Acessibilidade / Reportar erro

Abietane Diterpenes from Hyptis crassifolia Mart. ex Benth. (Lamiaceae)

Abstracts

The phytochemical study of the ethanol extract from roots of Hyptis crassifolia Mart. ex Benth. (Lamiaceae) led to the isolation and structure elucidation of nine diterpenes identified as 11,12,15-trihydroxy-8,11,13-abietatrien-7-one, 6α,11,12,15-tetrahydroxy-8,11,13-abietatrien-7-one, 11,12,16-trihydroxy-17(15→16)-abeo-abieta-8,11,13-trien-7-one, (16S)-12,16-epoxy-11,14-dihydroxy-17(15→16)-abeo-abieta-8,11,13-trien-7-one, incanone, ferruginol, sugiol, 11-oxomanoyl oxide and 11β-hydroxymanoyl oxide. Compounds 11,12,16-trihydroxy-17(15→16)-abeo-abieta-8,11,13-trien-7-one and 6α,11,12,15-tetrahydroxy-8,11,13-abietatrien-7-one are new, 11,12,15-trihydroxy-8,11,13-abietatrien-7-one is being reported for the first time as a new natural abietane diterpene, while for (16S)-12,16-epoxy-11,14-dihydroxy-17(15→16)-abeo-abieta- 8,11,13‑trien-7-one, previously isolated from Teucrium divaricatum Subsp. villosum, a revision of the 1H and 13C nuclear magnetic resonance (NMR) data previously reported is proposed. Structure determination of all constituents was performed by mean of spectroscopic techniques such as high resolution mass spectrometry (HRMS), infrared (IR), 1H and 13C 1D and 2D NMR and comparison with literature data.

Hyptis crassifolia ; Lamiaceae; abietane diterpenes; rearranged abietane diterpenes; labdane diterpenes


O estudo fitoquímico do extrato etanólico das raízes de Hyptis crassifolia Mart. ex Benth.(Lamiaceae) levou ao isolamento e elucidação estrutural de nove diterpenos identificados como 11,12,15-tri-hidroxi-8,11,13-abietatrien-7-ona, 6α,11,12,15-tetra-hidroxi-8,11,13-abietatrien-7‑ona, 11,12,16-tri-hidroxi-17(15→16)-abeo-abieta-8,11,13-trien-7-ona, (16S)-12,16-epoxi-11,14-di-hidroxi-17(15→16)-abeo-abieta-8,11,13-trien-7-ona, incanona, ferruginol, sugiol, óxido de 11-oxomanoíla e óxido de 11β-hidroximanoíla. Os compostos 11,12,16-tri-hidroxi-17(15→16)-abeo-abieta-8,11,13-trien-7-ona e 6α, 11,12,15-tetra-hidroxi-8,11,13-abietatrien-7-ona são inéditos na literatura, a 11,12,15-tri-hidroxi-8,11,13-abietatrien-7-ona está sendo relatada pela primeira vez como um novo diterpeno abietano natural, enquanto que para a (16S)-12,16-epoxi-11,14-di-hidroxi-17(15→16)-abeo-abieta-8,11,13-trien-7-ona, isolada anteriormente de Teucrium divaricatum Subsp. villosum, propõe-se uma revisão dos dados de ressonância magnética nuclear (NMR) 1H e 13C. A determinação estrutural de todos os constituintes foi realizada através de técnicas espectroscópicas como espectrometria de massas de alta resolução (HRMS), infravermelho (IR), NMR de 1H e 13C, incluindo sequências de pulsos uni e bidimensionais, e comparação com dados descritos na literatura.


Introduction

Lamiaceae consists of about 258 genera and 6970 species distributed around the world,1Judd, W. S.; Campbell, C. S.; Kellogg, E. A.; Stevens, P. F.; Plant Systematics: a Phylogenetic Approach, 2nd ed.; Sinauer Associates Inc: Sunderland, 1999. mainly centered in the Mediterranean region despite reports of their occurrence in Australia and South America.2Falcão, D. Q.; Menezes, F. S.; Rev. Bras. Farmacogn. 2003, 84, 69. The Hyptis genus includes around 400 species distributed throughout the Americas, West Africa, Fiji Island (Oceania), and western India.3Trindade, R. C.; Barbosa Júnior, A. M.; Santos, P. O.; Costa, M. J. C.; Alves, J. A. B.; Nascimento, P. F. C.; Melo, D. L. F. M.; Blank, A. F.; Arrigoni-Blank, M. F.; Alves, P. B.; Nascimento, M. P. F.; Quim. Nova 2008, 31, 1648. They are found in Northern and Northeastern Brazil, especially in the cerrado.4Harley, R. M.; Vanzolini, P. E.; Heyer, W. R.; An. Acad. Bras. Cienc. 1988, 71. Plants from this genus are used in folk medicine, especially in the treatment of fever, colds, asthma, headache, cramps, gastrointestinal infections, rheumatism, skin diseases and malaria, and also have antibacterial, antifungal and insect repellent properties.2Falcão, D. Q.; Menezes, F. S.; Rev. Bras. Farmacogn. 2003, 84, 69. Previous studies on the chemical constitution of Hyptis species report the isolation of triterpenoids,5Deng, Y. E.; Balunas, M. J.; Kim, J.; Lantvit, D. D.; Chin, Y.; Chai, H.; Sugiarso, S.; Kardono, L. B. S.; Fong, H. H. S.; Pezzuto, J. M.; Swanson, S. M.; Carcache, E. J. B.; Kinghorn, A. D.; J. Nat. Prod. 2009, 72, 1165. flavonoids,6Pereda-Miranda, R.; Delgado, G.; J. Nat. Prod. 1990, 53, 182.,7Novelo, M.; Cruz, J. G.; Hernandez, L.; Pereda-Miranda, R.; Chai, H.; Mar, W.; Pezzuto, J. M.; J. Nat. Prod. 1993, 56, 1728. lignans,7Novelo, M.; Cruz, J. G.; Hernandez, L.; Pereda-Miranda, R.; Chai, H.; Mar, W.; Pezzuto, J. M.; J. Nat. Prod. 1993, 56, 1728.,8Kuhnt, M.; Rimpler, H.; Heinrich, M.; Phytochemistry 1994, 36, 485. α-pyrone derivatives9Pereda-Miranda, R.; Hernandez, L.; Villavicencio, M. J.; Novelo, M.; Ibarra, P.; Chai, H.; Pezzuto, J. M.; J. Nat. Prod. 1993, 56, 583.,1010 Boalino, D. M.; Connolly, J. D.; McLean, S.; Reynolds, W. F.; Tinto, W. F.; Phytochemistry 2003, 64, 1303. and diterpenoids,1111 Araújo, E. C. C.; Lima, M. A. S.; Silveira, E. R.; Magn. Reson. Chem. 2004, 42, 1049.

12 Araújo, E. C. C.; Lima, M. A. S.; Nunes, E. P.; Silveira, E. R.; J. Braz. Chem. Soc. 2005, 16, 1336.

13 Porter, R. B. R.; Biggs, D. A. C.; Reynolds, W. F.; Nat. Prod. Commun. 2009, 4, 15.
-1414 Ohsaki, A.; Kishimoto, Y.; Isobe, T.; Fukuyama, Y.; Chem. Pharm. Bull. 2005, 53, 1577. namely labdanes and abietanes. The abietane diterpenes have attracted particular attention, due to their biological activities, in particular as antioxidant,1515 Kabouche, A.; Kabouche, Z.; Ozturk, M.; Kolak, U.; Topçu, G.; Food Chem. 2007, 102, 1281.

16 Lee, W. S.; Kim, J.; Han, J.; Jang, K. C.; Sok, D.; Jeong, T.; J. Agric. Food Chem. 2006, 54, 5369.
-1717 Kolak, U.; Kabouche, A.; Öztürk, M.; Kabouche, Z.; Topçu, G.; Ulubelen, A.; Phytochem. Anal. 2009, 20, 320. antibacterial,1818 Yang, Z.; Kitano, Y.; Chiba, K.; Shibata, K.; Kurokawa, H.; Doi, Y.; Arakawa, Y.; Tada, M.; Bioorg. Med. Chem. 2001, 9, 347.

19 Tada, M.; Kurabe, J.; Yoshida, T.; Ohkanda, T.; Matsumoto, Y.; Chem. Pharm. Bull. 2010, 58, 818.
-2020 Smith, E. C. J.; Wareham, N.; Zloh, M.; Gibbons, S.; Phytochem. Lett. 2008, 1, 49. cytotoxic,2121 Yang, J.; Du, X.; He, F.; Zhang, H.; Li, X.; Su, J.; Li, Y.; Pu, J.; Sun, H.; J. Nat. Prod. 2013, 76, 256.

22 Cavalcanti, B. C.; Moura, D. J.; Rosa, R. M.; Moraes, M. O.; Araujo, E. C. C.; Lima, M. A. S.; Silveira, E. R.; Saffi, J.; Henriques, J. A. P.; Pessoa, C.; Costa-Lotufo, L. V.; Food Chem. Toxicol. 2008, 46, 388.

23 Li, S.; Wang, P.; Deng, G.; Yuan, W.; Su, Z.; Bioorg. Med. Chem. Lett. 2013, 23, 6682.
-2424 Wang, W.; Xiong, J.; Tang, Y.; Zhu, J.; Li, M.; Zhao, Y.; Yang, G.; Xia, G.; Hu, J.; Phytochemistry 2013, 89, 89. antiviral2525 Yang, L.; Li, L.; Huang, S.; Pu, J.; Zhao, Y.; Ma, Y.; Chen, J.; Leng, C.; Tao, Z.; Sun, H.; Chem. Pharm. Bull. 2011, 59, 1102.,2626 Araújo, E. C. C.; Lima, M. A. S.; Montenegro, R. C.; Nogueira, M.; Costa-Lotufo, L. V.; Pessoa, C.; Moraes, M. O.; Silveira, E. R.; Z. Naturforsch. 2006, 61c, 177. and antimalarial.2727 Achenbach, H.; Waibel, R.; Nkunya, M. H. H.; Weenen, H.; Phytochemistry 1992, 31, 3781. Among the diterpenes that exhibit these activities, were observed several highly oxygenated compounds that can present either the C-ring saturated or unsaturated, aromatic, and also with an ortho or para-naphtoquinone pattern. Previous works carried out on plants of the genus Hyptis from the Northeast of Brazil flora, reported the isolation of many abietane diterpenes, for example those isolated from roots of H. martiusii,1111 Araújo, E. C. C.; Lima, M. A. S.; Silveira, E. R.; Magn. Reson. Chem. 2004, 42, 1049. H. platanifolia1212 Araújo, E. C. C.; Lima, M. A. S.; Nunes, E. P.; Silveira, E. R.; J. Braz. Chem. Soc. 2005, 16, 1336. and H. carvalhoi.2828 Lima, K. S. B.; Pimenta, A. T. A.; Guedes, M. L. S.; Lima, M. A. S.; Silveira, E. R.; Biochem. Syst. Ecol. 2012, 44, 240.

In this paper, it is reported the phytochemical analysis of the ethanol extract from roots of Hyptis crassifolia Mart. ex Benth., a small shrub that grows in abundance in the state of Bahia to which no phytochemical investigation has been reported so far. This study led to the isolation and structure elucidation of nine diterpenes: four abietanes (1, 2, 6 and 7), three rearranged abietanes (3-5) and two labdanes (8 and 9). Compounds 2 and 3 have not yet being reported in the literature, whereas 1 is being reported for the first time from a natural source. A revision of the previously published nuclear magnetic resonance (NMR) data in the literature2929 Ulubelen, A.; Topcu, G.; Olçal, S.; Phytochemistry 1994, 37, 1371. is being proposed for compound 4.

Experimental

General procedures

Melting points were measured on a digital Marconi MA-381 apparatus and are uncorrected. Optical rotations [α]D20 were determined with a Jasco P-2000 digital polarimeter, operating with tungsten lamp at a wavelength of 589 nm at 20 °C. Infrared (IR) spectra were recorded using a Perkin-Elmer FTIR 100 spectrometer using the universal attenuated total reflectance accessory (UATR). High-resolution electrospray ionization mass spectra (HR‑ESI-MS) were performed with a SHIMADZU LCMS‑IT-TOF (225-07100-34) equipped with a Z-spray ESI (electrospray) source operating either in the negative or positive mode. 1H and 13C NMR (1D and 2D) spectra were performed on Bruker Avance DPX-300 and/or DRX-500 spectrometers equipped with 5 mm direct probe or inverse detection Z-gradient probe, respectively. 1H NMR (300.13 and 500.13 MHz) and 13C NMR (75.47 and 125.75 MHz) spectra were measured at 25 °C. Chemical shifts (δ), expressed in parts per million (ppm), are referenced by the signal of the residual non-deuterated hydrogens (1H NMR) and the central peak of carbon-13 (13C NMR) of the deuterated solvents. Flash column chromatography and column chromatography (CC) were carried out on silica gel 60 A (Whatman, 70-230 mesh) and silica gel 60 A (Acros Organic, 0.035-0.070 mm), respectively. Thin layer chromatography (TLC) was performed on precoated silica gel polyester sheets (Kieselgel 60 F254, 0.20 mm, Merck) by detection with a spray reagent of vanillin/perchloric acid/EtOH solution followed by heating at 100 °C. Normal phase semi-preparative HPLC separations were performed with a Shimadzu LC-20AT pump, UV-PDA (SPD-M20A) detector and WATERS-1525 pump, UV-PDA (WATERS 2996) detector, a Phenomenex Silica column (10 × 150 mm, 5 μm particle size), with a flow rate of 4.72 mL min−1 and column oven temperature 40 °C, monitoring at 273.8 nm.

Plant material

The roots of Hyptis crassifolia Mart. ex Benth. were collected in July 2010, at Mucujê county (Diamantina Plateau, Bahia State). The plant material was identified by Prof Maria Lenise Silva Guedes of Instituto de Biologia, Departamento de Botânica, Universidade Federal da Bahia. A voucher specimen (No. 95.183) is deposited in the Herbário Alexandre Leal Costa of the Departamento de Botânica, Universidade Federal da Bahia.

Extraction and isolation

The roots (875 g) of Hyptis crassifolia Mart. ex Benth., dried and crushed were macerated with EtOH (3 × 6.0 L), after extraction with hexane, at room temperature after standing for 72 h. The ethanol solution was concentrated under reduced pressure at 50 °C to yield the respective extract (26.0 g). The EtOH extract (22.0 g) was coarsely fractionated over a silica gel column using hexane/CH2Cl2 (1:1), CH2Cl2, CH2Cl2/EtOAc (1:1), EtOAc and MeOH as eluents. The hexane/CH2Cl2 (1:1) fraction (674.4 mg) was chromatographed on a silica gel column with hexane, hexane/CH2Cl2 (9:1, 7:3, 1:1), CH2Cl2 and MeOH to give 36 fractions (10 mL each), that after TLC analysis were pooled to 9 fractions (F1HD-F9HD). F4HD (52.8 mg, 7:3 hexane/CH2Cl2) was separated through HPLC using a 9:1 hexane/EtOAc as eluent (v/v), with an injection volume of 200 μL, under isocratic conditions to yield compound 6 (6.0 mg), [α]D20 +25.7 (c 0.2, CHCl3) {lit. [α]D20 +42.9° (c 0.2, CHCl3)}.3030 Marcos, I. S.; Beneitez, A.; Moro, R. F.; Basabe, P.; Díez, D.; Urones, J. G.; Tetrahedron 2010, 66, 7773. F6HD (60.2 mg, hexane/CH2Cl2 7:3) after successive recrystallizations in MeOH yielded 18.5 mg of 8 in the form of colorless crystals, mp 70.7-73.4 °C, [α]D20 −33.8° (c 0.2, CHCl3) {lit. mp 96-97 °C, [α]D20 −103.2° (c 0.2, i-PrOH)}.31 Compound 4 (6.2 mg), a yellow solid, was obtained from F8HD (85.0 mg, 1:1 hexane/CH2Cl2), after semi-preparative HPLC analysis (mobile phase 98:2 hexane/isopropanol). The CH2Cl2 fraction (1.26 g) was chromatographed over silica gel by elution hexane/CH2Cl2 (1:1, 3:7), CH2Cl2, CH2Cl2/EtOAc (1:1), EtOAc and MeOH to give 32 fractions (10 mL each), that were combined into nine resulting fractions after TLC analysis (F1D-F9D). F4D (110.5 mg, 1:1 hexane/CH2Cl2) was submitted to semipreparative HPLC analysis, using hexane/EtOAc, 8:2 (v:v) as mobile phase to yield 7 (19.0 mg) in the form of yellow crystals, mp 283.4-285.4 °C, [α]D20 +26.1 (c 0.1, CHCl3) {lit. mp 282-285 °C, [α]D25 +12.3° (c 0.1, CHCl3)}.3232 Gao, J.; Han, G.; Phytochemistry 1997, 44, 759. F6D (195.8 mg, 3:7 hexane/CH2Cl2), was rechromatographed on silica column by elution with hexane, hexane/CH2Cl2 (9:1, 8:2, 7:3, 1:1), CH2Cl2 and MeOH to yield 9 (47.3 mg) in the form of yellow crystals, mp 78.9-79.9 °C, [α]D20 +30.2°(c 0.1, CHCl3) {lit. mp 106-107 °C and [α]D25 +12.3° (c 0.1, CHCl3)}.3333 Topçu, G.; Tan, N.; Ulubelen, A.; Sun, D.; Watson, W. H.; Phytochemistry 1995, 40, 501. Compound 5 (4.6 mg) was obtained as a yellow resin, [α]D20 +15.7° (c 0,095, CHCl3) {lit. [α]D25 +140.8° (c 0.1, CHCl3)},32 from F7D (33.7 mg, 3:7 hexane/CH2Cl2), after successive recrystallization with CH2Cl2/MeOH, (1:1). F8D (479.7 mg, CH2Cl2) was chromatographed on silica column with CH2Cl2:MeOH (98:2, 95:5 and 1:1) to give 22 subfractions (10 mL each), that were pooled to 6 sub-fractions (F8D1-F8D6), after TLC analysis. F8D5 was subjected to HPLC analysis, using hexane/EtOAc, 8:2 (v:v) as mobile phase to yield compounds 1 (4.0 mg), 2 (3.2 mg) and 3 (3.7 mg).

11,12,15-trihydroxy-8,11,13-abietatrien-7-one (1)

Yellowish resin; [α]D20 +17.13° (c 0.0975, CHCl3; IR vmax/cm−1 3385, 2927, 2865, 1726, 1669, 1564, 1459, 1311; HR-ESI-MS m/z 333.2062 [M + H]+, (calc. for C20H29O4, 333.2060); 1H and 13C NMR spectral data, see Table 1.

Table 1
1H and 13C NMR data (δ  in ppm, J in Hz) for compounds 1-5

6α,11,12,15-tetrahydroxy-8,11,13-abietatrien-7-one (2)

Yellowish resin; [α]D20 −18.15° (c 0.074, CHCl3); IR vmax/cm−1 3436, 2928, 2869, 1720, 1675, 1611, 1566, 1463, 1372, 1309, 1298, 1128; HR-ESI-MS m/z 349.2007 [M + H]+ (calc. for C20H29O5349.2010); 1H and 13C NMR spectral data, see Table 1.

11,12,16-trihydroxy-17(15→16)-abeo-abieta-8,11,13-trien-7-one (3)

Yellow resin; [α]D20 +57.92° (c 0.08, CHCl3); IR, vmax/cm−1 3401, 2927, 2861, 1722, 1671, 1609, 1564, 1461, 1368, 1316; HR-ESI-MS m/z 333.2064 [M + H]+ (calc. for C20H28O4, 333.2060); 1H and 13C NMR spectral data, see Table 1.

(16S)-12,16-epoxy-11,14-dihydroxy-17(15→16)-abeo-abieta-8,11,13-trien-7-one (4)

Yellow solid; mp 195.7-197.7 °C; [α]D20 +26.79° (c 0.24, CHCl3); IR vmax/cm−1 3382, 2926, 2865, 1618, 1459, 1352, 1253, 1016, 807; HR-ESI-MS m/z 331.1889 [M + H]+ (calc. for C20H27O4, 331.1909); 1H and 13C NMR spectral data, see Table 1.

Results and Discussion

The EtOH extract from roots of Hyptis crassifolia Mart. ex Benth. was fractionated by silica gel column chromatography after elution with pure or binary mixtures of hexane, CH2Cl2, EtOAc and MeOH. The hexane-CH2Cl2 (1:1) and CH2Cl2 fractions were subjected to various chromatographic procedures leading to the isolation of nine compounds (1-9, Figure 1), whose structures were elucidated by spectroscopic methods, such as IR, high resolution mass spectrometry (HRMS) and particularly, 1H and 13C NMR (1D and 2D).

Figure 1.
Structures of the diterpenes 1-9 isolated from H. crassifolia.

Compound 1 was obtained as a yellowish resin. The IR spectrum exhibited absorption bands for hydroxyl group at 3385 cm−1, Csp3-H groups at 2927 and 2865 cm−1, skeletal bands of benzene ring at 1609 and 1564 cm−1, conjugated C=O at 1669 cm−1 and C–O of phenol and alcohols at 1254 and 1145 cm−1, respectively. The molecular formula C20H28O4 was determined by HR-ESI-MS, based on the quasi-molecular ion at m/z 333.2062 [M + H]+ (calcd. for C20H29O4 m/z 333.2060). The CPD and DEPT 135° 13C NMR spectra displayed 20 and 11 signals, respectively, one from a conjugated aryl ketone carbonyl (δC 199.4), six sp2 carbons of a benzene ring (δC 116.5-147.6), one non-hidrogenated sp3 carbon bearing an oxygen (δC 76.9), and 12 non-functionalized sp3 carbons (δC 18.1-50.5; two quaternary, one methine, four methylenes and five methyls) (Table 1). The 1H NMR spectrum showed five characteristic singlets of methyl groups attached to non hydrogenated carbons at δH 0.95 (Me-18), 0.98 (Me‑19), 1.40 (Me‑20), 1.68 (Me-17) and 1.70 (Me-16). A signal at δH 7.49 (H‑14) was ascribed to one proton of a pentasubstituted benzene ring. In addition, a pair of double doublets at δH 2.53 (J 17.0, 14.4 Hz, H-6b) and 2.63 (J 17.0, 2.8 Hz, H-6a) were observed, corresponding to one methylene group coupled to a methine at δH 1.85 (dd, J 2.8, 14.4 Hz, H-5). The presence of a hydroxyl group at C-15 was accomplished by the HMBC spectrum analysis, showing long-range correlations of the methyl groups at δH 1.70 (Me-16) and 1.68 (Me-17) with the oxygenated carbon at δC 76.9 (C-15, 2J) (Figure 2). Furthermore, the pattern of substitution of the pentasubstituted benzene ring was determined by correlations of the benzene proton at δH 7.49 (H-14) with the oxygenated carbon at δC 76.9 (C-15, 3J), with the sp2 carbons at δC 147.6 (C-12, 3J) and 139.4 (C-9, 3J) and with the carbonyl group at δC 199.4 (C-7, 3J) (Figure 2). Then, compound 1 was characterized as the 11,12,15-trihydroxy-8,11,13-abietatrien-7-one, a diterpene previously synthesized during the structural determination of callicarpone by Kawazu et al.,3434 Kawazu, K.; Inaba, M.; Mitsui, T.; Agr. Biol. Chem. 1967, 31, 498. but that is being reported for the first time in the literature as a new natural abietane.

Figure 2.
Key HMBC correlations observed for the compounds 1-4.

Compound 2 was also obtained as a yellowish resin. The molecular formula C20H28O5 was determined by HR-ESI-MS, based on the quasi-molecular ion at m/ m/z 349.2007 [M + H]+ (calcd. for C20H29O5 m/z 349.2010). The IR spectrum showed stretching bands consistent with the presence of hydroxyl groups at 3436 cm−1 and stretching bands of Csp3-H groups at 2928 and 2869 cm−1, and as for compound 1, a conjugated aryl ketone group at 1675, 1611 and 1566 cm−1. Stretching bands at 1258 and 1080 cm−1 were consistent with the presence of C–O group of phenol and alcohols, respectively. Comparative analysis of 1H and 13C NMR data of the compounds 1 and 2 revealed several similarities. The major diferences in the 13C NMR spectrum were the disappearance of a methylene at δC 35.8 for 1 and the appearance of an oxymethine at δC 73.4 for 2. The deshielding of C-5 (δC 50.5 in 1) to δC 55.6 and the shielding of C-8 (δC 124.6 in 1) to δC 121.6 are in accordance with β and γ effects, respectivelly, of the hydroxyl positioned at C-6. The stereochemistry of the hydroxyl at C-6 was assigned as α-equatorial on the basis of the coupling constants of H-5 [δH 1.81 (d, J 13.5 Hz)] and H-6 [δH 4.60 (d, J 13.5 Hz)], a typical axial-axial hydrogen coupling of cyclohexane rings. The changes in the 1H NMR spectrum of 2, relatively to 1, are all in agreement with the above discussion. The axial oxymethine hydrogen attached to the α-carbon to the carbonyl appeared at δH 4.60 (d, J 13.5 Hz), while all methyls attached to quaternary carbons underwent a light deshielding. Accordingly with the afore mentioned spectral data, the structure of 2 was characterized as the new diterpene 6α,11,12,15-tetrahydroxy-8,11,13-abietatrien-7-one.

Compound 3 was obtained as a yellow resin. The molecular formula C20H28O4 was determined by HR-ESI-MS, based on the quasi-molecular ion at m/z 333.2064 [M + H]+ (calcd. for C20H29O4 m/ 333.2060). The NMR data of compound 3 showed remarkable similarities with those of compound 1 (see Table 1). The major diferences account for an oxymethine at C-16 (δC 71.3; δH 4.31 m) and an extra diastereotopic methylene at C-15 [δC 40.2; δH 2.90 (dd, J 1.9, 14.8 Hz, H-15a) and δH 2.78 (dd, J 7.4, 14.8 Hz, H-15b)]. The singlets at δH 1.70 (Me-16) and 1.68 (Me-17) correspondent to the geminal methyls of the benzene side chain of 1 are missing, while a doublet for a primary methyl C-17 [δC 23.5; δH 1.29 (d, J 6.2 Hz)] appears on the 1H NMR. This information is in agreement with a rearrangement of the aromatic side chain of compound 1. The 13C NMR data is totally in accordance with the suggested change, appearing the extra methylene (C-15) at δC 40.2, the oxymethine (C-16) at δC 71.3, and the methyl (C-17) at δC 23.5. The other expected changes were the shielding of C-13 (δC 122.9) due to the replacement of the deshielding β-hydroxy and β-methyl effect on compound 1, for the shielding γ-effect of both groups on compound 3. The release of the crowding steric hindrance of the branched side chain on compound 1 through the rearrangement for a normal chain on compound 3 also affects the chemical shift of C-14 (δC 122.4), now with a remarkable deshielding effect (∆δC = 5.9). The spectral data discussed above are consistent with a 17(15→16)-abeo-abietane diterpenoid.32,35 The skeleton of 3 was confirmed through a detailed analysis of the HMBC spectrum by long-range correlations of the aromatic proton at δH 7.43 (H-14) with the carbons at δC 148.1 (C-12, 3J), 139.2 (C-9, 3J) and 40.2 (C-15, 3J), and with the carbonyl carbon in δC 199.7 (C-7, 3J) (Figure 2). Thus, compound 3 was identified as a new 17(15→16)-abeo-abietane diterpene, the 11,12,16-trihydroxy-17(15→16)-abeo-abieta-8,11,13-trien-7-one.

Compound 4 [α]D20 + 26.79º (c 0.24, CHCl3) was isolated as a yellow solid (mp 195.7-197.7 ºC). The molecular formula, C20H26O4, was established after HR-ESI-MS analysis based on the quasi-molecular ion at m/z 331.1889 [M + H]+ (calcd. C20H27O4 m/z 331.1909). Compound 5, already known, showed very similar spectroscopic data to those of compound 4 (see Table 1). Its HR-ESI-MS quasi-molecular ion at 347.1879 [M − H], 18 Da higher than that of compound 4, suggested that compound 4 could be a dehydrated derivative. The IR spectrum of 4 exhibited absorption bands for hydroxyl groups at 3382 cm−1 and a conjugated ketone carbonyl group at 1639 cm−1. The 13C CPD NMR spectrum exhibited 20 signals, that after the 1H,13C-HSQC spectrum analysis allowed to determine the presence of an aryl ketone carbonyl, chelated to the hydroxyl at C-14, at δC 206.4, six sp2 carbons at the region of δC 111.3-158.9, one very deshielded oxymethine carbon at δC 83.9, and 12 sp3 saturated carbons (δC 18.2-51.9) (Table 1). Analysis of the 1H NMR spectrum did not show any aromatic proton, but three singlets of methyl groups attached to quartenary carbons at δH 0.96 (Me-18), 0.99 (Me-19) and 1.39 (Me-20), and a methyl doublet at δH 1.48 (d, J 6.2 Hz, Me-17). In addition, an oxymethine proton at δH 5.08 (bq, J 6.9 Hz, H-16) and a diastereotopic methylene at δH 3.27 (H-15a); 2.75 (dd, J 15.3, 7.3 Hz, H-15b) have been observed. The main difference was the deshielding of C-16 (δC 69.9 in 5) to δC 83.9 due the formation of an α-methyldihydrofuran ring condensed with the fully substituted benzene ring at the positions C-12 and C-13. The appearance of a chelated hydroxy at δH 13.44 in the 1H NMR spectrum (CDCl3) of compound 4 (see Supplementary Information (SI) section) evidenced that the ring closure has been done through the C-12 hydroxy. The substitution pattern of the C aromatic ring was definitively established from the HMBC analysis by long-range correlations of the methylene protons at δH 3.27 (H-15a) and 2.75 (H-15b) with the carbons at δC 158.9 (C-12, 3J), 112.2 (C-13, 2J) and 22.3 (C-17, 3J). In addition, the correlations of the methylene protons at δH 2.63-2.51 (H-6) with the carbons at δC 34.5 (C-4, 3J), 206.4 (C-7, 2J), 111.3 (C-8, 3J) and 42.2 (C-10, 3J) (Figure 2) were also observed. To the C-16 stereogenic center was attributed the same relative stereochemistry as that in either teuvincenone A or E (αH, βMe), taking in consideration the similar chemical shifts and coupling constant values of the 2H-15, H-16 and Me-17 protons,35 as well as the carbon-13 chemical shifts of the dihydrobenzofuran system (C-8 to C-17) (see Table 1). This, undoubtedly, indicated for compound 4 the structure of the new rearranged abietane diterpene, (16S)-12,16-epoxy-11,14-dihydroxy-17(15→16)-abeo-abieta-8,11,13-trien-7-one. Comparison of the NMR data of 4, with those published for villosin A, a compound previously isolated from Teucrium divaricatum Subsp. villosum by Ulubelen et al.2929 Ulubelen, A.; Topcu, G.; Olçal, S.; Phytochemistry 1994, 37, 1371. to which the structure suggested is the same as the one proposed for 4, did not show a good matching. For instance, the carbonyl chemical shift at δC 185.6 is not compatible with the C-7 aryl ketone carbonyl of compound 4C 206.4), once other aryl ketones described in the literature have carbon ressonances of approximately δC 205.0.3232 Gao, J.; Han, G.; Phytochemistry 1997, 44, 759.,3636 Cañigueral, S.; Iglesias, J.; Sánchez-Ferrando, F.; Virgili, A.; Phytochemistry 1988, 27, 221.,3737 Rodríguez, B.; Robledo, A.; Pascual-Villalobos, M. J.; Biochem. Syst. Ecol. 2009, 37, 76. It appears that the carbonyl chemical shift at δC 185.6 previously reported,2929 Ulubelen, A.; Topcu, G.; Olçal, S.; Phytochemistry 1994, 37, 1371. is more compatible with a cross conjugated aryl ketone (ca. δC 188.0)3636 Cañigueral, S.; Iglesias, J.; Sánchez-Ferrando, F.; Virgili, A.; Phytochemistry 1988, 27, 221. or α-hydroxy cross conjugated aryl ketones (ca. δC 183.0).2929 Ulubelen, A.; Topcu, G.; Olçal, S.; Phytochemistry 1994, 37, 1371.,3636 Cañigueral, S.; Iglesias, J.; Sánchez-Ferrando, F.; Virgili, A.; Phytochemistry 1988, 27, 221. In addition, several other inconsistencies can be pointed out, for example, the 13C NMR chemical shifts of C-4 (δC 37.2), C-6 (δC 29.7), C-8 (δC 107.6) and C-10 (δC 35.4).2929 Ulubelen, A.; Topcu, G.; Olçal, S.; Phytochemistry 1994, 37, 1371. Thus, the NMR data assignment previously published for villosin A should be revised, or an alternative structure should be considered. According to the analysis described above, the structure of 4 was assigned as (16S)-12,16-epoxy-11,14-dihydroxy-17(15→16)-abeo-abieta-8,11,13-trien-7-one.

The remaining compounds were characterized as incanone (5),3232 Gao, J.; Han, G.; Phytochemistry 1997, 44, 759. ferruginol (6),3030 Marcos, I. S.; Beneitez, A.; Moro, R. F.; Basabe, P.; Díez, D.; Urones, J. G.; Tetrahedron 2010, 66, 7773.,3838 Carvalho, M. S.; Baptistella, L. H. B.; Imamura, P. M.; Magn. Reson. Chem. 2008, 46, 381. sugiol (7),3939 Bajpai, V. K.; Kang, S. C.; J. Food Saf. 2011, 31, 27. 11-oxomanoyloxide (8)4040 Mahmout, Y.; Bessiere, J.; Dolmazon, R.; J. Agric. Food Chem. 1993, 41, 277. and 11β-hydroxymanoyloxide (9),3333 Topçu, G.; Tan, N.; Ulubelen, A.; Sun, D.; Watson, W. H.; Phytochemistry 1995, 40, 501. by extensive 1D and 2D NMR spectroscopy analyses and by comparison of the spectral data with those reported in literature.

Conclusions

The unprecedent phytochemical analysis of Hyptis crassifolia, a herb wildly dispersed through the neighborhood of Mucujê, a small town at Chapada Diamantina, BA, Brazil, has led to the isolation of four abietane diterpenes, two of which are new, 1 and 2. This is in agreement with the chemotaxonomic profile of the genus Hyptis already reported in the literature. On the other hand, rearranged abietanes, two of which are new (3 and 4), are being reported for the first time from Hyptis. The known labdane diterpenes 8 and 9, isolated from other genera like Salvia3333 Topçu, G.; Tan, N.; Ulubelen, A.; Sun, D.; Watson, W. H.; Phytochemistry 1995, 40, 501. and Kyllinga,4040 Mahmout, Y.; Bessiere, J.; Dolmazon, R.; J. Agric. Food Chem. 1993, 41, 277. have not been reported from Hyptis previously. In addition, the NMR data of the rearranged abietane 4, previously identified as villosin A,2929 Ulubelen, A.; Topcu, G.; Olçal, S.; Phytochemistry 1994, 37, 1371. was reassigned.

  • Supplementary Information
    Supplementary data are available free of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgments

The authors are grateful to CNPq, CAPES, PRONEX, FUNCAP, FINEP for the fellowships and financial support.

References

  • 1
    Judd, W. S.; Campbell, C. S.; Kellogg, E. A.; Stevens, P. F.; Plant Systematics: a Phylogenetic Approach, 2nd ed.; Sinauer Associates Inc: Sunderland, 1999.
  • 2
    Falcão, D. Q.; Menezes, F. S.; Rev. Bras. Farmacogn. 2003, 84, 69.
  • 3
    Trindade, R. C.; Barbosa Júnior, A. M.; Santos, P. O.; Costa, M. J. C.; Alves, J. A. B.; Nascimento, P. F. C.; Melo, D. L. F. M.; Blank, A. F.; Arrigoni-Blank, M. F.; Alves, P. B.; Nascimento, M. P. F.; Quim. Nova 2008, 31, 1648.
  • 4
    Harley, R. M.; Vanzolini, P. E.; Heyer, W. R.; An. Acad. Bras. Cienc. 1988, 71.
  • 5
    Deng, Y. E.; Balunas, M. J.; Kim, J.; Lantvit, D. D.; Chin, Y.; Chai, H.; Sugiarso, S.; Kardono, L. B. S.; Fong, H. H. S.; Pezzuto, J. M.; Swanson, S. M.; Carcache, E. J. B.; Kinghorn, A. D.; J. Nat. Prod. 2009, 72, 1165.
  • 6
    Pereda-Miranda, R.; Delgado, G.; J. Nat. Prod. 1990, 53, 182.
  • 7
    Novelo, M.; Cruz, J. G.; Hernandez, L.; Pereda-Miranda, R.; Chai, H.; Mar, W.; Pezzuto, J. M.; J. Nat. Prod. 1993, 56, 1728.
  • 8
    Kuhnt, M.; Rimpler, H.; Heinrich, M.; Phytochemistry 1994, 36, 485.
  • 9
    Pereda-Miranda, R.; Hernandez, L.; Villavicencio, M. J.; Novelo, M.; Ibarra, P.; Chai, H.; Pezzuto, J. M.; J. Nat. Prod. 1993, 56, 583.
  • 10
    Boalino, D. M.; Connolly, J. D.; McLean, S.; Reynolds, W. F.; Tinto, W. F.; Phytochemistry 2003, 64, 1303.
  • 11
    Araújo, E. C. C.; Lima, M. A. S.; Silveira, E. R.; Magn. Reson. Chem. 2004, 42, 1049.
  • 12
    Araújo, E. C. C.; Lima, M. A. S.; Nunes, E. P.; Silveira, E. R.; J. Braz. Chem. Soc. 2005, 16, 1336.
  • 13
    Porter, R. B. R.; Biggs, D. A. C.; Reynolds, W. F.; Nat. Prod. Commun. 2009, 4, 15.
  • 14
    Ohsaki, A.; Kishimoto, Y.; Isobe, T.; Fukuyama, Y.; Chem. Pharm. Bull. 2005, 53, 1577.
  • 15
    Kabouche, A.; Kabouche, Z.; Ozturk, M.; Kolak, U.; Topçu, G.; Food Chem. 2007, 102, 1281.
  • 16
    Lee, W. S.; Kim, J.; Han, J.; Jang, K. C.; Sok, D.; Jeong, T.; J. Agric. Food Chem. 2006, 54, 5369.
  • 17
    Kolak, U.; Kabouche, A.; Öztürk, M.; Kabouche, Z.; Topçu, G.; Ulubelen, A.; Phytochem. Anal. 2009, 20, 320.
  • 18
    Yang, Z.; Kitano, Y.; Chiba, K.; Shibata, K.; Kurokawa, H.; Doi, Y.; Arakawa, Y.; Tada, M.; Bioorg. Med. Chem. 2001, 9, 347.
  • 19
    Tada, M.; Kurabe, J.; Yoshida, T.; Ohkanda, T.; Matsumoto, Y.; Chem. Pharm. Bull. 2010, 58, 818.
  • 20
    Smith, E. C. J.; Wareham, N.; Zloh, M.; Gibbons, S.; Phytochem. Lett. 2008, 1, 49.
  • 21
    Yang, J.; Du, X.; He, F.; Zhang, H.; Li, X.; Su, J.; Li, Y.; Pu, J.; Sun, H.; J. Nat. Prod. 2013, 76, 256.
  • 22
    Cavalcanti, B. C.; Moura, D. J.; Rosa, R. M.; Moraes, M. O.; Araujo, E. C. C.; Lima, M. A. S.; Silveira, E. R.; Saffi, J.; Henriques, J. A. P.; Pessoa, C.; Costa-Lotufo, L. V.; Food Chem. Toxicol. 2008, 46, 388.
  • 23
    Li, S.; Wang, P.; Deng, G.; Yuan, W.; Su, Z.; Bioorg. Med. Chem. Lett. 2013, 23, 6682.
  • 24
    Wang, W.; Xiong, J.; Tang, Y.; Zhu, J.; Li, M.; Zhao, Y.; Yang, G.; Xia, G.; Hu, J.; Phytochemistry 2013, 89, 89.
  • 25
    Yang, L.; Li, L.; Huang, S.; Pu, J.; Zhao, Y.; Ma, Y.; Chen, J.; Leng, C.; Tao, Z.; Sun, H.; Chem. Pharm. Bull. 2011, 59, 1102.
  • 26
    Araújo, E. C. C.; Lima, M. A. S.; Montenegro, R. C.; Nogueira, M.; Costa-Lotufo, L. V.; Pessoa, C.; Moraes, M. O.; Silveira, E. R.; Z. Naturforsch. 2006, 61c, 177.
  • 27
    Achenbach, H.; Waibel, R.; Nkunya, M. H. H.; Weenen, H.; Phytochemistry 1992, 31, 3781.
  • 28
    Lima, K. S. B.; Pimenta, A. T. A.; Guedes, M. L. S.; Lima, M. A. S.; Silveira, E. R.; Biochem. Syst. Ecol. 2012, 44, 240.
  • 29
    Ulubelen, A.; Topcu, G.; Olçal, S.; Phytochemistry 1994, 37, 1371.
  • 30
    Marcos, I. S.; Beneitez, A.; Moro, R. F.; Basabe, P.; Díez, D.; Urones, J. G.; Tetrahedron 2010, 66, 7773.
  • 31
    Gabetta, B.; Zini, G.; Danieli, B.; Phytochemistry 1989, 28, 859.
  • 32
    Gao, J.; Han, G.; Phytochemistry 1997, 44, 759.
  • 33
    Topçu, G.; Tan, N.; Ulubelen, A.; Sun, D.; Watson, W. H.; Phytochemistry 1995, 40, 501.
  • 34
    Kawazu, K.; Inaba, M.; Mitsui, T.; Agr. Biol. Chem. 1967, 31, 498.
  • 35
    Rodríguez, B.; Bruno, M.; La Torre, M. C.; Savona, G.; Prozzr, F.; Phytochemistry 1990, 29, 2710.
  • 36
    Cañigueral, S.; Iglesias, J.; Sánchez-Ferrando, F.; Virgili, A.; Phytochemistry 1988, 27, 221.
  • 37
    Rodríguez, B.; Robledo, A.; Pascual-Villalobos, M. J.; Biochem. Syst. Ecol. 2009, 37, 76.
  • 38
    Carvalho, M. S.; Baptistella, L. H. B.; Imamura, P. M.; Magn. Reson. Chem. 2008, 46, 381.
  • 39
    Bajpai, V. K.; Kang, S. C.; J. Food Saf. 2011, 31, 27.
  • 40
    Mahmout, Y.; Bessiere, J.; Dolmazon, R.; J. Agric. Food Chem 1993, 41, 277.

Data availability

Publication Dates

  • Publication in this collection
    Jan 2015

History

  • Received
    08 May 2014
  • Accepted
    12 Sept 2014
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br