Acessibilidade / Reportar erro

Bycatch of Asteroidea from shrimp trawl fishery in the southwestern Atlantic Ocean - Brazil

Abstract

Shrimp trawling is considered a significant negative impact on the marine ecosystem, especially on the benthic community. Sea stars (Echinodermata: Asteroidea) are one of the most affected groups by unintentional catches. This study was performed at the Santana Archipelago, a Marine Protected Area in the northern region of Rio de Janeiro State, between 2008-2009. Sea stars accidentally caught by trawling were collected during open and closed season of the shrimp fisheries (Xiphopenaeus kroyeri) at depths of 5-60 m. A generalized linear zero-inflated model was applied to test for differences in capture between fishing seasons and depths. A total of 158 sea star specimens were captured. These specimens were identified as Asterina stellifera, Astropecten acutiradiatus, Astropecten brasiliensis, Astropecten cingulatus, Luidia alternata alternata, Luidia clathrata, Luidia ludwigi scotti, Luidia senegalensis. The sea stars A. brasiliensis and L. senegalensis are currently considered as vulnerable species in the Brazilian official list of threatened species. The higher capture of sea stars was shown in deepest areas, and there was no significant difference in the number of specimens between seasons. This is the first study about asteroids accidentally captured by shrimp trawling.

Keywords:
Benthos; Echinoderms; Fishing; Xiphopenaeus kroyeri

INTRODUCTION

Marine biodiversity is a component that enormously influences our social and economic development; however, it has been often threatened by impacts of different anthropogenic origins (Costanza, 1999Costanza, R. 1999. The ecological, economic, and social importance of the oceans. Ecological Economics, 31(2): 199-213. https://doi.org/10.1016/S0921-8009(99)00079-8.
https://doi.org/10.1016/S0921-8009(99)00...
; Tittensor et al., 2010Tittensor, D.P.; Mora, C.; Jetz, W.; Lotze, H.K.; Ricard, D.; Berghe, V.D. & Worm, B. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature, 466(7310): 1098-1101. https://doi.org/10.1038/nature09329.
https://doi.org/10.1038/nature09329...
). Among these impacts, pollution and commercial fishing are responsible for a huge loss of biodiversity across the seas (Halpern et al., 2008Halpern, B.S.; Walbridge, S.; Selkoe, K.A, Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F, Casey, K.S.; Ebert, C.; Fox, H.E.; Fujita, R.; Heinemann, D.; Lenihan, H.S.; Madin, E.M.P.; Perry, M.T.; Selig, E.R.; Spalding, M.; Steneck, R. & Watson, R. 2008. A global map of human impact on marine ecosystems. Science, 319(5865): 948-952. https://doi.org/10.1126/science.1149345.
https://doi.org/10.1126/science.1149345...
; Costello et al., 2010Costello, M.J.; Coll, M.; Danovaro, R.; Halpin, P.; Ojaveer, H. & Miloslavich, P. 2010. A census of marine biodiversity knowledge resources and future challenges. PloS One, 5: 1-15. https://doi.org/10.1371/journal.pone.0012110.
https://doi.org/10.1371/journal.pone.001...
). For instance, in addition to overfishing that endangers fish stocks and biodiversity (Murawski, 2000Murawski, S.A. 2000. Definitions of overfishing from an ecosystem perspective. ICES Journal of Marine Science, 57(3): 649-658. https://doi.org/10.1006/jmsc.2000.0738.
https://doi.org/10.1006/jmsc.2000.0738...
; Coll et al., 2016Coll, M.; Shannon, L.J.; Kleisner, K.M.; Juan-Jordá, M.J.; Bundy, A.; Akoglu, A.G.; Banaru, D.; Boldt, J.L.; Borges, M.F.; Cook, A.; Diallo, I.; Fu, C.; Fox, C.; Gascuel, D.; Gurney, L.J.; Hattab, T.; Heymans, J.J.; Jouffre, D.; Knight, B.R.; Kucukavsar, S.; Large, S.I.; Lynam, C.; Machias, A.; Marshall, K.N.; Masski, H.; Ojaveer, H.; Piroddi, C.; Tam, J.; Thiao, D.; Thiaw, M.; Torres, M.A.; Travers-trolet, M.; Tsagarakis, K.; Tuck, I.; van der Meeren, G.I.; Yemane, D.; Zador, S.G. & Shin, Y.J. 2016. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecological Indicators, 60: 947-962. https://doi.org/10.1016/j.ecolind.2015.08.048.
https://doi.org/10.1016/j.ecolind.2015.0...
), bycatch is one of the most destructive practices that come from commercial fishing, as it contributes to decrease the richness and abundance of marine species (Coll et al., 2016Coll, M.; Shannon, L.J.; Kleisner, K.M.; Juan-Jordá, M.J.; Bundy, A.; Akoglu, A.G.; Banaru, D.; Boldt, J.L.; Borges, M.F.; Cook, A.; Diallo, I.; Fu, C.; Fox, C.; Gascuel, D.; Gurney, L.J.; Hattab, T.; Heymans, J.J.; Jouffre, D.; Knight, B.R.; Kucukavsar, S.; Large, S.I.; Lynam, C.; Machias, A.; Marshall, K.N.; Masski, H.; Ojaveer, H.; Piroddi, C.; Tam, J.; Thiao, D.; Thiaw, M.; Torres, M.A.; Travers-trolet, M.; Tsagarakis, K.; Tuck, I.; van der Meeren, G.I.; Yemane, D.; Zador, S.G. & Shin, Y.J. 2016. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecological Indicators, 60: 947-962. https://doi.org/10.1016/j.ecolind.2015.08.048.
https://doi.org/10.1016/j.ecolind.2015.0...
; Mendonça et al., 2019Mendonça, L.M.; Guimarães, C.R. & Lima, S.F. 2019. Mollusk bycatch in trawl fisheries targeting the Atlantic seabob shrimp Xiphopenaeus kroyeri on the coast of Sergipe, northeastern Brazil. Papéis Avulsos de Zoologia, 59(33): 1-12. https://doi.org/10.11606/1807-0205/2019.59.33.
https://doi.org/10.11606/1807-0205/2019....
).

Bycatch can be characterized as the set of captured species other than those target species (Clucas, 1997Clucas, I. 1997. A study of the options for utilization of bycatch and discards from marine capture fisheries. Rome, FAO. Available: Available: http://www.fao.org/3/W6602E/w6602E00.htm . Access: 25/01/2021.
http://www.fao.org/3/W6602E/w6602E00.htm...
). The most significant effect of shrimp trawling bycatch is the mortality of the benthic fauna that affects its species composition and abundance and, hence, the maintenance of coastal ecosystems (Dayton et al., 1995Dayton, P.K.; Thrush, S.F.; Agardy, M.T. & Hofman, R.J. 1995. Environmental effects of marine fishing. Aquatic Conservation: Marine and Freshwater Ecosystems, 5(3): 205-232. https://doi.org/10.1002/aqc.3270050305.
https://doi.org/10.1002/aqc.3270050305...
; Hall, 1996Hall, M.A. 1996. On bycatches. Reviews in Fish Biology and Fisheries, 6: 319-352. https://doi.org/10.1007/BF00122585.
https://doi.org/10.1007/BF00122585...
; Smith, 2001Smith, P.J. 2001. Managing Biodiversity: Invertebrate by-catch in seamount fisheries in the New Zealand Exclusive Economic Zone. New Zealand, World Fisheries Trust, IRRC/CRDI & UNEP. Available: Available: https://www.cbd.int/doc/nbsap/fisheries/Smith.pdf . Access: 25/05/2021.
https://www.cbd.int/doc/nbsap/fisheries/...
; Escolar et al., 2009Escolar, M.; Diez, M.; Hernández, D.; Marecos, A.; Campodónico, S. & Bremec, C. 2009. Invertebrate bycatch in Patagonian scallop fishing grounds: a study case with data obtained by the On Board Observers Program. Revista de Biologia Marina y Oceanografia, 44(2): 369-377. https://doi.org/10.4067/S0718-19572009000200010.
https://doi.org/10.4067/S0718-1957200900...
). The high bycatch mortality rate (Davies et al., 2009Davies, R.W.D.; Cripps, S.J.; Nickson, A. & Porter, G. 2009. Defining and estimating global marine fisheries bycatch. Marine Policy, 33(4): 661-672. https://doi.org/10.1016/j.marpol.2009.01.003.
https://doi.org/10.1016/j.marpol.2009.01...
; Eayrs, 2007Eayrs, S. 2007. A guide to bycatch reduction in tropical shrimp-trawl fisheries. Food and Agriculture Organization of the United Nations. Rome, FAO. Available: Available: http://www.fao.org/3/a1008e/a1008e.pdf . Access: 25/01/2021.
http://www.fao.org/3/a1008e/a1008e.pdf...
) and the death of invertebrates affect benthic communities’ structure by disturbing food chains and sedimentary structures (Jones, 1992Jones, J.B. 1992. Environmental impact of trawling on the seabed: A review. New Zealand Journal of Marine and Freshwater Research, 26: 59-67.; Alverson et al., 1994Alverson, D.L.; Freeberg, M.H.; Murawiski, S.A. & Pope, J.G. 1994. A global assessment of fisheries bycatch and discards. Rome, FAO. Available: Available: http://www.fao.org/3/T4890E/T4890E00.htm . Access: 25/01/2021.
http://www.fao.org/3/T4890E/T4890E00.htm...
). Many benthic invertebrates have been indicated as bioconstructors and bioturbators of the substrate involved in organic matter and nutrient cycle and, therefore, play an important role in ecosystem maintenance (Mermillod-Blondin et al., 2005Mermillod-Blondin, F.; François-Carcaillet, F. & Rosenberg, R. 2005. Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. Journal of Experimental Marine Biology and Ecology, 315: 187-209. https://doi.org/10.1016/j.jembe.2004.09.013.
https://doi.org/10.1016/j.jembe.2004.09....
; Soares-Gomes et al., 2009Soares-Gomes, A, Pitombo, F.B. & Paiva, P.C. 2009. Bentos de sedimentos não consolidados. In: Pereira, R.C. & Gomes, A.S. (Eds.). Biologia marinha. Rio de Janeiro, Interciência. p. 319-338.).

Benthic invertebrates, fishes, and turtles are usually captured as bycatch during trawling activities (Dayton et al., 1995Dayton, P.K.; Thrush, S.F.; Agardy, M.T. & Hofman, R.J. 1995. Environmental effects of marine fishing. Aquatic Conservation: Marine and Freshwater Ecosystems, 5(3): 205-232. https://doi.org/10.1002/aqc.3270050305.
https://doi.org/10.1002/aqc.3270050305...
; Hall, 1996Hall, M.A. 1996. On bycatches. Reviews in Fish Biology and Fisheries, 6: 319-352. https://doi.org/10.1007/BF00122585.
https://doi.org/10.1007/BF00122585...
; Hall et al., 2000Hall, M.A.; Alverson, D.L. & Metuzals, K.I. 2000. By-catch: Problems and Solutions. Marine Pollution Bulletin, 41(1-6): 204-219. https://doi.org/10.1016/S0025-326X(00)00111-9.
https://doi.org/10.1016/S0025-326X(00)00...
). Nevertheless, most available studies found in the literature focused mainly on commercial species, while bycatch of non-commercial invertebrates is usually neglected, such as mollusks, cnidarians, poriferans, and echinoderms (Kelleher, 2005Kelleher, K. 2005. Discards in the World’s Marine Fisheries: An Update. Rome, FAO. Available: Available: http://www.fao.org/3/a-y5936e.pdf . Access: 25/01/2021.
http://www.fao.org/3/a-y5936e.pdf...
).

The bottom trawl fishing has been indicated as the main modality responsible for the decrease of the echinoderm population density (Bergman & Hup, 1992Bergman, M.J.N. & Hup, M. 1992. Direct effects of beam trawling on macrofauna in a sandy sediment in the southern North Sea. ICES Journal of Marine Science, 49: 5-11. https://doi.org/10.1093/icesjms/49.1.5.
https://doi.org/10.1093/icesjms/49.1.5...
). Among echinoderms, sea stars are one of the most affected taxa since many of them inhabit sandy and/or muddy bottoms all over the world (Probert et al., 1997Probert, P.K.; Mcknight, D.G. & Grove, S.L. 1997. Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand. Aquatic Conservation: Marine and Freshwater Ecosystems, 7: 27-40. https://doi.org/10.1002/(SICI)1099-0755(199703)7:1<27::AID-AQC214>3.0.CO;2-9.
https://doi.org/10.1002/(SICI)1099-0755(...
; Bergmann et al., 2002Bergmann, M.; Wieczorek, S.K.; Moore, P.G. & Atkinson, R.J.A. 2002. Discard composition of the Nephrops fishery in the Clyde Sea area, Scotland. Fisheries Research, 57: 169-183. https://doi.org/10.1016/S0165-7836(01)00345-9.
https://doi.org/10.1016/S0165-7836(01)00...
; Blom et al., 2009Blom, W.; Webber, R. & Schultz, T. 2009. Invertebrate bycatch from bottom trawls in the New Zealand EEZ. Tuhinga, 20: 33-40. Available: Available: https://www.tepapa.govt.nz/sites/default/files/tuhinga.20.2009.pt4_.p33-40.blom_.pdf . Access: 18/06/2021.
https://www.tepapa.govt.nz/sites/default...
; Escolar et al., 2009Escolar, M.; Diez, M.; Hernández, D.; Marecos, A.; Campodónico, S. & Bremec, C. 2009. Invertebrate bycatch in Patagonian scallop fishing grounds: a study case with data obtained by the On Board Observers Program. Revista de Biologia Marina y Oceanografia, 44(2): 369-377. https://doi.org/10.4067/S0718-19572009000200010.
https://doi.org/10.4067/S0718-1957200900...
; Ventura et al., 2013Ventura, C.R.R.; Borges, M.; Campos, L.S.; Costa-Lotufo, L.V.; Freire, C.A.; Hadel, V.F.; Manso, C.L.C.; Silva, J.R.M.C.; Tavares, Y. & Tiago, C.G. 2013. Echinoderm from Brazil: historical research and the current state of biodiversity knowledge. In: Alvarado, J.J. & Sólis-Marin, F.A. (Eds.). Echinoderm Research and Diversity in Latin America. Heidelberg, Springer. p. 301-344.). Captured sea stars experience various physical injuries such as crushing and autotomy because of bottom trawling (Micael et al., 2009Micael, J.; Alves, M.J.; Costa, A.C. & Jones, M.B. 2009. Exploitation and conservation of echinoderms. In: Gibson, R.N.; Atkinson, R.J.A. & Gordon, J.D.M. (Eds.). Oceanography and Marine Biology: An Annual Review. Boca Raton, Taylor & Francis. p. 191-208.; Ventura et al., 2013Ventura, C.R.R.; Borges, M.; Campos, L.S.; Costa-Lotufo, L.V.; Freire, C.A.; Hadel, V.F.; Manso, C.L.C.; Silva, J.R.M.C.; Tavares, Y. & Tiago, C.G. 2013. Echinoderm from Brazil: historical research and the current state of biodiversity knowledge. In: Alvarado, J.J. & Sólis-Marin, F.A. (Eds.). Echinoderm Research and Diversity in Latin America. Heidelberg, Springer. p. 301-344.).

In Brazil, shrimp trawling causes a huge impact on the benthic community (e.g.,Graça-Lopes et al., 2002Graça-Lopes, R.; Tomás, A.R.G.; Tutui, S.L.S.; Severino-Rodrigues, E. & Puzzi, A. 2002. Fauna acompanhante da pesca camaroeira no litoral do Estado de São Paulo, Brasil. Boletim do Instituto de Pesca, 28(2): 173-188. Available: Available: https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/28_2_173-188/28_2_173-188 . Access: 25/01/2021.
https://www.pesca.sp.gov.br/boletim/inde...
; Branco et al., 2015Branco, J.O.; Freitas Júnior, F. & Christoffersen, M.L. 2015. Bycatch fauna of seabob shrimp trawl fisheries from Santa Catarina State, southern Brazil. Biota Neotropica, 15: 1-14. https://doi.org/10.1590/1676-06032015014314.
https://doi.org/10.1590/1676-06032015014...
; Costa et al., 2016Costa, R.C.; Carvalho-Batista, A.; Herrera, D.R.; Pantaleão, J.A.F.; Teodoro, S.S.A. & Davanso, T.M. 2016. Carcinofauna acompanhante da pesca do camarão-sete-barbas Xiphopenaeus kroyeri em Macaé, Rio de Janeiro, Sudeste Brasileiro. Boletim do Instituto de Pesca, 42(3): 611-624. Available: Available: https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1162 . Access: 18/06/2021.
https://www.pesca.sp.gov.br/boletim/inde...
; Mendonça et al., 2019Mendonça, L.M.; Guimarães, C.R. & Lima, S.F. 2019. Mollusk bycatch in trawl fisheries targeting the Atlantic seabob shrimp Xiphopenaeus kroyeri on the coast of Sergipe, northeastern Brazil. Papéis Avulsos de Zoologia, 59(33): 1-12. https://doi.org/10.11606/1807-0205/2019.59.33.
https://doi.org/10.11606/1807-0205/2019....
). Therefore, precautionary measures have been considered in certain government instances to minimize the impacts of bycatch from shrimp trawling. Currently, the main Brazilian regulation on shrimp fishing is related to its closed season (Normative Instruction IBAMA No. 189/2008). The closed season is a strategy in which there is a prohibition to fish for the target species during their period of reproduction and recruitment (Franco et al., 2009Franco, A.C.N.P.; Schwarz Junior, R.; Pierri, N. & Santos, G.C. 2009. Levantamento, sistematização e análise da legislação aplicada ao defeso da pesca de camarões para as regiões sudeste e sul do Brasil. Boletim do Instituto de Pesca, 35: 687-699.). The shrimp fishing closed season occurs annually from 1 March to 31 May in Brazil’s southeastern and southern marine regions. The closed season of commercial fishing aims at the conservation of shrimp resources only (Franco et al., 2009Franco, A.C.N.P.; Schwarz Junior, R.; Pierri, N. & Santos, G.C. 2009. Levantamento, sistematização e análise da legislação aplicada ao defeso da pesca de camarões para as regiões sudeste e sul do Brasil. Boletim do Instituto de Pesca, 35: 687-699.) and does not consider the biology of the bycatch species.

Xiphopenaeus kroyeri (Heller, 1862Heller, C. 1862. Beiträge zur näheren Kenntnis der Macrouren. Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften in Wien, 389-426, pls. I-II.), the seabob shrimp, is one of the most traded species off the Brazilian coast (D’Incao et al., 2002D’Incao, F.; Valentini, H. & Rodrigues, F.L. 2002. Avaliação da pesca de camarões nas regiões Sudeste e Sul do Brasil (1965-1999). Atlântica, 24(2): 103-116. Available: Available: https://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/artigos_cientificos/art_2002_camaroes_65_99.pdf . Access: 25/01/2021.
https://www.icmbio.gov.br/cepsul/images/...
; MPA, 2011Ministério da Pesca e Aquicultura (MPA). 2011. Boletim Estatístico da Pesca e Aquicultura. Available: Available: http://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/estatistica/est_2011_bol__bra.pdf . Access: 25/01/2021.
http://www.icmbio.gov.br/cepsul/images/s...
). Further, the very small mesh size used for fishing X. kroyeri are poorly selective because large proportions of X. kroyeri considered too small for sale are also caught (Silva et al., 2012Silva, C.N.S.; Dias, J.H.; Cattani, A.P. & Spach, H.L. 2012. Relative efficiency of square-meshcodends in an artisanal fishery in southern Brazil. Latin American Journal of Aquatic Research, 40: 124-133. https://doi.org/10.3856/vol40-issue1-fulltext-12.
https://doi.org/10.3856/vol40-issue1-ful...
). Some devices are currently used to increase selectivity during shrimp trawling, such as the bycatch reduction devices (BRDs) and the turtle excluder devices (TED) (Broadhurst et al., 2006Broadhurst, M.K.; Suuronen, P. & Hulme, A. 2006. Estimating collateral mortality from towed fishing gear. Fish and Fisheries, 7(3): 180-218. https://doi.org/10.1111/j.1467-2979.2006.00213.x.
https://doi.org/10.1111/j.1467-2979.2006...
; Eayrs, 2007Eayrs, S. 2007. A guide to bycatch reduction in tropical shrimp-trawl fisheries. Food and Agriculture Organization of the United Nations. Rome, FAO. Available: Available: http://www.fao.org/3/a1008e/a1008e.pdf . Access: 25/01/2021.
http://www.fao.org/3/a1008e/a1008e.pdf...
; Willems et al., 2016Willems, T.; Depestele, J.; De Backer, A. & Hostens, K. 2016. Ray bycatch in a tropical shrimp fishery: Do bycatch reduction devices and turtle excluder devices effectively exclude rays? Fisheries Research, 175: 35-42. https://doi.org/10.1016/j.fishres.2015.11.009.
https://doi.org/10.1016/j.fishres.2015.1...
). Another measure used to reduce bycatch income is the protection of predetermined areas where fisheries are forbidden (Broadhurst et al., 2006Broadhurst, M.K.; Suuronen, P. & Hulme, A. 2006. Estimating collateral mortality from towed fishing gear. Fish and Fisheries, 7(3): 180-218. https://doi.org/10.1111/j.1467-2979.2006.00213.x.
https://doi.org/10.1111/j.1467-2979.2006...
; Eayrs, 2007Eayrs, S. 2007. A guide to bycatch reduction in tropical shrimp-trawl fisheries. Food and Agriculture Organization of the United Nations. Rome, FAO. Available: Available: http://www.fao.org/3/a1008e/a1008e.pdf . Access: 25/01/2021.
http://www.fao.org/3/a1008e/a1008e.pdf...
).

Evaluating captured organisms, estimating the volume of unintentional catches, and assessing the impacts on discarded organism populations are essential measures to minimize bycatch impacts and monitor these organisms’ capture (Kelleher, 2005Kelleher, K. 2005. Discards in the World’s Marine Fisheries: An Update. Rome, FAO. Available: Available: http://www.fao.org/3/a-y5936e.pdf . Access: 25/01/2021.
http://www.fao.org/3/a-y5936e.pdf...
). Therefore, knowledge about biodiversity associated with the fishing activity is important to support conservation measures (Costa & Di Beneditto, 2009Costa, I.D. & Di Beneditto, A.P.M. 2009. Caracterización preliminar de los invertebrados bentónicos capturados acidentalmente em la pesca de camarones enel norte del estado de Rio de Janeiro, sudeste de Brasil. Latin American Journal of Aquatic Research, 37(2): 259-264. Available: Available: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2009000200013 . Access: 25/01/2021.
https://www.scielo.cl/scielo.php?script=...
).

Sea stars have been reported previously near the coastal region of Macaé, Brazil (Mincarone et al., 2016Mincarone, M.M.; Abreu, T.B.; Almada, D.S.; Bauer, A.B.; Blanchette, T.G.; Camargo, G.A.; Cardoso, M.W.; Costa, R.N.; Di Dario, F.; Dias, F.C.; Fernandes, D.S.; Fischer, L.G.; Freitas, R.R.; Gestinari, L.M.S.; Gonçalves, P.R.; Konno, T.U.P.; Leal, G.F.; Mancini, P.L.; Pagliani, B.; Petry, A.C.; Rajão, H.; Ruta, C. & Esteves, F.A. 2016. Atlas de sensibilidade ambiental ao óleo da Bacia Marítima de Campos. Brasília, Ministério do Meio Ambiente.); however, there is no study available to date on how they can be affected by bottom trawling. Shrimp trawling is an important economic resource for Macaé, which has a Fishermen community operating in the region (Silva et al., 2016Silva, N.P.; Azevedo, A. & Ferreira, M.I.P. 2016. Perfil socioeconômico e ambiental da pesca artesanal de Macaé/RJ. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, 10: 73-98. https://doi.org/10.19180/2177-4560.v10n12016p73-98.
https://doi.org/10.19180/2177-4560.v10n1...
). This study presents the first survey of the unintentionally captured sea stars during the bottom trawling of the shrimps X. kroyeri from the Santana Archipelago, Macaé (RJ), to observe their distribution patterns and abundance at different depths during open and closed fishing seasons.

MATERIAL AND METHODS

Study site

The present study was conducted at the Santana Archipelago, located about five miles from the coast of Macaé, a municipality in the North of the state of Rio de Janeiro (Fig. 1). The Santana Archipelago is a Marine Protected Area (MPA) created by Municipal Law No. 1216/89 (Macaé, 1989Macaé. 1989. LEI Nº 1.216 de 15 de setembro de 1989. Dispõe sobre a Criação do Parque e a Área Proteção Ambiental Arquipélago de Santana. Available: Available: http://www.macae.rj.gov.br/midia/conteudo/arquivos/1355204625.pdf . Access: 25/01/2021.
http://www.macae.rj.gov.br/midia/conteud...
). The protection area is inserted in the Campos Basin, the largest oil hub in Brazil (Silvestre & Dalcol, 2009Silvestre, S.B. & Dalcol, P.R.T. 2009. Geographical proximity and innovation: Evidences from the Campos Basin oil & gas industrial agglomeration - Brazil. Technovation, 29(8): 546-561. https://doi.org/10.1016/j.technovation.2009.01.003.
https://doi.org/10.1016/j.technovation.2...
). The local upwelling biologically influences the shrimp population of X. kroyeri (Davanso et al., 2017Davanso, T.M.; Hirose, G.L.; Herrera, D.R.; Fransozo, A. & Costa, R.C. 2017. Does the upwelling phenomenon influence the population dynamics and management of the seabob shrimp Xiphopenaeus kroyeri (Heller, 1862) (Crustacea, Penaeidae)? Hydrobiologia, 795(1): 295-311. https://doi.org/10.1007/s10750-017-3152-0.
https://doi.org/10.1007/s10750-017-3152-...
; Silva et al., 2015Silva, E.R.; Sancinetti, G.S.; Fransozo, A.; Azevedo, A. & Costa, R.C. 2015. Reproduction and recruitment of the seabob shrimp: a threatened exploitation species in southeastern of Brazil. Boletim do Instituto de Pesca, 41: 157-172. Available: Available: https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/41_1_157-172 . Access: 25/05/2021.
https://www.pesca.sp.gov.br/boletim/inde...
).

Figure 1
Map of the study area of Marine Protected of the Santana Archipelago, Macaé (RJ).

Data collection

The surveys were conducted from the Santana Archipelago on a shrimp fishing boat equipped with a handmade trawl net (mesh size 20 mm and 15 mm in the cod) with opening between doors of 3.5 m. From March 2008 to April 2009, including the closed season of the shrimp fishery, 13 trawling were carried out at depths of 5, 15, 35, 45, and 60 m. Trawls were deployed for at least 15 minutes at a constant speed of 3.3 km/h. All the specimens of trawling were stored in isoprene boxes with tags.

In the laboratory, sea stars specimens were manually screened from the bycatch, fixed in 4% formaldehyde, and preserved in 70% ethanol. The sea stars were identified to species level using stereomicroscope (Olympus SZX16), optical microscope (Olympus CX31), and specific literature (e.g.,Tommasi et al., 1970Tommasi, L.R.; Paiva Carvalho, J. & Novelli, M.D. 1970. Lista dos asteróides recentes do Brasil. Contribuições do Instituto Oceanográfico da USP, 18: 1-61.; Ventura et al., 2007Ventura, C.R.R.; Veríssimo, I.; Nobre, C.C. & Zama, P.C. 2007. Filo Echinodermata, In: Lavrado, H.P. & Viana, M.S. (Eds.). Atlas de invertebrados marinhos da região central da zona econômica exclusiva brasileira. Rio de Janeiro, Museu Nacional. p. 217-258.; Gondim et al., 2014Gondim, A.I.; Christoffersen, M.L. & Dias, T.L.P. 2014. Taxonomic guide and historical review of starfishes in northeastern Brazil (Echinodermata, Asteroidea). Zookeys, 449: 1-56. https://doi.org/10.3897/zookeys.449.6813.
https://doi.org/10.3897/zookeys.449.6813...
).

For each species, the number of specimens per sample and bathymetric range were recorded and classified according to threat category the Official National List of Endangered Species of Brazilian Fauna (ICMBio, 2018Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. ICMBio/MMA, Brasília. Available: Available: https://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol7.pdf . Access: 25/01/2021.
https://www.icmbio.gov.br/portal/images/...
). The “vulnerable” (VU) category was applied to species that face a high risk of extinction in the wild and was established following the criteria of the IUCN (International Union for Conservation of Nature) (ICMBio, 2018Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. ICMBio/MMA, Brasília. Available: Available: https://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol7.pdf . Access: 25/01/2021.
https://www.icmbio.gov.br/portal/images/...
). The specimens were deposited in the Echinoderm Collection of the Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ (NPM-Ech).

All samplings were carried out in accordance with Brazilian state and federal laws (Instituto Chico Mendes de Biodiversidade/ICMBio Nº11274).

Data analysis

To verify temporal differences in sea stars bycatch across depth, we used a zero-inflated Poisson (ZIP) model. This is a mixture model because zeros are modeled as coming from the binomial process and the count process. In a first step, a global model was adjusted using depth, season (closed or fishing), and their interactions as covariates for the binomial and the count process using Poisson distribution. Depth was modeled as a third-degree polynomial predictor generated by a B-spline basis matrix. A likelihood ratio test provided evidence (χ² = 18.15; p < 0.001) for a model selection using negative binomial distribution. We adjusted sequential candidate nested models dropping each predictor in turn, and applied likelihood ratio tests for model selection. The procedure was independently used to select predictors for the count and the binomial structure. The final best model was validated using graphical residuals inspection (Zuur et al., 2009Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A. & Smith, G.M. 2009. Mixed effects models and extensions in ecology with R. New York, Springer. https://doi.org/10.1007/978-0-387-87458-6.
https://doi.org/10.1007/978-0-387-87458-...
). To investigate differences in sea stars species composition from different events of bycatch, we used the biplot diagram from a Principal Coordinates Analysis (Gower, 1966Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3-4): 325-338. https://doi.org/10.1093/biomet/53.3-4.325.
https://doi.org/10.1093/biomet/53.3-4.32...
) generated from a Bray-Curtis dissimilarity matrix. All analyses were done using the R Program (R Core Team, 2020The R Project for Statistical Computing (R Core Team). 2020. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available: Available: https://www.R-project.org . Access: 25/05/2021.
https://www.R-project.org...
).

RESULTS

A total of 158 sea star specimens belonging to eight species were captured from the Santana Archipelago (Table 1). The captured species were represented by three genera: Asterina, with four specimens (accounting for approximately 3% of the composition); Astropecten, with 52 specimens (accounting for approximately 33% of the composition) and Luidia, with 102 specimens (accounting for approximately 65% of the composition) (Table 1).

Table 1
Sea stars species collected at Environmental Protection Area of the Santana Archipelago. Being “N”, number of individuals; “Depth. (m)”, depth in meters and “NPM-Ech”, catalog number in the NPM-EchNUPEM/UFRJ Biodiversity Institute.

We found an increase in sea stars captured at a depth range of 25-45 m (Fig. 2); however, no significant difference was detected between the closed and open fishing seasons. The final best model retained only the predictor of depth that was modeled as a polynomial of third degree (Table 2). The first axis of the principal coordinates diagram tended to separate deeper trawls, but no very clear pattern was found (Fig. 3a). No differences in the species composition were found between seasons (Fig. 3b).

Figure 2
Number of sea stars captured in each of the 78 trawls from 5 m to 60 m depth. The shaded area corresponds to 95% confidence band using a loess smooth curve.

Figure 3
(a) Biplot diagram community organization at different depths; (b) Biplot diagram community organization at different sampling times (closed season and fishing season).

Table 2
Summary results of the best model using depth as predictor for the counts of seas stars captured in 78 trawls. Coefficients of the count and binomial structure (hurdle) of a zero inflated model using negative binomial distribution are presented.

DISCUSSION

In the present study, the most abundant genus was Astropecten. Astropecten has also been recorded in bycatches of commercial crustaceans in Scotland and India (Bergmann et al., 2002Bergmann, M.; Wieczorek, S.K.; Moore, P.G. & Atkinson, R.J.A. 2002. Discard composition of the Nephrops fishery in the Clyde Sea area, Scotland. Fisheries Research, 57: 169-183. https://doi.org/10.1016/S0165-7836(01)00345-9.
https://doi.org/10.1016/S0165-7836(01)00...
; Prabhu et al., 2013Prabhu, P.; Balasubramanian, U. & Purushothaman, S. 2013. Diversity of invertebrate trawl by catch off Mallipattinam, Sathubavasatherum, Memesal, southeast coast of India. Advances in Applied science research, 4: 249-255. Available: https://www.imedpub.com/articles/diversity-of-invertebrate-trawl-by-catch-off-mallipattinamsathubavasatherum-memesal-southeast-coast-of-india.pdf.
https://www.imedpub.com/articles/diversi...
), as well as in bycatches of the commercial gastropod Zidona dufresnei (Donovan, 1823) in Uruguay (Riestra et al., 2006Riestra, G.; Lozoya, J.P.; Fabiano, G.; Santana, O. & Carrizo, D. 2006. Benthic macroinvertebrate bycatch in the snail Zidona dufresnei (Donovan) fishery from the Uruguayan continental shelf. Pan-American Journal of Aquatic Sciences, 1: 104-113. Available: Available: https://panamjas.org/pdf_artigos/PANAMJAS_1(2)_104-113.pdf . Access: 24/11/2021.
https://panamjas.org/pdf_artigos/PANAMJA...
). In Brazil, previous studies have reported A. brasiliensis, A. cingulatus, A. stellifera, L. clathrata and L. senegalensis in bycatches of the seabob shrimp X. kroyeri in the state of Santa Catarina (Branco & Verani, 2006Branco, J.O. & Verani, J.R. 2006. Pesca do camarão sete-barbas e sua fauna acompanhante, na Armação do Itapocoroy, Penha, SC. In: Branco, J.O. & Marenzi, A.W.C. (Eds.). Bases ecológicas para um desenvolvimento sustentável: estudos de caso em Penha, SC. Santa Catarina, UNIVALI. p. 153-170.; Branco et al., 2015Branco, J.O.; Freitas Júnior, F. & Christoffersen, M.L. 2015. Bycatch fauna of seabob shrimp trawl fisheries from Santa Catarina State, southern Brazil. Biota Neotropica, 15: 1-14. https://doi.org/10.1590/1676-06032015014314.
https://doi.org/10.1590/1676-06032015014...
). Additionally, a study carried out in the municipality of Campos dos Goytacazes (RJ) has recorded A. brasiliensis, A. cingulatus and L. clathrata in bycatches of the commercial trawling of A. longinaris and X. kroyeri commercial shrimps (Costa & Di Beneditto, 2009Costa, I.D. & Di Beneditto, A.P.M. 2009. Caracterización preliminar de los invertebrados bentónicos capturados acidentalmente em la pesca de camarones enel norte del estado de Rio de Janeiro, sudeste de Brasil. Latin American Journal of Aquatic Research, 37(2): 259-264. Available: Available: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2009000200013 . Access: 25/01/2021.
https://www.scielo.cl/scielo.php?script=...
), corroborating the results found in this study.

According to Ventura et al. (2013Ventura, C.R.R.; Borges, M.; Campos, L.S.; Costa-Lotufo, L.V.; Freire, C.A.; Hadel, V.F.; Manso, C.L.C.; Silva, J.R.M.C.; Tavares, Y. & Tiago, C.G. 2013. Echinoderm from Brazil: historical research and the current state of biodiversity knowledge. In: Alvarado, J.J. & Sólis-Marin, F.A. (Eds.). Echinoderm Research and Diversity in Latin America. Heidelberg, Springer. p. 301-344.), bottom trawling is one of the main activities that increase extinction vulnerability in sea stars. Among the species identified in this study, A. brasiliensis and L. senegalensis are classified as “vulnerable” in the official list of endangered species in Brazil (ICMBio, 2018Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. ICMBio/MMA, Brasília. Available: Available: https://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol7.pdf . Access: 25/01/2021.
https://www.icmbio.gov.br/portal/images/...
).

Our results showed that the deepest bathymetric regions presented the highest abundance of captured sea stars. Interestingly, some of the most abundant species reported in those depths in Brazil, especially from the genus Luidia, occur naturally in deeper bathymetric regions far away from high hydrodynamic areas, probably because of the bottom composition (Ventura & Fernandes, 1995Ventura, C.R.R. & Fernandes, F.C. 1995. Bathymetric distribution and population size structure of Paxillosid sea stars (Echinodermata) in the Cabo Frio upwelling ecosystem of Brazil. Bulletin of Marine Science, 56: 268-282. Available: Available: http://www.redebim.dphdm.mar.mil.br/vinculos/000014/00001406.pdf . Access: 25/01/2021.
http://www.redebim.dphdm.mar.mil.br/vinc...
). No significant variation between the sampled periods (closed and fishing season) was observed in this study since the distribution of sea stars species is usually related to temperature and salinity, which vary depending on the bathymetric range rather than seasonality (Ventura & Fernandes, 1995Ventura, C.R.R. & Fernandes, F.C. 1995. Bathymetric distribution and population size structure of Paxillosid sea stars (Echinodermata) in the Cabo Frio upwelling ecosystem of Brazil. Bulletin of Marine Science, 56: 268-282. Available: Available: http://www.redebim.dphdm.mar.mil.br/vinculos/000014/00001406.pdf . Access: 25/01/2021.
http://www.redebim.dphdm.mar.mil.br/vinc...
). The sea star reproductive season is also variable and influenced by environmental factors, and different populations of the same species can breed at different times (Mercier & Hamel, 2013Mercier, A. & Hamel, J.F. 2013. Reproduction, In: Lawrence, J.M. (Ed.). Starfish: biology and ecology of the Asteroidea. Baltimore, JHU Press. p. 37-50.).

Shrimp fishing is forbidden during the closed season (IBAMA, 2008Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). 2008. Instrução Normativa IBAMA Nº189 de 23 de setembro de 2008. http://www.icmbio.gov.br/cepsul/images/stories/legislacao/Instrucao_normativa/2008/in_ibama_189_2008_defesocamaroes_revoga_in_ibama_91_2006_92_2006.pdf. Access: 25/01/2021.
http://www.icmbio.gov.br/cepsul/images/s...
). If we assume that the shrimp fishing occurs during the spawning events of these sea stars species, it may increase their vulnerability because some species of sea stars spawn during the open fishing season (June to February). For example, L. senegalensis spawns in the Fall (March to June in Brazil), while L. clathrata spawns in the mid-to-late Spring (September to December) after increasing their gonads size reaching their maximum in late Winter (June to September) (Lawrence, 2013Lawrence, J.M. 2013. Luidia, In: Lawrence, J.M. (Ed.). Starfish: biology and ecology of the Asteroidea. Baltimore, JHU Press. p. 109-119.). In a tropical upwelling region of the Brazilian coast (Cabo Frio), A. brasiliensis spawns when seawater temperature drops naturally from 22°C to 14°C, in the upwelling period (springtime and November) and A. cingulatus has a longer spawning period that begin in the Fall, and it goes through the Winter (May to August) (Ventura, 2013Ventura, C.R.R. 2013. Astropecten. In: Lawrence, J.M. (Ed.). Starfish: biology and ecology of the Asteroidea. Baltimore, JHU Press. p. 101-108.). These reproductive aspects should be considered when elaborating strategies to conserve sea stars species in order to avoid shrimp fishing during their spawning events, especially when the fishing activity endangers sea stars’ populations.

Fishing is an important economic activity in Macaé, and the municipality has 3,500 artisanal fishermen registered in the fishing community (Silva et al., 2016Silva, N.P.; Azevedo, A. & Ferreira, M.I.P. 2016. Perfil socioeconômico e ambiental da pesca artesanal de Macaé/RJ. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, 10: 73-98. https://doi.org/10.19180/2177-4560.v10n12016p73-98.
https://doi.org/10.19180/2177-4560.v10n1...
). Thousands of shrimps are annually captured from the coast of Macaé (FIPERJ, 2014Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ). 2014. Relatório Final 2014. Available: Available: http://www.fiperj.rj.gov.br/fiperj_imagens/arquivos/revistarelatorios2014.pdf . Access: 25/01/2021.
http://www.fiperj.rj.gov.br/fiperj_image...
, 2015Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ). 2015. Relatório final 2015. Available: Available: http://www.fiperj.rj.gov.br/fiperj_imagens/arquivos/revistarelatorios2015.pdf . Access: 25/01/2021.
http://www.fiperj.rj.gov.br/fiperj_image...
). A study carried out in 2011 demonstrated the impact of the bottom trawling in Macaé on shrimp carcino-bycatch of X. kroyeri, concluding that for each individual of X. kroyeri about 2.94 individuals of carcino-bycatch were caught (Costa et al., 2016Costa, R.C.; Carvalho-Batista, A.; Herrera, D.R.; Pantaleão, J.A.F.; Teodoro, S.S.A. & Davanso, T.M. 2016. Carcinofauna acompanhante da pesca do camarão-sete-barbas Xiphopenaeus kroyeri em Macaé, Rio de Janeiro, Sudeste Brasileiro. Boletim do Instituto de Pesca, 42(3): 611-624. Available: Available: https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1162 . Access: 18/06/2021.
https://www.pesca.sp.gov.br/boletim/inde...
). Trailing sequences in the same areas are related to biodiversity loss (Jones, 1992Jones, J.B. 1992. Environmental impact of trawling on the seabed: A review. New Zealand Journal of Marine and Freshwater Research, 26: 59-67.; Dayton et al., 1995Dayton, P.K.; Thrush, S.F.; Agardy, M.T. & Hofman, R.J. 1995. Environmental effects of marine fishing. Aquatic Conservation: Marine and Freshwater Ecosystems, 5(3): 205-232. https://doi.org/10.1002/aqc.3270050305.
https://doi.org/10.1002/aqc.3270050305...
), and regions impacted by constant trawling may take decades to be reestablished, as the bottom trawling causes larval growth suppression and decreases rates of fauna growth (Jones, 1992Jones, J.B. 1992. Environmental impact of trawling on the seabed: A review. New Zealand Journal of Marine and Freshwater Research, 26: 59-67.).

The attribution of fishing exclusion areas optimizes the recovery of threatened organisms by protecting the nursery and shelter areas (Sale et al., 2005Sale, P.F.; Cowen, R.K.; Danilowicz, B.S.; Jones, G.P.; Kritzer, J.P.; Lindeman, K.C.; Planes, S.; Polunin, N.V.C.; Russ, G.R.; Sadovy, Y.j. & Steneck, R.S. 2005. Critical science gaps impede use of no-take fishery reserves. Trends in Ecology & Evolution, 20: 74-80. https://doi.org/10.1016/j.tree.2004.11.007.
https://doi.org/10.1016/j.tree.2004.11.0...
; Lopes & Villasante, 2018Lopes, P.F.M. & Villasante, S. 2018. Paying the price to solve fisheries conflicts in Brazil’s marine protected areas. Marine Policy, 93: 1-8. https://doi.org/10.1016/j.marpol.2018.03.016.
https://doi.org/10.1016/j.marpol.2018.03...
). Thus, this should be a suitable measure to be applied in the Santana Archipelago to protect sea stars and other marine invertebrates, as there is a relevant variation in reproductive periods among the different invertebrate species.

CONCLUSION

In the surrounding area of the Environmental Protection Area of the Santana Archipelago, eight species belonging to the genera Asterina, Astropecten, and Luidia were recorded, two of which (A. brasiliensis and L. senegalensis) are vulnerable species according to the official list of endangered species in Brazil. The number of individuals and species captured showed no seasonal difference (closed fishing season and fishing season). However, there was a clear bathymetric difference characterized by high abundance of asteroids in deeper regions. In agreement with previous studies performed in other Brazilian regions, the distribution patterns of sea stars found here were associated to depth, sediment composition and food availability rather than to seasonality.

ACKNOWLEDGMENTS

The authors thank Carlos Renato Rezende Ventura (Museu Nacional/UFRJ) for his assistance in species identification, Alexandre Azevedo (NUPEM/UFRJ) for providing us the material examined, all students and staff of the laboratory who contributed to sorting the material, Victor Hugo de Almeida Marques (PPGZOO/UFRJ) for reading and discussing the first draft of this manuscript and the anonymous reviewers for their helpful comments on the manuscript.

REFERENCES

  • Alverson, D.L.; Freeberg, M.H.; Murawiski, S.A. & Pope, J.G. 1994. A global assessment of fisheries bycatch and discards. Rome, FAO. Available: Available: http://www.fao.org/3/T4890E/T4890E00.htm Access: 25/01/2021.
    » http://www.fao.org/3/T4890E/T4890E00.htm
  • Bell, F.J. 1917. Echinoderma, Part I. Actinogonidiata. In: British Antarctic “Terra Nova” Expedition, 1910. Natural History Report. Zoology. London, Printed by Order of the Trustees of the British Museum. v. 4, p. 1-10.
  • Bergman, M.J.N. & Hup, M. 1992. Direct effects of beam trawling on macrofauna in a sandy sediment in the southern North Sea. ICES Journal of Marine Science, 49: 5-11. https://doi.org/10.1093/icesjms/49.1.5
    » https://doi.org/10.1093/icesjms/49.1.5
  • Bergmann, M.; Wieczorek, S.K.; Moore, P.G. & Atkinson, R.J.A. 2002. Discard composition of the Nephrops fishery in the Clyde Sea area, Scotland. Fisheries Research, 57: 169-183. https://doi.org/10.1016/S0165-7836(01)00345-9
    » https://doi.org/10.1016/S0165-7836(01)00345-9
  • Blom, W.; Webber, R. & Schultz, T. 2009. Invertebrate bycatch from bottom trawls in the New Zealand EEZ. Tuhinga, 20: 33-40. Available: Available: https://www.tepapa.govt.nz/sites/default/files/tuhinga.20.2009.pt4_.p33-40.blom_.pdf Access: 18/06/2021.
    » https://www.tepapa.govt.nz/sites/default/files/tuhinga.20.2009.pt4_.p33-40.blom_.pdf
  • Branco, J.O. & Verani, J.R. 2006. Pesca do camarão sete-barbas e sua fauna acompanhante, na Armação do Itapocoroy, Penha, SC. In: Branco, J.O. & Marenzi, A.W.C. (Eds.). Bases ecológicas para um desenvolvimento sustentável: estudos de caso em Penha, SC. Santa Catarina, UNIVALI. p. 153-170.
  • Branco, J.O.; Freitas Júnior, F. & Christoffersen, M.L. 2015. Bycatch fauna of seabob shrimp trawl fisheries from Santa Catarina State, southern Brazil. Biota Neotropica, 15: 1-14. https://doi.org/10.1590/1676-06032015014314
    » https://doi.org/10.1590/1676-06032015014314
  • Broadhurst, M.K.; Suuronen, P. & Hulme, A. 2006. Estimating collateral mortality from towed fishing gear. Fish and Fisheries, 7(3): 180-218. https://doi.org/10.1111/j.1467-2979.2006.00213.x
    » https://doi.org/10.1111/j.1467-2979.2006.00213.x
  • Clucas, I. 1997. A study of the options for utilization of bycatch and discards from marine capture fisheries. Rome, FAO. Available: Available: http://www.fao.org/3/W6602E/w6602E00.htm Access: 25/01/2021.
    » http://www.fao.org/3/W6602E/w6602E00.htm
  • Coll, M.; Shannon, L.J.; Kleisner, K.M.; Juan-Jordá, M.J.; Bundy, A.; Akoglu, A.G.; Banaru, D.; Boldt, J.L.; Borges, M.F.; Cook, A.; Diallo, I.; Fu, C.; Fox, C.; Gascuel, D.; Gurney, L.J.; Hattab, T.; Heymans, J.J.; Jouffre, D.; Knight, B.R.; Kucukavsar, S.; Large, S.I.; Lynam, C.; Machias, A.; Marshall, K.N.; Masski, H.; Ojaveer, H.; Piroddi, C.; Tam, J.; Thiao, D.; Thiaw, M.; Torres, M.A.; Travers-trolet, M.; Tsagarakis, K.; Tuck, I.; van der Meeren, G.I.; Yemane, D.; Zador, S.G. & Shin, Y.J. 2016. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecological Indicators, 60: 947-962. https://doi.org/10.1016/j.ecolind.2015.08.048
    » https://doi.org/10.1016/j.ecolind.2015.08.048
  • Costa, I.D. & Di Beneditto, A.P.M. 2009. Caracterización preliminar de los invertebrados bentónicos capturados acidentalmente em la pesca de camarones enel norte del estado de Rio de Janeiro, sudeste de Brasil. Latin American Journal of Aquatic Research, 37(2): 259-264. Available: Available: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2009000200013 Access: 25/01/2021.
    » https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2009000200013
  • Costa, R.C.; Carvalho-Batista, A.; Herrera, D.R.; Pantaleão, J.A.F.; Teodoro, S.S.A. & Davanso, T.M. 2016. Carcinofauna acompanhante da pesca do camarão-sete-barbas Xiphopenaeus kroyeri em Macaé, Rio de Janeiro, Sudeste Brasileiro. Boletim do Instituto de Pesca, 42(3): 611-624. Available: Available: https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1162 Access: 18/06/2021.
    » https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1162
  • Costanza, R. 1999. The ecological, economic, and social importance of the oceans. Ecological Economics, 31(2): 199-213. https://doi.org/10.1016/S0921-8009(99)00079-8
    » https://doi.org/10.1016/S0921-8009(99)00079-8
  • Costello, M.J.; Coll, M.; Danovaro, R.; Halpin, P.; Ojaveer, H. & Miloslavich, P. 2010. A census of marine biodiversity knowledge resources and future challenges. PloS One, 5: 1-15. https://doi.org/10.1371/journal.pone.0012110
    » https://doi.org/10.1371/journal.pone.0012110
  • Davanso, T.M.; Hirose, G.L.; Herrera, D.R.; Fransozo, A. & Costa, R.C. 2017. Does the upwelling phenomenon influence the population dynamics and management of the seabob shrimp Xiphopenaeus kroyeri (Heller, 1862) (Crustacea, Penaeidae)? Hydrobiologia, 795(1): 295-311. https://doi.org/10.1007/s10750-017-3152-0
    » https://doi.org/10.1007/s10750-017-3152-0
  • Davies, R.W.D.; Cripps, S.J.; Nickson, A. & Porter, G. 2009. Defining and estimating global marine fisheries bycatch. Marine Policy, 33(4): 661-672. https://doi.org/10.1016/j.marpol.2009.01.003
    » https://doi.org/10.1016/j.marpol.2009.01.003
  • Dayton, P.K.; Thrush, S.F.; Agardy, M.T. & Hofman, R.J. 1995. Environmental effects of marine fishing. Aquatic Conservation: Marine and Freshwater Ecosystems, 5(3): 205-232. https://doi.org/10.1002/aqc.3270050305
    » https://doi.org/10.1002/aqc.3270050305
  • D’Incao, F.; Valentini, H. & Rodrigues, F.L. 2002. Avaliação da pesca de camarões nas regiões Sudeste e Sul do Brasil (1965-1999). Atlântica, 24(2): 103-116. Available: Available: https://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/artigos_cientificos/art_2002_camaroes_65_99.pdf Access: 25/01/2021.
    » https://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/artigos_cientificos/art_2002_camaroes_65_99.pdf
  • Eayrs, S. 2007. A guide to bycatch reduction in tropical shrimp-trawl fisheries. Food and Agriculture Organization of the United Nations. Rome, FAO. Available: Available: http://www.fao.org/3/a1008e/a1008e.pdf Access: 25/01/2021.
    » http://www.fao.org/3/a1008e/a1008e.pdf
  • Escolar, M.; Diez, M.; Hernández, D.; Marecos, A.; Campodónico, S. & Bremec, C. 2009. Invertebrate bycatch in Patagonian scallop fishing grounds: a study case with data obtained by the On Board Observers Program. Revista de Biologia Marina y Oceanografia, 44(2): 369-377. https://doi.org/10.4067/S0718-19572009000200010
    » https://doi.org/10.4067/S0718-19572009000200010
  • Franco, A.C.N.P.; Schwarz Junior, R.; Pierri, N. & Santos, G.C. 2009. Levantamento, sistematização e análise da legislação aplicada ao defeso da pesca de camarões para as regiões sudeste e sul do Brasil. Boletim do Instituto de Pesca, 35: 687-699.
  • Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ). 2014. Relatório Final 2014. Available: Available: http://www.fiperj.rj.gov.br/fiperj_imagens/arquivos/revistarelatorios2014.pdf Access: 25/01/2021.
    » http://www.fiperj.rj.gov.br/fiperj_imagens/arquivos/revistarelatorios2014.pdf
  • Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ). 2015. Relatório final 2015. Available: Available: http://www.fiperj.rj.gov.br/fiperj_imagens/arquivos/revistarelatorios2015.pdf Access: 25/01/2021.
    » http://www.fiperj.rj.gov.br/fiperj_imagens/arquivos/revistarelatorios2015.pdf
  • Gondim, A.I.; Christoffersen, M.L. & Dias, T.L.P. 2014. Taxonomic guide and historical review of starfishes in northeastern Brazil (Echinodermata, Asteroidea). Zookeys, 449: 1-56. https://doi.org/10.3897/zookeys.449.6813
    » https://doi.org/10.3897/zookeys.449.6813
  • Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3-4): 325-338. https://doi.org/10.1093/biomet/53.3-4.325
    » https://doi.org/10.1093/biomet/53.3-4.325
  • Graça-Lopes, R.; Tomás, A.R.G.; Tutui, S.L.S.; Severino-Rodrigues, E. & Puzzi, A. 2002. Fauna acompanhante da pesca camaroeira no litoral do Estado de São Paulo, Brasil. Boletim do Instituto de Pesca, 28(2): 173-188. Available: Available: https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/28_2_173-188/28_2_173-188 Access: 25/01/2021.
    » https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/28_2_173-188/28_2_173-188
  • Hall, M.A. 1996. On bycatches. Reviews in Fish Biology and Fisheries, 6: 319-352. https://doi.org/10.1007/BF00122585
    » https://doi.org/10.1007/BF00122585
  • Hall, M.A.; Alverson, D.L. & Metuzals, K.I. 2000. By-catch: Problems and Solutions. Marine Pollution Bulletin, 41(1-6): 204-219. https://doi.org/10.1016/S0025-326X(00)00111-9
    » https://doi.org/10.1016/S0025-326X(00)00111-9
  • Halpern, B.S.; Walbridge, S.; Selkoe, K.A, Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F, Casey, K.S.; Ebert, C.; Fox, H.E.; Fujita, R.; Heinemann, D.; Lenihan, H.S.; Madin, E.M.P.; Perry, M.T.; Selig, E.R.; Spalding, M.; Steneck, R. & Watson, R. 2008. A global map of human impact on marine ecosystems. Science, 319(5865): 948-952. https://doi.org/10.1126/science.1149345
    » https://doi.org/10.1126/science.1149345
  • Heller, C. 1862. Beiträge zur näheren Kenntnis der Macrouren. Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften in Wien, 389-426, pls. I-II.
  • Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). 2008. Instrução Normativa IBAMA Nº189 de 23 de setembro de 2008. http://www.icmbio.gov.br/cepsul/images/stories/legislacao/Instrucao_normativa/2008/in_ibama_189_2008_defesocamaroes_revoga_in_ibama_91_2006_92_2006.pdf Access: 25/01/2021.
    » http://www.icmbio.gov.br/cepsul/images/stories/legislacao/Instrucao_normativa/2008/in_ibama_189_2008_defesocamaroes_revoga_in_ibama_91_2006_92_2006.pdf
  • Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. ICMBio/MMA, Brasília. Available: Available: https://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol7.pdf Access: 25/01/2021.
    » https://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol7.pdf
  • Jones, J.B. 1992. Environmental impact of trawling on the seabed: A review. New Zealand Journal of Marine and Freshwater Research, 26: 59-67.
  • Kelleher, K. 2005. Discards in the World’s Marine Fisheries: An Update. Rome, FAO. Available: Available: http://www.fao.org/3/a-y5936e.pdf Access: 25/01/2021.
    » http://www.fao.org/3/a-y5936e.pdf
  • Lamarck, J.B.P.A. 1816. Astérie. In: Histoire naturelle des animaux sans vertèbres. Paris, Verdière Librarie. v. 2, p. 547-568. Available: Available: https://www.biodiversitylibrary.org/page/13299321 Access: 24/11/2021.
    » https://www.biodiversitylibrary.org/page/13299321
  • Lawrence, J.M. 2013. Luidia, In: Lawrence, J.M. (Ed.). Starfish: biology and ecology of the Asteroidea. Baltimore, JHU Press. p. 109-119.
  • Lopes, P.F.M. & Villasante, S. 2018. Paying the price to solve fisheries conflicts in Brazil’s marine protected areas. Marine Policy, 93: 1-8. https://doi.org/10.1016/j.marpol.2018.03.016
    » https://doi.org/10.1016/j.marpol.2018.03.016
  • Macaé. 1989. LEI Nº 1.216 de 15 de setembro de 1989. Dispõe sobre a Criação do Parque e a Área Proteção Ambiental Arquipélago de Santana. Available: Available: http://www.macae.rj.gov.br/midia/conteudo/arquivos/1355204625.pdf Access: 25/01/2021.
    » http://www.macae.rj.gov.br/midia/conteudo/arquivos/1355204625.pdf
  • Mendonça, L.M.; Guimarães, C.R. & Lima, S.F. 2019. Mollusk bycatch in trawl fisheries targeting the Atlantic seabob shrimp Xiphopenaeus kroyeri on the coast of Sergipe, northeastern Brazil. Papéis Avulsos de Zoologia, 59(33): 1-12. https://doi.org/10.11606/1807-0205/2019.59.33
    » https://doi.org/10.11606/1807-0205/2019.59.33
  • Mercier, A. & Hamel, J.F. 2013. Reproduction, In: Lawrence, J.M. (Ed.). Starfish: biology and ecology of the Asteroidea. Baltimore, JHU Press. p. 37-50.
  • Mermillod-Blondin, F.; François-Carcaillet, F. & Rosenberg, R. 2005. Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. Journal of Experimental Marine Biology and Ecology, 315: 187-209. https://doi.org/10.1016/j.jembe.2004.09.013
    » https://doi.org/10.1016/j.jembe.2004.09.013
  • Micael, J.; Alves, M.J.; Costa, A.C. & Jones, M.B. 2009. Exploitation and conservation of echinoderms. In: Gibson, R.N.; Atkinson, R.J.A. & Gordon, J.D.M. (Eds.). Oceanography and Marine Biology: An Annual Review. Boca Raton, Taylor & Francis. p. 191-208.
  • Mincarone, M.M.; Abreu, T.B.; Almada, D.S.; Bauer, A.B.; Blanchette, T.G.; Camargo, G.A.; Cardoso, M.W.; Costa, R.N.; Di Dario, F.; Dias, F.C.; Fernandes, D.S.; Fischer, L.G.; Freitas, R.R.; Gestinari, L.M.S.; Gonçalves, P.R.; Konno, T.U.P.; Leal, G.F.; Mancini, P.L.; Pagliani, B.; Petry, A.C.; Rajão, H.; Ruta, C. & Esteves, F.A. 2016. Atlas de sensibilidade ambiental ao óleo da Bacia Marítima de Campos. Brasília, Ministério do Meio Ambiente.
  • Ministério da Pesca e Aquicultura (MPA). 2011. Boletim Estatístico da Pesca e Aquicultura. Available: Available: http://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/estatistica/est_2011_bol__bra.pdf Access: 25/01/2021.
    » http://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/estatistica/est_2011_bol__bra.pdf
  • Möbius, K.A. 1859. Neue des Seesternedes Hamburger und Kieler Museums. Abhandlungen und Verhandlungen Naturwissenschaftlicher Verein in Hamburg, 4: 1-14. https://doi.org/10.5962/bhl.title.11830
    » https://doi.org/10.5962/bhl.title.11830
  • Müller, J. & Troschel, F.H. 1842. System der Asteriden. 1. Asteriae. 2. Ophiuridae. Braunschweig, Vieweg. Available: Available: http://www.biodiversitylibrary.org/item/44159 Access: 24/11/2021.
    » http://www.biodiversitylibrary.org/item/44159
  • Murawski, S.A. 2000. Definitions of overfishing from an ecosystem perspective. ICES Journal of Marine Science, 57(3): 649-658. https://doi.org/10.1006/jmsc.2000.0738
    » https://doi.org/10.1006/jmsc.2000.0738
  • Prabhu, P.; Balasubramanian, U. & Purushothaman, S. 2013. Diversity of invertebrate trawl by catch off Mallipattinam, Sathubavasatherum, Memesal, southeast coast of India. Advances in Applied science research, 4: 249-255. Available: https://www.imedpub.com/articles/diversity-of-invertebrate-trawl-by-catch-off-mallipattinamsathubavasatherum-memesal-southeast-coast-of-india.pdf
    » https://www.imedpub.com/articles/diversity-of-invertebrate-trawl-by-catch-off-mallipattinamsathubavasatherum-memesal-southeast-coast-of-india.pdf
  • Probert, P.K.; Mcknight, D.G. & Grove, S.L. 1997. Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand. Aquatic Conservation: Marine and Freshwater Ecosystems, 7: 27-40. https://doi.org/10.1002/(SICI)1099-0755(199703)7:1<27::AID-AQC214>3.0.CO;2-9
    » https://doi.org/10.1002/(SICI)1099-0755(199703)7:1<27::AID-AQC214>3.0.CO;2-9
  • Riestra, G.; Lozoya, J.P.; Fabiano, G.; Santana, O. & Carrizo, D. 2006. Benthic macroinvertebrate bycatch in the snail Zidona dufresnei (Donovan) fishery from the Uruguayan continental shelf. Pan-American Journal of Aquatic Sciences, 1: 104-113. Available: Available: https://panamjas.org/pdf_artigos/PANAMJAS_1(2)_104-113.pdf Access: 24/11/2021.
    » https://panamjas.org/pdf_artigos/PANAMJAS_1(2)_104-113.pdf
  • Sale, P.F.; Cowen, R.K.; Danilowicz, B.S.; Jones, G.P.; Kritzer, J.P.; Lindeman, K.C.; Planes, S.; Polunin, N.V.C.; Russ, G.R.; Sadovy, Y.j. & Steneck, R.S. 2005. Critical science gaps impede use of no-take fishery reserves. Trends in Ecology & Evolution, 20: 74-80. https://doi.org/10.1016/j.tree.2004.11.007
    » https://doi.org/10.1016/j.tree.2004.11.007
  • Say, T. 1825. On the species of the Linnaean genus Asterias inhabiting the coast of the U.S.J. Journal of the Academy of Natural Sciences of Philadelphia, 5: 141-154.
  • Silva, C.N.S.; Dias, J.H.; Cattani, A.P. & Spach, H.L. 2012. Relative efficiency of square-meshcodends in an artisanal fishery in southern Brazil. Latin American Journal of Aquatic Research, 40: 124-133. https://doi.org/10.3856/vol40-issue1-fulltext-12
    » https://doi.org/10.3856/vol40-issue1-fulltext-12
  • Silva, E.R.; Sancinetti, G.S.; Fransozo, A.; Azevedo, A. & Costa, R.C. 2015. Reproduction and recruitment of the seabob shrimp: a threatened exploitation species in southeastern of Brazil. Boletim do Instituto de Pesca, 41: 157-172. Available: Available: https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/41_1_157-172 Access: 25/05/2021.
    » https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/41_1_157-172
  • Silva, N.P.; Azevedo, A. & Ferreira, M.I.P. 2016. Perfil socioeconômico e ambiental da pesca artesanal de Macaé/RJ. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, 10: 73-98. https://doi.org/10.19180/2177-4560.v10n12016p73-98
    » https://doi.org/10.19180/2177-4560.v10n12016p73-98
  • Silvestre, S.B. & Dalcol, P.R.T. 2009. Geographical proximity and innovation: Evidences from the Campos Basin oil & gas industrial agglomeration - Brazil. Technovation, 29(8): 546-561. https://doi.org/10.1016/j.technovation.2009.01.003
    » https://doi.org/10.1016/j.technovation.2009.01.003
  • Sladen, W.P. 1883. The Asteroidea of H.M.S. Challenger Expedition, pt. 2. Astropectinidae. Zoological Journal of the Linnean Society, 17: 214-269. Available: Available: http://biodiversitylibrary.org/page/31628552 Access: 25/05/2021.
    » http://biodiversitylibrary.org/page/31628552
  • Smith, P.J. 2001. Managing Biodiversity: Invertebrate by-catch in seamount fisheries in the New Zealand Exclusive Economic Zone. New Zealand, World Fisheries Trust, IRRC/CRDI & UNEP. Available: Available: https://www.cbd.int/doc/nbsap/fisheries/Smith.pdf Access: 25/05/2021.
    » https://www.cbd.int/doc/nbsap/fisheries/Smith.pdf
  • Soares-Gomes, A, Pitombo, F.B. & Paiva, P.C. 2009. Bentos de sedimentos não consolidados. In: Pereira, R.C. & Gomes, A.S. (Eds.). Biologia marinha. Rio de Janeiro, Interciência. p. 319-338.
  • The R Project for Statistical Computing (R Core Team). 2020. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available: Available: https://www.R-project.org Access: 25/05/2021.
    » https://www.R-project.org
  • Tittensor, D.P.; Mora, C.; Jetz, W.; Lotze, H.K.; Ricard, D.; Berghe, V.D. & Worm, B. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature, 466(7310): 1098-1101. https://doi.org/10.1038/nature09329
    » https://doi.org/10.1038/nature09329
  • Tommasi, L.R.; Paiva Carvalho, J. & Novelli, M.D. 1970. Lista dos asteróides recentes do Brasil. Contribuições do Instituto Oceanográfico da USP, 18: 1-61.
  • Tortonese, E. 1956. Su Alcune species di Astropectinidae, con descrizione di un nuovo Astropecten. Annali del Museo Civico di Storia Naturale di Genova, 68: 319-334. Available: Available: http://www.biodiversitylibrary.org/page/34909235#page/333/mode/1up Access: 25/01/2021.
    » http://www.biodiversitylibrary.org/page/34909235#page/333/mode/1up
  • Ventura, C.R.R. 2013. Astropecten. In: Lawrence, J.M. (Ed.). Starfish: biology and ecology of the Asteroidea. Baltimore, JHU Press. p. 101-108.
  • Ventura, C.R.R. & Fernandes, F.C. 1995. Bathymetric distribution and population size structure of Paxillosid sea stars (Echinodermata) in the Cabo Frio upwelling ecosystem of Brazil. Bulletin of Marine Science, 56: 268-282. Available: Available: http://www.redebim.dphdm.mar.mil.br/vinculos/000014/00001406.pdf Access: 25/01/2021.
    » http://www.redebim.dphdm.mar.mil.br/vinculos/000014/00001406.pdf
  • Ventura, C.R.R.; Borges, M.; Campos, L.S.; Costa-Lotufo, L.V.; Freire, C.A.; Hadel, V.F.; Manso, C.L.C.; Silva, J.R.M.C.; Tavares, Y. & Tiago, C.G. 2013. Echinoderm from Brazil: historical research and the current state of biodiversity knowledge. In: Alvarado, J.J. & Sólis-Marin, F.A. (Eds.). Echinoderm Research and Diversity in Latin America. Heidelberg, Springer. p. 301-344.
  • Ventura, C.R.R.; Veríssimo, I.; Nobre, C.C. & Zama, P.C. 2007. Filo Echinodermata, In: Lavrado, H.P. & Viana, M.S. (Eds.). Atlas de invertebrados marinhos da região central da zona econômica exclusiva brasileira. Rio de Janeiro, Museu Nacional. p. 217-258.
  • Willems, T.; Depestele, J.; De Backer, A. & Hostens, K. 2016. Ray bycatch in a tropical shrimp fishery: Do bycatch reduction devices and turtle excluder devices effectively exclude rays? Fisheries Research, 175: 35-42. https://doi.org/10.1016/j.fishres.2015.11.009
    » https://doi.org/10.1016/j.fishres.2015.11.009
  • Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A. & Smith, G.M. 2009. Mixed effects models and extensions in ecology with R. New York, Springer. https://doi.org/10.1007/978-0-387-87458-6
    » https://doi.org/10.1007/978-0-387-87458-6
  • 4
    FUNDING INFORMATION: This project did not use any external financial support.
  • Published with the financial support of the "Programa de Apoio às Publicações Científicas Periódicas da USP"

Edited by

EDITED BY: Marcelo Veronesi Fukuda.

Publication Dates

  • Publication in this collection
    13 May 2022
  • Date of issue
    2022

History

  • Received
    07 July 2021
  • Accepted
    16 Nov 2021
  • Published
    08 Feb 2022
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br