Acessibilidade / Reportar erro

Adsorption of humic acids on natural and ammonia-oxalate treated oxisol

The adsorption of two humic acids (HA) was carried out on a natural Oxisol (natural LR) and on an ammonium-oxalate treated sample (treated LR), in order to investigate the adsorption mechanisms and the main functional groups involved and relate the adsorptive capacity with the chemical and molecular characteristics of the adsorbates. The HA extracted with 0.5 N NaOH solution from a coal sample (HAc) and from a Mollisol sample (HAs) were characterized by elemental analysis and 13C-NMR spectroscopy. The experimental data were fitted according to the equation y = A tanh Bx and the model of Langmuir was also applied. The adsorbed samples were analyzed by Diffuse Reflectance Fourier Transformed Infrared Spectroscopy (DRIFT). The HA adsorption on the natural LR was of a chemical nature, with the ligand exchange reaction between the carboxyl groups and the mineral surfaces being an important mechanism, as shown by DRIFT. The AHc had a higher aromatic character and a higher carboxyl content in its molecule and was adsorbed in greater quantity than the AHs in both adsorbents. This result also suggests a possible participation of aromatic moieties in the organo-mineral interaction. The treated LR, which had a higher specific surface area (SSA = 140.9 m² g-1), showed a greater adsorptive capacity than the natural LR (SSA = 66.1 m² g-1). The higher SSA in the treated sample was related to the breakup of microaggregates by the oxalate treatment, caused by the extraction of the cementing portion of iron oxides that bonded the particles together. The interaction in this adsorbent, as estimated by the parametrization y = A tanh Bx, showed higher chemical affinity than in the natural sample. This can be related to the adsorbed oxalate that created hydrophobic adsorption sites, the exposure of more reactive sites after the treatment and the lower pH value. The Langmuir model was adequate to explain the adsorption in the natural sample, while in the treated sample, the results obtained were not satisfactory. Generally, the proposed parametrization y = A tanh Bx yielded the better fit (i.e. higher R²) in comparison to the Langmuir equation.

parametrization; ligand exchange; 13C-NMR; DRIFT; chemical interaction


Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br