Acessibilidade / Reportar erro

Production of Copper and Cobalt Aluminate Spinels and Their Application As Supports for Inulinase Immobilization

Abstract

Copper and cobalt aluminates were obtained through the use of chitosan as template. In this synthesis route, chitosan is eliminated by heating, and a porous material is produced. These oxides were used as supports for inulinase immobilization by adsorption process. Physical properties of produced particles were analyzed by X-ray diffraction (XRD) and nitrogen adsorption-desorption isotherms. Both oxides presented particles containing mesoporous characteristics and high surface area, which is desirable for applications in enzyme immobilization processes. The results revealed that the copper and cobalt aluminates exhibit high inulinase immobilization efficiencies, which makes them promising supports for enzyme immobilization.

Keywords:
CuAl2O4; CoAl2O4; synthesis; characterization; inulinase; immobilization

1 Introduction

Spinel structure oxides constitute one of the most interesting classes of advanced ceramic materials due their intrinsic physical and chemical properties. Among the spinel oxides, copper (CuAl2O4) and cobalt (CoAl2O4) aluminates possess interesting properties for technological application. Specifically, copper aluminate (CuAl2O4) possesses important applications in various fields such as gases sensor1Vijaya JJ, Kennedy LJ, Sekaran G, Bayhan M and William MA. Preparation and VOC gas sensing properties of Sr(II)-added copper aluminate spinel composites. Sensors and Actuators. B, Chemical. 2008; 134(2):604-612. http://dx.doi.org/10.1016/j.snb.2008.06.012.
http://dx.doi.org/10.1016/j.snb.2008.06....
, catalyst in the oxidation reaction of benzyl alcohol2Kumar RT, Suresh P, Selvam NCS, Kennedy LJ and Vijaya JJ. Comparative study of nano copper aluminate spinel prepared by sol–gel and modified sol–gel techniques: structural, electrical, optical and catalytic studies. Journal of Alloys and Compounds. 2012; 522(5):39-45. http://dx.doi.org/10.1016/j.jallcom.2012.01.064.
http://dx.doi.org/10.1016/j.jallcom.2012...
,3Ragupathi C, Vijaya JJ, Kennedy LJ and Bououdina M. Nanostructured copper aluminate spinels: synthesis, structural, optical, magnetic, and catalytic properties. Materials Science in Semiconductor Processing. 2014; 24:46-156. http://dx.doi.org/10.1016/j.mssp.2014.03.026.
http://dx.doi.org/10.1016/j.mssp.2014.03...
, methanol steam reforming4Huang YH, Wang SF, Tsai AP and Kameoka S. Reduction behavior sand catalytic properties form ethanol steam reforming of Cu-based spinel compounds CuXO (X = Fe, Mn, Al, La). 24Ceramics International. 2014; 40(3):4541-4551. http://dx.doi.org/10.1016/j.ceramint.2013.08.130.
http://dx.doi.org/10.1016/j.ceramint.201...
and hydrogenolysis of glycerol5Kwak BK, Park DS, Yun YS and Yi J. Preparation and characterization of nanocrystalline CuAlO. 24 spinel catalysts by sol–gel method for the hydrogenolysis of glycerolCatalysis Communications. 2012; 24:90-95. http://dx.doi.org/10.1016/j.catcom.2012.03.029.
http://dx.doi.org/10.1016/j.catcom.2012....
, thermoelectric properties6Yanagiya S, Van Nong N, Xu J and Pryds N. The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate. Materials (Basel). 2010; 3(1):318-328. http://dx.doi.org/10.3390/ma3010318.
http://dx.doi.org/10.3390/ma3010318...
, photocatalyst for degradating the pollutants in aqueous solution7Yanyan J, Jinggang L, Xiaotao S, Guiling N, Chengyu W and Xiumei G. CuAl2O powder synthesis by sol-gel method and its photodegradation property under visible light irradiation. 4Journal of Sol-Gel Science and Technology. 2007; 42(1):41-45. http://dx.doi.org/10.1007/s10971-006-1525-3.
http://dx.doi.org/10.1007/s10971-006-152...

Ding D, Long M, Cai W, Wu Y, Wu D and Chen C. In-situ synthesis of photocatalytic CuAl2O–Cu hybrid nanorod arrays. 4Chemical Communications. 2009; 24(24):3588-3590. http://dx.doi.org/10.1039/b903865e.
http://dx.doi.org/10.1039/b903865e...

Lv W, Liu B, Qiu Q, Wang F, Luo Z, Zhang P, et al. Synthesis, characterization and photocatalytic properties of spinel CuAlO nanoparticles by a sonochemical method. 24Journal of Alloys and Compounds. 2009; 479(1-2):480-483. http://dx.doi.org/10.1016/j.jallcom.2008.12.111.
http://dx.doi.org/10.1016/j.jallcom.2008...
-1010 Gherbi R, Nasrallah N, Amrane A, Maachi R and Trari M. Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl2O/TiO. 42Journal of Hazardous Materials. 2011; 186(2-3):1124-1130. http://dx.doi.org/10.1016/j.jhazmat.2010.11.105.
http://dx.doi.org/10.1016/j.jhazmat.2010...
, solar absorber1111 Ding D, Cai W, Long M, Wu H and Wu Y. Optical, structural and thermal characteristics of Cu–CuAl2O hybrids deposited in anodic aluminum oxide as selective solar absorber. 4Solar Energy Materials and Solar Cells. 2010; 94(10):1578-1581. http://dx.doi.org/10.1016/j.solmat.2010.04.075.
http://dx.doi.org/10.1016/j.solmat.2010....
, oxygen carrier in chemical-looping combustion1212 Arjmand M, Azad AM, Leion H, Mattisson T and Lyngfelt A. Evaluation of CuAl2O as an oxygen carrier in chemical-looping combustion. 4Industrial & Engineering Chemistry Research. 2012; 51(43):13924-13934. http://dx.doi.org/10.1021/ie300427w.
http://dx.doi.org/10.1021/ie300427w...
and optical and dielectric properties2Kumar RT, Suresh P, Selvam NCS, Kennedy LJ and Vijaya JJ. Comparative study of nano copper aluminate spinel prepared by sol–gel and modified sol–gel techniques: structural, electrical, optical and catalytic studies. Journal of Alloys and Compounds. 2012; 522(5):39-45. http://dx.doi.org/10.1016/j.jallcom.2012.01.064.
http://dx.doi.org/10.1016/j.jallcom.2012...
,1313 Leu LC, Norton DP, Jellison GE Jr, Selvamanickam V and Xiong X. Optical and dielectric properties of CuAlO. 24 films synthesized by solid-phase epitaxyThin Solid Films. 2007; 515(17):6938-6942. http://dx.doi.org/10.1016/j.tsf.2007.02.012.
http://dx.doi.org/10.1016/j.tsf.2007.02....
. Cobalt aluminate oxide (CoAl2O4) has been employed in various fields such as ceramic pigment1414 Gaudon M, Robertson LC, Lataste E, Duttine M, Ménétrier M and Demourgues A. Cobalt and nickel aluminate spinels: blue and cyan pigments. Ceramics International. 2014; 40(4):5201-5207. http://dx.doi.org/10.1016/j.ceramint.2013.10.081.
http://dx.doi.org/10.1016/j.ceramint.201...
,1515 Torkian L and Daghighi M. Effects of β-alanine on morphology and optical properties of CoAlO nanopowders as a blue pigment. 24Advanced Powder Technology. 2014; 25(2):739-744. http://dx.doi.org/10.1016/j.apt.2013.11.003.
http://dx.doi.org/10.1016/j.apt.2013.11....
, optical and magnetic properties1616 Chandradass J, Balasubramanian M and Kim KH. Size effect on the magnetic property of CoAl2O4 nanopowders prepared by reverse micelle processing. Journal of Alloys and Compounds. 2010; 506(1):395-399. http://dx.doi.org/10.1016/j.jallcom.2010.07.014.
http://dx.doi.org/10.1016/j.jallcom.2010...
,1717 Duan X, Pan M, Yu F and Yuan D. Synthesis, structure and optical properties of CoAlO spinel nanocrystals. 24Journal of Alloys and Compounds. 2011; 509(3):1079-1083. http://dx.doi.org/10.1016/j.jallcom.2010.09.199.
http://dx.doi.org/10.1016/j.jallcom.2010...
, catalysts in reactions such as soot combustion with NOx/O2[1818 Zawadzki M, Walerczyk W, López-Suárez FE, Illán-Gómez MJ and Bueno-López A. CoAlO. 24 spinel catalyst for soot combustion with NOx/O2Catalysis Communications. 2011; 12(13):1238-1241. http://dx.doi.org/10.1016/j.catcom.2011.04.021.
http://dx.doi.org/10.1016/j.catcom.2011....
], oxidation of CO[1919 Thormählen P, Fridell E, Cruise N, Skoglundh M and Palmqvist A. The influence of CO2, C3H, NO, H, HO or SO. 6222 on the low-temperature oxidation of CO on a cobalt-aluminate spinel catalyst (Co1.66Al1.34O4)Applied Catalysis B: Environmental. 2001; 31(1):1-12. http://dx.doi.org/10.1016/S0926-3373(00)00267-8.
http://dx.doi.org/10.1016/S0926-3373(00)...
], carbon monoxide hydrogenation2020 Rojanapipatkul S and Jongsomjit B. Synthesis of cobalt on cobalt-aluminate via solvothermal method and its catalytic properties for carbon monoxide, hydrogenation. Catalysis Communications. 2008; 10(2):232-236. http://dx.doi.org/10.1016/j.catcom.2008.08.026.
http://dx.doi.org/10.1016/j.catcom.2008....
, and reforming of methane2121 Mo L, Fei J, Huang C and Zheng X. Reforming of methane with oxygen and carbon dioxide to produce syngas over a novel Pt/CoAl2O/AlO. 423 catalystJournal of Molecular Catalysis A Chemical. 2003; 193(1-2):177-184. http://dx.doi.org/10.1016/S1381-1169(02)00453-3.
http://dx.doi.org/10.1016/S1381-1169(02)...
, and sensors for gas2222 Michel CR. CO and CO2 gas sensing properties of mesoporous CoAl2O4. Sensors and Actuators. B, Chemical. 2010; 147(2):635-641. http://dx.doi.org/10.1016/j.snb.2010.04.013.
http://dx.doi.org/10.1016/j.snb.2010.04....
, humidity2323 Vijaya JJ, Kennedy LJ, Sekaran G, Jeyaraj B and Nagaraja KS. Effect of Sr addition on the humidity sensing properties of CoAl2O composites. 4Sensors and Actuators. B, Chemical. 2007; 123(1):211-217. http://dx.doi.org/10.1016/j.snb.2006.08.011.
http://dx.doi.org/10.1016/j.snb.2006.08....
and volatile organic compounds1Vijaya JJ, Kennedy LJ, Sekaran G, Bayhan M and William MA. Preparation and VOC gas sensing properties of Sr(II)-added copper aluminate spinel composites. Sensors and Actuators. B, Chemical. 2008; 134(2):604-612. http://dx.doi.org/10.1016/j.snb.2008.06.012.
http://dx.doi.org/10.1016/j.snb.2008.06....
,2424 Vijaya JJ, Kennedy LJ, Sekaran G, Meenakshisundaram A, Kumar RT, Amalthi P, et al. Alcohol sensing properties of sol–gel prepared Sr(II)-added cobalt aluminate spinel composites. Sensors and Actuators. B, Chemical. 2008; 129(2):741-749. http://dx.doi.org/10.1016/j.snb.2007.09.031.
http://dx.doi.org/10.1016/j.snb.2007.09....
.

The use of immobilized enzymes has been increased in the last years due the many fields application. In the immobilization process enzymes are trapped in a solid matrix, therefore, is possible the reuse and it will not be subjected to denaturation2525 Daoud FB, Kaddour S and Sadoun T. Adsorption of cellulose Aspergillus niger on a commercial activated carbon: kinetic and equilibrium studies. Colloids and Surfaces. B, Biointerfaces. 2010; 75(1):93-99. http://dx.doi.org/10.1016/j.colsurfb.2009.08.019.
http://dx.doi.org/10.1016/j.colsurfb.200...
. Several materials with different characteristics such as natural clay2626 Coghetto CC, Scherer RP, Silva MF, Golunski S, Pergher SBC, Oliveira D, et al. Natural montmorillonite as support for the immobilization of inulinase from NRRL Y-7571. Kluyveromyces marxianusBiocatalysis and Agricultural Biotechnology. 2012; 1(4):284-289. http://dx.doi.org/10.1016/j.bcab.2012.06.005.
http://dx.doi.org/10.1016/j.bcab.2012.06...
, grafted alginate beads2727 Danial EN, Elnashar MMM and Awad GEA. Immobilized inulinase on grafted alginate beads prepared by the one-step and the two-steps methods. Industrial & Engineering Chemistry Research. 2010; 49(7):3120-3125. http://dx.doi.org/10.1021/ie100011z.
http://dx.doi.org/10.1021/ie100011z...
, aminated non-porous silica nanoparticles2828 Karimi M, Chaudhury I, Jianjun C, Safari M, Sadeghi R, Habibi-Rezaei M, et al. Immobilization of endo-inulinase on non-porous amino functionalized silica nanoparticles. Journal of Molecular Catalysis. B, Enzymatic. 2014; 104:48-55. http://dx.doi.org/10.1016/j.molcatb.2014.01.025.
http://dx.doi.org/10.1016/j.molcatb.2014...
, chitin2929 Nguyen QD, Rezessy-Szabó JM, Czukor B and Hoschke Á. Continuous production of oligofructose syrup from Jerusalem artichoke juice by immobilized endo-inulinase. Process Biochemistry. 2011; 46(1):298-303. http://dx.doi.org/10.1016/j.procbio.2010.08.028.
http://dx.doi.org/10.1016/j.procbio.2010...
, alginate–chitosan beads3030 Missau J, Scheid AJ, Foletto EL, Jahn SL, Mazutti MA and Kuhn RC. Immobilization of commercial inulinase on alginate–chitosan beads. Sustainable Chemical Processes. 2014; 2(1):13. http://dx.doi.org/10.1186/2043-7129-2-13.
http://dx.doi.org/10.1186/2043-7129-2-13...
, poly(EGDMA) cryogels3131 Altunbaş C, Uygun M, Uygun DA, Akgöl S and Denizli A. Immobilization of inulinase on concanavalin A-attached super macroporous cryogel for production of high-fructose syrup. Applied Biochemistry and Biotechnology. 2013; 170(8):1909-1921. http://dx.doi.org/10.1007/s12010-013-0322-z.
http://dx.doi.org/10.1007/s12010-013-032...
and carbon nanotubes3232 Garlet TB, Weber CT, Klaic R, Foletto EL, Jahn SL, Mazutti MA, et al. Carbon nanotubes as supports for inulinase immobilization. Molecules (Basel, Switzerland). 2014; 19(9):14615-14624. http://dx.doi.org/10.3390/molecules190914615.
http://dx.doi.org/10.3390/molecules19091...
have been used as supports for inulinase immobilization by adsorption process. The immobilization process presents some advantages compared with free enzyme, which are the easily removed of the products from immobilized enzymes and possibility the continuous mode of operation3333 Fernandes P, Marques MPC, Carvalho F and Cabral JMS. A simple method for biocatalyst immobilization using PVA-based hydrogel particles. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire). 2009; 84(4):561-564. http://dx.doi.org/10.1002/jctb.2080.
http://dx.doi.org/10.1002/jctb.2080...
. Immobilized inulinases have been used for many processes, especially for the sugar production through inulin hydrolysis, yielding fructose and fructooligosaccharides, which could be used as functional ingredient2626 Coghetto CC, Scherer RP, Silva MF, Golunski S, Pergher SBC, Oliveira D, et al. Natural montmorillonite as support for the immobilization of inulinase from NRRL Y-7571. Kluyveromyces marxianusBiocatalysis and Agricultural Biotechnology. 2012; 1(4):284-289. http://dx.doi.org/10.1016/j.bcab.2012.06.005.
http://dx.doi.org/10.1016/j.bcab.2012.06...
. In this work a new application for copper and cobalt aluminate oxides was proposed, i.e., as support for inulinase immobilization.

Copper aluminate spinel (CuAl2O4) has been prepared by several techniques such as microwave combustion method3Ragupathi C, Vijaya JJ, Kennedy LJ and Bououdina M. Nanostructured copper aluminate spinels: synthesis, structural, optical, magnetic, and catalytic properties. Materials Science in Semiconductor Processing. 2014; 24:46-156. http://dx.doi.org/10.1016/j.mssp.2014.03.026.
http://dx.doi.org/10.1016/j.mssp.2014.03...
, co-precipitation1010 Gherbi R, Nasrallah N, Amrane A, Maachi R and Trari M. Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl2O/TiO. 42Journal of Hazardous Materials. 2011; 186(2-3):1124-1130. http://dx.doi.org/10.1016/j.jhazmat.2010.11.105.
http://dx.doi.org/10.1016/j.jhazmat.2010...
, electrochemical process1111 Ding D, Cai W, Long M, Wu H and Wu Y. Optical, structural and thermal characteristics of Cu–CuAl2O hybrids deposited in anodic aluminum oxide as selective solar absorber. 4Solar Energy Materials and Solar Cells. 2010; 94(10):1578-1581. http://dx.doi.org/10.1016/j.solmat.2010.04.075.
http://dx.doi.org/10.1016/j.solmat.2010....
, solvothermal2020 Rojanapipatkul S and Jongsomjit B. Synthesis of cobalt on cobalt-aluminate via solvothermal method and its catalytic properties for carbon monoxide, hydrogenation. Catalysis Communications. 2008; 10(2):232-236. http://dx.doi.org/10.1016/j.catcom.2008.08.026.
http://dx.doi.org/10.1016/j.catcom.2008....
, microemulsion method3434 Chandradass J and Kim KH. Synthesis and characterization of CuAlO nanoparticles via a reverse microemulsion method. 24Journal of Ceramic Processing Research. 2010; 11(2):150-153., sonochemical9Lv W, Liu B, Qiu Q, Wang F, Luo Z, Zhang P, et al. Synthesis, characterization and photocatalytic properties of spinel CuAlO nanoparticles by a sonochemical method. 24Journal of Alloys and Compounds. 2009; 479(1-2):480-483. http://dx.doi.org/10.1016/j.jallcom.2008.12.111.
http://dx.doi.org/10.1016/j.jallcom.2008...
,3535 Lv W, Luo Z, Yang H, Liu B, Weng W and Liu J. Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders. Ultrasonics Sonochemistry. 2010; 17(2):344-351. http://dx.doi.org/10.1016/j.ultsonch.2009.06.006.
http://dx.doi.org/10.1016/j.ultsonch.200...
, solid state reaction4Huang YH, Wang SF, Tsai AP and Kameoka S. Reduction behavior sand catalytic properties form ethanol steam reforming of Cu-based spinel compounds CuXO (X = Fe, Mn, Al, La). 24Ceramics International. 2014; 40(3):4541-4551. http://dx.doi.org/10.1016/j.ceramint.2013.08.130.
http://dx.doi.org/10.1016/j.ceramint.201...
,3636 Fenner LA, Wills AS, Bramwell ST, Dahlberg M and Schiffer P. Zero-point entropy of the spinel spin glasses CuGaO. 24 and CuAl2O4Journal of Physics: Conference Series. 2009; 145:012029. http://dx.doi.org/10.1088/1742-6596/145/1/012029.
http://dx.doi.org/10.1088/1742-6596/145/...
, sol-gel7Yanyan J, Jinggang L, Xiaotao S, Guiling N, Chengyu W and Xiumei G. CuAl2O powder synthesis by sol-gel method and its photodegradation property under visible light irradiation. 4Journal of Sol-Gel Science and Technology. 2007; 42(1):41-45. http://dx.doi.org/10.1007/s10971-006-1525-3.
http://dx.doi.org/10.1007/s10971-006-152...
,3737 Bayal N and Jeevanandam P. Synthesis of metal aluminate nanoparticles by sol–gel method and studies on their reactivity. Journal of Alloys and Compounds. 2012; 516(5):27-32. http://dx.doi.org/10.1016/j.jallcom.2011.11.080.
http://dx.doi.org/10.1016/j.jallcom.2011...
, modified sol–gel2Kumar RT, Suresh P, Selvam NCS, Kennedy LJ and Vijaya JJ. Comparative study of nano copper aluminate spinel prepared by sol–gel and modified sol–gel techniques: structural, electrical, optical and catalytic studies. Journal of Alloys and Compounds. 2012; 522(5):39-45. http://dx.doi.org/10.1016/j.jallcom.2012.01.064.
http://dx.doi.org/10.1016/j.jallcom.2012...
,3838 Salavati-Niasari M, Davar F and Farhadi M. Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol–gel method. Journal of Sol-Gel Science and Technology. 2009; 51(1):48-52. http://dx.doi.org/10.1007/s10971-009-1940-3.
http://dx.doi.org/10.1007/s10971-009-194...
, sputtering1313 Leu LC, Norton DP, Jellison GE Jr, Selvamanickam V and Xiong X. Optical and dielectric properties of CuAlO. 24 films synthesized by solid-phase epitaxyThin Solid Films. 2007; 515(17):6938-6942. http://dx.doi.org/10.1016/j.tsf.2007.02.012.
http://dx.doi.org/10.1016/j.tsf.2007.02....
,3939 Yu RS and Yin HH. Structural and optoelectronic properties of p-type semiconductor CuAlO thin films. 2Thin Solid Films. 2012; 526:103-108. http://dx.doi.org/10.1016/j.tsf.2012.11.033.
http://dx.doi.org/10.1016/j.tsf.2012.11....
, Pechini method4040 Jarman RH, Bafia J, Gebreslasse T, Ingram BJ and Carter JD. Synthesis of the p-type semiconducting ternary oxide CuAlO using the Pechini method. 2Materials Research Bulletin. 2013; 48(10):3916-3918. http://dx.doi.org/10.1016/j.materresbull.2013.06.003.
http://dx.doi.org/10.1016/j.materresbull...
and metallic alkoxide4141 Tomar N, Ghanti E, Bhagi AK and Nagarajan R. Studies on the hydrolysis of {Cu[Al(OPri)4]}, a single source precursor for CuAlO. 224 spinelJournal of Non-Crystalline Solids. 2009; 355(52-54):2657-2662. http://dx.doi.org/10.1016/j.jnoncrysol.2009.08.026.
http://dx.doi.org/10.1016/j.jnoncrysol.2...
. Cobalt aluminate spinel (CoAl2O4) has been prepared by reverse microemulsion process1616 Chandradass J, Balasubramanian M and Kim KH. Size effect on the magnetic property of CoAl2O4 nanopowders prepared by reverse micelle processing. Journal of Alloys and Compounds. 2010; 506(1):395-399. http://dx.doi.org/10.1016/j.jallcom.2010.07.014.
http://dx.doi.org/10.1016/j.jallcom.2010...
, sol–gel1717 Duan X, Pan M, Yu F and Yuan D. Synthesis, structure and optical properties of CoAlO spinel nanocrystals. 24Journal of Alloys and Compounds. 2011; 509(3):1079-1083. http://dx.doi.org/10.1016/j.jallcom.2010.09.199.
http://dx.doi.org/10.1016/j.jallcom.2010...
, hydrothermal4242 Chen Z, Shi E, Li W, Zheng Y and Zhong W. Hydrothermal synthesis and optical property of nano-sized CoAl2O pigment. 4Materials Letters. 2002; 55(5):281-284. http://dx.doi.org/10.1016/S0167-577X(02)00378-6.
http://dx.doi.org/10.1016/S0167-577X(02)...
,4343 Lu J, Minami KMS, Takami S and Adschiri T. Rapid and continuous synthesis of cobalt aluminate nanoparticles under subcritical hydrothermal conditions with in-situ surface modification. Chemical Engineering Science. 2013; 85:50-54. http://dx.doi.org/10.1016/j.ces.2012.01.061.
http://dx.doi.org/10.1016/j.ces.2012.01....
, microwave combustion method4444 Ragupathi C, Vijaya JJ, Kennedy LJ and Bououdina M. Combustion synthesis, structure, magnetic and optical properties of cobalt aluminate spinel nanocrystals. Ceramics International. 2014; 40(8):13067-13074. http://dx.doi.org/10.1016/j.ceramint.2014.05.003.
http://dx.doi.org/10.1016/j.ceramint.201...
, sonochemical4545 Lv W, Qiu Q, Wang F, Wei S, Liu B and Luo Z. Sonochemical synthesis of cobalt aluminate nanoparticles under various preparation parameters. Ultrasonics Sonochemistry. 2010; 17(5):793-801. http://dx.doi.org/10.1016/j.ultsonch.2010.01.018.
http://dx.doi.org/10.1016/j.ultsonch.201...
, via glycine chelated precursors4646 Wang C, Liu S, Liu L and Bai X. Synthesis of cobalt–aluminate spinels via glycine chelated precursors. Materials Chemistry and Physics. 2006; 96(2-3):361-370. http://dx.doi.org/10.1016/j.matchemphys.2005.07.066.
http://dx.doi.org/10.1016/j.matchemphys....
, via polyacrylamide gel method4747 Jafari M and Hassanzadeh-Tabrizi SA. Preparation of CoAl2O. 4 nanoblue pigment viapolyacrylamide gel methodPowder Technology. 2014; 266:236-239. http://dx.doi.org/10.1016/j.powtec.2014.06.018.
http://dx.doi.org/10.1016/j.powtec.2014....
, double decomposition reaction between solid LiAlO2 and molten KCoCl3[4848 Ouahdi N, Guillemet S, Durand B, Ouatib RE, Rakho LE, Moussa R, et al. Synthesis of CoAl2O4 by double decomposition reaction between LiAlO and molten KCoCl. 23Journal of the European Ceramic Society. 2008; 28(10):1987-1994. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.12.035.
http://dx.doi.org/10.1016/j.jeurceramsoc...
], low temperature combustion4949 Li W, Li J and Guo J. Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion. Journal of the European Ceramic Society. 2003; 23(13):2289-2295. http://dx.doi.org/10.1016/S0955-2219(03)00081-5.
http://dx.doi.org/10.1016/S0955-2219(03)...
, complexation method5050 Mindru I, Marinescu G, Gingasu D, Patron L, Ghica C and Giurginca M. Blue CoAl2O spinel via complexation method. 4Materials Chemistry and Physics. 2010; 122(2-3):491-497. http://dx.doi.org/10.1016/j.matchemphys.2010.03.032.
http://dx.doi.org/10.1016/j.matchemphys....
, reaction-sintering process5151 Tsai WC, Liou YH and Liou YC. Microwave dielectric properties of MgAl2O4–CoAlO spinel compounds prepared by reaction-sintering process. 24Materials Science and Engineering B. 2012; 177(13):1133-1137. http://dx.doi.org/10.1016/j.mseb.2012.05.023.
http://dx.doi.org/10.1016/j.mseb.2012.05...
, polymeric precursors method5252 Gama L, Ribeiro MA, Barros BS, Kiminami RHA, Weber IT and Costa ACFM. Synthesis and characterization of the NiAlO4, CoAlO and ZnAl. 2242O4 spinels by the polymeric precursors methodJournal of Alloys and Compounds. 2009; 483(1):453-455. http://dx.doi.org/10.1016/j.jallcom.2008.08.111.
http://dx.doi.org/10.1016/j.jallcom.2008...
, polymeric-aerosol pyrolysis5353 Hu G, Deng X, Cao Y and Peng Z. Synthesis of spherical CoAlO pigment particles with high reflectivity by polymeric-aerosol pyrolysis. 24Rare Metals. 2007; 26(3):236-241. http://dx.doi.org/10.1016/S1001-0521(07)60208-3.
http://dx.doi.org/10.1016/S1001-0521(07)...
, freeze–drying5454 Xi X, Nie Z, Ma L, Li L, Xu X and Zuo T. Synthesis and characterization of ultrafine CoAlO pigment by freeze–drying. 24Powder Technology. 2012; 226:114-116. http://dx.doi.org/10.1016/j.powtec.2012.04.029.
http://dx.doi.org/10.1016/j.powtec.2012....
, sol–gel-hydrothermal method5555 Yu F, Yang J, Ma J, Du J and Zhou Y. Preparation of nanosized CoAl2O powders by sol–gel and sol–gel-hydrothermal methods. 4Journal of Alloys and Compounds. 2009; 468(1-2):443-446. http://dx.doi.org/10.1016/j.jallcom.2008.01.018.
http://dx.doi.org/10.1016/j.jallcom.2008...
, ultrasonic-assisted-hydrothermal method5656 Kim JH, Son BR, Yoon DH, Hwang KT, Noh HG, Cho WS, et al. Characterization of blue CoAlO nano-pigment synthesized by ultrasonic hydrothermal method. 24Ceramics International. 2012; 38(7):5707-5712. http://dx.doi.org/10.1016/j.ceramint.2012.04.015.
http://dx.doi.org/10.1016/j.ceramint.201...
, polymerized complex technique5757 Cho WS and Kakihana M. Crystallization of ceramic pigment CoAlO nanocrystals from Co–Al metal organic precursor. 24Journal of Alloys and Compounds. 1999; 287(1-2):87-90. http://dx.doi.org/10.1016/S0925-8388(99)00059-6.
http://dx.doi.org/10.1016/S0925-8388(99)...
, chemical vapor deposition5858 Carta G, Casarin M, El Habra NE, Natali M, Rossetto G, Sada C, et al. MOCVD deposition of CoAlO films. 24Electrochimica Acta. 2005; 50(23):4592-4599. http://dx.doi.org/10.1016/j.electacta.2004.10.094.
http://dx.doi.org/10.1016/j.electacta.20...
, and via supercritical water conditions5959 Rangappa D, Ohara S, Naka T, Kondo A, Ishii M and Adschiri T. Synthesis and organic modification of CoAl2O nanocrystals under supercritical water conditions. 4Journal of Materials Chemistry. 2007; 17(41):4426-4429. http://dx.doi.org/10.1039/b705760a.
http://dx.doi.org/10.1039/b705760a...
. In this work, both copper and cobalt aluminates were prepared by route using chitosan as template. This technique has as advantages obtain a material with high porosity and surface area6060 Nuernberg GDB, Foletto EL, Probst LFD, Campos CEM, Carreño NLV and Moreira MA. A novel synthetic route for magnesium aluminate (MgAlO) particles using metal–chitosan complexation method. 24Chemical Engineering Journal. 2012; 193-194:211-214. http://dx.doi.org/10.1016/j.cej.2012.04.054.
http://dx.doi.org/10.1016/j.cej.2012.04....
. These characteristics are important for enzymes immobilization purposes. Although some aluminum-based spinels have been prepared using chitosan as template6161 Nuernberg GB, Foletto EL, Probst LFD, Carreño NLV and Moreira MA. MgAlO. 24 spinel particles prepared by metal-chitosan complexation route and use as catalyst support for direct decomposition of methaneJournal of Molecular Catalysis A Chemical. 2013; 370:22-27. http://dx.doi.org/10.1016/j.molcata.2012.12.007.
http://dx.doi.org/10.1016/j.molcata.2012...
,6262 Stringhini FM, Foletto EL, Sallet D, Bertuol DA, Chiavone-Filho O and Nascimento CAO. Synthesis of porous zinc aluminate spinel (ZnAlO) by metal-chitosan complexation method. 24Journal of Alloys and Compounds. 2014; 588:305-309. http://dx.doi.org/10.1016/j.jallcom.2013.11.078.
http://dx.doi.org/10.1016/j.jallcom.2013...
, copper and cobalt aluminates have not yet been prepared by this route.

Hence, in the present study, copper and cobalt aluminates were prepared by the route using chitosan as template. The spinel oxides were prepared at two different temperatures, and their physical properties were determined. Both oxides were evaluated as supports for inulinase immobilization.

2 Experimental

2.1 Synthesis of oxides

Synthesis procedure of copper and cobalt aluminates was based in a previous work6262 Stringhini FM, Foletto EL, Sallet D, Bertuol DA, Chiavone-Filho O and Nascimento CAO. Synthesis of porous zinc aluminate spinel (ZnAlO) by metal-chitosan complexation method. 24Journal of Alloys and Compounds. 2014; 588:305-309. http://dx.doi.org/10.1016/j.jallcom.2013.11.078.
http://dx.doi.org/10.1016/j.jallcom.2013...
, however ultrasonic irradiation was here employed in order to aid the mixing process. CuAl2O4 and CoAl2O4 powders were prepared from aluminum nitrate (Al(NO3)3.9H2O), cobalt chloride (CoCl2.6H2O), copper nitrate (Cu(NO3)2.3H2O) and commercial chitosan (C6H11O4N)n (Purifama, Brazil). All the chemicals (with analytical grade) were used as received. Stoichiometric amounts of metal nitrates (molar ratio Cu:Al = 1:2 and Co:Al = 1:2) were used for preparing CuAl2O4 and CoAl2O4powders. For preparing the copper aluminate (CuAl2O4), aqueous solutions of aluminum nitrate (15 g in 30 mL distilled water) and copper nitrate (4.82 g in 8 mL distilled water) were added into an acetic acid aqueous solution (5% v/v) (80 mL) containing 2.5 g of chitosan previously dissolved, under magnetic stirring. The mixture was ultrasonicated at 30 °C for 30 min in an ultrasonic bath (Unique Inc., model USC 1800A, 35 kHz Brazil). After that, the resulting solution was slowly added to an ammonia aqueous solution (50% v/v, 200 mL) under magnetic stirring. The formed precipitates were separated from the solution and further dried at ambient temperature for 48 h. Then, the solids were calcined in air at 650 °C and 900 °C for 4 h, using a conventional muffle-furnace. Cobalt aluminate powders were prepared by same procedure previously described, but the amounts used for the synthesis were 15 g of aluminum nitrate and 4.76 g of cobalt chloride.

2.2 Characterization techniques of oxides

The phase identification of the samples was carried out by XRD (Rigaku Miniflex 300 diffractometer) using Cu Kα radiation at 30 kV and 10 mA, with a step size (2θ) of 0.03° and a count time of 0.9 s per step. The average crystallite size of each sample was determined through the Scherrer equation6363 Cullity BD and Stock SR. Elements of X-ray diffraction. 3rd ed. New Jersey: Prentice-Hall; 2001. (silicon powder was used as a standard reference material): D = K.λ /( h1/2.cos θ), where D is the average crystallite size, K the Scherrer constant (0.9), λ the wavelength of incident X-rays (0.1541 nm), h1/2 the peak width at half height and θ corresponds to the peak position (2θ = 36.88°, lattice plane of {311} for CuAl2O4 and 36.74°, lattice plane of {311} for CoAl2O4). N2 adsorption-desorption isotherms measurements were carried out at 77 K using an ASAP 2020 apparatus. Before analysis the samples were degassed at 200 °C under vacuum. Silica-alumina pellets (Part No. 004-16821-00) were used as a reference material to test instrument performance.

2.3 Enzyme immobilization and activity essays

Adsorption experiments were carried out to investigate the inulinase immobilization from aqueous solution. Commercial inulinase was obtained from Aspergillus niger (fructozyme, exo-inulinase EC 3.2.1.80 and endo-inulinase EC 3.2.1.7) and it was purchased from Sigma-Aldrich (São Paulo, Brazil). The temperature was fixed at 30 °C and the inulinase adsorption was performed using a batch technique. Typically, 0.025 g of oxide was placed in glass flasks containing different inulinase concentrations in a sodium acetate buffer (pH 4.8) solution. The effects of enzyme concentration (0.5; 1.0 and 1.5% v/v) and adsorbent:adsorbate ratio (1:300-1:500) on the adsorption were evaluated. The solution was maintained under agitation at 150 rpm, and then an aliquot of the aqueous solution was collected after reaching the adsorption equilibrium time (90 min), and then filtered through the polyvinylidene difluoride (PVDF) membrane (0.22 μm) before analysis. For the enzyme activity essays, an aliquot of enzyme (0.5 mL) was incubated with sucrose solution (4.5 mL, 2% w/v) in sodium acetate buffer (0.1 M, pH 4.8) at 50 °C. Released reducing sugars were measured by the 3.5-dinitrosalicylic acid method6464 Miller GL. Use of dinitrosalisylic acid reagent for determination of reducing sugar. Analytical Chemistry. 1959; 31(3):426-428. http://dx.doi.org/10.1021/ac60147a030.
http://dx.doi.org/10.1021/ac60147a030...
. A separate blank was set up for each sample to correct the non-enzymatic release of sugars. One unit of inulinase activity was defined as the amount of enzyme necessary to hydrolyze 1 μmol of sucrose per minute under the mentioned conditions (sucrose as a substrate). The immobilization efficiency was expressed in terms of inulinase loading capacity (Qt : U g–1) through the Equation 1.

Q t = ( A 0 A t ) V m (1)

where Ao and At (U L–1) are the inulinase activities at t = 0 and time t, respectively; V (L) is the volume of solution, and m (g) is the mass of support.

All the immobilization experiments were carried out in duplicate and only the mean values were reported. The maximum deviation observed was about ± 6.0%.

3 Results and Discussion

3.1 Characterization of oxides

The XRD patterns of the copper and cobalt aluminates prepared at different temperatures are shown in Figure 1(profiles a and b, respectively). Copper aluminate samples showed diffraction peaks at 2θ values of 31.20°, 36.88°, 44.85°, 55.73°, 59.42° and 65.40° corresponding to the [220], [311], [400], [422], [511] and [440] diffraction planes, respectively. Cobalt aluminate samples showed diffraction peaks at 2θ values of 31.19°, 36.74°, 44.69, 55.49°, 59.19° and 65.4° corresponding to the [220], [311], [400], [422], [511] and [440] planes, respectively. These planes are associated with the spinel types CuAl2O4 and CoAl2O4 with cubic structures in agreement with the Joint Committee on Powder Diffraction Standards (JCPDS) cards no. 33-0448 and no. 44-0160, respectively. On the basis of the Scherrer equation, the crystallite size was calculated to be ca. 7.5 for both CuAl2O4 samples, and ca. 6.0 and 8.0 nm for the CoAl2O4 samples prepared at 650 and 900 °C, respectively.

Figure 1
XRD patterns of (a) copper and (b) cobalt aluminates prepared at 650 and 900 °C. Inset at figure (a): CuAl2O4 reference according to JCPDS card no. 33-0448, and inset at figure (b): CoAl2O4 reference according to JCPDS card no. 44-0160.

Figure 2 shows the adsorption-desorption isotherms of N2 of cobalt and copper oxides prepared at 650 and 900 °C. All samples present type-IV isotherms (Figure 2a), in accordance with the International Union of Pure and Applied Chemistry (IUPAC) classification6565 Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 1982; 54(11):2201-2218. http://dx.doi.org/10.1351/pac198254112201.
http://dx.doi.org/10.1351/pac19825411220...
. This adsorption behavior is characteristics of mesoporous structure. The desorption branches present H1-like hysteresis loops at high relative pressures, indicative of the presence of mesoporosity. The corresponding pore size distribution curves (Figure 2b) were measured from the adsorption branches according to the Barrett–Joyner–Halenda (BJH) method. All samples display a similar unimodal distribution, with peaks centered in the mesoporous region (between 20 and 500 Å). These features are of great importance for immobilization purposes because it allows for a greater accessibility of enzymes molecules to the support. Surface physical parameters of all samples are shown in Table 1. It can be observed that specific surface area decreases with increasing calcination temperature. Thus samples prepared at 650 °C present higher surface area. This can occur due to sintering of material when it is treated at higher temperatures, resulting in reducing the void spaces and consequently, its surface area6666 Fuertes AB, Alvarez D, Rubiera F, Pis JJ, Marbán G and Palacos JM. Surface area and pore size changes during sintering of calcium oxide particles. Chemical Engineering Communications. 1991; 109(1):73-88. http://dx.doi.org/10.1080/00986449108910974.
http://dx.doi.org/10.1080/00986449108910...
.

Figure 2
(a) N2 adsorption-desoption isotherms and (b) Barret-Joyner-Halenda (BJH) pore size distributions plots of different samples.
Table 1
Surface physical characteristics of oxide samples prepared at different conditions.

For comparison purposes, surface area values of CuAl2O4 and CoAl2O4 powders found in literature are shown in Table 2. From Table 2, it can be seen that each method results in materials with different surface areas. Therefore, the preparation route strongly affects their physical properties. The results revealed that the route presented in this work generates materials with a high surface area. So preparation of single phase spinel with porous structure and high surface area makes this method technically easier, simpler and low cost because it does not need sophisticated procedures and requires inexpensive precursors.

Table 2
Comparing the surface area values of different synthesis methods found in the literature.

As cobalt- and copper-based oxides are colored materials, so this detail was evidenced from visual examination (Figure 3), whose images were obtained by a commercial digital camera (Nikon Coolpix). The powders were compacted on a glass sample holder. These results aimed provide additional information regarding the physical characteristics of produced materials, i.e., their intrinsic color. The samples containing cobalt exhibit a bright blue color whereas samples containing copper are greenish/ yellowish. Cobalt aluminate has been used as blue ceramic pigment1414 Gaudon M, Robertson LC, Lataste E, Duttine M, Ménétrier M and Demourgues A. Cobalt and nickel aluminate spinels: blue and cyan pigments. Ceramics International. 2014; 40(4):5201-5207. http://dx.doi.org/10.1016/j.ceramint.2013.10.081.
http://dx.doi.org/10.1016/j.ceramint.201...
,1515 Torkian L and Daghighi M. Effects of β-alanine on morphology and optical properties of CoAlO nanopowders as a blue pigment. 24Advanced Powder Technology. 2014; 25(2):739-744. http://dx.doi.org/10.1016/j.apt.2013.11.003.
http://dx.doi.org/10.1016/j.apt.2013.11....
, whereas copper-based oxides as green/yellow/turquoise pigments7979 Almeida RN, Santos SF, Sampaio JA, Luz AB, Ogasawara T and Andrade MC. Synthesis of ceramic pigments by chemical precipitation. Cerâmica. 2007; 53(325):57-61. http://dx.doi.org/10.1590/S0366-69132007000100008.
http://dx.doi.org/10.1590/S0366-69132007...

80 Dohnalová Ž, Šulcová P and Trojan M. Colour possibilities of the CuAl2-xLnxO4 pigments. Materia£y Ceramiczne/Ceramic Materials. 2008; 60(4):139-142. Available from: <http://www.ptcer.pl/mccm/en/article-details/60/4/18>. Access in: 10/07/2015.
http://www.ptcer.pl/mccm/en/article-deta...
-8181 Marques CH, Mesquita A, Araújo VD and Bernardi MIB. Influence of the pH on AlO:CuO. Pigments prepared by a polymeric precursor method. 23Materials Research. 2013; 16(1):100-104. http://dx.doi.org/10.1590/S1516-14392012005000150.
http://dx.doi.org/10.1590/S1516-14392012...
.

Figure 3
Images of (a) CoAl2O4 and (b) CuAl2O4 samples obtained at different temperatures.

3.2 Enzyme immobilization

The enzyme immobilization assays were performed using only the copper aluminate and cobalt aluminate samples at 650 oC, because in this temperature was obtained the highest surface area (see Table 1). Table 3 shows the results for inulinase loading capacity using copper and cobalt aluminates. Copper aluminate sample presented a loading capacity of 8,510 U g–1using an inulinase concentration of 0.5% (v/v) and 1:500 of adsorbent:adsorbate ratio, whereas cobalt aluminate sample presented similar loading capacity (8,343 U g–1) under the same adsorbent:adsorbate ratio (1:500), but using an inulinase concentration of 1.5% (v/v). The results showed that the cobalt aluminate presents more capacity for inulinase adsorption, which could be explained by the surface area value, being higher when compared to the cupper aluminate. Table 4 shows the inulinase loading capacity of different supports found in literature. According to the results founded it is possible to observe that both aluminates presented a satisfactory inulinase loading capacity. This result could be explained by the high surface area values of both samples prepared in this work.

Table 3
Inulinase loading capacity (Qt) of CuAl2O4 and CoAl2O4samples.
Table 4
Inulinase loading capacity (Qt) of different supports found in literature.

4 Conclusions

Copper and cobalt aluminates were successfully synthesized using chitosan as template. The powders produced presented high surface area and mesoporous structure. These features are of great importance for immobilization purposes because it allows a greater accessibility of enzyme molecules to the support. Both aluminates presented a satisfactory loading capacity for inulinase immobilization. Therefore, these results revealed that copper and cobalt aluminates can be used as alternative supports for enzymes immobilization.

Acknowledgements

The authors gratefully acknowledge the financial support of the Brazilian research funding institutions CNPq and CAPES.

References

  • 1
    Vijaya JJ, Kennedy LJ, Sekaran G, Bayhan M and William MA. Preparation and VOC gas sensing properties of Sr(II)-added copper aluminate spinel composites. Sensors and Actuators. B, Chemical. 2008; 134(2):604-612. http://dx.doi.org/10.1016/j.snb.2008.06.012.
    » http://dx.doi.org/10.1016/j.snb.2008.06.012
  • 2
    Kumar RT, Suresh P, Selvam NCS, Kennedy LJ and Vijaya JJ. Comparative study of nano copper aluminate spinel prepared by sol–gel and modified sol–gel techniques: structural, electrical, optical and catalytic studies. Journal of Alloys and Compounds. 2012; 522(5):39-45. http://dx.doi.org/10.1016/j.jallcom.2012.01.064.
    » http://dx.doi.org/10.1016/j.jallcom.2012.01.064
  • 3
    Ragupathi C, Vijaya JJ, Kennedy LJ and Bououdina M. Nanostructured copper aluminate spinels: synthesis, structural, optical, magnetic, and catalytic properties. Materials Science in Semiconductor Processing. 2014; 24:46-156. http://dx.doi.org/10.1016/j.mssp.2014.03.026.
    » http://dx.doi.org/10.1016/j.mssp.2014.03.026
  • 4
    Huang YH, Wang SF, Tsai AP and Kameoka S. Reduction behavior sand catalytic properties form ethanol steam reforming of Cu-based spinel compounds CuXO (X = Fe, Mn, Al, La). 24Ceramics International. 2014; 40(3):4541-4551. http://dx.doi.org/10.1016/j.ceramint.2013.08.130.
    » http://dx.doi.org/10.1016/j.ceramint.2013.08.130
  • 5
    Kwak BK, Park DS, Yun YS and Yi J. Preparation and characterization of nanocrystalline CuAlO. 24 spinel catalysts by sol–gel method for the hydrogenolysis of glycerolCatalysis Communications. 2012; 24:90-95. http://dx.doi.org/10.1016/j.catcom.2012.03.029.
    » http://dx.doi.org/10.1016/j.catcom.2012.03.029
  • 6
    Yanagiya S, Van Nong N, Xu J and Pryds N. The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate. Materials (Basel). 2010; 3(1):318-328. http://dx.doi.org/10.3390/ma3010318.
    » http://dx.doi.org/10.3390/ma3010318
  • 7
    Yanyan J, Jinggang L, Xiaotao S, Guiling N, Chengyu W and Xiumei G. CuAl2O powder synthesis by sol-gel method and its photodegradation property under visible light irradiation. 4Journal of Sol-Gel Science and Technology. 2007; 42(1):41-45. http://dx.doi.org/10.1007/s10971-006-1525-3.
    » http://dx.doi.org/10.1007/s10971-006-1525-3
  • 8
    Ding D, Long M, Cai W, Wu Y, Wu D and Chen C. In-situ synthesis of photocatalytic CuAl2O–Cu hybrid nanorod arrays. 4Chemical Communications. 2009; 24(24):3588-3590. http://dx.doi.org/10.1039/b903865e.
    » http://dx.doi.org/10.1039/b903865e
  • 9
    Lv W, Liu B, Qiu Q, Wang F, Luo Z, Zhang P, et al. Synthesis, characterization and photocatalytic properties of spinel CuAlO nanoparticles by a sonochemical method. 24Journal of Alloys and Compounds. 2009; 479(1-2):480-483. http://dx.doi.org/10.1016/j.jallcom.2008.12.111.
    » http://dx.doi.org/10.1016/j.jallcom.2008.12.111
  • 10
    Gherbi R, Nasrallah N, Amrane A, Maachi R and Trari M. Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl2O/TiO. 42Journal of Hazardous Materials. 2011; 186(2-3):1124-1130. http://dx.doi.org/10.1016/j.jhazmat.2010.11.105.
    » http://dx.doi.org/10.1016/j.jhazmat.2010.11.105
  • 11
    Ding D, Cai W, Long M, Wu H and Wu Y. Optical, structural and thermal characteristics of Cu–CuAl2O hybrids deposited in anodic aluminum oxide as selective solar absorber. 4Solar Energy Materials and Solar Cells. 2010; 94(10):1578-1581. http://dx.doi.org/10.1016/j.solmat.2010.04.075.
    » http://dx.doi.org/10.1016/j.solmat.2010.04.075
  • 12
    Arjmand M, Azad AM, Leion H, Mattisson T and Lyngfelt A. Evaluation of CuAl2O as an oxygen carrier in chemical-looping combustion. 4Industrial & Engineering Chemistry Research. 2012; 51(43):13924-13934. http://dx.doi.org/10.1021/ie300427w.
    » http://dx.doi.org/10.1021/ie300427w
  • 13
    Leu LC, Norton DP, Jellison GE Jr, Selvamanickam V and Xiong X. Optical and dielectric properties of CuAlO. 24 films synthesized by solid-phase epitaxyThin Solid Films. 2007; 515(17):6938-6942. http://dx.doi.org/10.1016/j.tsf.2007.02.012.
    » http://dx.doi.org/10.1016/j.tsf.2007.02.012
  • 14
    Gaudon M, Robertson LC, Lataste E, Duttine M, Ménétrier M and Demourgues A. Cobalt and nickel aluminate spinels: blue and cyan pigments. Ceramics International. 2014; 40(4):5201-5207. http://dx.doi.org/10.1016/j.ceramint.2013.10.081.
    » http://dx.doi.org/10.1016/j.ceramint.2013.10.081
  • 15
    Torkian L and Daghighi M. Effects of β-alanine on morphology and optical properties of CoAlO nanopowders as a blue pigment. 24Advanced Powder Technology. 2014; 25(2):739-744. http://dx.doi.org/10.1016/j.apt.2013.11.003.
    » http://dx.doi.org/10.1016/j.apt.2013.11.003
  • 16
    Chandradass J, Balasubramanian M and Kim KH. Size effect on the magnetic property of CoAl2O4 nanopowders prepared by reverse micelle processing. Journal of Alloys and Compounds. 2010; 506(1):395-399. http://dx.doi.org/10.1016/j.jallcom.2010.07.014.
    » http://dx.doi.org/10.1016/j.jallcom.2010.07.014
  • 17
    Duan X, Pan M, Yu F and Yuan D. Synthesis, structure and optical properties of CoAlO spinel nanocrystals. 24Journal of Alloys and Compounds. 2011; 509(3):1079-1083. http://dx.doi.org/10.1016/j.jallcom.2010.09.199.
    » http://dx.doi.org/10.1016/j.jallcom.2010.09.199
  • 18
    Zawadzki M, Walerczyk W, López-Suárez FE, Illán-Gómez MJ and Bueno-López A. CoAlO. 24 spinel catalyst for soot combustion with NOx/O2Catalysis Communications. 2011; 12(13):1238-1241. http://dx.doi.org/10.1016/j.catcom.2011.04.021.
    » http://dx.doi.org/10.1016/j.catcom.2011.04.021
  • 19
    Thormählen P, Fridell E, Cruise N, Skoglundh M and Palmqvist A. The influence of CO2, C3H, NO, H, HO or SO. 6222 on the low-temperature oxidation of CO on a cobalt-aluminate spinel catalyst (Co1.66Al1.34O4)Applied Catalysis B: Environmental. 2001; 31(1):1-12. http://dx.doi.org/10.1016/S0926-3373(00)00267-8.
    » http://dx.doi.org/10.1016/S0926-3373(00)00267-8
  • 20
    Rojanapipatkul S and Jongsomjit B. Synthesis of cobalt on cobalt-aluminate via solvothermal method and its catalytic properties for carbon monoxide, hydrogenation. Catalysis Communications. 2008; 10(2):232-236. http://dx.doi.org/10.1016/j.catcom.2008.08.026.
    » http://dx.doi.org/10.1016/j.catcom.2008.08.026
  • 21
    Mo L, Fei J, Huang C and Zheng X. Reforming of methane with oxygen and carbon dioxide to produce syngas over a novel Pt/CoAl2O/AlO. 423 catalystJournal of Molecular Catalysis A Chemical. 2003; 193(1-2):177-184. http://dx.doi.org/10.1016/S1381-1169(02)00453-3.
    » http://dx.doi.org/10.1016/S1381-1169(02)00453-3
  • 22
    Michel CR. CO and CO2 gas sensing properties of mesoporous CoAl2O4. Sensors and Actuators. B, Chemical. 2010; 147(2):635-641. http://dx.doi.org/10.1016/j.snb.2010.04.013.
    » http://dx.doi.org/10.1016/j.snb.2010.04.013
  • 23
    Vijaya JJ, Kennedy LJ, Sekaran G, Jeyaraj B and Nagaraja KS. Effect of Sr addition on the humidity sensing properties of CoAl2O composites. 4Sensors and Actuators. B, Chemical. 2007; 123(1):211-217. http://dx.doi.org/10.1016/j.snb.2006.08.011.
    » http://dx.doi.org/10.1016/j.snb.2006.08.011
  • 24
    Vijaya JJ, Kennedy LJ, Sekaran G, Meenakshisundaram A, Kumar RT, Amalthi P, et al. Alcohol sensing properties of sol–gel prepared Sr(II)-added cobalt aluminate spinel composites. Sensors and Actuators. B, Chemical. 2008; 129(2):741-749. http://dx.doi.org/10.1016/j.snb.2007.09.031.
    » http://dx.doi.org/10.1016/j.snb.2007.09.031
  • 25
    Daoud FB, Kaddour S and Sadoun T. Adsorption of cellulose Aspergillus niger on a commercial activated carbon: kinetic and equilibrium studies. Colloids and Surfaces. B, Biointerfaces. 2010; 75(1):93-99. http://dx.doi.org/10.1016/j.colsurfb.2009.08.019.
    » http://dx.doi.org/10.1016/j.colsurfb.2009.08.019
  • 26
    Coghetto CC, Scherer RP, Silva MF, Golunski S, Pergher SBC, Oliveira D, et al. Natural montmorillonite as support for the immobilization of inulinase from NRRL Y-7571. Kluyveromyces marxianusBiocatalysis and Agricultural Biotechnology. 2012; 1(4):284-289. http://dx.doi.org/10.1016/j.bcab.2012.06.005.
    » http://dx.doi.org/10.1016/j.bcab.2012.06.005
  • 27
    Danial EN, Elnashar MMM and Awad GEA. Immobilized inulinase on grafted alginate beads prepared by the one-step and the two-steps methods. Industrial & Engineering Chemistry Research. 2010; 49(7):3120-3125. http://dx.doi.org/10.1021/ie100011z.
    » http://dx.doi.org/10.1021/ie100011z
  • 28
    Karimi M, Chaudhury I, Jianjun C, Safari M, Sadeghi R, Habibi-Rezaei M, et al. Immobilization of endo-inulinase on non-porous amino functionalized silica nanoparticles. Journal of Molecular Catalysis. B, Enzymatic. 2014; 104:48-55. http://dx.doi.org/10.1016/j.molcatb.2014.01.025.
    » http://dx.doi.org/10.1016/j.molcatb.2014.01.025
  • 29
    Nguyen QD, Rezessy-Szabó JM, Czukor B and Hoschke Á. Continuous production of oligofructose syrup from Jerusalem artichoke juice by immobilized endo-inulinase. Process Biochemistry. 2011; 46(1):298-303. http://dx.doi.org/10.1016/j.procbio.2010.08.028.
    » http://dx.doi.org/10.1016/j.procbio.2010.08.028
  • 30
    Missau J, Scheid AJ, Foletto EL, Jahn SL, Mazutti MA and Kuhn RC. Immobilization of commercial inulinase on alginate–chitosan beads. Sustainable Chemical Processes. 2014; 2(1):13. http://dx.doi.org/10.1186/2043-7129-2-13.
    » http://dx.doi.org/10.1186/2043-7129-2-13
  • 31
    Altunbaş C, Uygun M, Uygun DA, Akgöl S and Denizli A. Immobilization of inulinase on concanavalin A-attached super macroporous cryogel for production of high-fructose syrup. Applied Biochemistry and Biotechnology. 2013; 170(8):1909-1921. http://dx.doi.org/10.1007/s12010-013-0322-z.
    » http://dx.doi.org/10.1007/s12010-013-0322-z
  • 32
    Garlet TB, Weber CT, Klaic R, Foletto EL, Jahn SL, Mazutti MA, et al. Carbon nanotubes as supports for inulinase immobilization. Molecules (Basel, Switzerland). 2014; 19(9):14615-14624. http://dx.doi.org/10.3390/molecules190914615.
    » http://dx.doi.org/10.3390/molecules190914615
  • 33
    Fernandes P, Marques MPC, Carvalho F and Cabral JMS. A simple method for biocatalyst immobilization using PVA-based hydrogel particles. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire). 2009; 84(4):561-564. http://dx.doi.org/10.1002/jctb.2080.
    » http://dx.doi.org/10.1002/jctb.2080
  • 34
    Chandradass J and Kim KH. Synthesis and characterization of CuAlO nanoparticles via a reverse microemulsion method. 24Journal of Ceramic Processing Research. 2010; 11(2):150-153.
  • 35
    Lv W, Luo Z, Yang H, Liu B, Weng W and Liu J. Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders. Ultrasonics Sonochemistry. 2010; 17(2):344-351. http://dx.doi.org/10.1016/j.ultsonch.2009.06.006.
    » http://dx.doi.org/10.1016/j.ultsonch.2009.06.006
  • 36
    Fenner LA, Wills AS, Bramwell ST, Dahlberg M and Schiffer P. Zero-point entropy of the spinel spin glasses CuGaO. 24 and CuAl2O4Journal of Physics: Conference Series. 2009; 145:012029. http://dx.doi.org/10.1088/1742-6596/145/1/012029.
    » http://dx.doi.org/10.1088/1742-6596/145/1/012029
  • 37
    Bayal N and Jeevanandam P. Synthesis of metal aluminate nanoparticles by sol–gel method and studies on their reactivity. Journal of Alloys and Compounds. 2012; 516(5):27-32. http://dx.doi.org/10.1016/j.jallcom.2011.11.080.
    » http://dx.doi.org/10.1016/j.jallcom.2011.11.080
  • 38
    Salavati-Niasari M, Davar F and Farhadi M. Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol–gel method. Journal of Sol-Gel Science and Technology. 2009; 51(1):48-52. http://dx.doi.org/10.1007/s10971-009-1940-3.
    » http://dx.doi.org/10.1007/s10971-009-1940-3
  • 39
    Yu RS and Yin HH. Structural and optoelectronic properties of p-type semiconductor CuAlO thin films. 2Thin Solid Films. 2012; 526:103-108. http://dx.doi.org/10.1016/j.tsf.2012.11.033.
    » http://dx.doi.org/10.1016/j.tsf.2012.11.033
  • 40
    Jarman RH, Bafia J, Gebreslasse T, Ingram BJ and Carter JD. Synthesis of the p-type semiconducting ternary oxide CuAlO using the Pechini method. 2Materials Research Bulletin. 2013; 48(10):3916-3918. http://dx.doi.org/10.1016/j.materresbull.2013.06.003.
    » http://dx.doi.org/10.1016/j.materresbull.2013.06.003
  • 41
    Tomar N, Ghanti E, Bhagi AK and Nagarajan R. Studies on the hydrolysis of {Cu[Al(OPri)4]}, a single source precursor for CuAlO. 224 spinelJournal of Non-Crystalline Solids. 2009; 355(52-54):2657-2662. http://dx.doi.org/10.1016/j.jnoncrysol.2009.08.026.
    » http://dx.doi.org/10.1016/j.jnoncrysol.2009.08.026
  • 42
    Chen Z, Shi E, Li W, Zheng Y and Zhong W. Hydrothermal synthesis and optical property of nano-sized CoAl2O pigment. 4Materials Letters. 2002; 55(5):281-284. http://dx.doi.org/10.1016/S0167-577X(02)00378-6.
    » http://dx.doi.org/10.1016/S0167-577X(02)00378-6
  • 43
    Lu J, Minami KMS, Takami S and Adschiri T. Rapid and continuous synthesis of cobalt aluminate nanoparticles under subcritical hydrothermal conditions with in-situ surface modification. Chemical Engineering Science. 2013; 85:50-54. http://dx.doi.org/10.1016/j.ces.2012.01.061.
    » http://dx.doi.org/10.1016/j.ces.2012.01.061
  • 44
    Ragupathi C, Vijaya JJ, Kennedy LJ and Bououdina M. Combustion synthesis, structure, magnetic and optical properties of cobalt aluminate spinel nanocrystals. Ceramics International. 2014; 40(8):13067-13074. http://dx.doi.org/10.1016/j.ceramint.2014.05.003.
    » http://dx.doi.org/10.1016/j.ceramint.2014.05.003
  • 45
    Lv W, Qiu Q, Wang F, Wei S, Liu B and Luo Z. Sonochemical synthesis of cobalt aluminate nanoparticles under various preparation parameters. Ultrasonics Sonochemistry. 2010; 17(5):793-801. http://dx.doi.org/10.1016/j.ultsonch.2010.01.018.
    » http://dx.doi.org/10.1016/j.ultsonch.2010.01.018
  • 46
    Wang C, Liu S, Liu L and Bai X. Synthesis of cobalt–aluminate spinels via glycine chelated precursors. Materials Chemistry and Physics. 2006; 96(2-3):361-370. http://dx.doi.org/10.1016/j.matchemphys.2005.07.066.
    » http://dx.doi.org/10.1016/j.matchemphys.2005.07.066
  • 47
    Jafari M and Hassanzadeh-Tabrizi SA. Preparation of CoAl2O. 4 nanoblue pigment viapolyacrylamide gel methodPowder Technology. 2014; 266:236-239. http://dx.doi.org/10.1016/j.powtec.2014.06.018.
    » http://dx.doi.org/10.1016/j.powtec.2014.06.018
  • 48
    Ouahdi N, Guillemet S, Durand B, Ouatib RE, Rakho LE, Moussa R, et al. Synthesis of CoAl2O4 by double decomposition reaction between LiAlO and molten KCoCl. 23Journal of the European Ceramic Society. 2008; 28(10):1987-1994. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.12.035.
    » http://dx.doi.org/10.1016/j.jeurceramsoc.2007.12.035
  • 49
    Li W, Li J and Guo J. Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion. Journal of the European Ceramic Society. 2003; 23(13):2289-2295. http://dx.doi.org/10.1016/S0955-2219(03)00081-5.
    » http://dx.doi.org/10.1016/S0955-2219(03)00081-5
  • 50
    Mindru I, Marinescu G, Gingasu D, Patron L, Ghica C and Giurginca M. Blue CoAl2O spinel via complexation method. 4Materials Chemistry and Physics. 2010; 122(2-3):491-497. http://dx.doi.org/10.1016/j.matchemphys.2010.03.032.
    » http://dx.doi.org/10.1016/j.matchemphys.2010.03.032
  • 51
    Tsai WC, Liou YH and Liou YC. Microwave dielectric properties of MgAl2O4–CoAlO spinel compounds prepared by reaction-sintering process. 24Materials Science and Engineering B. 2012; 177(13):1133-1137. http://dx.doi.org/10.1016/j.mseb.2012.05.023.
    » http://dx.doi.org/10.1016/j.mseb.2012.05.023
  • 52
    Gama L, Ribeiro MA, Barros BS, Kiminami RHA, Weber IT and Costa ACFM. Synthesis and characterization of the NiAlO4, CoAlO and ZnAl. 2242O4 spinels by the polymeric precursors methodJournal of Alloys and Compounds. 2009; 483(1):453-455. http://dx.doi.org/10.1016/j.jallcom.2008.08.111.
    » http://dx.doi.org/10.1016/j.jallcom.2008.08.111
  • 53
    Hu G, Deng X, Cao Y and Peng Z. Synthesis of spherical CoAlO pigment particles with high reflectivity by polymeric-aerosol pyrolysis. 24Rare Metals. 2007; 26(3):236-241. http://dx.doi.org/10.1016/S1001-0521(07)60208-3.
    » http://dx.doi.org/10.1016/S1001-0521(07)60208-3
  • 54
    Xi X, Nie Z, Ma L, Li L, Xu X and Zuo T. Synthesis and characterization of ultrafine CoAlO pigment by freeze–drying. 24Powder Technology. 2012; 226:114-116. http://dx.doi.org/10.1016/j.powtec.2012.04.029.
    » http://dx.doi.org/10.1016/j.powtec.2012.04.029
  • 55
    Yu F, Yang J, Ma J, Du J and Zhou Y. Preparation of nanosized CoAl2O powders by sol–gel and sol–gel-hydrothermal methods. 4Journal of Alloys and Compounds. 2009; 468(1-2):443-446. http://dx.doi.org/10.1016/j.jallcom.2008.01.018.
    » http://dx.doi.org/10.1016/j.jallcom.2008.01.018
  • 56
    Kim JH, Son BR, Yoon DH, Hwang KT, Noh HG, Cho WS, et al. Characterization of blue CoAlO nano-pigment synthesized by ultrasonic hydrothermal method. 24Ceramics International. 2012; 38(7):5707-5712. http://dx.doi.org/10.1016/j.ceramint.2012.04.015.
    » http://dx.doi.org/10.1016/j.ceramint.2012.04.015
  • 57
    Cho WS and Kakihana M. Crystallization of ceramic pigment CoAlO nanocrystals from Co–Al metal organic precursor. 24Journal of Alloys and Compounds. 1999; 287(1-2):87-90. http://dx.doi.org/10.1016/S0925-8388(99)00059-6.
    » http://dx.doi.org/10.1016/S0925-8388(99)00059-6
  • 58
    Carta G, Casarin M, El Habra NE, Natali M, Rossetto G, Sada C, et al. MOCVD deposition of CoAlO films. 24Electrochimica Acta. 2005; 50(23):4592-4599. http://dx.doi.org/10.1016/j.electacta.2004.10.094.
    » http://dx.doi.org/10.1016/j.electacta.2004.10.094
  • 59
    Rangappa D, Ohara S, Naka T, Kondo A, Ishii M and Adschiri T. Synthesis and organic modification of CoAl2O nanocrystals under supercritical water conditions. 4Journal of Materials Chemistry. 2007; 17(41):4426-4429. http://dx.doi.org/10.1039/b705760a.
    » http://dx.doi.org/10.1039/b705760a
  • 60
    Nuernberg GDB, Foletto EL, Probst LFD, Campos CEM, Carreño NLV and Moreira MA. A novel synthetic route for magnesium aluminate (MgAlO) particles using metal–chitosan complexation method. 24Chemical Engineering Journal. 2012; 193-194:211-214. http://dx.doi.org/10.1016/j.cej.2012.04.054.
    » http://dx.doi.org/10.1016/j.cej.2012.04.054
  • 61
    Nuernberg GB, Foletto EL, Probst LFD, Carreño NLV and Moreira MA. MgAlO. 24 spinel particles prepared by metal-chitosan complexation route and use as catalyst support for direct decomposition of methaneJournal of Molecular Catalysis A Chemical. 2013; 370:22-27. http://dx.doi.org/10.1016/j.molcata.2012.12.007.
    » http://dx.doi.org/10.1016/j.molcata.2012.12.007
  • 62
    Stringhini FM, Foletto EL, Sallet D, Bertuol DA, Chiavone-Filho O and Nascimento CAO. Synthesis of porous zinc aluminate spinel (ZnAlO) by metal-chitosan complexation method. 24Journal of Alloys and Compounds. 2014; 588:305-309. http://dx.doi.org/10.1016/j.jallcom.2013.11.078.
    » http://dx.doi.org/10.1016/j.jallcom.2013.11.078
  • 63
    Cullity BD and Stock SR. Elements of X-ray diffraction. 3rd ed. New Jersey: Prentice-Hall; 2001.
  • 64
    Miller GL. Use of dinitrosalisylic acid reagent for determination of reducing sugar. Analytical Chemistry. 1959; 31(3):426-428. http://dx.doi.org/10.1021/ac60147a030.
    » http://dx.doi.org/10.1021/ac60147a030
  • 65
    Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 1982; 54(11):2201-2218. http://dx.doi.org/10.1351/pac198254112201.
    » http://dx.doi.org/10.1351/pac198254112201
  • 66
    Fuertes AB, Alvarez D, Rubiera F, Pis JJ, Marbán G and Palacos JM. Surface area and pore size changes during sintering of calcium oxide particles. Chemical Engineering Communications. 1991; 109(1):73-88. http://dx.doi.org/10.1080/00986449108910974.
    » http://dx.doi.org/10.1080/00986449108910974
  • 67
    Salem S. Relationship between gel rheology and specific surface area of nano-sized CoAlO powder manufactured by autoignition technique. 24Materials Letters. 2015; 139(15):498-500. http://dx.doi.org/10.1016/j.matlet.2014.10.118.
    » http://dx.doi.org/10.1016/j.matlet.2014.10.118
  • 68
    Chemlal S, Larbot A, Persin M, Sarrazin J, Sghyar M and Rafiq M. Cobalt spinel CoAl2O via sol-gel process: elaboration and surface properties. 4Materials Research Bulletin. 2000; 35(14-15):2515-2523. http://dx.doi.org/10.1016/S0025-5408(00)00444-X.
    » http://dx.doi.org/10.1016/S0025-5408(00)00444-X
  • 69
    Ahmed IS. A simple route to synthesis and characterization of CoAlO nanocrystalline via combustion method using egg white (ovalbumine) as a new fuel. 24Materials Research Bulletin. 2011; 46(12):2548-2553. http://dx.doi.org/10.1016/j.materresbull.2011.08.005.
    » http://dx.doi.org/10.1016/j.materresbull.2011.08.005
  • 70
    Ragupathi C, Vijaya JJ, Narayanan S, Jesudoss SK and Kennedy LJ. Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by cobalt aluminate catalysis: a comparison of conventional and microwave methods. Ceramics International. 2014; 41(2):2069-2080. http://dx.doi.org/10.1016/j.ceramint.2014.10.002.
    » http://dx.doi.org/10.1016/j.ceramint.2014.10.002
  • 71
    Chokkaram S, Srinivasan R, Milburn DR and Davis BH. Conversion of 2-octanol over nickel-alumina, cobalt-alumina, and alumina catalysts. Journal of Molecular Catalysis A Chemical. 1997; 121(2-3):157-169. http://dx.doi.org/10.1016/S1381-1169(97)00018-6.
    » http://dx.doi.org/10.1016/S1381-1169(97)00018-6
  • 72
    Salem S, Jazayeri SH, Bondioli F, Allahverdi A, Shirvani M, and Ferrari AM. CoAl2O nano pigment obtained by combustion synthesis. 4International Journal of Applied Ceramic Technology. 2012; 9(5):968-978. http://dx.doi.org/10.1111/j.1744-7402.2011.02704.x.
    » http://dx.doi.org/10.1111/j.1744-7402.2011.02704.x
  • 73
    Lee GY, Ryu KH, Kim HG and Kim YY. The preparation of blue CoAl2O powders by the malonate method: the effect of the amount of malonic acid used, the formation pathway of CoAlO. 424crystallites and the characteristics of the prepared powdersBulletin of the Korean Chemical Society. 2009; 30(2):373-377. http://dx.doi.org/10.5012/bkcs.2009.30.2.373.
    » http://dx.doi.org/10.5012/bkcs.2009.30.2.373
  • 74
    Alejandre A, Medina F, Salagre P, Fabregat A and Sueiras JE. Characterization and activity of copper and nickel catalysts for the oxidation of phenol aqueous solutions. Applied Catalysis B: Environmental. 1998; 18(3-4):307-315. http://dx.doi.org/10.1016/S0926-3373(98)00050-2.
    » http://dx.doi.org/10.1016/S0926-3373(98)00050-2
  • 75
    Ragupathi JJ, Vijaya JJ, Thinesh Kumar R and Kennedy LJ. Selective liquid phase oxidation of benzyl alcohol catalyzed by copper aluminate nanostructures. Journal of Molecular Structure. 2015; 1079:182-188. http://dx.doi.org/10.1016/j.molstruc.2014.09.045.
    » http://dx.doi.org/10.1016/j.molstruc.2014.09.045
  • 76
    Edrisi M, Tajik S and Soleymani M. Synthesis of CuAl2O4 nanoparticles by mixed chelates thermolysis and homogeneous precipitation using solubility difference reactions; Taguchi optimization and photocatalytic application. Journal of Materials Science Materials in Electronics. 2013; 24(10):3914-3920. http://dx.doi.org/10.1007/s10854-013-1338-4.
    » http://dx.doi.org/10.1007/s10854-013-1338-4
  • 77
    Athar T. Soft chemical approach for the synthesis and characterization of aluminium copper oxide (CuAl2O) nanopowder. 4Advanced Materials Letters. 2015; 6(3):265-270.
  • 78
    Hu CY, Shih K and Leckie JO. Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge. Journal of Hazardous Materials. 2010; 181(1-3):399-404. http://dx.doi.org/10.1016/j.jhazmat.2010.05.024.
    » http://dx.doi.org/10.1016/j.jhazmat.2010.05.024
  • 79
    Almeida RN, Santos SF, Sampaio JA, Luz AB, Ogasawara T and Andrade MC. Synthesis of ceramic pigments by chemical precipitation. Cerâmica. 2007; 53(325):57-61. http://dx.doi.org/10.1590/S0366-69132007000100008.
    » http://dx.doi.org/10.1590/S0366-69132007000100008
  • 80
    Dohnalová Ž, Šulcová P and Trojan M. Colour possibilities of the CuAl2-xLnxO4 pigments. Materia£y Ceramiczne/Ceramic Materials. 2008; 60(4):139-142. Available from: <http://www.ptcer.pl/mccm/en/article-details/60/4/18>. Access in: 10/07/2015.
    » http://www.ptcer.pl/mccm/en/article-details/60/4/18
  • 81
    Marques CH, Mesquita A, Araújo VD and Bernardi MIB. Influence of the pH on AlO:CuO. Pigments prepared by a polymeric precursor method. 23Materials Research. 2013; 16(1):100-104. http://dx.doi.org/10.1590/S1516-14392012005000150.
    » http://dx.doi.org/10.1590/S1516-14392012005000150
  • 82
    Gaspari JW, Gomes LH and Tavares FCA. Imobilização da inulinase de Kluyveromyces marxianus para a hidrólise de extratos de Helianthus tuberosus L. Scientia Agricola. 1999; 56(4):1135-1140. http://dx.doi.org/10.1590/S0103-90161999000500015.
    » http://dx.doi.org/10.1590/S0103-90161999000500015
  • 83
    Kovaleva TA, Holyavka MG and Bogdanova SS. Inulinase immobilization on macroporous anion-exchange resins by different methods. Bulletin of Experimental Biology and Medicine. 2009; 148(1):39-41. http://dx.doi.org/10.1007/s10517-009-0623-y.
    » http://dx.doi.org/10.1007/s10517-009-0623-y
  • 84
    Karimi M, Habibi-Rezaei M, Safari M, Moosavi-Movahedi AA, Sayyah M, Sadeghi R, et al. Immobilization of endo-inulinase on poly-D-lysine coated CaCO3 micro-particles. Food Research International. 2014; 66:485-492. http://dx.doi.org/10.1016/j.foodres.2014.08.041.
    » http://dx.doi.org/10.1016/j.foodres.2014.08.041

Publication Dates

  • Publication in this collection
    Sep-Oct 2015

History

  • Received
    20 July 2015
  • Reviewed
    05 Sept 2015
ABM, ABC, ABPol UFSCar - Dep. de Engenharia de Materiais, Rod. Washington Luiz, km 235, 13565-905 - São Carlos - SP- Brasil. Tel (55 16) 3351-9487 - São Carlos - SP - Brazil
E-mail: pessan@ufscar.br