):21-35.
  • Beneditto, A. P. M. 2020. Perfil isotópico da fauna associada ao estuário interno do Rio Paraíba do Sul, norte do estado do Rio de Janeiro, Sudeste do Brasil. Revista Ibero Americana de Ciências Ambientais 11(6):747-753.
  • Beyst, B.; Cattrijsse, A. & Mees, J. 1999. Feeding ecology of juvenile flatfishes of the surf zone of a sandy beach. Journal of Fish Biology 55:1171-1186.
  • Beyst, B.; Hostens, K. & Mees, J. 2001. Factors influencing fish and macrocrustacean communities in the surf zone of sandy beaches in Belgium: temporal variation. Journal of Sea Research 46(1):281-294.
  • Birge, T. L.; Ralph, G. M.; Di Dario, F.; Munroe, T. A.; Bullock, R. W.; Maxwell, S. M.; Santos, M. D.; Hata, H. & Carpenter, K. E. 2020. Global conservation status of the world’s most prominent forage fishes (Teleostei: Clupeiformes). Biological Conservation 253(1):1-9.
  • Blasina, G.; Molina, J.; Cazorla, A. L. & Astarloa, J. D. 2016. Relationship between ecomorphology and trophic segregation in four closely related sympatric fish species (Teleostei, Sciaenidae). Comptes Rendus Biologies 339(1):498-506.
  • Bloom, D. D. & Egan, J. P. 2018. Systematics of Clupeiformes and testing for ecological limits on species richness in a trans-marine/freshwater clade. Neotropical Ichthyology 16(3):e180095
  • Bomfim, A. C.; Farias, D. S. D.; Mourão-Júnior, H. B.; Morais, I. C. C.; Rossi, S.; Gavilan, S. A. & Silva, F. J. L. 2020. Diet and histological features of digestive tube from four discarded fish species by trawl by catch in Northeastern Brazil. Biota Neotropica 20(3):1-11.
  • Boyle, K. S. & Horn, M. H. 2006. Comparison of feeding guild structure and ecomorphology of intertidal fish assemblages from central California and central Chile. Marine Ecology Progress Series 319:65-84.
  • Braga, R. R.; Bornatowski, H. & Vitule, J. R. S. 2012. Feeding ecology of fishes: an overview of worldwide publications. Reviews Fish Biology Fisheries 22:915-929.
  • Carpenter, K. E. 2002. The living marine resources of the Western Central Atlantic. Volume 2: Bony fishes part 1 (Acipenseridae to Grammatidae). FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. Rome, FAO, p. 601-1374.
  • Cassati, L. & Castro, R. M. C. 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the Rio São Francisco, southeastern Brazil. Neotropical Ichthyology 4(2):203-214.
  • Catella, A. C. & Petrere Jr, M. 1998. Body-shape and food habits of fish from Baía da Onça, a Pantanal flood plain lake, Brazil. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 26(5):2203-2208.
  • Chaves, P. T. & Vendel, A. L. 2008. Análise comparativa da alimentação de peixes (Teleostei) entre ambientes de marisma e de manguezal num estuário do sul do Brasil (Baía de Guaratuba, Paraná). Revista Brasileira de Zoologia 25(1):10-15.
  • Chesson, P. L. 1985. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different of variability. Theoretical Population Biology 28(1):263-287.
  • Correa, S. B. & Winemiller, K. O. 2014. Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95(1):210-224
  • Costa, M. R.; Tubino, R. A. & Monteiro-Neto, C. 2018. Length-weight relations of juvenile and adult fishes (Actinopterygii) from shallow waters in the lower Guanabara Bay Estuary, Brazil. Acta Ichthyologica et Piscatoria 48(2):199-204.
  • Delariva, R. L. & Neves, M. P. 2020. Morphological traits correlated with resource partitioning among small characin fish species coexisting in a Neotropical River. Ecology of Freshwater Fish 29(1):640-653.
  • Dizaj, L. P.; Esmaeili, H. R.; Jawad, L.; Ebrahimi, M.; Gholamhosseini, A. & Valinasab, T. 2020. Taxonomic significance of vertebral column and caudal skeleton of clupeid fishes (Teleostei: Clupeiformes) of Iran. Acta Zoologica 2020:1-14.
  • Elliott, M.; Whitfield, A. K.; Potter, I. C.; Blaber, S. J. M.; Cyrus, D. P.; Nordlie, F. G. & Harrison, T. D. 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8(3):241-268.
  • Favero, F. L. T.; Araujo, I. M. S. & Severi, W. 2019. Structure of the fish assemblage and functional guilds in the estuary of Maracaípe, northeasthern coast of Brazil. Boletim do Instituto de Pesca 45(1):1-14.
  • Figueiredo, J. L. & Menezes, N. A. 1978. Manual de peixes marinhos do sudeste do Brasil. II. Teleostei. São Paulo, Museu de Zoologia da Universidade de São Paulo. 110p.
  • Froese, R. & Pauly, D. 2022. FishBase. World Wide Web electronic publication. Available at Available at http://www.fishbase.org Accessed on 07 March 2022.
    » http://www.fishbase.org
  • Garcia, T. D.; Quirino, B. A.; Pessoa, L. A.; Cardozo, A. L. P. & Goulart, E. 2020. Differences in ecomorphology of two sympatric heptapterids (Teleosteii: Siluriformes). Acta Scientiarum. Biological Sciences 42(1):1-12.
  • Gatz, A. J. 1979. Community organization in fishes as indicated by morphological features. Ecology 60(4):711-718.
  • Godefroid, R. S.; Hofstaetter, M. & Spach, H. L. 1999. Larval fish in the surf zone of Pontal do Sul beach, Pontal do Paraná, Paraná, Brazil. Revista Brasileira de Zoologia 16(4):1005-1011.
  • Godinho, F. M.; Ferreira, M. T. & Santos, J. M. 2000. Variation in fish community composition along an Iberian river basin from low to high discharge: relative contributions of environmental and temporal variables. Ecology of Freshwater Fish 9(1):22-29.
  • Grossman, G. D.; Ratajczak, R. E. J.; Crawford, M. & Freeman, M. C. 1998. Assemblage organization in stream fishes: effects of environmental variation and interspecific interactions. Ecological Monographs 68(3):395-420.
  • Guerreiro, M. A.; Marques, S. C.; Martinho, F.; Azeiteiro, U. M.; Pardal, M. A. & Primo, A. L. 2021. Surf zone zooplankton communities from the west coast of the Iberian Peninsula - Influence of season, substrate type and environmental factors. Regional Studies in Marine Science 48:102050.
  • Helland, I. P.; Finstad, A. G.; Forseth, T.; Hesthagen, T. & Ugedal, O. 2011. Ice-cover effects on competitive interactions between two fish species. Journal of Animal Ecology 80(1):539-547.
  • Izumiyama, M.; Westphal, M. F. & Crow, K. D. 2020. In the surf zone: reproductive strategy of the calico surfperch (Amphistichus koelzi) in a comparative context. Journal of Fish Biology 96(1):939-949.
  • Juliani; Anggoro, S.; Saputra, S. W. & Helminuddin. 2019. Sustainability assessment of Devis’ anchovy (Encrasicholina devisi (Whitley, 1940)) (Clupeiformes: Engraulidae) fisheries based on biology aspects, Kutai Kartanegara, Indonesia. Aquaculture, Aquarium, Conservation & Legislation 12(5):1938-1950.
  • Karachler, P. K. & Stergiou, K. I. 2013. Feeding and ecomorphology of three clupeoids in the North Aegean Sea. Mediterranean Marine Science 15(1):9-26.
  • Kassambara, A. & Mundt, F. 2020. Factoextra: extract and visualize the results of multivariate data analysis. R package version 1.0.7. URL: https://CRAN.R-project.org/package=factoextra
    » https://CRAN.R-project.org/package=factoextra
  • Keast, A. & Webb, D. 1966. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. Journal of the Fisheries Research Board of Canada 23(1):1845-1874.
  • Lira, S. L.; Lucena-Frédou, F.; Ménard, F.; Frédou, T.; Gonzalez, J. G.; Ferreira, V.; Filho, J. S. R.; Munaron, J. M. & Le-Loc’h, F. 2021. Trophic structure of a nektobenthic community exploited by a multispecific bottom trawling fishery in Northeastern Brazil. Plos One 16(2):1-18.
  • Mai, A. C. G.; Condini, M. V.; Albuquerque, C. Q.; Loebmann, D.; Saint’Pierre, T. D.; Miekeley, N. & Vieira, J. P. 2014. High plasticity in habitat use of Lycengraullis grossidens (Clupeiformes, Engraulidae). Estuarine, Coastal and Shelf 141(1):17-25.
  • Mai, A. C. G. & Vieira, J. P. 2013. Review and consideration on habitat use, distribution and life history of Lycengraulis grossidens (Agassiz, 1829) (Actinopterygii, Clupeiformes, Engraulididae). Biota Neotropica 13(3):121-130.
  • McLachlan, A. 1990. Dissipative beaches and macrofauna communities on exposed intertidal sands. Journal of Coastal Research 6(1):57-71.
  • Medeiros, A. P. M.; Xavier, J. H. A. & Rosa, I. M. L. 2017. Diet and trophic organization of the fish assemblage from the Mamanguape River Estuary, Brazil. Latin American Journal of Aquatic Research 45(5):879-890.
  • Medeiros, C. & Kjerfve, B. 1993. Hydrology of a tropical estuarine system: Itamaracá, Brazil. Estuarine, Coastal and Shelf Science 36(1):495-515.
  • Meffe, G. K. 1984. Effects of abiotic disturbance on coexistence of predator-prey fish species. Ecology 65(5):1525-1534.
  • Mittelbach, G. C.; Osenberg, C. W. & Wainwright, P. C. 1999. Variation in feeding morphology between pumpkinseed populations: phenotypic plasticity or evolution? Evolutionary Ecology Research 1(1):111-128.
  • Monteiro-Neto, C.; Cunha, L. P. R. & Musick, J. A. 2003. Community structure of surf-zone fishes at Cassino Beach, Rio Grande do Sul, Brazil. Journal of Coastal Research 35(1):492-501.
  • Mouchet, M. A.; Burns, M. D. M.; Garcia, A. M.; Vieira, J. P. & Mouillot, D. 2013. Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): environmental filtering consistently overshadows competitive exclusion. Oikos 122(1):247-257.
  • Nascimento, L. A. S.; Teixeira, D. I. A.; Santana, F. M. S. & Pontes, C. S. 2019. Characterization of fauna and flora associated with the seaweed mariculture system developed on Pitangui, Extremoz/RN beach. Revista Ibero-Americana de Ciências Ambientais 10(5):250-259.
  • Nelson, J. S.; Grande, T. C. & Wilson, M. V. H. 2016. Fishes of the world. 5ed. Hoboken, Wiley. 707p.
  • Nikolskii, G. V. 1963. The ecology of fishes. London, Academic Press. 352p.
  • Nunes, D. M. & Hartz, S. M. 2006. Feeding dynamics and ecomorphology of Oligosarcus jenynsii (Günther, 1864) and Oligosarcus robustus (Menezes, 1969) in the Lagoa Fortaleza, southern Brazil. Brazilian Journal of Biology 66(1):121-132.
  • Olivier, D.; Lepoint, G.; Aguilar-medrano, R.; Díaz, A. H. R.; Sánchez-gonzález, A. & Sturaro, N. 2019. Ecomorphology, trophic niche, and distribution divergences of two common damselfishes in the Gulf of California, Ecology 342(1):309-321.
  • Osorio, C. A. & Acero, P. A. 1996. Reproducción de Anchovia clupeoides y Anchoa parva (Pisces: Engraulidae) en dos ciénagas del Caribe Colombiano. Revista de Biologia Tropical 44(2):781-793
  • Peregrine, D. H. 1998. Surf zone currents. Theoretical and Computational Fluid Dynamics 10(1):195-309.
  • Pessanha, A. L. M.; Araujo, F. G.; Oliveira, R. E. M. C. C.; Silva, A. F. & Sales, N. S. 2015. Ecomorphology and resource use by dominant species of tropical estuarine juvenile fishes. Neotropical Ichthyology 13(3):401-412.
  • Petermann, A. & Schwingel, P. R. 2016. Overlap of the reproductive cycle and recruitment of the four main species caught by the purse seine fleet in Brazil. Latin America Journal of Aquatic Research 44(5):1069-1079.
  • Piet, G. J. 1998. Ecomorphology of a size-structured tropical freshwater fish community. Environmental Biology of Fish 51(1):67-86.
  • Podder, A.; Panja, S.; Chaudhuri, A.; Roy, A.; Biswas, M. & Homechaudhuri, S. 2021a. Patterns of morphological traits shaping the feeding guilds in the intertidal mudflat fishes of the Indian Sundarbans. Journal of Fish Biology 99:1010-1031.
  • Podder, A.; Panja, S.; Chaudhuri, A.; Roy, A.; Biswas, M. & Homechaudhuri, S. 2021b. Role of morphology in shaping the feeding niche of fishes inhabiting Eastern Himalayan torrential rivers of West Bengal, India. Ecology of Freshwater Fish 30:444-465.
  • R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org.
  • Reilly, S. M. & Wainwright P. C . 1994. Conclusion: ecological morphology and the power of integration. In: Wainwright, P. C. & Reilly, S. M. eds. Ecological Morphology: Integrative Organismal Biology. Chicago, University Chicago Press, p. 339-354.
  • Reis, A. R. R.; Santos, L. R. B.; Oliveira, L. S. & Zacardi, D. M. 2020. Variação temporal de larvas de Clupeiformes (Pisces, Teleostei) em um lago de várzea no Baixo Amazonas, Pará, Brasil. Brazilian Journal of Development 6(9):72877-72887.
  • Robertson, D. R. 1996. Interspecific competition controls abundance and habitat use of territorial Caribbean damselfishes. Ecology 77(3):885-899.
  • Salant, C. D. & Shanks, A. L. 2018. Surf-zone hydrodynamics alter phytoplankton subsidies affecting reproductive output and growth of tidal filter feeders. Ecology 99(8):1878-1889.
  • Sánchez-Hernández, J.; Vieira-Lanero, R.; Servia, M. J. & Cobo, F. 2011. Feeding habits of four sympatric fish species in the Iberian Peninsula: keys to understanding coexistence using prey traits. Hydrobiologia 667(1):119-132.
  • Santana, F. M. S. & Severi, W. 2009. Composição e estrutura da assembleia de peixes da zona de arrebentação da praia de Jaguaribe, Itamaracá (PE). Bioikos 23(1):3-17.
  • Santana, F. M. S.; Silva-Falcão, E. C. & Severi, W. 2009. Ocorrência de Chirocentrodon bleekerianus (Teleostei; Pristigasteridae) na costa do estado de Pernambuco - Brasil. Revista Brasileira de Engenharia de Pesca 4(1):144-154.
  • Santos, L. V.; Vasconcelos-Filho, J. E.; Lira, A. S.; Soares, A.; Eduardo, L. A.; Passarone, R.; Le-Loc’h, F. & Lucena-Frédou, F. 2021. Trophic ecology and ecomorphology of the shorthead drum, Larimus breviceps (Acanthuriformes: Sciaenidae), from the northeastern Brazil. Thalassas: An International Journal of Marine Sciences. Available at https://doi.org/10.1007/s41208-021-00365-6
    » https://doi.org/10.1007/s41208-021-00365-6
  • Silva, J. C.; Gubiani, E. A.; Neves, M. P. & Delariva, R. L. 2017. Coexisting small fish in lotic Neotropical environments: evidence of trophic niche differentiation. Aquatic Ecology 51(1):275-288.
  • Silva, M. A. & Araújo, F. G. 2000. Distribution and relative abundance of anchovies (Clupeiformes-Engraulididae) in the Sepetiba Bay, Rio de Janeiro, Brazil. Brazilian Archives of Biology and Technology 43(1):379-385.
  • Silva-Junior, C. A. B. S.; Araújo, M. E. & Feitosa, C. V. 2013. Sustainability of capture of fish bycatch in the prawn trawling in northeastern Brazil. Neotropical Ichthyology 11(1):133-142.
  • Simpfendorfer, C. A.; Heupel, M. R.; White, W. T. & Dulvy, N. K. 2011. The importance of research and public opinion to conservation management of sharks and rays: a synthesis. Marine and Freshwater Research 62:518-527.
  • Soares, L. S. H.; Arantes, L. P. L.; Lamas, R. A.; Lima, F. A.; Pucci, M. C. J. & Rossi-Wongtschowslki, C. L. D. B. 2018. Fish feeding interactions in a subtropical coastal system in the southwestern Atlantic. Ocean and Coastal Management 164 (1):115-127.
  • Souza, R. C. R. & Pompeu, P. S. 2020. Ecological separation by ecomorphology and swimming performance between two congeneric fish species. Zoologia 37:1-8.
  • Svanbäck, R. & Eklöv, P. 2002. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131(1):61-70.
  • Teixeira, I. & Bennemann S. T . 2007. Ecomorfologia refletindo a dieta dos peixes em um reservatório no sul do Brasil. Biota Neotropica 7(1):67-76.
  • Vega-Candejas, M. E.; Mexicano-Cíntora, G. & Arce, A. M. 1997. Biology of the thread herring Opisthonema oglinum (Pisces:Clupeidae) from a beach seine fishery of the Campeche Bank, Mexico. Fisheries Research 30(1):117-126.
  • Vorsatz, L. D.; Lingen, C. D. V. D. & Gibbons, M. J. 2019. Observations on the biology and seasonal variation in feeding of the east coast round herring Etrumeus wongratanai (Clupeiformes), off Scottburgh, KwaZulu-Natal, South Africa. Journal of Fish Biology 94:498-511.
  • Wang, X.; Yagi, Y.; Tojima, S.; Kinoshita, I.; Hirota, Y. & Fujita, S. 2021. Early life history of Ilisha elongata (Pristigasteridae, Clupeiformes, Pisces) in Ariake Sound, Shimabara Bay, Japan. Plankton & Benthos Research 16(3):210-220.
  • Watson, D. J. & Balon, E. K. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. Journal of Fish Biology 25(1):371-384.
  • Wikramanayake, E. D. 1990. Ecomorpholoy and biogeography of a tropical stream fish assemblage: Evolution of assemblage structure. Ecology 75(5):1756-1764.
  • Winemiller, K. O. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60(3):331-367.
  • Winemiller, K. O. 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61(4):343-365.
  • Yu, O. H.; Suh, H. L. & Shirayama, Y. 2003. Feeding ecology of three amphipod species Synchelidium lenorostralum, S. trioostegitum and Gitanopsis japonica in the surf zone of a sandy shore. Marine Ecology Progress Series 258:189-199

Publication Dates

  • Publication in this collection
    23 May 2022
  • Date of issue
    2022

History

  • Received
    11 Aug 2021
  • Accepted
    09 Mar 2022
Museu de Ciências Naturais Museu de Ciências Naturais, Secretária do Meio Ambiente e Infraestrutura, Rua Dr. Salvador França, 1427, Jardim Botânico, 90690-000 - Porto Alegre - RS - Brasil, Tel.: + 55 51- 3320-2039 - Porto Alegre - RS - Brazil
E-mail: iheringia-zoo@fzb.rs.gov.br