Acessibilidade / Reportar erro

Suzuki-Miyaura Coupling between 3-Iodolawsone and Arylboronic Acids. Synthesis of Lapachol Analogues with Antineoplastic and Antileishmanial Activities

Abstract

A series of 2-hydroxy-3-arylnaphthalene-1,4-diones (3-aryllawsones) were synthesized by Suzuki-Miyaura cross coupling reaction of 3-iodolawsone with arylboronic acids/esters. The hydroxylated resulting products were transformed into their corresponding N,N-diethyl carbamates. The antineoplastic and antileishmanial activities of the compounds were evaluated and compared with lapachol and its carbamate, providing promising results.

Keywords:
Suzuki-Miyaura coupling; lapachol analogues; pd-catalysis


Introduction

Quinones are present in many naturally occurring compounds, and are responsible for taking part in the life cycle of many living organisms.11 Thomson, R. H.; Naturally Occurring Quinones, 2nd ed.; Academic: London, England, 1971; Thomson, R. H.; Naturally Occurring Quinones IV: Recent Advances, 4th ed.; Blackie: London, 1997; Morton, R. A.; Biochemistry of Quinones, 1st ed.; Academic: London, England, 1965; Hillard, E. A.; de Abreu, F. C.; Ferreira, D. C. M.; Jaouen, G.; Goulart, M. O. F.; Amatore, C.; Chem. Commun. 2008, 2612; Wellington, K. W.; RSC Adv. 2015, 5, 20309. They are well known for being significant source of biologically active compounds.22 Linardi, M. C. F.; de Oliveira, M. M.; Sampaio, M. R. P.; J. Med. Chem. 1975, 18, 1159; Portela, M. P. M.; Stoppani, A. O. M.; Biochem. Pharmacol. 1996, 51, 275; O'Brien, P. J.; Chem. Biol. Interact. 1991, 80, 1; Salas, C.; Tapia, R. A.; Ciudad, K.; Armstrong, V.; Orellana, M.; Kemmerling, U.; Ferreira, J.; Maya, J. D.; Morello, A.; Bioorg. Med. Chem. 2008, 16, 668; Johnson, L. E.; Dietz, A.; Appl. Microbiol. 1968, 16, 1815; Donner, C. D.; Tetrahedron Lett. 2007, 48, 8888; da Silva, F. C.; Ferreira, V. F.; Curr. Org. Synth. 2016, 13, 334. For example, the benzoquinone mitomycin C33 Bradner, W. T.; Cancer Treat. Rev. 2001, 27, 35; Galm, U.; Hager, M. H.; Van Lanen, S. G.; Ju, J.; Thorson, J. S.; Shen, B.; Chem. Rev. 2005, 105, 739. and the anthraquinone doxorubicin44 Tacar, O.; Sriamornsak, P.; Dass, C. R.; J. Pharm. Pharmacol. 2013, 65, 157. are relevant members of this family, being used in clinic as antineoplastic agents (Figure 1).

Figure 1
Natural and synthetic compounds from quinone family.

Among the quinone family, naphthalene-1,4-diones is the most important class with many representatives such as synthetic atovaquone,55 Baggish, A. L.; Hill, D. R.; Antimicrob. Agents Chemother. 2002, 46, 1163; Nixon, G. L.; Moss, D. M.; Shone, A. E.; Lalloo, D. G.; Fischer, N.; O'Neil, P. M.; Ward, S. A.; Biagini, G. A.; J. Antimicrob. Chemother. 2013, 68, 977. that is used in anti-malarial therapy and chemoprophylaxis of malaria; the naturally occurring 2-hydroxy-3-prenylnaphthalene-1,4-dione lapachol (1), first isolated by E. Paterno from Tabebuia avellanedae in 1882 exhibiting antimalarial, antifungal, antitumor, leishmanicidal, bactericidal and antiparasitic activities;66 Hussain, H.; Krohn, K.; Ahmad, V. U.; Miana, G. A.; Green, I. R.; ARKIVOC 2007, ii, 145; Epifano, F.; Genovese, S.; Fiorito, S.; Mathieu, V.; Kiss, R.; Phytochem. Rev. 2014, 13, 37. and the antibiotic WS-5995-C,77 Ikushima, H.; Iguchi, E.; Kohsaka, M.; Aoki, H.; Imanaka, H.; J. Antibiot. 1980, 33, 1103; Ikushima, H.; Okamoto, M.; Tanaka, H.; Ohe, O.; Kohsaka, M.; Aoki, H.; Imanaka, H.; J. Antibiot. 1980, 33, 1107; Qabaja, G.; Perchellet, E. M.; Perchellet, J.-P.; Jones, G. B.; Tetrahedron Lett. 2000, 41, 3007; Hu, G.; Li, X.; Li, Y.; Sun, X.; Liu, G.; Li, W.; Huang, J.; Shen, X.; Tang, Y.; Chin. J. Chem. 2012, 30, 2752. a functionalized naphthalene-1,4-dione isolated from Streptomyces auranticolor species, that possess chemoprotective activity against Eimeria tenella (Figure 1). Eiremia tenella is a protozoan disease that causes poultry coccidiosis impacting directly in chicken industry and global food supply due to the high mortability.88 Alnassan, A. A.; Thabet, A.; Daugschies, A.; Bangoura, B.; Parasitol. Res. 2015, 114, 3913.

Lapachol (1) has been used as starting point to obtain new bioactive quinones showing interesting pharmacological profiles.99 da Silva, A. J. M.; Buarque, C. D.; Brito, F. V.; Aurelian, L.; Macedo, L. F.; Malkas, L. H.; Hickey, R. J.; Lopes, D. V. S.; Noël, F.; Murakami, Y. L. B.; Silva, N. M. V.; Melo, P. A.; Caruso, R. R. B.; Castro, N. G.; Costa, P. R. R.; Bioorg. Med. Chem. 2002, 10, 2731; Sacau, E. P.; Estévez-Braun, A.; Ravelo, A. G.; Ferro, E. A.; Tokuda, H.; Mukainaka, T.; Nishino, H.; Bioorg. Med. Chem. 2003, 11, 483; Andrade-Neto, V. F.; Goulart, M. O. F.; Filho, J. F. S.; da Silva, M. J.; Pinto, M. C. F. R.; Pinto, A. V.; Zalis, M. G.; Carvalho, L. H.; Krettli, A. U.; Bioorg. Med. Chem. Lett. 2004, 14, 1145; Eyong, K. O.; Kumar, P. S.; Kuete, V.; Folefoc, G. N.; Nkengfack, E. A.; Baskaran, S.; Bioorg. Med. Chem. Lett. 2008, 18, 5387; Pinto, A. V.; de Castro, S. L.; Molecules 2009, 14, 4570.,1010 Buarque, C. D.; Militão, G. C. G.; Lima, D. J. B.; Costa-Lotufo, L. V.; Pessoa, C.; de Moraes, M. O.; Cunha-Junior, E. F.; Torres-Santos, E. C.; Netto, C. D.; Costa, P. R. R.; Bioorg. Med. Chem. 2011, 19, 6885. Herein, we would like to report the synthesis of 2-hydroxy-3-arylnaphthalene-1,4-diones, analogues of WS-5995-C that can also be considered analogues of 1 in which the prenyl side chain is substituted by an aromatic ring (Figure 1). We rationalized the use of the aromatic ring in a way to mimic the π-system of 1, knowing that prenyl and phenyl can be considered isosteres.1111 da Silva, A. J. M.; Coelho, A. L.; Simas, A. B. C.; Moraes, R. A. M.; Pinheiro, D. A.; Fernandes, F. F. A.; Arruda, E. Z.; Costa, P. R. R.; Melo, P. A.; Bioorg. Med. Chem. Lett. 2004, 14, 431; Lima, L. M.; Barreiro, E. J.; Curr. Med. Chem. 2005, 12, 23.

Carbamates are widely used in organic synthesis as protecting groups and they have been found in the structure of promising antiviral, antifungal, antibacterial, antimicrobial and anticancer molecules.1212 Férriz, J. M.; Vávrová, K.; Kunc, F.; Imramovský, A.; Stolaríková, J.; Vavríková, E.; Vinšová, J.; Bioorg. Med. Chem. 2010, 18, 1054; Hemaa, M. R.; Ramaiaha, M.; Vaidyab, V. P.; Shivakumara, B. S.; Suresha, G. S.; J. Chem. Pharm. Res. 2013, 5, 47; Janganati, V.; Penthala, N. R.; Madadi, N. R.; Chen, Z.; Crooks, P. A.; Bioorg. Med. Chem. Lett. 2014, 24, 3499; Krátký, M.; Volková, M.; Novotná, E.; Trejtnar, F.; Stolaríková, J.; Vinšová, J.; Bioorg. Med. Chem. 2014, 22, 4073. Organic carbamates can act as an electrophilic site, alkylating biological nucleophiles,1313 Vane, J. R.; Botting, R. M.; Thromb. Res. 2003, 110, 255. having their use also correlated to prodrug design.1414 Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J.; Nat. Rev. Drug Discovery 2008, 7, 255. These precedents prompted us to synthesize new potentially active analogues combining the 2-hydroxy-3-arylnaphthalene-1,4-dione scaffold and the carbamate function, aiming to obtain compounds with dual action.

The antineoplastic and antileishmanial activities of these compounds were evaluated and the results compared with 1. Cancer cells and protozoan parasites are known to possess several biochemical similarities and to share mutual features such as highly proliferative behavior and resistance to the programmed cell death. Therefore, antineoplastic and antileishmanial agents have common biological targets that act on enzymes inhibition of both parasite and human cells enabling apoptosis.1515 Klinkert, M.-Q.; Heussler, V.; Mini-Rev. Med. Chem. 2006, 6, 131; Fuertes, M. A.; Nguewa, P. A.; Castilla, J.; Alonso, C.; Pérez, J. M.; Curr. Med. Chem. 2008, 15, 433.

Results and Discussion

Chemistry

Few general methods are available in literature to prepare 2-hydroxy-3-arylnaphthalene-1,4-diones such as: (i) the palladium catalyzed Stille-type coupling involving phenyliodonium ylides of hydroxyquinones and naphthopyranyl stannanes;1616 Stagliano, K. W.; Malinakova, H. C.; J. Org. Chem. 1999, 64, 8034; Emadi, A.; Hardwood, J. S.; Kohanim, S.; Stagliano, K. W.; Org. Lett. 2002, 4, 521. (ii) the palladium catalyzed Suzuki-type coupling of phenyliodonium ylides of hydroxyquinones with arylboronic acids;1717 Kazantzi, G.; Malamidou-Xenikaki, E.; Spyroudis, S.; Synlett 2006, 2597. (iii) the metal free arylation of 2-hydroxy-naphthalene-1,4-diones with phenyliodonium ylides mediated by BF3;1818 Glinis, E.; Malamidou-Xenikaki, E.; Skouros, H.; Spyroudis, S.; Tsanakopoulou, M.; Tetrahedron 2010, 66, 5786. (iv) the oxidative arylation of 2-hydroxy-naphthalene-1,4-diones using o-iodoxybenzoic acid and phenylhydrazines;1919 Patil, P.; Nimonkar, A.; Akamanchi, K. G.; J. Org. Chem. 2014, 79, 2331. and (v) K2S2O8-catalyzed direct C-H functionalization of 2-hydroxy-naphthalene-1,4-diones with arylboronic acids.2020 Ilangovan, A.; Polu, A.; Satish, G.; Org. Chem. Front. 2015, 2, 1616. The main disadvantages associated with the described methods involve the use of hypervalent iodines, that confront the atom economy principle of the green chemistry; employment of toxic hydrazines and scope limitation. In this paper we take advantage of the Suzuki-Miyaura cross coupling reaction2121 Suzuki, A.; Miyaura, N.; Chem. Rev. 1995, 95, 2457; Kotha, S.; Lahiri, K.; Kashinath, D.; Tetrahedron 2002, 58, 9633; Lennox, A. J. J.; Lloyd-Jones, G. C.; Chem. Soc. Rev. 2014, 43, 412; Biajoli, A. F. P.; Schwalm, C. S.; Limberger, J.; Claudino, T. S.; Monteiro, A. L.; J. Braz. Chem. Soc. 2014, 25, 2186. to achieve 2-hydroxy-3-arylnaphthalene-1,4-diones structurally related to 1. After the submission of this paper, Louvis et al.2222 Louvis, A. R.; Silva, N. A. A.; Semaan, F. S.; Silva, F. C.; Saramago, G.; Souza, L. C. S. V.; Ferreira, B. L. A.; Castro, H. C.; Salles, J. P.; Souza, A. L. A.; Faria, R. X.; Ferreira, V. F.; Martins, D. L.; New J. Chem. 2016, 40, 7643. reported a similar method to synthesize 2-hydroxy-3-arylnaphthalene-1,4-diones.

We began with the preparation of the starting material according to the phenol iodination method previously described by our group, in which 2-hydroxynaphthalene-1,4-dione was easily iodinated by using a morpholine-iodine complex as the iodinating agent.2323 da Frota, L. C. R. M.; Canavez, R. C. P.; Gomes, S. L. S.; Costa, P. R. R.; da Silva, A. J. M.; J. Braz. Chem. Soc. 2009, 10, 1916.

With the starting material in hands, we first examined the reaction of 2-hydroxy-3-iodonaphthalene-1,4-dione 2 with phenylboronic acid 3a leading to 4a under the classical Suzuki-Miyaura conditions,2121 Suzuki, A.; Miyaura, N.; Chem. Rev. 1995, 95, 2457; Kotha, S.; Lahiri, K.; Kashinath, D.; Tetrahedron 2002, 58, 9633; Lennox, A. J. J.; Lloyd-Jones, G. C.; Chem. Soc. Rev. 2014, 43, 412; Biajoli, A. F. P.; Schwalm, C. S.; Limberger, J.; Claudino, T. S.; Monteiro, A. L.; J. Braz. Chem. Soc. 2014, 25, 2186. but moderate yield was obtained (Table 1, entry 1).

Table 1
Optimization of the reaction conditions

Taking into consideration that the steric hindrance present in 2 may be a problem, we looked for protocols that could be better suited on this system, for example, the one reported by Suzuki and Miyaura applying K3PO4 as base and DMF (N,N-dimethylformamide) as solvent.2424 Watanabe, T.; Miyaura, N.; Suzuki, A.; Synlett 1992, 207. However, no product was detected under these conditions (Table 1, entry 2). When conditions described by Blanchet and co-workers2525 Pousse, G.; Devineau, A.; Dalla, V.; Humphreys, L.; Lasne, M.; Rouden, J.; Blanchet, J.; Tetrahedron 2009, 65, 10617. were tested, which involves the use of the cheap catalyst 10% Pd/C, 4a was achieved in almost quantitative yield (Table 1, entry 3). The evaluation of the performance of arylboronic ester 5,5-dimethyl-2-phenyl-1,3,2-dioxaborinane under Blanchet's conditions was also accomplished (Table 1, entry 4).

Further optimization was performed. Increasing the catalyst load from 5 to 10 mol% resulted in a drop of the chemical yield (Table 1, entry 5). When diminishing the catalyst amount to 1 mol%, the yield also suffered a decrease (Table 1, entry 6). Excess of 3 was reduced from 2 equivalents to 1.4 equivalents, but a lower yield was obtained (Table 1, entry 7). In this way, optimal conditions were assumed as being the one described in entry 3.

Aiming to exploit the reactivity of the naphthoquinone system, we protected the free hydroxyl of 2-hydroxy-3-iodonaphthalene-1,4-dione (2) using groups with two different electronic demands. Therefore, 2-methoxy-3-iodonaphthalene-1,4-dione (5) and 3-iodo-1,4-dioxo-1,4-dihydronaphthalen-2-yl acetate (6), were prepared from 2 by the reaction with dimethyl sulfate2626 Bonifazi, E. L.; Ríos-Luci, C.; León, L. G.; Burton, G.; Padrón, J. M.; Misico, R. I.; Bioorg. Med. Chem 2010, 18, 2621. and acetic anhydride,2727 van der Klei, A.; de Jong, R. L. P.; Lugtenburg, J.; Tielens, A. G. M.; Eur. J. Org. Chem. 2002, 3015. respectively. These compounds were then submitted to the optimized conditions described above and on both reactions we observed that a loss of the protecting group had occurred. Performing the reaction with 5, compound 4a was provided in 47% yield; while the reaction with 6 led to 35% yield of 4a.

Next, we examined the scope of this transformation and the results are presented in Table 2.

Table 2
Scope of the reaction

Moderate yields were obtained when (3,4-dimethoxyphenyl)boronic acid and (4-formylphenyl)boronic acid were employed (4b and 4e). Aryl boronates containing fluoro substituents furnished good yields (4c and 4d), however, aromatic boronates ortho-substituted were not tolerated on this process, probably due to steric effects (4f-g). From these results we found that the best substrate was the one with no substitution pattern (4a).

Continuing the work, lapachol (1) and analogs 4a-e were transformed into their corresponding N,N-diethyl carbamates 8 and 7a-e, respectively, according to the well-known protocol described in literature,2828 Wuts, P. G. M.; Greene, T. W.; Protective Groups in Organic Synthesis, 4th ed.; Wiley: New Jersey, USA, 2007. furnishing moderate yields (Table 3).

Table 3
Carbamates synthesis

With lapachol analogs in hands, we evaluated their pharmacological profiles in relation to antineoplastic and antileishmanial activities.

Antineoplastic activity

The antineoplastic activity of the prepared naphthoquinones was studied in two human leukemia cell lines, HL-60 (promyelocytic leukemia) and K562 (chronic myelogenous leukemia),2929 Netto, C. D.; da Silva, A. J. M.; Salustiano, E. J. S.; Bacelar, T. S.; Riça, I. G.; Cavalcante, M. C. M.; Rumjanek, V. M.; Costa, P. R. R.; Bioorg. Med. Chem. 2010, 18, 1610; Salustiano, E. J. S.; Netto, C. D.; Fernandes, R. F.; da Silva, A. J. M.; Bacelar, T. S.; Castro, C. P.; Buarque, C. D.; Maia, R. C.; Rumjanek, V. M.; Costa, P. R. R.; Invest. New Drugs 2010, 28, 139. and the results are shown in Table 4.

Table 4
Antineoplastic activity of compounds 1, 4a-e, 7a-e and 8 in HL-60 and K562 (IC50, µM). Doxorubicin (D) was used as reference

Lapachol (1) presented moderate potency against these cell lines (entry 1) and the exchange of the allyl group in 1 by aryl groups, as in 4a-c and 4e, led to products still less active (entries 2-4 and 6). Interestingly, 4d bearing a p-CF3Ph substituent, was six to seven times more potent than 1 for both cell lines (entry 5).

Scheme 1
Analyzing the reactivity of the naphthoquinone system.

The results obtained with carbamates 8 and 7a-e are shown in entries 7-12. For HL-60, 8 was still less potent while in K562 the carbamate of lapachol exhibited moderate potency (entry 7). The corresponding carbamates of 4a-c, compounds 7a-c (entries 8-10), showed enhanced cytotoxic activity when compared to lapachol 1. In contrast, for 4d, the corresponding carbamate 7d presented a slight lower potency (entry 11), while 7e was much more potent than 4e (entry 12).

PBMC (peripheral blood mononuclear cell) tests were performed only with compounds which presented IC50 < 10 µM for tumor cells HL-60 and K562 (Table 5).

Table 5
Cytotoxic effect of compounds 1, 4d and 7a-e tested in PBMC. Doxorubicin (D) was used as positive control

The best selectivity indexes were found for compound 4d (entry 2) followed by compound 7c (entry 5). In contrast, compound 7d showed no selectivity toward HL-60 or K562 (entry 6).

Compounds 4d and 7c are promising. Studies aiming to establish the probable mechanism of action of these compounds are under investigation.

Antileishmanial activity

In the antileishmanial assay, 1 showed to be moderately active against promastigotes of L. amazonensis, but the IC50 in amastigotes was above the highest concentration tested (Table 6, entry 1). The IC50 in intracellular amastigote, which is the most clinically relevant form for treatment, is the criteria to select hit and lead compounds in drug discovery for leishmaniasis.3030 Katsuno, K.; Burrows, J. N.; Duncan, K.; van Huijsduijnen, R. H.; Kaneko, T.; Kita, K.; Mowbray, C. E.; Schmatz, D.; Warner, P.; Slingsby, B. T.; Nat. Rev. Drug Discovery 2015, 14, 751.

Table 6
Antileishmanial activity of compounds 1, 4a-e, 7a-d and 8 in promastigotes and intracellular amastigotes of Leishmania amazonensis and toxicity to murine macrophages. Pentamidine was used as reference

The substitution of prenyl for an aromatic ring in 4a-b led to increased potency against amastigote forms and reduction of toxicity to the macrophages. No significant alteration was observed for promastigote forms (entries 2 and 3). Interestingly, this modification improved the antiamastigote activity, making 4b the compound with the most favorable selectivity index (SI) (i.e., many times more selective against intracellular amastigotes than host cells; calculated using the LD50/IC50 ratios),3030 Katsuno, K.; Burrows, J. N.; Duncan, K.; van Huijsduijnen, R. H.; Kaneko, T.; Kita, K.; Mowbray, C. E.; Schmatz, D.; Warner, P.; Slingsby, B. T.; Nat. Rev. Drug Discovery 2015, 14, 751. although presenting moderate potency. Compounds 4c-e showed moderate activity against amastigotes and increased toxicity to the macrophages (entries 4-6). The addition of the carbamate function in the structure of 1, originating 8, potentiated the antileishmanial activity; however the toxicity to macrophages was also increased (entry 7). Carbamates 7a-d, in which both carbamate and aromatic ring were added to lapachol core, were much more active (entries 8-11). Compound 7b was the most potent against intracellular amastigotes, with IC50 as low as 1.5 µM and selectivity index of 5.3 (entry 9). These data suggest that replacing the prenyl side chain of 1 by an aromatic ring is important to enhance the selectivity, while the introduction of the carbamate group is important to enhance the antileishmanial activity.

Conclusions

Despite the number of methods already existing to produce 3-aryllawsones, all of them have considerable drawbacks making it necessary the search for new synthetic tools. We developed a simple approach to achieve 2-hydroxy-3-arylnaphthalene-1,4-dione (4a-e) in moderate to good yields, involving the palladium-catalyzed Suzuki-Miyaura cross coupling reaction of arylboronic acids/esters (3a-e) and 2-hydroxy-3-iodonaphthalene-1,4-dione (2). Unfortunately, ortho-substituted boronates were not tolerated.

The corresponding carbamates 7a-e were also obtained in moderate yields and all synthesized products were submitted to anticancer and antileishmanial evaluation, for the first time, providing promising results. Molecules 4d and 7c showed good activity against cancer cell lines and compound 4b exhibited good antiamastigote performance. The introduction of the carbamate moiety was important to potentiate the anticancer and antileishmanial activities but also increased the toxicity of the molecules to healthy cells.

Experimental

Chemistry

All solvents and chemicals were used as received from commercial sources. Flash column chromatography was carried out using SiliaFlash(r) F60 silica gel (particle size: 40-63 µm, 230-400 mesh, Silicycle, Quebec City). Infrared (IR) spectra were performed on a Shimadzu IRPrestige-21 FT-IR instrument via ATR unit or as KBr pellets. 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded either on Varian 400 MHz or 500 MHz NMR spectrometer using tetramethylsilane (TMS) as reference. The high resolution mass spectra were acquired by LC-MS (liquid chromatography mass spectrometry) in the ESI (+) mode.

General procedure for the preparation of 2-hydroxy-3-iodonaphthalene-1,4-dione (2)2323 da Frota, L. C. R. M.; Canavez, R. C. P.; Gomes, S. L. S.; Costa, P. R. R.; da Silva, A. J. M.; J. Braz. Chem. Soc. 2009, 10, 1916.

A mixture of 2-hydroxy-naphthalene-1,4-dione (1 equiv, 5.74 mmol) and K2CO3 (3.05 equiv, 17.5 mmol) in H2O (58 mL) was stirred at room temperature for 10 minutes. After this time, the morpholine-iodine complex2323 da Frota, L. C. R. M.; Canavez, R. C. P.; Gomes, S. L. S.; Costa, P. R. R.; da Silva, A. J. M.; J. Braz. Chem. Soc. 2009, 10, 1916. (1.95 equiv, 11.2 mmol) was slowly added, in similar portions, every 15 minutes during 2 hours and then the reaction was allowed to stir for 3 more days. The reaction mixture was cooled to 0 °C, acidified with 25% phosphoric acid solution until pH ca. 2 and placed on refrigerator for 24 hours. The resulting precipitate was filtered under vacuum, washed with H2O and purified by recrystallization from glacial acetic acid. This compound was obtained as a yellow solid in 55% yield, mp 178-180 °C; IR (KBr) ν / cm-1 3200, 1666, 1620, 1581, 1354, 1259, 1116, 721; 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, 1H, J 7.0, 1.7 Hz, Ar-H), 8.15 (dd, 1H, J 7.0, 1.7 Hz, Ar-H), 7.76 (m, 2H, 2Ar-H); 13C NMR (101 MHz, (CD3)2CO) δ 180.09, 178.02, 162.29, 135.51, 134.34, 132.18, 130.47, 128.05, 127.37, 92.59.

General procedure for the preparation of 2-hydroxy-3-arylnaphthalene-1,4-diones (4a-e)

A stirred solution of 2 (1 equiv, 0.5 mmol), arylboronic acids or esters 3 (2 equiv, 1 mmol), K2CO3 (4 equiv, 2 mmol) and Pd/C 10 mol% (5 mol%) in dioxane/H2O in proportion of 1:1.2 (11.9 mL) was heated at 95 °C for 18 hours under nitrogen atmosphere. Dichloromethane (50 mL) was added to the reaction mixture and the organic layer was first washed with a solution of hydrochloric acid 1N (50 mL) and then with brine (3 × 50 mL), dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel.

2-Hydroxy-3-phenylnaphthalene-1,4-dione (4a)3131 Allan, K. M.; Hong, B. D.; Stoltz, B. M.; Org. Biomol. Chem. 2009, 7, 4960.

After column chromatography using hexanes/EtOAc (95:5) as eluent, this compound was obtained as an orange solid in 96% yield, mp 135-137 °C; IR (KBr) ν / cm-1 3346, 3049, 1655, 1587 1365, 1331, 1274, 1000; 1H NMR (500 MHz, CDCl3,) δ 8.21 (dd, 1H, J 7.6, 0.8 Hz, Ar-H), 8.16 (dd, 1H, J 7.6, 0.8 Hz, Ar-H), 7.82 (td, 1H, J 7.5, 1.3 Hz, Ar-H), 7.75 (td, 1H, J 7.5, 1.3 Hz, Ar-H), 7.58 (s, 1H, OH), 7.54-7.50 (m, 2H, 2Ar-H), 7.50-7.45 (m, 2H, 2Ar-H), 7.43-7.39 (m, 1H, Ar-H); 13C NMR (126 MHz, CDCl3) δ 183.82, 181.92, 152.33, 135.39, 133.25, 132.87, 130.73, 130.03, 129.37, 128.76, 128.02, 127.37, 126.23, 122.22.

2-(3,4-Dimethoxyphenyl)-3-hydroxynaphthalene-1,4-dione (4b)3131 Allan, K. M.; Hong, B. D.; Stoltz, B. M.; Org. Biomol. Chem. 2009, 7, 4960.

After column chromatography using hexanes/EtOAc (75:25) as eluent, this compound was obtained as a brown solid in 46% yield, mp 174-176 °C; IR (KBr) ν / cm-1 3368, 1653, 1630, 1585, 1518, 1369, 1259, 1148, 1015; 1H NMR (500 MHz, CDCl3) δ 8.10 (dd, 1H, J 7.7, 0.8 Hz, Ar-H), 8.13 (dd, 1H, J 7.6, 1.0 Hz, Ar-H), 7.80 (td, 1H, J 7.6, 1.3 Hz, Ar-H), 7.72 (td, 1H, J 7.5, 1.2 Hz, Ar-H), 7.65 (s, 1H, OH), 7.15 (dd, 1H, J 8.3, 2.0 Hz, Ar-H), 7.10 (d, 1H, J 1.9 Hz, Ar-H), 6.96 (d, 1H, J 8.4 Hz, Ar-H), 3.92 (s, 3H, OCH3), 3.90 (s, 3H, OCH3); 13C NMR (126 MHz, CDCl3) δ 184.10, 181.82, 152.05, 149.49, 148.40, 135.30, 133.25, 132.93, 129.41, 127.36, 126.17, 124.07, 122.44, 122.04, 114.06, 110.68, 56.04, 55.98.

2-(4-Fluorophenyl)-3-hydroxynaphthalene-1,4-dione (4c)3232 Fieser, L. F.; Berliner, E.; Bondhus, F. J.; Chang, F. C.; Dauben, W. G.; Ettlinger, M. G.; Fawas, G.; Fields, M.; Heidelberger, C.; Heymann, H.; Vaughan, W. R.; Wilson, A. G.; Wilson, E.; Wu, M.-I.; Leffler, M. T.; Hamlin, K. E.; Matson, E. J.; Moore, E. E.; Moore, M. B.; Zaugg, H. E.; J. Am. Chem. Soc. 1948, 70, 3203.

After column chromatography using hexanes/EtOAc (90:10) as eluent, this compound was obtained as a yellow solid in 76% yield, mp 183-186 °C; IR (KBr) ν / cm-1 3329, 1665, 1645, 1597, 1510, 1356, 1233; 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, 1H, J 7.7, 1.0 Hz, Ar-H), 8.16 (dd, 1H, J 7.7, 1.0 Hz, Ar-H), 7.83 (td, 1H, J 7.5, 1.3 Hz, Ar-H), 7.75 (td, 1H, J 7.5, 1.3 Hz, Ar-H), 7.57-7.48 (m, 2H, 2Ar-H), 7.21-7.10 (m, 2H, 2Ar-H); 13C NMR (101 MHz, CDCl3) δ 183.79, 181.84, 162.87 (d, 1 JC-F 249 Hz), 152.36, 135.49, 133.37, 132.90, 132.83 (d, 3 JC-F 8 Hz), 129.40, 127.45, 126.32, 125.96 (d, 4 JC-F 4 Hz), 121.25, 115.17 (d, 2 JC-F 22 Hz).

2-Hydroxy-3-(4-(trifluoromethyl)phenyl)naphthalene-1,4-dione (4d)

After column chromatography using hexanes/EtOAc (85:15) as eluent, this compound was obtained as a yellow solid in 67% yield, mp 224-227 °C; IR (KBr) ν / cm-1 3333, 1668, 1634, 1589, 1361, 1335, 1277, 1159, 1111; 1H NMR (400 MHz, CDCl3) δ 8.22 (d, 1H, J 7.6 Hz, Ar-H), 8.18 (d, 1H, J 7.6 Hz, Ar-H), 7.85 (t, 1H, J 7.5 Hz, Ar-H), 7.77 (t, 1H, J 7.5 Hz, Ar-H), 7.72 (d, 2H, J 8.2 Hz, 2Ar-H), 7.64 (d, 2H, J 8.2 Hz, 2Ar-H); 13C NMR (101 MHz, (CD3)2CO) δ 183.00, 181.40, 154.67, 135.75, 134.91, 133.21, 132.60, 131.62, 130.02, 128.97 (q, 2 JC-F 32 Hz), 126.43, 125.70, 124.50 (q, 1 JC-F 271 Hz), 124.23 (q, 3 JC-F 4 Hz), 120.55. HRMS (ESI) m/z, calcd. for C17H9F3O3 [M - H + 2Na]+: 363.0215, found: 363.0245.

4-(3-Hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzaldehyde (4e)

After column chromatography using hexanes/EtOAc (75:25) as eluent, this compound was obtained as a yellow solid in 58% yield, mp 216-220 °C; IR (KBr) ν / cm-1 3200, 1688, 1670, 1643, 1605 1359, 1258; 1H NMR (400 MHz, CDCl3) δ 10.07 (s, 1H, CHO), 8.22 (d, 1H, J 7.7 Hz, Ar-H), 8.19 (d, 1H, J 7.5 Hz, Ar-H), 7.98 (d, 2H, J 8.2 Hz, 2Ar-H), 7.85 (t, 1H, J 7.6 Hz, Ar-H), 7.78 (t, 1H, J 7.6 Hz, Ar-H), 7.75 (s, 1H, OH), 7.70 (d, 2H, J 8.1 Hz, 2Ar-H); 13C NMR (101 MHz, DMSO) δ 192.94, 183.18, 181.31, 155.47, 138.06, 135.16, 134.88, 133.41, 131.98, 131.59, 130.05, 128.59, 126.16, 125.77, 120.98. HRMS (ESI) m/z, calcd. for C17H10O4 [M - H + 2Na]+: 323.0291, found: 323.0290.

General procedure for the preparation of 2-methoxy-3-iodonaphthalene-1,4-dione (5)3333 Sharma, J.; Singh, P. K.; Singh, K. P.; Khanna, R. N.; Org. Prep. Proced. Int. 1995, 27, 84.

To a stirred suspension of K2CO3 (5 equiv, 2.5 mmol) in acetone (12 mL) at room temperature, 2 (150 mg, 0.5 mmol) was added. After 5 minutes, dimethyl sulfate (2.5 equiv, 1.25 mmol) was slowly added and then the reaction was heated under reflux overnight. The reaction mixture was cooled to room temperature and ethyl acetate (25 mL) was added. The organic layer was first washed with brine (3 × 25 mL) and then with H2O (3 × 25 mL), dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel using hexanes/EtOAc (90:10) as eluent. This compound was obtained as yellow needles in 74% yield, mp 160-161 °C; IR (KBr) ν / cm-1 1668, 1587, 1562, 1437, 1329, 1306, 1248, 1211, 1041, 1007, 914, 719; 1H NMR (500 MHz, CDCl3) δ 8.17-8.12 (m, 1H, 1Ar-H), 8.12-8.06 (m, 1H, 1Ar-H), 7.77-7.64 (m, 2H, 2Ar-H), 4.31 (s, 3H, OCH3); 13C NMR (126 MHz, CDCl3) δ 179.83, 177.84, 163.48, 134.23, 133.83, 131.02, 130.18, 127.62, 127.04, 105.58, 62.00.

General procedure for the preparation of 3-iodo-1,4-dioxo-1,4-dihydronaphthalen-2-yl acetate (6)

A mixture of 2 (150 mg, 0.5 mmol) and 4-dimethylaminopyridine (20 mol%) in acetic anhydride (2.5 mL) was stirred at room temperature for 4 hours. After this time, ethyl acetate (25 mL) was added and the organic layer was washed with brine (3 × 25 mL), dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel using hexanes/EtOAc (80:20) as eluent. This compound was obtained as a yellow solid in 70% yield, mp 153-154 °C; IR (KBr) ν / cm-1 1778, 1674, 1597, 1371, 1327, 1302, 1275, 1244, 1165, 721; 1H NMR (500 MHz, CDCl3) δ 8.22-8.18 (m, 1H, Ar-H), 8.16-8.12 (m, 1H, Ar-H), 7.81-7.73 (m, 2H, 2Ar-H), 2.46 (s, 3H, OAc); 13C NMR (126 MHz, CDCl3) δ 179.09, 174.97, 166.63, 158.90, 134.55, 134.50, 130.51, 130.47, 128.30, 127.53, 113.88, 20.75. HRMS (ESI) m/z, calcd. for C12H7IO4 [M + Na]+: 364.9281, found: 364.9276.

General procedure for the preparation of 1,4-dioxo-3-aryl-1,4-dihydronaphthalen-2-yl diethylcarbamates (7a-e) and 3-(3-methylbut-2-en-1-yl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl diethylcarbamate (8)

A stirred solution of 1 (0.1 mmol) or 4 (0.1 mmol), pyridine (5 equiv), N,N-diethylcarbamoyl chloride (20 equiv), in CHCl3 (10 mL) was heated at 60 °C for 18 hours. Dichloromethane (30 mL) was added to the reaction mixture and the organic layer was first washed with a solution of hydrochloric acid 1N (30 mL) and then with brine (3 × 30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel.

1,4-Dioxo-3-phenyl-1,4-dihydronaphthalen-2-yl diethylcarbamate (7a)

After column chromatography using hexanes/EtOAc (95:5) as eluent, this compound was obtained as an orange solid in 38% yield, mp 90-93 °C; IR (neat) ν / cm-1 1730, 1666, 1595, 1471, 1257, 1184, 1146; 1H NMR (500 MHz, CDCl3) δ 8.19-8.13 (m, 2H, 2Ar-H), 7.79-7.73 (m, 2H, 2Ar-H), 7.48-7.37 (m, 5H, 5Ar-H), 3.37-3.24 (m, 4H, 2CH2), 1.17 (t, 3H, J 7.1 Hz, CH3), 1.06 (t, 3H, J 7.1 Hz, CH3); 13C NMR (126 MHz, CDCl3) δ 184.36, 179.91, 152.67, 150.67, 136.81, 134.33, 133.94, 132.18, 131.15, 130.16, 129.56, 129.24, 128.02, 127.08, 126.60, 42.54, 42.50, 13.85, 13.29. HRMS (ESI) m/z, calcd. for C21H19NO4 [M + Na]+: 372.1206, found: 372.1209.

3-(3,4-Dimethoxyphenyl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl diethylcarbamate (7b)

After column chromatography using hexanes/EtOAc (95:5) as eluent, this compound was obtained as a red solid in 44% yield, mp 115-118 °C; IR (neat) ν / cm-1 1730, 1666, 1595, 1514, 1454, 1259, 1184, 1145, 1026; 1H NMR (500 MHz, CDCl3) δ 8.20-8.12 (m, 2H, 2Ar-H), 7.81-7.73 (m, 2H, 2Ar-H), 7.04 (dd, 1H, J 8.3, 2.0 Hz, Ar-H), 7.00 (d, 1H, J 2.0 Hz, Ar-H), 6.95 (d, 1H, J 8.3 Hz, Ar-H), 3.94 (s, 3H, OCH3), 3.88 (s, 3H, OCH3), 3.44-3.24 (m, 4H, 2CH2), 1.20 (t, 3H, J 7.1 Hz, CH3), 1.12 (t, 3H, J 7.1 Hz, CH3); 13C NMR (126 MHz, CDCl3) δ 184.59, 179.88, 152.92, 150.34, 150.01, 148.48, 136.61, 134.26, 133.93, 132.27, 131.20, 127.11, 126.56, 123.67, 121.95, 113.45, 110.72, 55.05, 55.99, 42.58, 14.01, 13.37. HRMS (ESI) m/z, calcd. for C23H23NO6 [M + Na]+: 432.1418, found: 432.1422.

3-(4-Fluorophenyl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl diethylcarbamate (7c)

After column chromatography using hexanes/EtOAc (95:5) as eluent, this compound was obtained as a yellow oil in 73% yield. IR (neat) ν / cm-1 1730, 1666, 1593, 1504, 1259, 1225, 1184, 1145; 1H NMR (500 MHz, CDCl3) δ 8.20-8.12 (m, 2H, 2Ar-H), 7.81-7.74 (m, 2H, 2Ar-H), 7.44-7.39 (m, 2H, 2Ar-H), 7.17-7.11 (m, 2H, 2Ar-H), 3.38-3.28 (m, 4H, 2CH2), 1.19 (t, 3H, J 7.1 Hz, CH3), 1.10 (t, 3H, J 7.1 Hz, CH3); 13C NMR (126 MHz, CDCl3) δ 184.25, 179.73, 163.26 (d, 1 JC-F 249 Hz), 152.59, 150.70, 135.74, 134.41, 134.04, 132.28 (d, 3 JC-F 8 Hz), 132.01, 131.04, 127.09, 126.63, 125.37 (d, 4 JC-F 3 Hz), 115.22 (d, 2 JC-F 22 Hz), 42.56, 42.51, 13.92, 13.29. HRMS (ESI) m/z, calcd. for C21H18FNO4 [M + Na]+: 390.1112, found: 390.1116.

1,4-Dioxo-3-(4-(trifluoromethyl)phenyl)-1,4-dihydronaphthalen-2-yl diethylcarbamate (7d)

After column chromatography using hexanes/EtOAc (95:5) as eluent, this compound was obtained as a yellow oil in 48% yield. IR (neat) ν / cm-1 1730, 1666, 1595, 1330, 1257, 1184, 1144, 1067, 1018; 1H NMR (500 MHz, CDCl3) δ 8.21-8.14 (m, 2H, 2Ar-H), 7.82-7.76 (m, 2H, 2Ar-H), 7.71 (d, 2H, J 8.0 Hz, 2Ar-H), 7.54 (d, 2H, J 8.0 Hz, 2Ar-H), 3.38-3.26 (m, 4H, 2CH2), 1.18 (t, 3H, J 7.1 Hz, CH3), 1.08 (t, 3H, J 7.1 Hz, CH3); 13C NMR (126 MHz, CDCl3) δ 183.84, 179.58, 152.42, 151.23, 135.46, 134.54, 134.17, 133.37, 132.00, 131.14 (q, 2 JC-F 33 Hz), 131.10, 130.65, 127.15, 126.75, 124.98 (q, 3 JC-F 4 Hz), 124.09 (q, 1 JC-F 272 Hz), 42.66, 42.61, 13.84, 13.22. HRMS (ESI) m/z, calcd. for C22H18F3NO4 [M + Na]+: 440.1080, found: 440.1079.

3-(4-Formylphenyl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl diethylcarbamate (7e)

After column chromatography using hexanes/EtOAc (95:5) as eluent, this compound was obtained as a yellow oil in 32% yield. IR (neat) ν / cm-1 1730, 1694, 1666, 1605, 1259, 1209, 1184, 1145; 1H NMR (500 MHz, CDCl3) δ 10.08 (s, 1H, CHO), 8.21-8.14 (m, 2H, 2Ar-H), 7.96 (d, 2H, J 8.2 Hz, 2Ar-H), 7.83-7.77 (m, 2H, 2Ar-H), 7.60 (d, 2H, J 8.2 Hz, 2Ar-H), 3.40-3.24 (m, 4H, 2CH2), 1.18 (t, 3H, J 7.1 Hz, CH3), 1.07 (t, 3H, J 7.1 Hz, CH3); 13C NMR (126 MHz, CDCl3) δ 191.98, 183.76, 179.53, 152.40, 151.16, 136.52, 135.86, 135.59, 134.56, 134.18, 131.98, 131.07, 130.98, 129.21, 127.14, 126.76, 42.67, 42.60, 13.91, 13.22. HRMS (ESI) m/z, calcd. for C22H19NO5 [M + Na]+: 400.1155, found: 400.1164.

3-(3-Methylbut-2-en-1-yl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl diethylcarbamate (8)

After column chromatography using hexanes/EtOAc (95:5) as eluent, this compound was obtained as a brown oil in 40% yield. IR (neat) ν / cm-1 1730, 1694, 1666, 1593, 1454, 1360, 1337, 1259, 1186, 1145, 1051; 1H NMR (500 MHz, CDCl3) δ 8.13-8.03 (m, 2H, 2Ar-H), 7.77-7.66 (m, 2H, 2Ar-H), 5.17-5.11 (m, 1H, CH), 3.48 (q, 2H, J 7.1 Hz, CH2), 3.41 (q, 2H, J 7.1 Hz, CH2), 3.32 (d, 2H, J 7.3 Hz, CH2), 1.76 (s, 3H, CH3), 1.68 (s, 3H, CH3), 1.32 (t, 3H, J 7.1 Hz, CH3), 1.24 (t, 3H, J 7.1 Hz, CH3); 13C NMR (126 MHz, CDCl3) δ 184.96, 179.67, 152.53, 151.27, 137.81, 134.50, 134.02, 133.71, 132.33, 131.19, 126.70, 126.57, 119.07, 42.61, 25.89, 23.72, 18.04, 14.17, 13.34. HRMS (ESI) m/z, calcd. for C20H23NO4 [M + Na]+: 364.1519, found: 364.1520.

Antineoplastic activity

The cell lines HL-60 and K562 were obtained from the National Cancer Institute, Bethesda, MD, USA. All cancer cells were maintained in RPMI 1640 (Roswell Park Memorial Institute 1640) medium supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 U mL-1 penicillin, 100 µg mL-1 streptomycin at 37 °C with 5% CO2. Heparinized blood (from healthy, non-smoker donors who had not taken any drug at least 15 days prior to sampling) was collected and PBMC were isolated by a standard method of density-gradient centrifugation over Ficoll-Hypaque. PBMC were washed, resuspended at a concentration of 3 × 105 cells mL-1 and plated in a 96-well plate with RPMI 1640 medium supplemented with 20% fetal bovine serum, 2 mM glutamine, 100 U mL-1 penicillin, 100 µg mL-1 streptomycin at 37 °C with 5% CO2. Phytohemagglutinin (3%) was added at the beginning of culture. After 24 h, tested compounds (0.4-80 µM) dissolved in RPMI 1640 medium with 1% of DMSO (dimethyl sulfoxide) were added to each well and incubated for 72 h.

The cytotoxicity of all compounds were tested using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)3434 Mosmann, T.; J. Immunol. Methods 1983, 65, 55. (Sigma-Aldrich Co., St. Louis, MO, USA) reduction assay. For all experiments, tumor cells were plated in 96-well plates (3 × 105 cells mL-1). Tested compounds (0.4-80 µM) dissolved in DMSO 1% were added to each well and incubated for 72 h. Control groups received the same amount of DMSO. At the end of the incubation, the plates were centrifuged and the medium was replaced by fresh medium (150 µL) containing 0.5 mg mL-1 MTT. After 3 h, the formazan product was dissolved in 150 µL of DMSO, and the absorbance was measured using a multiplate reader (DTX 880 Multimode Detector, Beckman Coulter, Inc., Fullerton, California, USA). The IC50 values and their 95% confidence intervals for two different experiments were obtained by nonlinear regression using GraphPad Prism version 5.0 for Windows (GraphPad Software, San Diego, California, USA).

Antileishmanial activity

The compounds were dissolved in DMSO, Sigma®. Assay concentrations were prepared in culture medium used in the experiments, as indicated in each case. For antipromastigote activity,1010 Buarque, C. D.; Militão, G. C. G.; Lima, D. J. B.; Costa-Lotufo, L. V.; Pessoa, C.; de Moraes, M. O.; Cunha-Junior, E. F.; Torres-Santos, E. C.; Netto, C. D.; Costa, P. R. R.; Bioorg. Med. Chem. 2011, 19, 6885. promastigotes of Leishmania amazonensis (MHOM/BR/75/LTB0016) were adjusted to a concentration of 1 × 106 cells mL-1 in Schneider medium supplemented with 10% de fetal bovine serum, penicillin (100 U mL-1) and streptomycin (100 µg mL-1), and incubated at 26 °C for 72 h with the compounds (0-100 µM). The antileishmanial activity was evaluated by adding in each well 22 µL of MTT at 5 mg mL-1 (Sigma®). After 2 h, 80 µL of DMSO was added. The optical density was determined at a wavelength of 570 nm in microplate reader (µQuant Bio-Tek Instruments®, Winooski, Vermont, USA). The inhibition percentage was estimated by the comparison with non-treated control cultures. The assays were carried out in triplicate in 96-well plates (Costar®, New York, NY, USA) and repeated at least three times. For intracellular amastigote assays, BALB/c mice macrophages were obtained by peritoneal lavage with 5 mL of cold RPMI medium (Sigma®). The cell suspension (2 × 106 macrophages mL-1) was applied in Labtek chambers (Nunc®, New York, NY, USA) and incubated for 1 h at 37 °C, 5% CO2. Then, the cultures were washed with phosphate buffer saline (PBS) at 37 °C for removal of non-adherent cells. The remaining cells were incubated at 37 °C, 5% CO2 with stationary phase promastigotes of L. amazonensis at a ratio of 3:1. After 3 h, the chambers were washed again to remove free parasites and incubated with compounds (0-50 µM) at 37 °C, 5% CO2 for 72 h. The antiamastigote activity was analyzed microscopically by counting at least 100 macrophages per sample, after staining cells with hematological system Instant Prov (New Prov®, Curitiba, Brazil).3535 Torres-Santos, E. C.; Moreira, D. L.; Kaplan, M. A. C.; Meirelles, M. N.; Rossi-Bergaman, B.; Antimicrob. Agents Chemother. 1999, 43, 1234 The experiments were performed in duplicate and repeated twice. Results were expressed as infection index (II) using the following formula: II = (% infected cells) × (number of amastigotes / total macrophages number). For toxicity assays, BALB/c mice macrophages were obtained by peritoneal lavage with 5 mL of cold RPMI medium (Sigma®). The macrophages at 2 × 106 cells well-1 in RPMI culture medium (pH 7.2, supplemented with 10% fetal bovine serum) were incubated with the compounds (0-200 µM) for 72 h at 37 °C under 5% CO2 in 96-well plates. After removing the supernatant, viable cells were quantified by adding MTT (200 µL, 0.5 mg mL-1) in PBS. After 2 h, the supernatant was removed and DMSO (100 µL) was added in each well. The optical density was determined at wavelength of 570 nm in the microplate reader. The percentage of viable cells was calculated relative to the control cells. The tests were carried out in triplicate and repeated twice. Logarithm regression analysis was performed using GraphPad Prism 5.0 (San Diego, CA, USA) in order to obtain the values of IC50 and LD50. The selectivity index was determined as macrophage LD50/intracellular amastigote IC50. This study was approved by the Animal Ethics Committee of Oswaldo Cruz Foundation (license number LW7/2010).

Acknowledgments

This research was supported by FINEP, FUNCAP, Programa de Oncobiologia-UFRJ, PRONEX, FAPERJ, CNPq and CAPES. We are grateful to LAMAR and IPPN-UFRJ for the analytical data.

Supplementary Information

Supplementary data (1H and 13C NMR spectra) are available free of charge at http://jbcs.sbq.org.br as PDF file.

References

  • 1
    Thomson, R. H.; Naturally Occurring Quinones, 2nd ed.; Academic: London, England, 1971; Thomson, R. H.; Naturally Occurring Quinones IV: Recent Advances, 4th ed.; Blackie: London, 1997; Morton, R. A.; Biochemistry of Quinones, 1st ed.; Academic: London, England, 1965; Hillard, E. A.; de Abreu, F. C.; Ferreira, D. C. M.; Jaouen, G.; Goulart, M. O. F.; Amatore, C.; Chem. Commun. 2008, 2612; Wellington, K. W.; RSC Adv. 2015, 5, 20309.
  • 2
    Linardi, M. C. F.; de Oliveira, M. M.; Sampaio, M. R. P.; J. Med. Chem. 1975, 18, 1159; Portela, M. P. M.; Stoppani, A. O. M.; Biochem. Pharmacol. 1996, 51, 275; O'Brien, P. J.; Chem. Biol. Interact. 1991, 80, 1; Salas, C.; Tapia, R. A.; Ciudad, K.; Armstrong, V.; Orellana, M.; Kemmerling, U.; Ferreira, J.; Maya, J. D.; Morello, A.; Bioorg. Med. Chem. 2008, 16, 668; Johnson, L. E.; Dietz, A.; Appl. Microbiol. 1968, 16, 1815; Donner, C. D.; Tetrahedron Lett. 2007, 48, 8888; da Silva, F. C.; Ferreira, V. F.; Curr. Org. Synth. 2016, 13, 334.
  • 3
    Bradner, W. T.; Cancer Treat. Rev. 2001, 27, 35; Galm, U.; Hager, M. H.; Van Lanen, S. G.; Ju, J.; Thorson, J. S.; Shen, B.; Chem. Rev. 2005, 105, 739.
  • 4
    Tacar, O.; Sriamornsak, P.; Dass, C. R.; J. Pharm. Pharmacol. 2013, 65, 157.
  • 5
    Baggish, A. L.; Hill, D. R.; Antimicrob. Agents Chemother. 2002, 46, 1163; Nixon, G. L.; Moss, D. M.; Shone, A. E.; Lalloo, D. G.; Fischer, N.; O'Neil, P. M.; Ward, S. A.; Biagini, G. A.; J. Antimicrob. Chemother. 2013, 68, 977.
  • 6
    Hussain, H.; Krohn, K.; Ahmad, V. U.; Miana, G. A.; Green, I. R.; ARKIVOC 2007, ii, 145; Epifano, F.; Genovese, S.; Fiorito, S.; Mathieu, V.; Kiss, R.; Phytochem. Rev. 2014, 13, 37.
  • 7
    Ikushima, H.; Iguchi, E.; Kohsaka, M.; Aoki, H.; Imanaka, H.; J. Antibiot. 1980, 33, 1103; Ikushima, H.; Okamoto, M.; Tanaka, H.; Ohe, O.; Kohsaka, M.; Aoki, H.; Imanaka, H.; J. Antibiot. 1980, 33, 1107; Qabaja, G.; Perchellet, E. M.; Perchellet, J.-P.; Jones, G. B.; Tetrahedron Lett. 2000, 41, 3007; Hu, G.; Li, X.; Li, Y.; Sun, X.; Liu, G.; Li, W.; Huang, J.; Shen, X.; Tang, Y.; Chin. J. Chem. 2012, 30, 2752.
  • 8
    Alnassan, A. A.; Thabet, A.; Daugschies, A.; Bangoura, B.; Parasitol. Res. 2015, 114, 3913.
  • 9
    da Silva, A. J. M.; Buarque, C. D.; Brito, F. V.; Aurelian, L.; Macedo, L. F.; Malkas, L. H.; Hickey, R. J.; Lopes, D. V. S.; Noël, F.; Murakami, Y. L. B.; Silva, N. M. V.; Melo, P. A.; Caruso, R. R. B.; Castro, N. G.; Costa, P. R. R.; Bioorg. Med. Chem. 2002, 10, 2731; Sacau, E. P.; Estévez-Braun, A.; Ravelo, A. G.; Ferro, E. A.; Tokuda, H.; Mukainaka, T.; Nishino, H.; Bioorg. Med. Chem. 2003, 11, 483; Andrade-Neto, V. F.; Goulart, M. O. F.; Filho, J. F. S.; da Silva, M. J.; Pinto, M. C. F. R.; Pinto, A. V.; Zalis, M. G.; Carvalho, L. H.; Krettli, A. U.; Bioorg. Med. Chem. Lett. 2004, 14, 1145; Eyong, K. O.; Kumar, P. S.; Kuete, V.; Folefoc, G. N.; Nkengfack, E. A.; Baskaran, S.; Bioorg. Med. Chem. Lett. 2008, 18, 5387; Pinto, A. V.; de Castro, S. L.; Molecules 2009, 14, 4570.
  • 10
    Buarque, C. D.; Militão, G. C. G.; Lima, D. J. B.; Costa-Lotufo, L. V.; Pessoa, C.; de Moraes, M. O.; Cunha-Junior, E. F.; Torres-Santos, E. C.; Netto, C. D.; Costa, P. R. R.; Bioorg. Med. Chem. 2011, 19, 6885.
  • 11
    da Silva, A. J. M.; Coelho, A. L.; Simas, A. B. C.; Moraes, R. A. M.; Pinheiro, D. A.; Fernandes, F. F. A.; Arruda, E. Z.; Costa, P. R. R.; Melo, P. A.; Bioorg. Med. Chem. Lett. 2004, 14, 431; Lima, L. M.; Barreiro, E. J.; Curr. Med. Chem. 2005, 12, 23.
  • 12
    Férriz, J. M.; Vávrová, K.; Kunc, F.; Imramovský, A.; Stolaríková, J.; Vavríková, E.; Vinšová, J.; Bioorg. Med. Chem. 2010, 18, 1054; Hemaa, M. R.; Ramaiaha, M.; Vaidyab, V. P.; Shivakumara, B. S.; Suresha, G. S.; J. Chem. Pharm. Res. 2013, 5, 47; Janganati, V.; Penthala, N. R.; Madadi, N. R.; Chen, Z.; Crooks, P. A.; Bioorg. Med. Chem. Lett. 2014, 24, 3499; Krátký, M.; Volková, M.; Novotná, E.; Trejtnar, F.; Stolaríková, J.; Vinšová, J.; Bioorg. Med. Chem. 2014, 22, 4073.
  • 13
    Vane, J. R.; Botting, R. M.; Thromb. Res. 2003, 110, 255.
  • 14
    Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J.; Nat. Rev. Drug Discovery 2008, 7, 255.
  • 15
    Klinkert, M.-Q.; Heussler, V.; Mini-Rev. Med. Chem. 2006, 6, 131; Fuertes, M. A.; Nguewa, P. A.; Castilla, J.; Alonso, C.; Pérez, J. M.; Curr. Med. Chem. 2008, 15, 433.
  • 16
    Stagliano, K. W.; Malinakova, H. C.; J. Org. Chem. 1999, 64, 8034; Emadi, A.; Hardwood, J. S.; Kohanim, S.; Stagliano, K. W.; Org. Lett. 2002, 4, 521.
  • 17
    Kazantzi, G.; Malamidou-Xenikaki, E.; Spyroudis, S.; Synlett 2006, 2597.
  • 18
    Glinis, E.; Malamidou-Xenikaki, E.; Skouros, H.; Spyroudis, S.; Tsanakopoulou, M.; Tetrahedron 2010, 66, 5786.
  • 19
    Patil, P.; Nimonkar, A.; Akamanchi, K. G.; J. Org. Chem. 2014, 79, 2331.
  • 20
    Ilangovan, A.; Polu, A.; Satish, G.; Org. Chem. Front. 2015, 2, 1616.
  • 21
    Suzuki, A.; Miyaura, N.; Chem. Rev. 1995, 95, 2457; Kotha, S.; Lahiri, K.; Kashinath, D.; Tetrahedron 2002, 58, 9633; Lennox, A. J. J.; Lloyd-Jones, G. C.; Chem. Soc. Rev. 2014, 43, 412; Biajoli, A. F. P.; Schwalm, C. S.; Limberger, J.; Claudino, T. S.; Monteiro, A. L.; J. Braz. Chem. Soc. 2014, 25, 2186.
  • 22
    Louvis, A. R.; Silva, N. A. A.; Semaan, F. S.; Silva, F. C.; Saramago, G.; Souza, L. C. S. V.; Ferreira, B. L. A.; Castro, H. C.; Salles, J. P.; Souza, A. L. A.; Faria, R. X.; Ferreira, V. F.; Martins, D. L.; New J. Chem. 2016, 40, 7643.
  • 23
    da Frota, L. C. R. M.; Canavez, R. C. P.; Gomes, S. L. S.; Costa, P. R. R.; da Silva, A. J. M.; J. Braz. Chem. Soc. 2009, 10, 1916.
  • 24
    Watanabe, T.; Miyaura, N.; Suzuki, A.; Synlett 1992, 207.
  • 25
    Pousse, G.; Devineau, A.; Dalla, V.; Humphreys, L.; Lasne, M.; Rouden, J.; Blanchet, J.; Tetrahedron 2009, 65, 10617.
  • 26
    Bonifazi, E. L.; Ríos-Luci, C.; León, L. G.; Burton, G.; Padrón, J. M.; Misico, R. I.; Bioorg. Med. Chem 2010, 18, 2621.
  • 27
    van der Klei, A.; de Jong, R. L. P.; Lugtenburg, J.; Tielens, A. G. M.; Eur. J. Org. Chem. 2002, 3015.
  • 28
    Wuts, P. G. M.; Greene, T. W.; Protective Groups in Organic Synthesis, 4th ed.; Wiley: New Jersey, USA, 2007.
  • 29
    Netto, C. D.; da Silva, A. J. M.; Salustiano, E. J. S.; Bacelar, T. S.; Riça, I. G.; Cavalcante, M. C. M.; Rumjanek, V. M.; Costa, P. R. R.; Bioorg. Med. Chem. 2010, 18, 1610; Salustiano, E. J. S.; Netto, C. D.; Fernandes, R. F.; da Silva, A. J. M.; Bacelar, T. S.; Castro, C. P.; Buarque, C. D.; Maia, R. C.; Rumjanek, V. M.; Costa, P. R. R.; Invest. New Drugs 2010, 28, 139.
  • 30
    Katsuno, K.; Burrows, J. N.; Duncan, K.; van Huijsduijnen, R. H.; Kaneko, T.; Kita, K.; Mowbray, C. E.; Schmatz, D.; Warner, P.; Slingsby, B. T.; Nat. Rev. Drug Discovery 2015, 14, 751.
  • 31
    Allan, K. M.; Hong, B. D.; Stoltz, B. M.; Org. Biomol. Chem. 2009, 7, 4960.
  • 32
    Fieser, L. F.; Berliner, E.; Bondhus, F. J.; Chang, F. C.; Dauben, W. G.; Ettlinger, M. G.; Fawas, G.; Fields, M.; Heidelberger, C.; Heymann, H.; Vaughan, W. R.; Wilson, A. G.; Wilson, E.; Wu, M.-I.; Leffler, M. T.; Hamlin, K. E.; Matson, E. J.; Moore, E. E.; Moore, M. B.; Zaugg, H. E.; J. Am. Chem. Soc. 1948, 70, 3203.
  • 33
    Sharma, J.; Singh, P. K.; Singh, K. P.; Khanna, R. N.; Org. Prep. Proced. Int. 1995, 27, 84.
  • 34
    Mosmann, T.; J. Immunol. Methods 1983, 65, 55.
  • 35
    Torres-Santos, E. C.; Moreira, D. L.; Kaplan, M. A. C.; Meirelles, M. N.; Rossi-Bergaman, B.; Antimicrob. Agents Chemother. 1999, 43, 1234

Publication Dates

  • Publication in this collection
    Aug 2017

History

  • Received
    14 July 2016
  • Accepted
    20 Dec 2016
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br