Acessibilidade / Reportar erro

Incidence and Outcomes Associated with Menopausal Status in COVID-19 Patients: A Systematic Review and Meta-analysis

Incidência e resultados associados ao estado da menopausa em pacientes com COVID-19: Uma revisão sistemática e metanálise

Abstract

Objective

Menopause causes several changes in the body that may affect the response to COVID-19. We aimed to investigate the possible association between menopausal status and incidence and outcomes in COVID-19 patients.

Methods

Combinations of keywordsCOVID-19, menopause, and estrogen were used to search the PubMed, Embase, Web-of-Science, and Scopus databases for articles reporting the incidence and outcomes of COVID-19 (discharge, length-of-admission, intensive care, or mortality) in premenopausal women, available through December 29, 2022. Data from studies comparing the incidence of COVID-19 infection with the age-matched male population were pooled and meta-analyzed using a random-effects model.

Results

Overall, 1,564 studies were retrieved, of which 12 were finally included in the systematic review to compare disease outcomes, and 6 were meta-analyzed for the incidence of COVID-19 in premenopausal and postmenopausal women. All studies reported better COVID-19-associated outcomes in premenopausal women compared with postmenopausal women. After adjusting for confounding factors, three studies found better outcomes in postmenopausal women, and two found no association between menopausal status and COVID-19 outcomes. Our meta-analysis found a higher incidence of COVID-19 infection among premenopausal women than postmenopausal women, when compared with age-matched men (odds ratio = 1.270; 95% confidence interval: 1.086–1.486; p = 0.003).

Conclusion

The incidence of COVID-19 was significantly higher in premenopausal women than in postmenopausal women when compared with age-matched men. Although premenopausal women may have more favorable COVID-19-associated outcomes, the presumed preventive effect of estrogens on the incidence and related outcomes of COVID-19 in premenopausal women cannot be proven at present. Further longitudinal studies comparing pre- and post-menopausal women are required to provide further insight into this matter.

Keywords
COVID-19; menopause; estrogen; climacteric

Resumo

Objetivo

A menopausa causa diversas alterações no corpo que podem afetar a resposta ao COVID-19. Nosso objetivo foi investigar a possível associação entre o status da menopausa e a incidência e os resultados em pacientes com COVID-19.

Métodos

Combinações de palavras-chave COVID-19, menopausa e estrogênio foram usadas para pesquisar os bancos de dados PubMed, Embase, Web-of-Science e Scopus para artigos relatando a incidência e os resultados do COVID-19 (alta, tempo de internação, tratamento intensivo cuidados ou mortalidade) em mulheres na pré-menopausa, disponível até 29 de dezembro de 2022. Dados de estudos comparando a incidência de infecção por COVID-19 com a população masculina da mesma idade foram agrupados e meta-analisados usando um modelo de efeitos aleatórios.

Resultados

No geral, 1.564 estudos foram recuperados, dos quais 12 foram finalmente incluídos na revisão sistemática para comparar os resultados da doença e 6 foram meta-analisados para a incidência de COVID-19 em mulheres na pré e pós-menopausa. Todos os estudos relataram melhores resultados associados ao COVID-19 em mulheres na pré-menopausa em comparação com mulheres na pós-menopausa. Após o ajuste para fatores de confusão, três estudos encontraram melhores resultados em mulheres na pós-menopausa e dois não encontraram associação entre o status da menopausa e os resultados do COVID-19. Nossa meta-análise encontrou uma maior incidência de infecção por COVID-19 entre mulheres na pré-menopausa do que mulheres na pós-menopausa, quando comparadas com homens da mesma idade (odds ratio = 1,270; intervalo de confiança de 95%: 1,086–1,486; p = 0,003).

Conclusão

A incidência de COVID-19 foi significativamente maior em mulheres na pré-menopausa do que em mulheres na pós-menopausa quando comparadas com homens da mesma idade. Embora as mulheres na pré-menopausa possam ter resultados mais favoráveis associados ao COVID-19, o efeito preventivo presumido dos estrogênios na incidência e nos resultados relacionados ao COVID-19 em mulheres na pré-menopausa não pode ser comprovado no momento. Mas estudos longitudinais comparando mulheres pré e pós-menopausa são necessários para fornecer mais informações sobre este assunto.

Palavras-chave
COVID 19; menopausa; estrogênio; climatério

Introduction

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced Coronavirus Disease 2019 (COVID-19) has caused serious illness and death around the world. The World Health Organization (WHO) reported > 546 million confirmed cases and > 6 million deaths as of August 17, 2022.11 Weekly epidemiological update on COVID-19 - 17 August 2022 2022 [105:[Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—17-august-2022
https://www.who.int/publications/m/item/...
Males reportedly have higher rates of disease severity,22 Wu X, Liu L, Jiao J, Yang L, Zhu B, Li X. Characterisation of clinical, laboratory and imaging factors related to mild vs. severe covid-19 infection: a systematic review and meta-analysis. Ann Med. 2020; 52(07):334–344 hospitalization, readmission,33 Akbari A, Fathabadi A, Razmi M, Zarifian A, Amiri M, Ghodsi A, et al. Characteristics, risk factors, and outcomes associated with readmission in COVID-19 patients: A systematic review and meta-analysis. Am J Emerg Med. 2022;52:166–173 and mortality44 Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020;23(05):1416–1424 compared with females with COVID-19. Following the recent reports on this sex difference,55 Abate BB, Kassie AM, Kassaw MW, Aragie TG, Masresha SA. Sex difference in coronavirus disease (COVID-19): a systematic review and meta-analysis. BMJ Open. 2020;10(10):e040129 researchers have tried to investigate the possible causes. In comparison with premenopausal women, postmenopausal women have considerably decreased plasma sex hormone concentrations (for example, estrogen and progesterone depletion).66 He H, Yang F, Liu X, Zeng X, Hu Q, Zhu Q, et al. Sex hormone ratio changes in men and postmenopausal women with coronary artery disease. Menopause. 2007;14(3 Pt 1):385–390 It has long been known that estrogen plays a role in the immune response and regulates both the innate and adaptive immune systems.77 Nadkarni S, McArthur S. Oestrogen and immunomodulation: new mechanisms that impact on peripheral and central immunity. Curr Opin Pharmacol. 2013;13(04):576–581 Previous reviews have put forward possible effects of estrogen on the entrance and replication of viruses, innate/adaptive immune responses, and thrombosis.88 Ma Q, Hao Z-W, Wang Y-F. The effect of estrogen in coronavirus disease 2019. Am J Physiol Lung Cell Mol Physiol. 2021;321(01): L219–L227 The protective role of estrogen is reportedly linked to downregulating the expression of angiotensin-converting enzyme 2 (ACE-2), which acts as the SARS-CoV-2 receptor on target cells, by estradiol and modulation of the immune response. In vivo studies have also shown that estrogen treatment can reduce morbidity and mortality in mice infected with the Influenza A virus,99 Pazos MA, Kraus TA, Muñoz-Fontela C, Moran TM. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice. PLoS One. 2012;7(07):e40502,1010 Robinson DP, Lorenzo ME, Jian W, Klein SL. Elevated 17β-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses. PLoS Pathog. 2011;7(07): e1002149 where higher levels of estrogen administration were associated with increased survival and lower pulmonary cytokine production after influenza infection.1010 Robinson DP, Lorenzo ME, Jian W, Klein SL. Elevated 17β-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses. PLoS Pathog. 2011;7(07): e1002149,1111 Al-Lami RA, Urban RJ, Volpi E, Algburi AMA, Baillargeon J. Sex Hormones and Novel Corona Virus Infectious Disease (COVID-19). Mayo Clin Proc. 2020;95(08):1710–1714

Despite the growing body of evidence addressing predisposing factors for COVID-19 (for example, older age, gender, comorbidities), little is known about the association between menopausal status and COVID-19 outcomes and the role of sex hormones in COVID-19. In the present study, we systematically reviewed the available literature on the link between menopausal status and COVID-19 incidence and outcomes, comparing pre- and postmenopausal women. We also pooled data from premenopausal or postmenopausal groups that had an age-matched control group to reduce the effects of confounding factors.

Methods

The present study followed the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA) standards.1212 Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(01):1 The study was approved by the Ethics Committee of Mashhad University of Medical Sciences, Mashhad, Iran (code: IR.MUMS.IRH.REC.1402.050).

The PubMed, SCOPUS, Web of Science, and Embase databases were searched for studies investigating the relationship between menopausal status and COVID-19 infection up to December 29, 2022. We manually searched Google Scholar and the reference lists of the included papers to find other studies that might meet our inclusion criteria. The search terms COVID-19, menopause, and estrogen were used in various combinations.

Initially, all studies in the English language that reported information on menopausal status and COVID-19 patients were included with no restrictions on publication date.1313 Morrison A, Polisena J, Husereau D, Moulton K, Clark M, Fiander M, et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int J Technol Assess Health Care. 2012;28(02):138–144 After removing the duplicates, all articles comparing the incidence and outcomes of premenopausal and postmenopausal females with COVID-19 were included in the systematic review. Studies comparing the variables with age-matched males were included in the meta-analysis. Review articles, case reports, non-human studies, letters, reports based on Web sites, and government regulatory documents were all excluded.

The study selection was performed by two reviewers (Akbari A. and Hadizadeh A.) based on the title, abstract, and full text of the papers. When there was no agreement, the decision was made by a third reviewer (Zarifian A.), who checked eligibility to make the final decision. Two reviewers (Akbari A. and Hadizadeh A.) independently assessed the quality of the included papers. The Joanna Briggs Institute (JBI) assessment tools were used to assess the included papers.1414 Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of etiology and risk. Joanna briggs institute reviewer's manual The Joanna Briggs Institute; 2017:5 Any disagreement was resolved by discussion between the authors.

Study characteristics including the first author's surname, publication date, title, study design, site of study (country), sample size, menopausal criteria, and patient recruitment date were extracted from the included articles. COVID-19 outcomes (discharge, intensive care unit [ICU] admission, length of hospitalization, and mortality) as well as further analysis of the initial findings were extracted and summarized in Chart 1. Search strategies used in different databases are listed in supplementary Chart 2.

Chart 1
Characteristics and outcomes of included studies
Chart 2
Search strategy

Quantitative analyses were conducted on studies reporting the incidence of COVID-19 infection among premenopausal females, postmenopausal females, and age-matched males. The incidence of COVID-19 in premenopausal women was compared with that in men of the same age, and a similar comparison was made for postmenopausal women. The odds ratio (OR) of these comparisons was calculated and reported with the 95% confidence interval (CI) in brackets. A p-value < 0.05 was considered statistically significant. Interstudy heterogeneity was quantitatively calculated and presented using the I2 index. Due to high heterogeneity (Cochran Q < 0.05), we used the random-effects model for our meta-analysis. Sensitivity analysis was performed using fixed-effects model analyses. Potential publication bias was investigated using funnel plots, as well as the Begg and Egger test. Statistical analyses were performed using Comprehensive Meta-Analysis Software (CMA v.3, Biostat Inc., Englewood, NJ, USA).

Results

A total of 1,564 studies were found by searching the databases, of which 775 were duplicates. Of the 789 remaining papers, 34 were reviewed in full text. Finally, 12 studies were included in the present systematic review1515 Ding T, Zhang J, Wang T, Cui P, Chen Z, Jiang J, et al. Potential Influence of Menstrual Status and Sex Hormones on Female Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Cross-sectional Multicenter Study in Wuhan, China. Clin Infect Dis. 2021;72(09):e240–e2482626 Costeira R, Lee KA, Murray B, Christiansen C, Castillo-Fernandez J, Lochlainn MN, et al. Estrogen and COVID-19 symptoms: Associations in women from the COVID Symptom Study. PLoS One. 2021;16(09):e0257051 (Fig. 1) and 6 were included in the meta-analysis.1515 Ding T, Zhang J, Wang T, Cui P, Chen Z, Jiang J, et al. Potential Influence of Menstrual Status and Sex Hormones on Female Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Cross-sectional Multicenter Study in Wuhan, China. Clin Infect Dis. 2021;72(09):e240–e2482525 Toure T, Ravindra L, Monteiro F, Gopalakrishnan G. PMON201 The Impact of Menopause on Poor Outcomes in Hospitalized Patients with COVID-19 Infection. J Endocr Soc. 2022;6(01):686 The total number of patients in the 12 included studies was 331,821, ranging from 147 to 152,637. Seven studies were conducted in Asia (five in China1515 Ding T, Zhang J, Wang T, Cui P, Chen Z, Jiang J, et al. Potential Influence of Menstrual Status and Sex Hormones on Female Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Cross-sectional Multicenter Study in Wuhan, China. Clin Infect Dis. 2021;72(09):e240–e248,1616 Wang X-W, Hu H, Xu Z-Y, Zhang G-K, Yu Q-H, Yang H-L, et al. Association of menopausal status with COVID-19 outcomes: a propensity score matching analysis. Biol Sex Differ. 2021;12(01): 16,2020 Sha J, Qie G, Yao Q, Sun W, Wang C, Zhang Z, et al. Sex Differences on Clinical Characteristics, Severity, and Mortality in Adult Patients With COVID-19: A Multicentre Retrospective Study. Front Med (Lausanne). 2021;8:607059,2222 Liu D, Ding H-L, Chen Y, Chen D-H, Yang C, Yang L-M, et al. Comparison of the clinical characteristics and mortalities of severe COVID-19 patients between pre- and post-menopause women and age-matched men. Aging (Albany NY). 2021;13 (18):21903–21913,2323 Wang M, Jiang N, Li C, Wang J, Yang H, Liu L, et al. Sex-Disaggregated Data on Clinical Characteristics and Outcomes of Hospitalized Patients With COVID-19: A Retrospective Study. Front Cell Infect Microbiol. 2021;11:680422 and two in India1717 Mishra N, Sharma R, Mishra P, Singh M, Seth S, Deori T, et al. COVID-19 and Menstrual Status: Is Menopause an Independent Risk Factor for SARS Cov-2? J Midlife Health. 2020;11(04): 240–249,2121 Garg R, Agrawal P, Gautam A, Pursani N, Agarwal M, Agarwal A, et al. COVID-19 Outcomes in Postmenopausal and Perimenopausal Females: Is Estrogen Hormone Attributing to Gender Differences? J Midlife Health. 2020;11(04):250–256), one each in Canada,1818 O'Brien J, Du KY, Peng C. Incidence, clinical features, and outcomes of COVID-19 in Canada: impact of sex and age. J Ovarian Res. 2020; 13(01):137 United States,2525 Toure T, Ravindra L, Monteiro F, Gopalakrishnan G. PMON201 The Impact of Menopause on Poor Outcomes in Hospitalized Patients with COVID-19 Infection. J Endocr Soc. 2022;6(01):686 Italy,2424 Ferretti VV, Klersy C, Bruno R, Cutti S, Nappi RE. Men with COVID-19 die. Women survive. Maturitas. 2022;158:34–36 and United Kingdom,2626 Costeira R, Lee KA, Murray B, Christiansen C, Castillo-Fernandez J, Lochlainn MN, et al. Estrogen and COVID-19 symptoms: Associations in women from the COVID Symptom Study. PLoS One. 2021;16(09):e0257051 and one was a multicenter study.1919 Seeland U, Coluzzi F, Simmaco M, Mura C, Bourne PE, Heiland M, et al. Evidence for treatment with estradiol for women with SARSCoV-2 infection. BMC Med. 2020;18(01):369 All but one cross-sectional study1515 Ding T, Zhang J, Wang T, Cui P, Chen Z, Jiang J, et al. Potential Influence of Menstrual Status and Sex Hormones on Female Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Cross-sectional Multicenter Study in Wuhan, China. Clin Infect Dis. 2021;72(09):e240–e248 had a retrospective cohort design.

Fig. 1
PRISMA flow chart depicts the flow of information through the different phases of the study.

Incidence of COVID-19

The meta-analysis of six studies comparing premenopausal and postmenopausal females with age-matched males showed a higher incidence of COVID-19 in premenopausal females than in postmenopausal females (OR = 1.270; 95%CI [1.086–1.486]; p = 0.003) (Fig. 2). A sensitivity analysis for this comparison was done on two studies that used > 1 year of amenorrhea as menopausal criteria (21, 23), which showed a significantly higher incidence of COVID-19 in the premenopausal group compared with postmenopausal women (fixed effect model: OR = 1.345; 95%CI: 1.164–1.555; p < 0.0001). In these 6 studies, the total number of COVID-19 cases was 19,861 in the premenopausal group and 18,610 in the postmenopausal group.

Fig. 2
Meta-analysis of studies comparing premenopausal and postmenopausal females with age-matched males.

Outcomes of COVID-19

The study characteristics of 12 included studies are summarized in Table 1. All studies reported better COVID-19-associated outcomes in premenopausal women than in postmenopausal women. However, after adjusting for confounding factors, premenopausal women had more favorable COVID-19 outcomes in only three studies (15, 16, 22), while two others found postmenopausal women to have better COVID-19 outcomes (20, 24), and three found no significant difference in this regard (17, 21, 23), while three studies did not use multivariate analysis (Chart 1). The confounding factors adjusted for in each study are described in Chart 1, with all studies adjusted for age and comorbidities. All included studies were of adequate quality (Chart 3).

Table 1

Chart 3
(B) Quality assessment table for cross-sectional studies based on JBI Critical Appraisal

Publication Bias

The Egger and Begg tests revealed no significant publication bias for the reported incidence rates in the included studies. Fig. 2 shows the funnel plot for the COVID-19 incidence, which also indicates no significant publication bias.

Discussion

The meta-analysis of studies comparing premenopausal and postmenopausal females with age-matched males showed a higher incidence of COVID-19 in premenopausal women than in postmenopausal women, and the sensitivity analysis of studies that used > 1 year of amenorrhea as menopausal criteria confirmed it. We have shown that premenopausal women have better COVID-19-associated outcomes than postmenopausal women. Our findings revealed that the available literature could not still yield conclusive evidence on whether menopausal status (that is, serum estrogen levels) has a significant association with outcomes of COVID-19. Therefore, we are not able to determine if the sex-based disparities in COVID-19 incidence and outcomes is associated with estrogen levels, or if other potential effects may be influential as well. Consistent with the main finding of our study, Mishra et al. reported that most premenopausal women were more likely to have mild symptoms than postmenopausal women.1717 Mishra N, Sharma R, Mishra P, Singh M, Seth S, Deori T, et al. COVID-19 and Menstrual Status: Is Menopause an Independent Risk Factor for SARS Cov-2? J Midlife Health. 2020;11(04): 240–249

The differences in COVID-19-associated outcomes between premenopausal women and postmenopausal women can be explained by several factors such as age, estrogen depletion, sedentary lifestyle, and comorbidities, which are more common in postmenopausal women.2727 Biswas M, Rahaman S, Biswas TK, Haque Z, Ibrahim B. Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Intervirology. 2020;64(01):1–12 Some studies reported that patients affected by COVID-19 were predominantly men,2828 Li LQ, Huang T, Wang YQ, Wang Z-P, Liang Y, Huang T-B, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(06):577–583 while some others reported both sexes as being equally affected, or women to be predominant.2929 Rozenberg S, Vandromme J, Martin C. Are we equal in adversity? Does Covid-19 affect women and men differently?. Maturitas. 2020;138:62–68 In addition, disease severity and mortality rates were reported to be higher in men than in women.2929 Rozenberg S, Vandromme J, Martin C. Are we equal in adversity? Does Covid-19 affect women and men differently?. Maturitas. 2020;138:62–68 However, sex differences in morbidity and mortality were less evident in patients > 70 years old when women are in postmenopausal status.3030 Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13(12): 875–887,3131 Suba Z. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients. J Pharm Pharm Sci. 2020;23(01):75–85 One possible justification for these findings arises from the fact that estradiol downregulates the expression of ACE-2 mRNA in bronchial epithelial cells, the host-cell receptor which has been proven to be used by SARS-CoV-2 virions for viral uptake.3232 Stelzig KE, Canepa-Escaro F, Schiliro M, Berdnikovs S, Prakash YS, Chiarella SE. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2020;318(06):L1280–L1281 However, our results did not confirm these findings.

The literature suggests that cytokine storm leads to adverse clinical manifestations or even acute deterioration and mortality in critically ill patients with COVD-19.3333 Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93(01):250–256 Impaired acquired immune responses and uncontrolled innate inflammatory responses may be associated with the mechanism of cytokine storm in COVID-19. Early control of cytokine storm by anti-inflammatory treatments may improve the survival rate of patients with COVID-19.3434 Akbari A, Razmi M, Sedaghat A, Dana SMMA, Amiri M, Halvani AM, et al. Comparative effectiveness of pharmacological interventions on mortality and the average length of hospital stay of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Expert Rev Anti Infect Ther. 2022; 20(04):585–609 It is well-known that pretreatment of human macrophages with estrogen can reduce tumor necrosis factor alpha (TNF-α) expression by inhibiting nuclear factor-kappa B (NFk-B) and JAK2 signaling pathways.3535 Li F, Boon ACM, Michelson AP, Foraker RE, Zhan M, Payne PRO. Estrogen hormone is an essential sex factor inhibiting inflammation and immune response in COVID-19. Sci Rep. 2022;12(01):9462 Estrogen also attenuates monocyte and macrophage recruitment by downregulating the expression of chemokine ligand 2 during inflammation and dampening toll-like receptor 4-mediated NFk-B activation.3636 Murphy AJ, Guyre PM, Pioli PA. Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol. 2010;184(09): 5029–5037 Along with its immunomodulatory properties, estrogen alters the expression of T helper 1 (Th-1) and Th-2 type cytokines, inhibits overactive inflammatory processes, and restores homeostatic conditions, thereby averting cytokine storm syndrome.3737 Beagley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol. 2003;38(01):13–22,3838 Moulton VR. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front Immunol. 2018;9:2279 In a recent review, estrogens were shown to have remarkable anti-inflammatory and immunomodulatory effects on COVID-19 infections.3939 Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Al-Maiahy TJ, Cruz-Martins N, Batiha GE-S. The Looming Effects of Estrogen in Covid-19: A Rocky Rollout. Front Nutr. 2021;8:649128 Another study showed that SARS-CoV-2 induces stress in the endoplasmic reticulum that exacerbates the infection, and estrogen may play a role in reducing the endoplasmic reticulum stress through stimulating estrogen-mediated signaling pathways.4040 Shabbir S, Hafeez A, Rafiq MA, Khan MJ. Estrogen shields women from COVID-19 complications by reducing ER stress. Med Hypotheses. 2020;143:110148 An in-vivo study by Channappanavar et al. showed a protective effect of estrogen against COVID-19 death. They demonstrated that female mice given an estrogen receptor antagonist had a higher mortality rate due to SARS-COV-2 infection. Additionally, they noted that ovariectomized and gonadectomized female mice had a poor prognosis and considerable lung involvement with proinflammatory cytokines and chemokines.4141 Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. J Immunol. 2017; 198(10):4046–4053 Pirhadi et al. have also reported several antiviral effects for estrogen therapy through immunomodulatory and nonimmune mechanisms.4242 Pirhadi R, Sinai Talaulikar V, Onwude J, Manyonda I. Could Estrogen Protect Women From COVID-19? J Clin Med Res. 2020;12(10):634–639 Improving the hydration of the oral cavity by stimulating hyaluronic acid production and enhancing the lower airway function can also be other probable mechanisms by which estrogen can lead to increased production of mucus-containing antiviral compounds.4343 Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD. Estradiol increases mucus synthesis in bronchial epithelial cells. PLoS One. 2014;9(06):e100633,4444 Di Stadio A, Della Volpe A, Ralli M, Ricci G. Gender differences in COVID-19 infection. The estrogen effect on upper and lower airways. Can it help to figure out a treatment? Eur Rev Med Pharmacol Sci. 2020;24(10):5195–5196 In addition, estrogen therapy has been shown to decrease viral titers.3131 Suba Z. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients. J Pharm Pharm Sci. 2020;23(01):75–85 It may also decrease neutrophil recruitment, edema, and inducible nitric oxide synthase in the lungs. All of these have been associated with lower disease intensity.4545 Zafari Zangeneh F, Sarmast Shoushtari M. Estradiol and COVID-19: Does 17-Estradiol Have an Immune-Protective Function in Women Against Coronavirus? J Family Reprod Health. 2021;15 (03):150–159

The results of our meta-analysis were not inconsistent with the previous large cohort of 44,268 postmenopausal and 108,369 premenopausal women, which showed that there was no significant difference between postmenopausal and premenopausal women in terms of COVID-19 incidence.2626 Costeira R, Lee KA, Murray B, Christiansen C, Castillo-Fernandez J, Lochlainn MN, et al. Estrogen and COVID-19 symptoms: Associations in women from the COVID Symptom Study. PLoS One. 2021;16(09):e0257051 Also, a cross-sectional study by Ding et al. showed a higher prevalence of COVID-19 in postmenopausal women compared with premenopausal women.1515 Ding T, Zhang J, Wang T, Cui P, Chen Z, Jiang J, et al. Potential Influence of Menstrual Status and Sex Hormones on Female Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Cross-sectional Multicenter Study in Wuhan, China. Clin Infect Dis. 2021;72(09):e240–e248 Costeira et al. also showed that COVID-19 patients who used oral contraceptive pills (85% of whom were premenopausal) had a lower rate of hospitalization. According to a retrospective cohort study involving 5,451 women with COVID-19, those who underwent hormone replacement therapy (HRT) had a reduced mortality risk compared with women not receiving HRT.4646 Dambha-Miller H, Hinton W, Wilcox CR, Joy M, Feher M, de Lusignan S. Mortality in COVID-19 among women on hormone replacement therapy: a retrospective cohort study. Fam Pract. 2022;39(06):1049–1055 Furthermore, an important finding in the study by Seeland et al. was the strong positive effect of regular estradiol therapy on the survival of postmenopausal women with COVID-19.1919 Seeland U, Coluzzi F, Simmaco M, Mura C, Bourne PE, Heiland M, et al. Evidence for treatment with estradiol for women with SARSCoV-2 infection. BMC Med. 2020;18(01):369 We recommend future meta-analyses examine the role of oral contraceptive pills and hormone replacement therapy in association with COVID-19 infections. In addition, previous studies suggest that poorer COVID-19 outcome in obese patients may also be related to the level of estradiol produced by the fat mass.4747 Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, et al. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21 (11):e13128

In general, it is believed that estrogens have protective cardiovascular and metabolic effects. Studies have shown that females have a lower risk of cardiovascular events compared with males of the same age, while this risk roughly levels off after menopause.2929 Rozenberg S, Vandromme J, Martin C. Are we equal in adversity? Does Covid-19 affect women and men differently?. Maturitas. 2020;138:62–68,4848 Bechmann N, Barthel A, Schedl A, Herzig S, Varga Z, Gebhard C, et al. Sexual dimorphism in COVID-19: potential clinical and public health implications. Lancet Diabetes Endocrinol. 2022;10 (03):221–230,4949 Lagou V, Mägi R, Hottenga J-J, Grallert H, Perry JRB, Bouatia-Naji N, et al; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nat Commun. 2021; 12(01):24 Activation of G-protein-coupled receptor 30 (GPR-30) by estrogen has been shown to reduce the extent of ischemia and reperfusion injuries.5050 Speyer CL, Rancilio NJ, McClintock SD, Crawford JD, Gao H, Sarma JV, et al. Regulatory effects of estrogen on acute lung inflammation in mice. Am J Physiol Cell Physiol. 2005;288(04):C881–C890 Reducing the low-density lipoprotein (LDL) oxidation and subsequently the oxidative stress is another reported mechanism.5151 Subbiah MT. Estrogen replacement therapy and cardioprotection: mechanisms and controversies. Brazilian journal of medical and biological research =. Rev Bras Pesqui Med Biol. 2002;35(03): 271–276 It has also been shown that women who received HRT early after menopause had a considerably lower risk of cardiovascular events.5252 Schierbeck LL, Rejnmark L, Tofteng CL, Stilgren L, Eiken P, Mosekilde L, et al. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ. 2012;345:e6409 However, HRT is associated with venous thromboembolism (VTE),5353 Rovinski D, Ramos RB, Fighera TM, Casanova GK, Spritzer PM. Risk of venous thromboembolism events in postmenopausal women using oral versus non-oral hormone therapy: A systematic review and meta-analysis. Thromb Res. 2018;168:83–95 which occurs in ~ 15% of severe to critical COVID-19 patients.5454 Suh YJ, Hong H, Ohana M, Bompard F, Revel M-P, Valle C, et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis. Radiology. 2021;298(02): E70–E80 Future studies should compare symptoms of COVID-19 between premenopausal and postmenopausal women to decipher the role of menopausal status and hormonal changes in COVID-19 severity.

The present study had several limitations. First, the effects of estrogen on COVID-19 outcomes may be dose-dependent, which cannot be investigated because the available studies have not assessed the serum sex hormone concentrations in COVID-19 patients. Second, postmenopausal women reportedly have higher concentrations of inflammatory cytokines compared with premenopausal women,5555 Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020;95:332–3395757 Akbari H, Tabrizi R, Lankarani KB, Aria H, Vakili S, Asadian F, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci. 2020;258:118167 which can be a confounding factor that cannot be incorporated in our analyses. Third, the observed differences between premenopausal and postmenopausal groups are mainly due to factors such as age and comorbidities.2727 Biswas M, Rahaman S, Biswas TK, Haque Z, Ibrahim B. Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Intervirology. 2020;64(01):1–12 To determine the effects of sex hormones, we performed an age-matched analysis, which, however, cannot remove all confounding effects. Another limitation of the present review is the limited number of well-designed studies found with our strict inclusion criteria. Finally, some of the included studies have not used precise criteria to determine menopause in women, which can add to heterogeneity of the results.

Conclusion

Premenopausal women have better COVID-19-associated outcomes than postmenopausal women. In addition, the incidence of COVID-19 was considerably higher in premenopausal women than in postmenopausal women when compared with age-matched men. However, the presumed preventive effects of estrogen on the incidence and outcomes of COVID-19 in premenopausal women cannot be proven at present, as other well-known risk factors that are more common in older women must also be considered. Further longitudinal studies comparing pre- and postmenopausal women are required to provide further insight into this matter.

Acknowledgments

We thank the Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran and Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran for their scientific support of this manuscript.

References

  • 1
    Weekly epidemiological update on COVID-19 - 17 August 2022 2022 [105:[Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—17-august-2022
    » https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—17-august-2022
  • 2
    Wu X, Liu L, Jiao J, Yang L, Zhu B, Li X. Characterisation of clinical, laboratory and imaging factors related to mild vs. severe covid-19 infection: a systematic review and meta-analysis. Ann Med. 2020; 52(07):334–344
  • 3
    Akbari A, Fathabadi A, Razmi M, Zarifian A, Amiri M, Ghodsi A, et al. Characteristics, risk factors, and outcomes associated with readmission in COVID-19 patients: A systematic review and meta-analysis. Am J Emerg Med. 2022;52:166–173
  • 4
    Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020;23(05):1416–1424
  • 5
    Abate BB, Kassie AM, Kassaw MW, Aragie TG, Masresha SA. Sex difference in coronavirus disease (COVID-19): a systematic review and meta-analysis. BMJ Open. 2020;10(10):e040129
  • 6
    He H, Yang F, Liu X, Zeng X, Hu Q, Zhu Q, et al. Sex hormone ratio changes in men and postmenopausal women with coronary artery disease. Menopause. 2007;14(3 Pt 1):385–390
  • 7
    Nadkarni S, McArthur S. Oestrogen and immunomodulation: new mechanisms that impact on peripheral and central immunity. Curr Opin Pharmacol. 2013;13(04):576–581
  • 8
    Ma Q, Hao Z-W, Wang Y-F. The effect of estrogen in coronavirus disease 2019. Am J Physiol Lung Cell Mol Physiol. 2021;321(01): L219–L227
  • 9
    Pazos MA, Kraus TA, Muñoz-Fontela C, Moran TM. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice. PLoS One. 2012;7(07):e40502
  • 10
    Robinson DP, Lorenzo ME, Jian W, Klein SL. Elevated 17β-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses. PLoS Pathog. 2011;7(07): e1002149
  • 11
    Al-Lami RA, Urban RJ, Volpi E, Algburi AMA, Baillargeon J. Sex Hormones and Novel Corona Virus Infectious Disease (COVID-19). Mayo Clin Proc. 2020;95(08):1710–1714
  • 12
    Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(01):1
  • 13
    Morrison A, Polisena J, Husereau D, Moulton K, Clark M, Fiander M, et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int J Technol Assess Health Care. 2012;28(02):138–144
  • 14
    Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of etiology and risk. Joanna briggs institute reviewer's manual The Joanna Briggs Institute; 2017:5
  • 15
    Ding T, Zhang J, Wang T, Cui P, Chen Z, Jiang J, et al. Potential Influence of Menstrual Status and Sex Hormones on Female Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Cross-sectional Multicenter Study in Wuhan, China. Clin Infect Dis. 2021;72(09):e240–e248
  • 16
    Wang X-W, Hu H, Xu Z-Y, Zhang G-K, Yu Q-H, Yang H-L, et al. Association of menopausal status with COVID-19 outcomes: a propensity score matching analysis. Biol Sex Differ. 2021;12(01): 16
  • 17
    Mishra N, Sharma R, Mishra P, Singh M, Seth S, Deori T, et al. COVID-19 and Menstrual Status: Is Menopause an Independent Risk Factor for SARS Cov-2? J Midlife Health. 2020;11(04): 240–249
  • 18
    O'Brien J, Du KY, Peng C. Incidence, clinical features, and outcomes of COVID-19 in Canada: impact of sex and age. J Ovarian Res. 2020; 13(01):137
  • 19
    Seeland U, Coluzzi F, Simmaco M, Mura C, Bourne PE, Heiland M, et al. Evidence for treatment with estradiol for women with SARSCoV-2 infection. BMC Med. 2020;18(01):369
  • 20
    Sha J, Qie G, Yao Q, Sun W, Wang C, Zhang Z, et al. Sex Differences on Clinical Characteristics, Severity, and Mortality in Adult Patients With COVID-19: A Multicentre Retrospective Study. Front Med (Lausanne). 2021;8:607059
  • 21
    Garg R, Agrawal P, Gautam A, Pursani N, Agarwal M, Agarwal A, et al. COVID-19 Outcomes in Postmenopausal and Perimenopausal Females: Is Estrogen Hormone Attributing to Gender Differences? J Midlife Health. 2020;11(04):250–256
  • 22
    Liu D, Ding H-L, Chen Y, Chen D-H, Yang C, Yang L-M, et al. Comparison of the clinical characteristics and mortalities of severe COVID-19 patients between pre- and post-menopause women and age-matched men. Aging (Albany NY). 2021;13 (18):21903–21913
  • 23
    Wang M, Jiang N, Li C, Wang J, Yang H, Liu L, et al. Sex-Disaggregated Data on Clinical Characteristics and Outcomes of Hospitalized Patients With COVID-19: A Retrospective Study. Front Cell Infect Microbiol. 2021;11:680422
  • 24
    Ferretti VV, Klersy C, Bruno R, Cutti S, Nappi RE. Men with COVID-19 die. Women survive. Maturitas. 2022;158:34–36
  • 25
    Toure T, Ravindra L, Monteiro F, Gopalakrishnan G. PMON201 The Impact of Menopause on Poor Outcomes in Hospitalized Patients with COVID-19 Infection. J Endocr Soc. 2022;6(01):686
  • 26
    Costeira R, Lee KA, Murray B, Christiansen C, Castillo-Fernandez J, Lochlainn MN, et al. Estrogen and COVID-19 symptoms: Associations in women from the COVID Symptom Study. PLoS One. 2021;16(09):e0257051
  • 27
    Biswas M, Rahaman S, Biswas TK, Haque Z, Ibrahim B. Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Intervirology. 2020;64(01):1–12
  • 28
    Li LQ, Huang T, Wang YQ, Wang Z-P, Liang Y, Huang T-B, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(06):577–583
  • 29
    Rozenberg S, Vandromme J, Martin C. Are we equal in adversity? Does Covid-19 affect women and men differently?. Maturitas. 2020;138:62–68
  • 30
    Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13(12): 875–887
  • 31
    Suba Z. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients. J Pharm Pharm Sci. 2020;23(01):75–85
  • 32
    Stelzig KE, Canepa-Escaro F, Schiliro M, Berdnikovs S, Prakash YS, Chiarella SE. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2020;318(06):L1280–L1281
  • 33
    Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93(01):250–256
  • 34
    Akbari A, Razmi M, Sedaghat A, Dana SMMA, Amiri M, Halvani AM, et al. Comparative effectiveness of pharmacological interventions on mortality and the average length of hospital stay of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Expert Rev Anti Infect Ther. 2022; 20(04):585–609
  • 35
    Li F, Boon ACM, Michelson AP, Foraker RE, Zhan M, Payne PRO. Estrogen hormone is an essential sex factor inhibiting inflammation and immune response in COVID-19. Sci Rep. 2022;12(01):9462
  • 36
    Murphy AJ, Guyre PM, Pioli PA. Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol. 2010;184(09): 5029–5037
  • 37
    Beagley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol. 2003;38(01):13–22
  • 38
    Moulton VR. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front Immunol. 2018;9:2279
  • 39
    Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Al-Maiahy TJ, Cruz-Martins N, Batiha GE-S. The Looming Effects of Estrogen in Covid-19: A Rocky Rollout. Front Nutr. 2021;8:649128
  • 40
    Shabbir S, Hafeez A, Rafiq MA, Khan MJ. Estrogen shields women from COVID-19 complications by reducing ER stress. Med Hypotheses. 2020;143:110148
  • 41
    Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. J Immunol. 2017; 198(10):4046–4053
  • 42
    Pirhadi R, Sinai Talaulikar V, Onwude J, Manyonda I. Could Estrogen Protect Women From COVID-19? J Clin Med Res. 2020;12(10):634–639
  • 43
    Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD. Estradiol increases mucus synthesis in bronchial epithelial cells. PLoS One. 2014;9(06):e100633
  • 44
    Di Stadio A, Della Volpe A, Ralli M, Ricci G. Gender differences in COVID-19 infection. The estrogen effect on upper and lower airways. Can it help to figure out a treatment? Eur Rev Med Pharmacol Sci. 2020;24(10):5195–5196
  • 45
    Zafari Zangeneh F, Sarmast Shoushtari M. Estradiol and COVID-19: Does 17-Estradiol Have an Immune-Protective Function in Women Against Coronavirus? J Family Reprod Health. 2021;15 (03):150–159
  • 46
    Dambha-Miller H, Hinton W, Wilcox CR, Joy M, Feher M, de Lusignan S. Mortality in COVID-19 among women on hormone replacement therapy: a retrospective cohort study. Fam Pract. 2022;39(06):1049–1055
  • 47
    Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, et al. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21 (11):e13128
  • 48
    Bechmann N, Barthel A, Schedl A, Herzig S, Varga Z, Gebhard C, et al. Sexual dimorphism in COVID-19: potential clinical and public health implications. Lancet Diabetes Endocrinol. 2022;10 (03):221–230
  • 49
    Lagou V, Mägi R, Hottenga J-J, Grallert H, Perry JRB, Bouatia-Naji N, et al; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nat Commun. 2021; 12(01):24
  • 50
    Speyer CL, Rancilio NJ, McClintock SD, Crawford JD, Gao H, Sarma JV, et al. Regulatory effects of estrogen on acute lung inflammation in mice. Am J Physiol Cell Physiol. 2005;288(04):C881–C890
  • 51
    Subbiah MT. Estrogen replacement therapy and cardioprotection: mechanisms and controversies. Brazilian journal of medical and biological research =. Rev Bras Pesqui Med Biol. 2002;35(03): 271–276
  • 52
    Schierbeck LL, Rejnmark L, Tofteng CL, Stilgren L, Eiken P, Mosekilde L, et al. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ. 2012;345:e6409
  • 53
    Rovinski D, Ramos RB, Fighera TM, Casanova GK, Spritzer PM. Risk of venous thromboembolism events in postmenopausal women using oral versus non-oral hormone therapy: A systematic review and meta-analysis. Thromb Res. 2018;168:83–95
  • 54
    Suh YJ, Hong H, Ohana M, Bompard F, Revel M-P, Valle C, et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis. Radiology. 2021;298(02): E70–E80
  • 55
    Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020;95:332–339
  • 56
    Honour JW. Biochemistry of the menopause. Ann Clin Biochem. 2018;55(01):18–33
  • 57
    Akbari H, Tabrizi R, Lankarani KB, Aria H, Vakili S, Asadian F, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci. 2020;258:118167

Publication Dates

  • Publication in this collection
    15 Jan 2024
  • Date of issue
    2023

History

  • Received
    15 Mar 2023
  • Accepted
    14 July 2023
Federação Brasileira das Sociedades de Ginecologia e Obstetrícia Av. Brigadeiro Luís Antônio, 3421, sala 903 - Jardim Paulista, 01401-001 São Paulo SP - Brasil, Tel. (55 11) 5573-4919 - Rio de Janeiro - RJ - Brazil
E-mail: editorial.office@febrasgo.org.br