Acessibilidade / Reportar erro

First phytochemical studies of japecanga (Smilax fluminensis) leaves: flavonoids analysis

Abstract

This is the first chemical study of the antiradical potential of Smilax fluminensis Steud., Smilacaceae, leaves crude extract and fractions and the elucidation of two structurally isolated flavonoids. Quercetin-3-O-α-L-rhamnopyranoside (1-6)-O-β-D-glucopyranoside and quercetin-3-O-β-L-galactopyranoside were elucidated by spectrometric methods (1H and 13C NMR and mass).

Smilax fluminensis ; Quercetin; Chromatography; NMR


Introduction

The genus Smilax is comprised of 300 to 350 species, found in the tropics and subtropics worldwide, they are bramble woody vines with a paired tendrils for climbing (Andreata, 2006Andreata, R.H.P., 2006. Smilacaceae na Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brasil. Rodriguésia 57,647-657.). Several species of Smilax have been traditionally used as food or pharmaceutical materials in many countries, like the leaves of S. excelsa, which are widely used in some parts of Turkey in the daily diet (Ozsoy et al., 2008Ozsoy, N., Can, A., Yanardag, R., Akev, N., 2008. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem. 110,571-583.). Roots and young shoots of S. aspera are used as an ingredient to elaborate soft drinks and as a substitute of asparagus (Mariani et al., 2008Mariani, C., Braca, A., Vitalini, S., Tommasi, N. de, Visioli, F., Fico, G., 2008. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae). Phytochemistry 69,1220-1226.). The roots and rhizomes of several species are used as folk medicine for their antibacterial, antifungal, anti-inflammatory and hepatoprotective activities as well as a syphilis treatment (Xu et al., 2005Xu, J., Li, X., Zhang, P., Li, Z.L., Wang, Y., 2005. Antiinflammatory constituents from the roots of Smilax bockii. Warb. Arch. Pharm. Res. 28,395-399.; Mandal et al., 2008Mandal, S.C., Jana, G.K., Das, S., Sahu, R., Venkidesh, R., Dewanjee, S., 2008. Hepatoprotective and antioxidant activities of Smilax chinensis L. root. Pharmacologyonline 2,529-535.). Phenolic compounds as gallic acid, protocatechuic acid, caffeic acid, gentisic acid, trans-o-coumaric acid and some flavonoids (Ozsoy et al., 2008Ozsoy, N., Can, A., Yanardag, R., Akev, N., 2008. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem. 110,571-583.; Yang et al., 2008Yang, C., Tang, Q.J., Zhang, L.Z., Wenying, L., 2008. Preparative isolation and purification of phenolic acids from Smilax china by high-speed counter-current chromatography. Sep. Purif. Technol. 61,474-478.; Zhang et al., 2009Zhang, Q.F., Zhang, Z.R., Cheung, H.Y., 2009. Antioxidant activity of rhizoma Smmilacis glabrae extracts and its key constituentastilbin. Food Chem. 115,297-303.; Wungsintaweekul et al., 2011Wungsintaweekul, B., Umehara, K., Miyase, T., Noguchi, H., 2011. Estrogenic and anti-estrogenic compounds from the Thai medicinal plant, Smilax corbularia (Smilacaceae). Phytochemistry 72,495-502.) were isolated from some species of the genus Smilax. So far, the chemical constituents of Smilax fluminensis Steud., Smilacaceae, have not been investigated. Therefore, the aim of this study was to elucidate the structure of flavonoids by 1H and 13C NMR and ESI-MS.

Results and discussion

The isolated compounds were analyzed using HPLC and 1H and 13C NMR. The obtained compound 1 was a dark yellow solid; the molecular formula was established as MS (ESI): m/z [M+] calculated for C27H30O16: 610.15; found m/z 609, 12 (M-H)-. MP: 201-203ºC. The chromatogram peak for compound 1 was detected at 254 nm with 32 min RT.

The compound 2 was a dark yellow solid; the molecular formula was established as C21H20O12, MW 464 g.mol-1. MP: 231-233ºC. The chromatogram peak of compound 2 was detected at 254 nm with 25.8 min RT.

Compound 1: Quercetin-3-O-α-L-rhamnopyranoside(1-6)-O-β-D-glucopyranoside

1H NMR (300 MHz CD3OD ): 6.18/6.19 (1H, d, H-6), 6.39/6.38 (1H, d, H-8), 7.72/7.52 (1H, d/d, H-2'), 6.90/6.83 (1H, d, H-5'), 7.62/7.53 (1H, d/d, H-6'), 4.21/5.34 (1H, d/d, H-1''), 3.08 (1H, m, H-2''), 3.10 (1H, m, H-3''), 2,93 (1H, m, H-4''), 2.98 (1H, m, H-5''), 3.53 (2H, m, H-6''), 4.24/4.38 (1H, s, H-1'''), 3.07 (1H, m, H-2'''), 3.34 (1H, m, H-3'''), 2.93 (1H, m, H-4'''), 3.12 (1H, m, H-5'''), 0.94/0.98 (3H, s, H-6''').

13C NMR (75 MHz CD3OD): 157.7/156.7 (C), 157.7/156.7(C), 176.6/177.4 (C), 161.3/162.3 (C), 100.2/98,2 (CH), 166.7/164.1 (C), 92.5/93.7 (CH), 155.9/156.5 (C), 104.2/104.0 (C), 122.1/121.3 (C), 116.3/116.4 (CH), 145.8/144.8 (C), 149.5/148.4 (C), 116.1/115.2 (CH), 121.7/121.7 (CH), 104.3/102.0 (CH), 74.4/74.9 (CH), 77.2/77.4 (CH), 69,7/70.5 (CH), 76.0/76.0 (CH), 67.9/69.3 (CH2), 102.3/101.6 (CH), 71.3/70.7 (CH), 69.1/70.5 (CH), 71.7/71.9 (CH), 68,6/68,4 (CH), 17.2/17.3 (CH3).

Compound 2: Quercetin-3-O-β-D-galactopyranoside

1H NMR (300 MHz CD3OD ): 6.21/6.20 (1H, d, H-6), 6.41/6.41 (1H, d, H-8), 7.54/7.54 (1H, d, H-2'), 6.82 (1H, d, H-5'), 7.67/7.66 (1H, d/d, H-6'), 5.37/5.37 (1H, d, H-1''), 3.57/3.57 (1H, m, H-2''), 3,55/3.38 (1H, d, H-3''), 3.65/3.66 (1H, m, H-4''), 3.10/3.34 (1H, m, H-5''), 3,60/3.46 (2H, m, H-6'').

13C NMR (75 MHz CD3OD ): 157.0/156.9 (C), 134.0/134.0 (C), 178.0/178.0 (C), 161.0/161.7 (C), 98.9/99.3 (CH), 164.9/164.9 (C), 93.7/94.1 (CH), 157.3/156.8 (C), 104.7/104.3 (C), 121.6/121.6 (C), 116.8/116.5 (CH), 144.7/145.4 (C), 148.8/149.0 (C), 115.0/115.3 (CH), 121,9/122.5 (CH), 102.4/102.4 (CH), 71.1/71.7 (CH), 73.9/73.7 (CH), 68.5/68.5 (CH), 76.9/76.3 (CH), 60.4/60.4 (CH2).

The 1H NMR spectrum of compounds 1 and 2 elicited a signal typical of an A ring between δH 6.18-6.21 ppm (1H, H-6) and δH 6.39-6.41 ppm (1H, H-8). Furthermore, two typical B ring signals, were observed at δH 7.72-7.54 ppm (1H, H-2'), δH 6.82-6.90 ppm (1H, H-5') and at δH 7.62-7.67 ppm (1H, H-6'). These groups suggest two polyphenolic compounds from quercetin derivatives. The sugar moieties of compound 1 identified as α-L-rhamnopyranoside(1-6)-O-β-D-glucopyranoside with chemical shifts for (H-1'') at δH 4.21/5.34 ppm (1H, d/d, J = 1.0/6.0 Hz, H-1''), at δH 4.24/3.38 (1H, s, H-1'''), at δH 0.94/0.98 ppm (3H, s,H-6''') and (H-sugar) at δH 2.93-3.53 ppm (m). The sugar moieties of compound 2 identified β-D-galactopyranosyl with chemical shifts for (H-1'') at δH 5.37/5.37 ppm (1H, d, J = 9.0 Hz, H-1'') and H-sugar at δH 3.55-3.66 ppm (m).

The 13C NMR spectrum (75 MHz in CD3OD) for compound 1signaled 27 carbons, with a methyl group at carbon at 67.9 ppm confirming the presence of a glycoside chain (Niassy et al., 2004Niassy, B., Um, B.H., Lobstein, A., Weniger, B., Koné, M., Anton, R., 2004. Flavonoides from Tephrosia deflexa et Tephrosia albifoliolis. Comptes Rendus Chimie. 7,993-996.; Moura et al., 2011Moura, A.C.S., Vilegas, W., Santos, L.C., 2011. Identificação de alguns constituintes químicos de Indigofera hirsuta L. (Fabaceae) por CLAE-IES-EM (TOF) e avaliação da atividade antirradicalar. Quim. Nova 34,1136-1140.). A carbonyl signal was detected at 176.6 ppm, and signals at 102.3 and 104.3 ppm were determined to be the anomeric carbons of rhamnose (C1''') and glucose (C1''), respectively. A spectrum band at 67.9 ppm was suggested to be a methylene carbon of glucose (C6''). The binding region rhamnosyl unit was assigned to (C6''), due to the signal at 6.2 ppm relative to the unsubstituted monomer. The methyl group of the rhamnose signals at 17.2 ppm (C6'''). So the heteroside chain was assigned the structure α-L-rhamnopyranoside-(1'''→6'')-O-β-D-glucopyranoside. The aromatic carbons signals assigned were (C8) 92.5 ppm, (C6) 100.2 ppm, (C5') 116.1ppm, (C2') 116.3 ppm and (C6') 121.7 ppm. The signal on the carbonyl was assigned to (C4) and non-hydrogenated carbons were assigned based on data retrieved from literature (Pizzolatti et al., 2003Pizzolatti, M.G., Cunha, J.R.A., Szpoganicz, B., Sousa, E., 2003. Flavonoides glicosilados das folhas e flores de Bauhinia forficata(Leguminosae). Quim. Nova 26,466-469.; Braca et al., 2004Braca, A., Prieto, J.M., Tommasi, N. de, Tomé, F., Morelli, I., 2004. Furostanol saponins and quercetin glycosides from the leaves of Helleborus viridis L. Phytochemistry 65,2921-2928.; Niassy et al., 2004Niassy, B., Um, B.H., Lobstein, A., Weniger, B., Koné, M., Anton, R., 2004. Flavonoides from Tephrosia deflexa et Tephrosia albifoliolis. Comptes Rendus Chimie. 7,993-996.; Silva et al., 2005Silva, D.A., Costa, D.A., Silva, D.F., Souza, M.F.V., Agra, M.F., Medeiros, I.A., Barbosa-Filho, J.M., Braz-Filho, R., 2005. Flavonoides glicosilados de Herissantia tiubae (K. Schum) Brizicky (Malvaceae) e testes farmacológicos preliminares do canferol 3,7-di-O-α-L-ramnopiranosídeo. Rev. Bras. Farmacogn. 15,23-29.; Cha and Lee, 2007Cha, B.C., Lee, E.H., 2007. Antioxidant activities of flavonoids the leaves of Smilax china. Korean J. Pharmacogn. 38,31-36.; Maisuthisakul et al., 2007Maisuthisakul, P., Suttajit, M., Pongsawatmanit, R., 2007. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 100,1409-1418.; Peres et al., 2009Peres, M.T.L.P., Simionatto, E., Hess, S.C,, Bonani, V.F.L., Candido, A.C.S., Castelli, C., Poppi, N.R., Honda, N.K., Cardoso, C.A.L., Faccenda, O., 2009. Estudos químicos e biológicos de Microgramma vacciinifolia (Langsd. & Fisch.) Copel (Polypodiaceae). Quim. Nova 32,897-901.; Moura et al., 2011Moura, A.C.S., Vilegas, W., Santos, L.C., 2011. Identificação de alguns constituintes químicos de Indigofera hirsuta L. (Fabaceae) por CLAE-IES-EM (TOF) e avaliação da atividade antirradicalar. Quim. Nova 34,1136-1140.) (C3) 132.4 ppm, (C5) 161.3 ppm, (C7) 166.7 ppm, (C9) 155.9 ppm and (C10) 104.2 ppm, (C1') 122.1 ppm, (C3') 145.8 ppm and (C4') 149.5 ppm (Pizzolatti et al., 2003Pizzolatti, M.G., Cunha, J.R.A., Szpoganicz, B., Sousa, E., 2003. Flavonoides glicosilados das folhas e flores de Bauhinia forficata(Leguminosae). Quim. Nova 26,466-469.; Yang et al., 2008Yang, C., Tang, Q.J., Zhang, L.Z., Wenying, L., 2008. Preparative isolation and purification of phenolic acids from Smilax china by high-speed counter-current chromatography. Sep. Purif. Technol. 61,474-478.). Compound 1 was identified by HPLC and confirmed by 1H and 13C NMR, and mass spectrometry, which showed m/z 609.12 [M-H]-. Fragmentation produced a fragment representing m/z 301.21 [M-147-163-H]-, indicating the loss of rhamnose (m/z 147) and glucose (m/z 163), respectively, (calculated for C27H30O16).

The 13C NMR spectrum (75 MHz in CD3OD) of compound 2 displayed 21 carbon signals, and a methyl carbon at 60.4 ppm confirming the presence of a glycoside chain (Pizzolatti et al., 2003Pizzolatti, M.G., Cunha, J.R.A., Szpoganicz, B., Sousa, E., 2003. Flavonoides glicosilados das folhas e flores de Bauhinia forficata(Leguminosae). Quim. Nova 26,466-469.; Braca et al., 2004Braca, A., Prieto, J.M., Tommasi, N. de, Tomé, F., Morelli, I., 2004. Furostanol saponins and quercetin glycosides from the leaves of Helleborus viridis L. Phytochemistry 65,2921-2928.; Silva et al., 2005Silva, D.A., Costa, D.A., Silva, D.F., Souza, M.F.V., Agra, M.F., Medeiros, I.A., Barbosa-Filho, J.M., Braz-Filho, R., 2005. Flavonoides glicosilados de Herissantia tiubae (K. Schum) Brizicky (Malvaceae) e testes farmacológicos preliminares do canferol 3,7-di-O-α-L-ramnopiranosídeo. Rev. Bras. Farmacogn. 15,23-29.; Moura et al., 2011Moura, A.C.S., Vilegas, W., Santos, L.C., 2011. Identificação de alguns constituintes químicos de Indigofera hirsuta L. (Fabaceae) por CLAE-IES-EM (TOF) e avaliação da atividade antirradicalar. Quim. Nova 34,1136-1140.). A carbonyl was identified at 178.0 ppm, and signal at 102.4 ppm were assigned to the anomeric carbons of rhamnose (C1''). The methylenic carbon of glucose (C6'') signal was determined at 60.4 ppm. Thus the glycoside chain was assigned the structure β-D-galactopyranosyl. The aromatic carbons were determined at (C8) 93.7 ppm, (C6) 98.9 ppm, (C5') 115.0 ppm (C2') 116.8 ppm and (C6') 121.9 ppm. The signal of the carbonyl, assigned to C4, and non-hydrogenated carbons were assigned by comparison with data from literature (Pizzolatti et al., 2003Pizzolatti, M.G., Cunha, J.R.A., Szpoganicz, B., Sousa, E., 2003. Flavonoides glicosilados das folhas e flores de Bauhinia forficata(Leguminosae). Quim. Nova 26,466-469.; Braca et al., 2004Braca, A., Prieto, J.M., Tommasi, N. de, Tomé, F., Morelli, I., 2004. Furostanol saponins and quercetin glycosides from the leaves of Helleborus viridis L. Phytochemistry 65,2921-2928.; Mariani et al., 2008Mariani, C., Braca, A., Vitalini, S., Tommasi, N. de, Visioli, F., Fico, G., 2008. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae). Phytochemistry 69,1220-1226.; Moura et al., 2011Moura, A.C.S., Vilegas, W., Santos, L.C., 2011. Identificação de alguns constituintes químicos de Indigofera hirsuta L. (Fabaceae) por CLAE-IES-EM (TOF) e avaliação da atividade antirradicalar. Quim. Nova 34,1136-1140.) (C3) 134.0 ppm, (C5) 161.0 ppm, (C7) 164.9 ppm, (C9) 157.3 ppm and (C10) 104.7 ppm, (C1') 121.6 ppm, (C3') 144.7 ppm and (C4') 148.8 ppm (Niassy et al., 2004Niassy, B., Um, B.H., Lobstein, A., Weniger, B., Koné, M., Anton, R., 2004. Flavonoides from Tephrosia deflexa et Tephrosia albifoliolis. Comptes Rendus Chimie. 7,993-996., Moura et al., 2011Moura, A.C.S., Vilegas, W., Santos, L.C., 2011. Identificação de alguns constituintes químicos de Indigofera hirsuta L. (Fabaceae) por CLAE-IES-EM (TOF) e avaliação da atividade antirradicalar. Quim. Nova 34,1136-1140.). Compound 2 was identified by HPLC and confirmed by 1H NMR and 13C NMR.


Conclusion

This is the first phytochemical study of S. fluminensis leaves and the flavonoids described in the literature. Considering the results obtained from the fractions of the studied extract, we isolated and elucidated the structure of quercetin-3-O-α-Lramnopyranoside (1-6)-O-β-D-glucopyranoside and quercetin-3-O-β-D-galactopyranoside.

Acknowledgment

The authors would like to thank Professor Virgínia Claudia da Silva (UFMT-ICET) for her important contributions to this work; we also thank Professor Lourdes Campaner dos Santos for equipment accessibility (Mass Spectra acquisition, Department of Chemistry, UNESP-Araraquara) and for CNPq for financial support (Process Nº 558225/2009-8).

REFERENCES

  • Andreata, R.H.P., 2006. Smilacaceae na Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brasil. Rodriguésia 57,647-657.
  • Braca, A., Prieto, J.M., Tommasi, N. de, Tomé, F., Morelli, I., 2004. Furostanol saponins and quercetin glycosides from the leaves of Helleborus viridis L. Phytochemistry 65,2921-2928.
  • Cha, B.C., Lee, E.H., 2007. Antioxidant activities of flavonoids the leaves of Smilax china. Korean J. Pharmacogn. 38,31-36.
  • Maisuthisakul, P., Suttajit, M., Pongsawatmanit, R., 2007. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 100,1409-1418.
  • Mandal, S.C., Jana, G.K., Das, S., Sahu, R., Venkidesh, R., Dewanjee, S., 2008. Hepatoprotective and antioxidant activities of Smilax chinensis L. root. Pharmacologyonline 2,529-535.
  • Mariani, C., Braca, A., Vitalini, S., Tommasi, N. de, Visioli, F., Fico, G., 2008. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae). Phytochemistry 69,1220-1226.
  • Moura, A.C.S., Vilegas, W., Santos, L.C., 2011. Identificação de alguns constituintes químicos de Indigofera hirsuta L. (Fabaceae) por CLAE-IES-EM (TOF) e avaliação da atividade antirradicalar. Quim. Nova 34,1136-1140.
  • Niassy, B., Um, B.H., Lobstein, A., Weniger, B., Koné, M., Anton, R., 2004. Flavonoides from Tephrosia deflexa et Tephrosia albifoliolis Comptes Rendus Chimie. 7,993-996.
  • Ozsoy, N., Can, A., Yanardag, R., Akev, N., 2008. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem. 110,571-583.
  • Peres, M.T.L.P., Simionatto, E., Hess, S.C,, Bonani, V.F.L., Candido, A.C.S., Castelli, C., Poppi, N.R., Honda, N.K., Cardoso, C.A.L., Faccenda, O., 2009. Estudos químicos e biológicos de Microgramma vacciinifolia (Langsd. & Fisch.) Copel (Polypodiaceae). Quim. Nova 32,897-901.
  • Pizzolatti, M.G., Cunha, J.R.A., Szpoganicz, B., Sousa, E., 2003. Flavonoides glicosilados das folhas e flores de Bauhinia forficata(Leguminosae). Quim. Nova 26,466-469.
  • Silva, D.A., Costa, D.A., Silva, D.F., Souza, M.F.V., Agra, M.F., Medeiros, I.A., Barbosa-Filho, J.M., Braz-Filho, R., 2005. Flavonoides glicosilados de Herissantia tiubae (K. Schum) Brizicky (Malvaceae) e testes farmacológicos preliminares do canferol 3,7-di-O-α-L-ramnopiranosídeo. Rev. Bras. Farmacogn. 15,23-29.
  • Wungsintaweekul, B., Umehara, K., Miyase, T., Noguchi, H., 2011. Estrogenic and anti-estrogenic compounds from the Thai medicinal plant, Smilax corbularia (Smilacaceae). Phytochemistry 72,495-502.
  • Xu, J., Li, X., Zhang, P., Li, Z.L., Wang, Y., 2005. Antiinflammatory constituents from the roots of Smilax bockii Warb. Arch. Pharm. Res. 28,395-399.
  • Yang, C., Tang, Q.J., Zhang, L.Z., Wenying, L., 2008. Preparative isolation and purification of phenolic acids from Smilax china by high-speed counter-current chromatography. Sep. Purif. Technol. 61,474-478.
  • Zhang, Q.F., Zhang, Z.R., Cheung, H.Y., 2009. Antioxidant activity of rhizoma Smmilacis glabrae extracts and its key constituentastilbin. Food Chem. 115,297-303.

Publication Dates

  • Publication in this collection
    Jul-Aug 2014

History

  • Received
    05 June 2014
  • Accepted
    21 June 2014
Sociedade Brasileira de Farmacognosia Universidade Federal do Paraná, Laboratório de Farmacognosia, Rua Pref. Lothario Meissner, 632 - Jd. Botânico, 80210-170, Curitiba, PR, Brasil, Tel/FAX (41) 3360-4062 - Curitiba - PR - Brazil
E-mail: revista@sbfgnosia.org.br