Acessibilidade / Reportar erro

Sensitization with Eustrongylides sp. (Nematoda: Dioctophymatidae) antigens induce production of specific IgG and IgE in murine model

Sensibilização com antígenos de Eustrongylides sp. (Nematoda: Dioctophymatidae) induzindo a produção de IgG e IgE em modelo murino

Abstract

Fish consumption plays an important role in human diet. Hoplias malabaricus, commonly known as traíra, is a freshwater fish widely appreciated in several Brazilian states and frequently infected by Eustrongylides sp. fourth-instar larvae (L4). The aim of the present study was to evaluate allergenic potential of Eustrongylides sp. L4 crude extract (CEE). BALB/c mice were immunized intraperitoneally (IP) by 10 μg CEE with 2 mg of aluminum hydroxide on days 0 and 35. Specific IgG and IgE antibody levels were determined after immunization and cellular immunity was evaluated by assessing intradermal reaction in ear pavilion. Epicutaneous sensitization was performed in dorsal region by antigen exposure using a Finn-type chamber containing 50 μg of CEE or saline solution, followed by evaluation of specific antibody levels. IP immunization resulted in a gradual increase in IgG antibody levels and transitory IgE production. Significant increase in ear thickness was observed in cellular hypersensitivity reaction. In case of antigen exposure by epicutaneous route, CEE was able to induce meaningfully increased levels of specific IgG and IgE antibodies as well as heightened cellular immunity. Both intraperitoneal immunization and epicutaneous contact with Eustrongylides sp. larval antigens were observed for first time to be capable of inducing immunological sensitization in mice.

Keywords:
Nematode; allergenic potential; epicutaneous sensitization; intraperitoneal sensitization; murine model

Resumo

Consumir peixe constitui papel importante na dieta humana. Hoplias malabaricus, comumente chamado de traíra, peixe de água doce largamente apreciado no Brasil, é frequentemente infectado com larvas de quarto estágio (L4) de Eustrongylides sp. O presente estudo objetivou avaliar o potencial alergênico do Extrato Bruto de L4 de Eustrongylides sp. (EBE). Camundongos BALB/c foram imunizados intraperitonealmente (IP) por 10 μg de EBE com 2 mg de hidróxido de alumínio nos dias 0 e 35. Após imunização, determinaram-se níveis específicos de anticorpos IgG e IgE e avaliou-se a imunidade celular pela reação intradérmica no pavilhão auricular. Realizou-se sensibilização epicutânea na região dorsal pela exposição ao antígeno, utilizando-se câmara tipo Finn, contendo 50 μg de CEE ou solução salina. Após exposições, foram avaliados níveis específicos de anticorpos. Na imunização via IP, houve aumento gradual nos níveis de anticorpos IgG e produção de IgE transitória. Foi observado aumento significativo na espessura do pavilhão auricular na reação de hipersensibilidade celular. Na exposição ao antígeno pela via epicutânea, o EBE induziu aumento significante nos níveis de anticorpos IgG e IgE específicos e induziu imunidade celular. Pela primeira vez, observou-se que a imunização intraperitoneal e contato epicutâneo com antígenos larvares de Eustrongylides sp. são capazes de induzir sensibilização imunológica em camundongos.

Palavras-chave:
Nematoide; potencial alergênico; sensibilização epicutânea; sensibilização intraperitoneal; modelo murino

Introduction

Studies of fish-related allergies have increased in recent years (Davis et al., 2020Davis CM, Gupta RS, Aktas ON, Diaz V, Kamath SD, Lopata AL. Clinical management of seafood allergy. J Allergy Clin Immunol Pract 2020; 8(1): 37-44. http://dx.doi.org/10.1016/j.jaip.2019.10.019. PMid:31950908.
http://dx.doi.org/10.1016/j.jaip.2019.10...
). Studies examining this phenomenon have shown that allergies are often not related to fish and seafood antigens themselves and may also occur by accidental ingestion of nematode parasite larvae of the family Anisakidae (Nieuwenhuizen et al., 2006Nieuwenhuizen N, Lopata AL, Jeebhay MF, Herbert DR, Robins TG, Brombacher F. Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J Allergy Clin Immunol 2006; 117(5): 1098-1105. http://dx.doi.org/10.1016/j.jaci.2005.12.1357. PMid:16675338.
http://dx.doi.org/10.1016/j.jaci.2005.12...
).

Another nematode of zoonotic importance, and which has been commonly found parasitizing Hoplias malabaricus (Bloch, 1794), traíra, is Eustrongylides sp. Life cycles of Eustrongylides spp. include multiple hosts; piscivorous birds serve as the terminal host and oligochaetes and small predatory fish act as intermediate hosts (Moravec, 1998Moravec F. Nematodes of freshwater fishes of the Neotropical region. Praha: Academia; 1998.; Knoff et al., 2013Knoff M, São Clemente SC, Karling LC, Gazarini J, Gomes DC. Helmintos com potencial zoonótico. In: Pavaneli GC, Takemoto RM, Eiras JC, editors. Parasitologia de peixes de água doce do Brasil. Maringá: EDUEM; 2013. p. 17-35.). Species of the genus Eustrongylides Jägerskiöld, 1909 have been observed parasitizing fish in the United States (Choudhury et al., 2004Choudhury A, Hoffnagle TL, Cole RA. Parasites of native and nonnative fishes of the little Colorado river, Grand Canyon, Arizona. J Parasitol 2004; 90(5): 1042-1053. http://dx.doi.org/10.1645/GE-3244. PMid:15562604.
http://dx.doi.org/10.1645/GE-3244...
; Mitchell et al., 2009Mitchell AJ, Overstreet RM, Goodwin AE. Eustrongylides ignotus infecting commercial bass, Morone chrysops female X Morone saxatilis male, and other fish in the southeastern USA. J Fish Dis 2009; 32(9): 795-799. http://dx.doi.org/10.1111/j.1365-2761.2009.01051.x. PMid:19490394.
http://dx.doi.org/10.1111/j.1365-2761.20...
; Bauer & Whipps, 2013Bauer EF, Whipps CM. Parasites of Two Native Fishes in Adjacent Adirondack Lakes. J Parasitol 2013; 99(4): 603-609. http://dx.doi.org/10.1645/GE-3218.1. PMid:23384764.
http://dx.doi.org/10.1645/GE-3218.1...
; McAllister et al., 2016aMcAllister CT, Bursey CR, Fayton TJ, Cloutman DG, Robison HW, Connior MB, et al. Helminth Parasites of the Blackstripe Topminnow, Fundulus notatus (Cyprinodontiformes: Fundulidae), from Arkansas and Oklahoma, U.S.A. Comp Parasitol 2016a; 83(2): 227-236. http://dx.doi.org/10.1654/4825i.1.
http://dx.doi.org/10.1654/4825i.1...
, bMcAllister CT, Bursey CR, Font WF, Robison HW, Trauth SE, Cloutman DG, et al. Helminth Parasites of the Northern Studfish, Fundulus catenatus (Cypriniformes: Fundulidae) from the Ouachita and Ozark Mountains of Arkansas, U.S.A. Comp Parasitol 2016b; 83(1): 78-87. http://dx.doi.org/10.1654/1525-2647-83.1.78.
http://dx.doi.org/10.1654/1525-2647-83.1...
; Muzzall & Hessenauer, 2018Muzzall PM, Hessenauer JM. Parasites of age-0 walleye, Sander vitreus and yellow perch, Perca flavescens (Percidae) from Saginaw Bay, Lake Huron, Michigan, U.S.A. Comp Parasitol 2018; 85(1): 89-94. http://dx.doi.org/10.1654/1525-2647-85.1.89.
http://dx.doi.org/10.1654/1525-2647-85.1...
), Mexico (Salgado-Maldonado et al., 2004Salgado-Maldonado G, Mercado-Silva N, Cabañas-Carranza G, Caspeta-Mandujano JM, Aguilar-Aguilar R, Iñiguez-Dávalos LI. Helminth parasites of freshwater fishes of the Ayuquila River, Sierra de Manantlán biosphere reserve, West Central Mexico. Comp Parasitol 2004; 71(1): 67-72. http://dx.doi.org/10.1654/4067.
http://dx.doi.org/10.1654/4067...
; Rosas-Valdez et al., 2007Rosas-Valdez R, Domínguez-Domínguez O, Choudhury A, Pérez-Ponce de León PPG. Helminth Parasites of the Balsas Catfish Ictalurus balsanus (Siluriformes: Ictaluridae) in Several Localities of the Balsas River Drainage, Mexico: Species Composition and Biogeographical Affinities. Comp Parasitol 2007; 74(2): 204-210. http://dx.doi.org/10.1654/4263.1.
http://dx.doi.org/10.1654/4263.1...
; Martínez-Aquino et al., 2012Martínez-Aquino A, Pérez-Rodríguez R, Hernández-Mena DI, Garrido-Olvera L, Aguilar-Aguilar R, Pérez-Ponce de León PPG. Endohelminth parasites of seven goodein species (Cyprinodontiformes: Goodeidae) from Lake Zacapu, Michoacán, Central Mexico Plateau. Hidrobiologica 2012; 22(1): 89-93.; Pinacho-Pinacho et al., 2014Pinacho-Pinacho CD, Pérez-Ruiz MA, Sereno-Uribe AL, García-Varela M, Martínez-Ramírez E. Richness and similarity of helminth communities of the freshwater fish Profundulus punctatus (Pisces: Cyprinodontidae) from Oaxaca, Mexico. Rev Mex Biodivers 2014; 85(4): 1129-1138. http://dx.doi.org/10.7550/rmb.41776.
http://dx.doi.org/10.7550/rmb.41776...
; García-López et al., 2016García-López ML, Salguero-Vargas G, García-Prieto L, Osorio-Sarabia D, Pérez-Ponce de León G. Endohelminths of some species of fishes from Lake Xochimilco, Mexico. Rev Mex Biodivers 2016; 87(4): 1360-1364. http://dx.doi.org/10.1016/j.rmb.2016.06.018.
http://dx.doi.org/10.1016/j.rmb.2016.06....
; Bautista-Hernández et al., 2019Bautista-Hernández CE, Pulido-Flores G, Violante-González J, Monks S. Helminth parasites of Xiphophorus birchmanni (Pisces: Poeciliidae) from two localities of the Pánuco River drainage, Mexico. Rev Mex Biodivers 2019; 90(1): e901577. http://dx.doi.org/10.22201/ib.20078706e.2019.90.1577.
http://dx.doi.org/10.22201/ib.20078706e....
; Mosqueda-Cabrera et al., 2019Mosqueda-Cabrera MA, Labastida-Valerio JA, Sotelo-Viveros AM, Becerra-García RE, Jiménez-García MI. Helmintos del pez anual Millerichthys robustus (Teleostei: Rivulidae), una especie endémica de México. Rev Mex Biodivers 2019; 90(0): e902652. http://dx.doi.org/10.22201/ib.20078706e.2019.90.2652.
http://dx.doi.org/10.22201/ib.20078706e....
), Argentina (Brugni & Viozzi, 1999Brugni NL, Viozzi GP. Presence of Eustrongylides sp. (Jägerskiöld, 1909) (Nematoda: Dioctophymatoidea) in Galaxias maculatus (Jenyns, 1842) (Pisces: Galaxiidae) from Patagonia, Argentina. J Helminthol Soc Wash 1999; 66(1): 92-94., 2003Brugni N, Viozzi G. Presencia de Eustrongylides tubifex (Nematoda: Dioctophymatoidea) en la Patagonia, Argentina. Parasitol Latinoam 2003; 58(1-2): 83-85. http://dx.doi.org/10.4067/S0717-77122003000100016.
http://dx.doi.org/10.4067/S0717-77122003...
; Guagliardo et al., 2019Guagliardo S, Viozzi G, Brugni N. Pathology associated with larval Eustrongylides sp. (Nematoda: Dioctophymatoidea) infection in Galaxias maculatus (Actinopterygii: Galaxiidae) from Patagonia, Argentina. Int J Parasitol Parasites Wildl 2019; 10(12): 113-116. http://dx.doi.org/10.1016/j.ijppaw.2019.08.004. PMid:31453085.
http://dx.doi.org/10.1016/j.ijppaw.2019....
), Turkey (Aydoğdu et al., 2011Aydoğdu A, Emre Y, Emre N, Altunel FN. The occurrence of helminth parasites (Nemathelminthes) in some freshwater fish from streams discharging into Antalya Bay in Antalya, Turkey: two new host records from Antalya. Turk J Zool 2011; 35(6): 859-864. http://dx.doi.org/10.3906/zoo-0912-16.
http://dx.doi.org/10.3906/zoo-0912-16...
; Çolak, 2013Çolak SO. The helminth community of the sand smelt (Atherina boyeri Risso, 1810) from Lake Iznik, Turkey. J Helminthol 2013; 87(2): 129-134. http://dx.doi.org/10.1017/S0022149X11000770. PMid:22189412.
http://dx.doi.org/10.1017/S0022149X11000...
), Italy (Dezfuli et al., 2015Dezfuli BS, Manera M, Lorenzoni M, Pironi F, Shinn AP, Giari L. Histopathology and the inflammatory response of European perch, Perca fluviatilis muscle infected with Eustrongylides sp. (Nematoda). Parasit Vectors 2015; 8(1): 227. http://dx.doi.org/10.1186/s13071-015-0838-x. PMid:25889096.
http://dx.doi.org/10.1186/s13071-015-083...
; Branciari et al., 2016Branciari R, Ranucci D, Miraglia D, Valiani A, Veronesi F, Urbani E, et al. Occurrence of parasites of the genus Eustrongylides spp. (Nematoda: Dioctophymatidae) in fish caught in Trasimeno lake, Italy. Ital J Food Saf 2016; 5(4): 6130. http://dx.doi.org/10.4081/ijfs.2016.6130. PMid:28058245.
http://dx.doi.org/10.4081/ijfs.2016.6130...
), Poland (Mierzejewska et al., 2012Mierzejewska K, Kvach Y, Woźniak M, Kosowska A, Dziekońska-Rynko J. Parasites of an Asian Fish, the Chinese Sleeper Perccottus glenii, in the Włocławek Reservoir on the Lower Vistula River, Poland: In Search of the Key Species in the Host Expansion Process. Comp Parasitol 2012; 79(1): 23-29. http://dx.doi.org/10.1654/4519.1.
http://dx.doi.org/10.1654/4519.1...
), Bulgaria (Nachev & Sures, 2009Nachev M, Sures B. The endohelminth fauna of barbel (Barbus barbus) correlates with water quality of the Danube River in Bulgaria. Parasitology 2009; 136(5): 545-552. http://dx.doi.org/10.1017/S003118200900571X. PMid:19250599.
http://dx.doi.org/10.1017/S0031182009005...
), Romania (Urdes et al., 2015Urdes LD, Marin MP, Diaconescu C, Nicolae CG, Hangan M. Diaconescu C, Nicolae CG, Hangan M. First case report of Eustrongylidosis in eel (Anguilla anguilla) populations inhabiting Danube Delta lakes. Agric Agric Sci Procedia 2015; 6: 277-280. http://dx.doi.org/10.1016/j.aaspro.2015.08.072.
http://dx.doi.org/10.1016/j.aaspro.2015....
), Iceland (Kristmundsson & Helgason, 2007Kristmundsson A, Helgason S. Parasite communities of eels Anguilla anguilla in freshwater and marine habitats in Iceland in comparison with other parasite communities of eels in Europe. Folia Parasitol (Praha) 2007; 54(2): 141-153. http://dx.doi.org/10.14411/fp.2007.019. PMid:17886743.
http://dx.doi.org/10.14411/fp.2007.019...
), Serbia (Bjelić-Čabrilo et al., 2013Bjelić-Čabrilo O, Novakov N, Ćirković M, Kostić D, Popović E, Aleksić N, et al. The first determination of Eustrongylides excisus Jägerskiöld, 1909 – larvae (Nematoda: Dioctophymatidae) in the pike-perch Sander lucioperca in Vojvodina (Serbia). Helminthologia 2013; 50(4): 291-294. http://dx.doi.org/10.2478/s11687-013-0143-1.
http://dx.doi.org/10.2478/s11687-013-014...
; Djikanović et al., 2018Djikanović V, Simonović P, Cakić P, Nikolić V. Parasitofauna of allochthonous fish species in the open waters of the Danube river basin (Serbian part) – Impact on the native fish fauna. Appl Ecol Env Res 2018; 16(5): 6129-6142. http://dx.doi.org/10.15666/aeer/1605_61296142.
http://dx.doi.org/10.15666/aeer/1605_612...
), China (Moravec et al., 2003Moravec F, Nie P, Wang G. Some nematodes of fishes from central China, with the redescription of Procamallanus (Spirocamallanus) fulvidraconis (Camallanidae). Folia Parasitol (Praha) 2003; 50(3): 220-230. http://dx.doi.org/10.14411/fp.2003.039. PMid:14535349.
http://dx.doi.org/10.14411/fp.2003.039...
), Japan (Abe, 2011Abe N. Molecular and morphological identification of helminthes found in Japanese smelt, Hypomesus transpacificus nipponensis, with notes on new host records of Eustrongylides ignotus and Raphidascaris gigi. Acta Parasitol 2011; 56(2): 227-231. http://dx.doi.org/10.2478/s11686-011-0029-7.
http://dx.doi.org/10.2478/s11686-011-002...
; Moravec & Nagasawa, 2018) and Australia (Chapman et al., 2006Chapman A, Hobbs RP, Morgan DL, Gill HS. Helminth parasitism of Galaxias maculatus (Jenyns 1842) in southwestern Australia. Ecol Freshwat Fish 2006; 15(4): 559-564. http://dx.doi.org/10.1111/j.1600-0633.2006.00198.x.
http://dx.doi.org/10.1111/j.1600-0633.20...
). In Brazil, Eustrongylides sp. larvae have been reported parasitizing H. malabaricus by several authors (Rego & Eiras, 1988Rego AA, Eiras JC. Ecologia da parasitose de peixes e aves do rio Cuiabá (Mato Grosso, Brasil) por Eustrongylides ignotus (Nematoda: Dioctophymidae). Actas Col. Luso-Esp. Ecol. Bacias Hidrogr. e Rec. Zoológicos 1988; 1: 335-341.; Rego & Vicente, 1988Rego AA, Vicente JJ. Eustrongylides ignotus Jagerskiold, 1909 (Nematoda: Dioctophymatoidea), parasito de peixes, anfíbios, répteis e aves. Distribuição e taxonomia. Cienc Cult 1988; 40(5): 478-483.; Barros et al., 2007Barros LA, Moraes Filho J, Oliveira RL. Larvas de nematóides de importância zoonótica encontradas em traíras (Hoplias malabaricus Bloch, 1794) no município de Santo Antônio do Leverger, MT. Arq Bras Med Vet Zootec 2007; 59(2): 533-535. http://dx.doi.org/10.1590/S0102-09352007000200042.
http://dx.doi.org/10.1590/S0102-09352007...
; Martins et al., 2009Martins ML, Santos RS, Marengoni NG, Takahashi HK, Onaka EM. Seasonality of Eustrongylides sp. (Nematoda: Dioctophymatidae) larvae in fishes from Paraná River, South-western Brazil. Bol Inst Pesca 2009; 35(1): 29-37.; Benigno et al., 2012Benigno RN, Clemente SC, Matos ER, Pinto RM, Gomes DC, Knoff M. Nematodes in Hoplerytrinus unitaeniatus, Hoplias malabaricus and Pygocentrus nattereri (pisces characiformes) in Marajó Island, Brazil. Rev Bras Parasitol Vet 2012; 21(2): 165-170. http://dx.doi.org/10.1590/S1984-29612012000200018. PMid:22832760.
http://dx.doi.org/10.1590/S1984-29612012...
; Meneguetti et al., 2013Meneguetti DUO, Laray MPDO, Camargo LMA. Primeiro relato de larvas de Eustrongylides sp. (Nematoda: Dioctophymatidae) em Hoplias malabaricus (Characiformes: Erythrinidae) no Estado de Rondônia, Amazônia Ocidental, Brasil. Rev Pan-Amaz Saúde 2013; 4(3): 55-58. http://dx.doi.org/10.5123/S2176-62232013000300008.
http://dx.doi.org/10.5123/S2176-62232013...
; Rodrigues et al., 2017Rodrigues LC, Santos ACG, Ferreira EM, Teófilo TS, Pereira DM, Costa FN. Parasitologic aspects of traíra (Hoplias malabaricus) from the São Bento city, MA. Arq Bras Med Vet Zootec 2017; 69(1): 264-268. http://dx.doi.org/10.1590/1678-4162-8798.
http://dx.doi.org/10.1590/1678-4162-8798...
; Kuraiem et al., 2020Kuraiem BP, Knoff M, Telleria EL, Fonseca MCG, Machado LDS, Cunha NCD, et al. Eustrongylides sp. (Nematoda, Dioctophymatoidea) parasitizing Hoplias malabaricus (Actinopterygii: Erythrinidae) collected from the state of Rio de Janeiro, Brazil. Rev Bras Parasitol Vet 2020; 29(1): e014519. http://dx.doi.org/10.1590/s1984-29612019094. PMid:31778530.
http://dx.doi.org/10.1590/s1984-29612019...
). Hoplias malabaricus is a predatory fish that feeds on a wide variety of other fish species and inhabits freshwater aquatic ecosystems in Central and South America (Godoy, 1975Godoy MP. Peixes do Brasil. Sub-ordem Characoidei. Bacia do Rio Mogi Guassu. Piracicaba: Ed. Franciscana; 1975.; Barros et al., 2007Barros LA, Moraes Filho J, Oliveira RL. Larvas de nematóides de importância zoonótica encontradas em traíras (Hoplias malabaricus Bloch, 1794) no município de Santo Antônio do Leverger, MT. Arq Bras Med Vet Zootec 2007; 59(2): 533-535. http://dx.doi.org/10.1590/S0102-09352007000200042.
http://dx.doi.org/10.1590/S0102-09352007...
; Montenegro et al., 2013Montenegro AKA, Vieira ACB, Cardoso MML, Souza JERT, Crispim MC. Piscivory by Hoplias aff. malabaricus (Bloch, 1794): a question of prey availability? Acta Limnol Bras 2013; 25(1): 68-78. http://dx.doi.org/10.1590/S2179-975X2013000100008.
http://dx.doi.org/10.1590/S2179-975X2013...
).

Human infections caused by the consumption of raw or undercooked fish that have been parasitized by fourth-instar larvae (L4) of Eustrongylides sp., leading to gastritis and intestinal perforation, have been reported in the United States and South Sudan (CDC, 1982Centers for Disease Control – CDC. Intestinal perforation caused by larval Eustrongylides - Maryland. MMWR Morb Mortal Wkly Rep 1982; 31(28): 383-389. PMid:6813668.; Gunby, 1982Gunby P. One worm in the minnow equals too many in the gut. JAMA 1982; 248(2): 163. http://dx.doi.org/10.1001/jama.1982.03330020011004. PMid:7087103.
http://dx.doi.org/10.1001/jama.1982.0333...
; Eberhard et al., 1989Eberhard ML, Hurwitz H, Coletta D, Sun AM. Intestinal perforation caused by larval Eustrongylides (Nematoda: Dioctophymatidae) in New Jersey. Am J Trop Med Hyg 1989; 40(6): 648-650. http://dx.doi.org/10.4269/ajtmh.1989.40.648. PMid:2742040.
http://dx.doi.org/10.4269/ajtmh.1989.40....
; Wittner et al., 1989Wittner M, Turner JW, Jacquette G, Ash LR, Salgo MP, Tanowitz HB. Eustrongylidiasis - a parasitic infection acquired by eating sushi. N Engl J Med 1989; 320(17): 1124-1126. http://dx.doi.org/10.1056/NEJM198904273201706. PMid:2710174.
http://dx.doi.org/10.1056/NEJM1989042732...
; Deardorff & Overstreet, 1991Deardorff TL, Overstreet RM. Seafood transmitted zoonoses in the United States: the fishes, the dishes, and the worms. In: Ward DR, Hackney CR. Microbiology of marine food products. New York: Van Nostrand Reinhold; 1991. p. 211-265. http://dx.doi.org/10.1007/978-1-4615-3926-1_9.
http://dx.doi.org/10.1007/978-1-4615-392...
; Narr et al., 1996Narr LL, O’Donnell JG, Libster B, Alessi P, Abraham D. Eustrongylidiasis: a parasitic infection acquired by eating live minnow. J Am Osteopath Assoc 1996; 96(7): 400-402. http://dx.doi.org/10.7556/jaoa.1996.96.7.400. PMid:8758872.
http://dx.doi.org/10.7556/jaoa.1996.96.7...
; Mitchell et al., 2009Mitchell AJ, Overstreet RM, Goodwin AE. Eustrongylides ignotus infecting commercial bass, Morone chrysops female X Morone saxatilis male, and other fish in the southeastern USA. J Fish Dis 2009; 32(9): 795-799. http://dx.doi.org/10.1111/j.1365-2761.2009.01051.x. PMid:19490394.
http://dx.doi.org/10.1111/j.1365-2761.20...
; Knoff et al., 2013Knoff M, São Clemente SC, Karling LC, Gazarini J, Gomes DC. Helmintos com potencial zoonótico. In: Pavaneli GC, Takemoto RM, Eiras JC, editors. Parasitologia de peixes de água doce do Brasil. Maringá: EDUEM; 2013. p. 17-35., Eberhard & Ruiz-Tiben, 2014Eberhard ML, Ruiz-Tiben E. Cutaneous emergence of Eustrongylides in two persons from South Sudan. Am J Med Hyg 2014; 90(2): 315-317. http://dx.doi.org/10.4269/ajtmh.13-0638. PMid:24379241.
http://dx.doi.org/10.4269/ajtmh.13-0638...
).

Human exposure to anisakid nematode larvae has become a prominent public health issue because of its association with allergy symptoms. These symptoms range from localized reactions to generalized manifestations such as allergic rhinitis, conjunctivitis, asthma, urticaria, angioedema, allergic contact dermatitis and anaphylaxis (Armentia et al., 1998Armentia A, Lombardero M, Callejo A, Martín Santos JM, Gil FJ, Vega J, et al. Occupational asthma by Anisakis simplex. J Allergy Clin Immunol 1998; 102(5): 831-834. http://dx.doi.org/10.1016/S0091-6749(98)70024-7. PMid:9819301.
http://dx.doi.org/10.1016/S0091-6749(98)...
; Daschner et al., 2000Daschner A, Alonso-Gomez A, Cabañas R, Suarez-De-Parga JM, López-Serrano MC. Gastroallergic anisakiasis: borderline between food allergy and parasitic disease – clinical and allergologic evaluation of 20 patients with confirmed acute parasitism by Anisakis simplex. J Allergy Clin Immunol 2000; 105(1 Pt 1): 176-181. http://dx.doi.org/10.1016/S0091-6749(00)90194-5. PMid:10629469.
http://dx.doi.org/10.1016/S0091-6749(00)...
; Nieuwenhuizen et al., 2006Nieuwenhuizen N, Lopata AL, Jeebhay MF, Herbert DR, Robins TG, Brombacher F. Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J Allergy Clin Immunol 2006; 117(5): 1098-1105. http://dx.doi.org/10.1016/j.jaci.2005.12.1357. PMid:16675338.
http://dx.doi.org/10.1016/j.jaci.2005.12...
; Audicana & Kennedy, 2008Audicana MT, Kennedy MW. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 2008; 21(2): 360-379. http://dx.doi.org/10.1128/CMR.00012-07. PMid:18400801.
http://dx.doi.org/10.1128/CMR.00012-07...
; Uña-Gorospe et al., 2018Uña-Gorospe M, Herrera-Mozo I, Canals ML, Martí-Amengual G, Sanz-Gallen P. Occupational disease due to Anisakis simplex in fish handlers. Int Marit Health 2018; 69(4): 264-269. http://dx.doi.org/10.5603/IMH.2018.0042. PMid:30589066.
http://dx.doi.org/10.5603/IMH.2018.0042...
).

Anisakis spp. are known to be capable of sensitizing the immune system, resulting in severe allergic and gastrointestinal reactions (Hochberg & Hamer, 2010Hochberg NS, Hamer DH. Anisakidosis: perils of the deep. Clin Infect Dis 2010; 51(7): 806-812. http://dx.doi.org/10.1086/656238. PMid:20804423.
http://dx.doi.org/10.1086/656238...
; Cho et al., 2014Cho MK, Park MK, Kang SA, Caballero ML, Perez-Pinar T, Rodriguez-Perez R, et al. Allergenicity of two Anisakis simplex allergens evaluated in vivo using an experimental mouse model. Exp Parasitol 2014; 146: 71-77. http://dx.doi.org/10.1016/j.exppara.2014.09.008. PMid:25300761.
http://dx.doi.org/10.1016/j.exppara.2014...
; Morozińska-Gogol, 2019Morozińska-Gogol J. Anisakis spp. as etiological agent of zoonotic disease and allergy in European region – an overview. Ann Parasitol 2019; 65(4): 303-314. http://dx.doi.org/10.17420/ap6504.214. PMid:32191412.
http://dx.doi.org/10.17420/ap6504.214...
). Recent studies have demonstrated the potential of immunological sensitization in murine model by Contracaecum multipapillatum (Fontenelle et al., 2018Fontenelle G, Knoff M, Verícimo MA, São Clemente SC. Epicutaneous sensitization with nematode antigens of fish parasites results in the production of specific IgG and IgE. J Helminthol 2018; 92(4): 403-409. http://dx.doi.org/10.1017/S0022149X17000633. PMid:28780914.
http://dx.doi.org/10.1017/S0022149X17000...
) and Hysterothylacium deardorffoverstreetorum (Ribeiro et al., 2017Ribeiro J, Knoff M, Felizardo NN, Vericimo MA, Clemente SCS. Resposta imunológica a antígenos de Hysterothylacium deardorffoverstreetorum de peixes teleósteos. Arq Bras Med Vet Zootec 2017; 69(2): 422-428. http://dx.doi.org/10.1590/1678-4162-9383.
http://dx.doi.org/10.1590/1678-4162-9383...
) larvae.

Skin sensitization by food allergens have been reported (Perkin et al., 2020Perkin MR, Togias A, Koplin J, Sicherer S. Food allergy prevention: more than peanut. J Allergy Clin Immunol Pract 2020; 8(1): 1-13. http://dx.doi.org/10.1016/j.jaip.2019.11.002. PMid:31950900.
http://dx.doi.org/10.1016/j.jaip.2019.11...
), and antigens applied by the epicutaneous route have been used as potent inducers of food allergies (Wang et al., 1996Wang LF, Lin JY, Hsieh KH, Lin RH. Epicutaneous exposure of protein antigen induces a predominant Th2-like response with high IgE production in mice. J Immunol 1996; 156(11): 4077-4082. PMid:8666772.; Hsieh et al., 2003Hsieh K-Y, Tsai C-C, Herbert Wu CH, Lin R-H. Epicutaneous exposure to protein antigen and food allergy. Clin Exp Allergy 2003; 33(8): 1067-1075. http://dx.doi.org/10.1046/j.1365-2222.2003.01724.x. PMid:12911780.
http://dx.doi.org/10.1046/j.1365-2222.20...
; Dunkin et al., 2011Dunkin D, Berin MC, Mayer L. Allergic sensitization can be induced via multiple physiologic routes in an adjuvant-dependent manner. J Allergy Clin Immunol 2011; 128(6): 1251-1258.e2. http://dx.doi.org/10.1016/j.jaci.2011.06.007. PMid:21762973.
http://dx.doi.org/10.1016/j.jaci.2011.06...
), suggesting that epicutaneous exposure plays an important role in the cause of atopic allergic dermatitis. For humans, approximately 80% of patients with atopic dermatitis (AD) have elevated serum levels of total and specific IgE to environmental and/or food allergens (Leung, 2000Leung DY. Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol 2000; 105(5): 860-876. http://dx.doi.org/10.1067/mai.2000.106484. PMid:10808164.
http://dx.doi.org/10.1067/mai.2000.10648...
). Epicutaneous exposure to protein antigens has been reported as one of the important pathways for the development of AD (Santamaria Babi et al., 1995Santamaria Babi LF, Picker LJ, Perez Soler MT, Drzimalla K, Flohr P, Blaser K, et al. Circulating allergen-reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen. J Exp Med 1995; 181(5): 1935-1940. http://dx.doi.org/10.1084/jem.181.5.1935. PMid:7722470.
http://dx.doi.org/10.1084/jem.181.5.1935...
; Teraki et al., 2000Teraki Y, Hotta T, Shiohara T. Increased circulating skin-homing cutaneous lymphocyte-associated antigen (CLA)+ type 2 cytokine-producing cells, and decreased CLA+ type 1 cytokine-producing cells in atopic dermatitis. Br J Dermatol 2000; 143(2): 373-378. http://dx.doi.org/10.1046/j.1365-2133.2000.03665.x. PMid:10951148.
http://dx.doi.org/10.1046/j.1365-2133.20...
). To date, there are no data about the allergenic potential of freshwater fish parasites, such as Eustrongylides sp. In this sense, the present study aimed to analyze the allergenic potential of Eustrongylides sp. larvae, collected from H. malabaricus, through sensitization to crude extract by intraperitoneal and epicutaneous routes in a murine model.

Materials and Methods

From April, 2016 to April, 2018, 45 specimens of H. malabaricus with total length of 13-46 cm (24.84 cm ± 7.52) and weight of 25-1,110 g (220.26 g ± 230.37) were collected by local fishermen from the municipality of Magé, in the state of Rio de Janeiro, Brazil (22º39'10” S; 43º02'26” W). The fish were transported in isothermal boxes with ice to the Universidade Federal Fluminense (UFF) in the municipality of Niterói, Rio de Janeiro, Brazil, where they were eviscerated and filleted. Parasitic nematodes were removed and observed under an Olympus BX-41 (Tokyo, Japan) brightfield microscope, with identification as Eustrongylides sp. being based on the descriptions of Measures (1988)Measures LN. Revision of the genus Eustrongylides Jägerskiöld, 1909 (Nematoda: Dioctophymatoidea) of piscivorous birds. Can J Zool 1988; 66(4): 885-895. http://dx.doi.org/10.1139/z88-131.
http://dx.doi.org/10.1139/z88-131...
, Moravec (1998)Moravec F. Nematodes of freshwater fishes of the Neotropical region. Praha: Academia; 1998. and Kuraiem et al. (2020)Kuraiem BP, Knoff M, Telleria EL, Fonseca MCG, Machado LDS, Cunha NCD, et al. Eustrongylides sp. (Nematoda, Dioctophymatoidea) parasitizing Hoplias malabaricus (Actinopterygii: Erythrinidae) collected from the state of Rio de Janeiro, Brazil. Rev Bras Parasitol Vet 2020; 29(1): e014519. http://dx.doi.org/10.1590/s1984-29612019094. PMid:31778530.
http://dx.doi.org/10.1590/s1984-29612019...
. All larvae used to prepare crude extract were collected and taxonomically identified by Kuraiem et al. (2020)Kuraiem BP, Knoff M, Telleria EL, Fonseca MCG, Machado LDS, Cunha NCD, et al. Eustrongylides sp. (Nematoda, Dioctophymatoidea) parasitizing Hoplias malabaricus (Actinopterygii: Erythrinidae) collected from the state of Rio de Janeiro, Brazil. Rev Bras Parasitol Vet 2020; 29(1): e014519. http://dx.doi.org/10.1590/s1984-29612019094. PMid:31778530.
http://dx.doi.org/10.1590/s1984-29612019...
. Samples were washed repeatedly with 0.65% NaCl solution and then disintegrated in a Potter homogenizer (Thomas, Philadelphia, USA). Phenylmethylsulphonyl fluoride (PMSF) was then added followed by centrifugation at 10,000 rpm at 4 °C for 20 minutes. Protein quantification of the extracts was performed by the method of Lowry et al. (1951)Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-275. http://dx.doi.org/10.1016/S0021-9258(19)52451-6. PMid:14907713.
http://dx.doi.org/10.1016/S0021-9258(19)...
, using bovine serum albumin (BSA) 1 mg per ml as the standard. For the experiment, 8-10-week-old BALB/c mice were raised and kept in the local bioterium in the Laboratory Animal Nucleus, UFF. This study was approved by the Animal Research Ethics Committee of the Universidade Federal Fluminense (UFF) Centre for Laboratory Animals (1046/ 2018). Immunization with crude extract of Eustrongylides sp. (CEE) involved intraperitoneal injections (IP) with 10 μg CEE associated with 2 mg of aluminum hydroxide solution on the initial day of the experiment (day 0 or primary immunization) and on day 35 for an experimental group consisting of five BALB/c mice. Blood samples of the mice were collected on days 0, 14, 21, 35, 42, 49, 63, 77, 84 and 91 to determine the levels of specific antibodies in serum using the enzyme-linked immunosorbent assay (ELISA). Sensitization by the epicutaneous route consisted of two experimental groups of five BALB/c mice. The animals were anaesthetized and depilated in the dorsal region on days 0, 7 and 25, for the adhesion of a Finn-type chamber (Finn Chambers®, Epitest Ltd Oy, Tuusula, Finland). The control group was exposed to a 0.9% NaCl solution and the immunized group was exposed to 50 μg CEE. There were three application steps, which took four days each to complete. Blood samples were collected to obtain serum on days 0, 28 and 43 to evaluate specific antibody levels by ELISA. The presence of anti-Eustrongylides sp. IgG and IgE isotypes in the sera of mice was determined by ELISA (Verícimo et al., 2015). Briefly, in Nunc MaxiSorp™ flat-bottom plates (Nunc, Roskilde, Denmark) 50 μl of CEE antigens (containing 20 μg protein/ml) were placed in a 0.05 M carbonate/bicarbonate buffer, pH 9.6. The sera were serially diluted from 1 to 40 in PBS-G (phosphate-buffered saline gelatine, pH 7.2) at base 3 and incubated for 2 h at 37 °C. After washing with phosphate-buffered saline-Tween (PBS-T), peroxidase-conjugated antibodies anti-total IgG (L and H) (1: 10,000) (rabbit anti-mouse IgG, whole molecule, Sigma-Aldrich, St. Louis, Missouri, USA) were used for 1 h at 37ºC. The IgE analysis was performed in two steps. First an anti-IgE (ε chain) (1:300) (rat anti-mouse IgE, Invitrogen, Carlsbad, California, USA) for 1 h at 37ºC, and then, after washing with PBS-T, peroxidase-conjugated antibodies anti-rat IgG (1:10,000) (HRP-goat anti-rat IgG Life Technologies, Carlsbad, California, USA) for 1h at 37ºC. After another washing with PBS-T, the reaction with the substrate and chromogen was performed similarly for IgG and IgE by adding 50 μl per well of o-phenylenediamine and H2O2 (diluted in citrate phosphate buffer, pH 5.0) solution (OPD). The enzymatic reaction was stopped with the addition of 4N sulphuric acid. Optical density (OD) reading was performed on a microplate reader (Anthos 2010, Krefeld, Germany) at a wavelength of 492 nm. The analysis of the results was performed by comparing the sum of the OD of each serum. The results are reported as arbitrary units of ELISA corresponding to the value of the area under the dilution curve of each serum. For the evaluation of cellular immunity on day 91 (end of the intraperitoneal experiment) and day 43 (end of the epicutaneous experiment), the animals received an intradermal injection of 20 μl of CEE in the left ear pavilion and 20 μl of 0.90% NaCl solution in the right ear pavilion as a control. Ear pavilion thickness was measured before inoculation and at 24, 48 and 72 h thereafter, with a no 7301 micrometre (Mitutoyo Sul Americana, Rio de Janeiro, Brazil). Data were analysed by repeated measures one-way ANOVA followed with multiple comparisons by post hoc Tukey's, using the program GraphPadPrism-version 6 for Windows XP (GraphPad Software, San Diego, CA, USA, www.graphpad.com Copyright 1992-1998). Values were considered to be significant if p < 0.05.

Results

Results of the evaluation of the intensity of the immunological response induced by intraperitoneal route are shown in Figure 1. After primary immunization with CEE, a statistically significant increase in specific IgG antibodies levels (Figure 1A) against CEE occurred on days 14 and 42 when compared to day 0 (control prior to immunization) (p < 0.01 for day 14 through 35 and < 0.001 for days 42 through 91). After the second immunization, performed on day 35, an increase in the levels of these antibodies was observed, which remained at the same level until day 91 (p < 0.001). IgE production levels exhibited a transitory elevation at day 21 after the first immunization (p < 0.001), and a modest and transitory elevation after the second immunization at day 42 (p < 0.01) (Figure 1B). Evaluation of the cell hypersensitivity reaction is presented in Figure 1C. Cellular immunity revealed a significant increase in ear pavilion thickness when challenged with CEE at hours 24 (p < 0.05), 48 and 72 (p < 0.001) compared to hour zero.

Figure 1
Intraperitoneal sensitization. Immunogenicity of the crude extract of Eustrongylides sp. (CEE). IgG and IgE levels and delayed hypersensitivity reaction. Specific IgG kinetics (A) and specific IgE kinetics (B) for a group of five mice that received intraperitoneal injections of 2 mg of 10 μg of CEE associated with 2 mg Al (OH)3 on days 0 and 35. The values indicate the averages of the sum of the optical densities (OD) ± the standard deviation (SD) of the group in serum samples at days 0, 14, 21, 35, 42, 49, 63, 77, 84 and 91; (C) Cell hypersensitivity reaction after challenge with 20 μl CEE in the left ear pavilion (LE). The result represents the increase in ear pavilion thickness in millimeters and ± SD for the LE and the right ear (RE) pavilion as control, at hours 0, 24, 48 and 72. *p < 0.05, **p < 0.01 and ***p < 0.001, compared to the serum sample taken prior to immunization (Figure 1A, B) and to hour zero (Figure 1C).

The intensity of the immunological response induced by the epicutaneous route is represented in Figure 2. After sensitization on days 28 and 43, a significant increase in specific IgG antibodies against CEE occurred, when compared to the day 0 of the same group (p < 0.05 for day 28 and < 0.01 for day 43) (Figure 2A). The CEE group presented IgE levels with a transitory elevation at day 28 compared to day 0 of the same group (p < 0.001) (Figure 2B). Evaluation of the cell hypersensitivity reaction is presented in Figure 2C. The animals showed a statistically significant increase in left ear pavilion thickness from the initial time until 24 h had elapsed (p < 0.05) with a growth of inflammation at hour 48 and maintenance of the same statistical level of inflammation until hour 72 (p < 0.001) compared to right ear pavilion and hour zero.

Figure 2
Epicutaneous sensitization. IgG and IgE levels and delayed hypersensitivity reaction. Specific IgG kinetics (A) and specific IgE kinetics (B) for a group of five mice sensitized with 50 μg crude extract from Eustrongylides sp. (CEE) via the epicutaneous route on days 0, 7 and 25, Group CEE. The values represent the mean optical density (OD) ± standard deviation of the group in serum samples at days 0, 28 and 43; (C) Cell hypersensitivity reaction after challenge with 20 μl CEE in the left ear pavilion (LE). The result represents the increase in ear pavilion thickness in millimeters ± SD for the LE and right ear (RE) pavilion as control at hours 0, 24, 48 and 72. *p < 0.05, **p < 0.01 and ***p < 0.001, compared to the serum sample taken prior to immunization (Figure 2A, B) and to hour zero (Figure 2C).

Discussion

The intraperitoneal administration of CEE associated with the immune adjuvant aluminum hydroxide induced the production of IgG and IgE antibodies. This finding is in agreement with experimental immunization for the purpose of inducing high levels of IgE antibodies. Immune-activating immunization requires the combination of the antigen and adjuvants, such as cholera toxin, pertussis toxin or aluminum hydroxide, as reported by Brewer et al. (1999)Brewer JM, Conacher M, Hunter CA, Mohrs M, Brombacher F, Alexander J. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling. J Immunol 1999; 163(12): 6448-6454. PMid:10586035. and Li et al. (2000)Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, et al. A murine model of peanut anaphylaxis: t-and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol 2000; 106(1): 150-158. http://dx.doi.org/10.1067/mai.2000.107395. PMid:10887318.
http://dx.doi.org/10.1067/mai.2000.10739...
. In general adjuvants are thought to stimulate certain cell populations involved in antibody responses, and the target of adjuvant effect may vary from one to the other. In this study, was demonstrated that 10 ug the crude extrat derived from fourth-instar larvae from Eustrongylides sp. associated to aluminum hydroxide stimulate an immune response with secretion of high levels of circulating IgG and IgE .

The result of present study is in agreement with Fontenelle et al. (2018)Fontenelle G, Knoff M, Verícimo MA, São Clemente SC. Epicutaneous sensitization with nematode antigens of fish parasites results in the production of specific IgG and IgE. J Helminthol 2018; 92(4): 403-409. http://dx.doi.org/10.1017/S0022149X17000633. PMid:28780914.
http://dx.doi.org/10.1017/S0022149X17000...
that challenged mice by intraperitoneal and epicutaneous routes using a crude extract of C. multipapillatum (CECM), an anisakid nematode collected from H. malabaricus. These authors reported a significant production of specific IgG and IgE antibodies, which corresponds with the results of the present study by both routes, but they found higher IgG and lower IgE levels, although they used a different parasite and a higher dose of crude extract (50 μg CECM) in their protocol.

Immunization via the intraperitoneal route performed in the present study differs from the experimental protocol developed by Baeza et al. (2005)Baeza ML, Conejero L, Higaki Y, Martín E, Pérez C, Infante S, et al. Anisakis simplex allergy: a murine model of anaphylaxis induced by parasitic proteins displays a mixed Th1/Th2 pattern. Clin Exp Immunol 2005; 142(3): 433-440. http://dx.doi.org/10.1111/j.1365-2249.2005.02952.x. PMid:16297154.
http://dx.doi.org/10.1111/j.1365-2249.20...
. Using their protocol, these authors were only able to sensitize animals after multiple intraperitoneal inoculations of 100 μg of A. simplex antigens associated with two adjuvants, aluminum hydroxide and pertussis toxin. The present study demonstrated that utilizing even a small concentration of somatic antigens of Eustrongylides sp. larvae associated with aluminum hydroxide was sufficient to induce specific IgG and IgE antibodies, with a significant increase in the thickness of the ear pavilion of the immunized animals. The present results suggest an immunization with a mixed Th1 / Th2 response, as was suggested by Baeza et al. (2005)Baeza ML, Conejero L, Higaki Y, Martín E, Pérez C, Infante S, et al. Anisakis simplex allergy: a murine model of anaphylaxis induced by parasitic proteins displays a mixed Th1/Th2 pattern. Clin Exp Immunol 2005; 142(3): 433-440. http://dx.doi.org/10.1111/j.1365-2249.2005.02952.x. PMid:16297154.
http://dx.doi.org/10.1111/j.1365-2249.20...
.

In the present study, a lower concentration of the somatic parasite antigen CEE was effective in initiating IgE production. In comparing the extracts of the two studies (Baeza et al., 2005Baeza ML, Conejero L, Higaki Y, Martín E, Pérez C, Infante S, et al. Anisakis simplex allergy: a murine model of anaphylaxis induced by parasitic proteins displays a mixed Th1/Th2 pattern. Clin Exp Immunol 2005; 142(3): 433-440. http://dx.doi.org/10.1111/j.1365-2249.2005.02952.x. PMid:16297154.
http://dx.doi.org/10.1111/j.1365-2249.20...
; Fontenelle et al., 2018Fontenelle G, Knoff M, Verícimo MA, São Clemente SC. Epicutaneous sensitization with nematode antigens of fish parasites results in the production of specific IgG and IgE. J Helminthol 2018; 92(4): 403-409. http://dx.doi.org/10.1017/S0022149X17000633. PMid:28780914.
http://dx.doi.org/10.1017/S0022149X17000...
), it is important to note that these antigens were extracted from nematode larvae of different families, which could be a reason for the differences in immunological response.

In the present study, the late hypersensitivity reaction was verified by measuring an increase in ear pavilion thickness in the first 24 hours, which can be attributed to the activity of specific antibodies that form immune complexes at the site of the antigen inoculation and alter the vascular permeability and induce the formation of oedema. Also observed in the present study was the maintenance of the thickness of the dermis at 48 and 72 h, which is compatible with mononuclear cell infiltration at the site of inoculation, as reported by Nieuwenhuizen et al. (2006)Nieuwenhuizen N, Lopata AL, Jeebhay MF, Herbert DR, Robins TG, Brombacher F. Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J Allergy Clin Immunol 2006; 117(5): 1098-1105. http://dx.doi.org/10.1016/j.jaci.2005.12.1357. PMid:16675338.
http://dx.doi.org/10.1016/j.jaci.2005.12...
, for reactions of allergic contact dermatitis in humans.

The present study observed low induction of IgE production. This result differs from observations reported by Hsieh et al. (2003)Hsieh K-Y, Tsai C-C, Herbert Wu CH, Lin R-H. Epicutaneous exposure to protein antigen and food allergy. Clin Exp Allergy 2003; 33(8): 1067-1075. http://dx.doi.org/10.1046/j.1365-2222.2003.01724.x. PMid:12911780.
http://dx.doi.org/10.1046/j.1365-2222.20...
, which showed a high induction of IgE production. This difference could come from the longer parasite antigen exposure time (seven days) than that of the present study (four days).

The results reported here for Eustrongylides sp. and the epicutaneous route show that both triggered an immune sensitization. The possibility, and pathway, of cutaneous hypersensitivity in humans by this nematode should be elucidated in future studies, since this has direct implications for the possible induction of allergy in personnel involved in the preparation of fish for consumption, whether they are an industrial worker, fishmonger or consumer, as suggested by Fontenelle et al. (2018)Fontenelle G, Knoff M, Verícimo MA, São Clemente SC. Epicutaneous sensitization with nematode antigens of fish parasites results in the production of specific IgG and IgE. J Helminthol 2018; 92(4): 403-409. http://dx.doi.org/10.1017/S0022149X17000633. PMid:28780914.
http://dx.doi.org/10.1017/S0022149X17000...
, emphasizing its zoonotic importance.

Both intraperitoneal immunization and epicutaneous contact with Eustrongylides sp. larval antigens were observed for first time to be capable of inducing immunological sensitization in mice. The results obtained in the present study suggest that sensitization of mice with Eustrongylides sp. antigens is capable of inducing sensitization of the immune system. This, in turn, results in considerable antibody production and significant cellular immunity, and further suggests that allergen exposure via the epicutaneous route may be a natural pathway for food allergy sensitization, which can aid in better understanding the pathogenesis of this allergic disease.

Acknowledgments

The authors would like to thank Heloisa Maria Nogueira Diniz (Serviço de Produção e Tratamento de Imagens, IOC, Fiocruz) for processing the figures, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for partial financial supports. This work was supported by CNPq fellowship (SCSC: 308048/2013-0).

  • How to cite: Kuraiem BP, Verícimo MA, Knoff M, Mattos DPBG, São Clemente SC. Sensitization with Eustrongylides sp. (Nematoda: Dioctophymatidae) antigens induce production of specific IgG and IgE in murine model. Braz J Vet Parasitol 2021; 30(1): e023920. https://doi.org/10.1590/S1984-29612021018

References

  • Abe N. Molecular and morphological identification of helminthes found in Japanese smelt, Hypomesus transpacificus nipponensis, with notes on new host records of Eustrongylides ignotus and Raphidascaris gigi. Acta Parasitol 2011; 56(2): 227-231. http://dx.doi.org/10.2478/s11686-011-0029-7
    » http://dx.doi.org/10.2478/s11686-011-0029-7
  • Armentia A, Lombardero M, Callejo A, Martín Santos JM, Gil FJ, Vega J, et al. Occupational asthma by Anisakis simplex. J Allergy Clin Immunol 1998; 102(5): 831-834. http://dx.doi.org/10.1016/S0091-6749(98)70024-7 PMid:9819301.
    » http://dx.doi.org/10.1016/S0091-6749(98)70024-7
  • Audicana MT, Kennedy MW. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 2008; 21(2): 360-379. http://dx.doi.org/10.1128/CMR.00012-07 PMid:18400801.
    » http://dx.doi.org/10.1128/CMR.00012-07
  • Aydoğdu A, Emre Y, Emre N, Altunel FN. The occurrence of helminth parasites (Nemathelminthes) in some freshwater fish from streams discharging into Antalya Bay in Antalya, Turkey: two new host records from Antalya. Turk J Zool 2011; 35(6): 859-864. http://dx.doi.org/10.3906/zoo-0912-16
    » http://dx.doi.org/10.3906/zoo-0912-16
  • Baeza ML, Conejero L, Higaki Y, Martín E, Pérez C, Infante S, et al. Anisakis simplex allergy: a murine model of anaphylaxis induced by parasitic proteins displays a mixed Th1/Th2 pattern. Clin Exp Immunol 2005; 142(3): 433-440. http://dx.doi.org/10.1111/j.1365-2249.2005.02952.x PMid:16297154.
    » http://dx.doi.org/10.1111/j.1365-2249.2005.02952.x
  • Barros LA, Moraes Filho J, Oliveira RL. Larvas de nematóides de importância zoonótica encontradas em traíras (Hoplias malabaricus Bloch, 1794) no município de Santo Antônio do Leverger, MT. Arq Bras Med Vet Zootec 2007; 59(2): 533-535. http://dx.doi.org/10.1590/S0102-09352007000200042
    » http://dx.doi.org/10.1590/S0102-09352007000200042
  • Bauer EF, Whipps CM. Parasites of Two Native Fishes in Adjacent Adirondack Lakes. J Parasitol 2013; 99(4): 603-609. http://dx.doi.org/10.1645/GE-3218.1 PMid:23384764.
    » http://dx.doi.org/10.1645/GE-3218.1
  • Bautista-Hernández CE, Pulido-Flores G, Violante-González J, Monks S. Helminth parasites of Xiphophorus birchmanni (Pisces: Poeciliidae) from two localities of the Pánuco River drainage, Mexico. Rev Mex Biodivers 2019; 90(1): e901577. http://dx.doi.org/10.22201/ib.20078706e.2019.90.1577
    » http://dx.doi.org/10.22201/ib.20078706e.2019.90.1577
  • Benigno RN, Clemente SC, Matos ER, Pinto RM, Gomes DC, Knoff M. Nematodes in Hoplerytrinus unitaeniatus, Hoplias malabaricus and Pygocentrus nattereri (pisces characiformes) in Marajó Island, Brazil. Rev Bras Parasitol Vet 2012; 21(2): 165-170. http://dx.doi.org/10.1590/S1984-29612012000200018 PMid:22832760.
    » http://dx.doi.org/10.1590/S1984-29612012000200018
  • Bjelić-Čabrilo O, Novakov N, Ćirković M, Kostić D, Popović E, Aleksić N, et al. The first determination of Eustrongylides excisus Jägerskiöld, 1909 – larvae (Nematoda: Dioctophymatidae) in the pike-perch Sander lucioperca in Vojvodina (Serbia). Helminthologia 2013; 50(4): 291-294. http://dx.doi.org/10.2478/s11687-013-0143-1
    » http://dx.doi.org/10.2478/s11687-013-0143-1
  • Branciari R, Ranucci D, Miraglia D, Valiani A, Veronesi F, Urbani E, et al. Occurrence of parasites of the genus Eustrongylides spp. (Nematoda: Dioctophymatidae) in fish caught in Trasimeno lake, Italy. Ital J Food Saf 2016; 5(4): 6130. http://dx.doi.org/10.4081/ijfs.2016.6130 PMid:28058245.
    » http://dx.doi.org/10.4081/ijfs.2016.6130
  • Brewer JM, Conacher M, Hunter CA, Mohrs M, Brombacher F, Alexander J. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling. J Immunol 1999; 163(12): 6448-6454. PMid:10586035.
  • Brugni N, Viozzi G. Presencia de Eustrongylides tubifex (Nematoda: Dioctophymatoidea) en la Patagonia, Argentina. Parasitol Latinoam 2003; 58(1-2): 83-85. http://dx.doi.org/10.4067/S0717-77122003000100016
    » http://dx.doi.org/10.4067/S0717-77122003000100016
  • Brugni NL, Viozzi GP. Presence of Eustrongylides sp. (Jägerskiöld, 1909) (Nematoda: Dioctophymatoidea) in Galaxias maculatus (Jenyns, 1842) (Pisces: Galaxiidae) from Patagonia, Argentina. J Helminthol Soc Wash 1999; 66(1): 92-94.
  • Centers for Disease Control – CDC. Intestinal perforation caused by larval Eustrongylides - Maryland. MMWR Morb Mortal Wkly Rep 1982; 31(28): 383-389. PMid:6813668.
  • Chapman A, Hobbs RP, Morgan DL, Gill HS. Helminth parasitism of Galaxias maculatus (Jenyns 1842) in southwestern Australia. Ecol Freshwat Fish 2006; 15(4): 559-564. http://dx.doi.org/10.1111/j.1600-0633.2006.00198.x
    » http://dx.doi.org/10.1111/j.1600-0633.2006.00198.x
  • Cho MK, Park MK, Kang SA, Caballero ML, Perez-Pinar T, Rodriguez-Perez R, et al. Allergenicity of two Anisakis simplex allergens evaluated in vivo using an experimental mouse model. Exp Parasitol 2014; 146: 71-77. http://dx.doi.org/10.1016/j.exppara.2014.09.008 PMid:25300761.
    » http://dx.doi.org/10.1016/j.exppara.2014.09.008
  • Choudhury A, Hoffnagle TL, Cole RA. Parasites of native and nonnative fishes of the little Colorado river, Grand Canyon, Arizona. J Parasitol 2004; 90(5): 1042-1053. http://dx.doi.org/10.1645/GE-3244 PMid:15562604.
    » http://dx.doi.org/10.1645/GE-3244
  • Çolak SO. The helminth community of the sand smelt (Atherina boyeri Risso, 1810) from Lake Iznik, Turkey. J Helminthol 2013; 87(2): 129-134. http://dx.doi.org/10.1017/S0022149X11000770 PMid:22189412.
    » http://dx.doi.org/10.1017/S0022149X11000770
  • Daschner A, Alonso-Gomez A, Cabañas R, Suarez-De-Parga JM, López-Serrano MC. Gastroallergic anisakiasis: borderline between food allergy and parasitic disease – clinical and allergologic evaluation of 20 patients with confirmed acute parasitism by Anisakis simplex. J Allergy Clin Immunol 2000; 105(1 Pt 1): 176-181. http://dx.doi.org/10.1016/S0091-6749(00)90194-5 PMid:10629469.
    » http://dx.doi.org/10.1016/S0091-6749(00)90194-5
  • Davis CM, Gupta RS, Aktas ON, Diaz V, Kamath SD, Lopata AL. Clinical management of seafood allergy. J Allergy Clin Immunol Pract 2020; 8(1): 37-44. http://dx.doi.org/10.1016/j.jaip.2019.10.019 PMid:31950908.
    » http://dx.doi.org/10.1016/j.jaip.2019.10.019
  • Deardorff TL, Overstreet RM. Seafood transmitted zoonoses in the United States: the fishes, the dishes, and the worms. In: Ward DR, Hackney CR. Microbiology of marine food products New York: Van Nostrand Reinhold; 1991. p. 211-265. http://dx.doi.org/10.1007/978-1-4615-3926-1_9
    » http://dx.doi.org/10.1007/978-1-4615-3926-1_9
  • Dezfuli BS, Manera M, Lorenzoni M, Pironi F, Shinn AP, Giari L. Histopathology and the inflammatory response of European perch, Perca fluviatilis muscle infected with Eustrongylides sp. (Nematoda). Parasit Vectors 2015; 8(1): 227. http://dx.doi.org/10.1186/s13071-015-0838-x PMid:25889096.
    » http://dx.doi.org/10.1186/s13071-015-0838-x
  • Djikanović V, Simonović P, Cakić P, Nikolić V. Parasitofauna of allochthonous fish species in the open waters of the Danube river basin (Serbian part) – Impact on the native fish fauna. Appl Ecol Env Res 2018; 16(5): 6129-6142. http://dx.doi.org/10.15666/aeer/1605_61296142
    » http://dx.doi.org/10.15666/aeer/1605_61296142
  • Dunkin D, Berin MC, Mayer L. Allergic sensitization can be induced via multiple physiologic routes in an adjuvant-dependent manner. J Allergy Clin Immunol 2011; 128(6): 1251-1258.e2. http://dx.doi.org/10.1016/j.jaci.2011.06.007 PMid:21762973.
    » http://dx.doi.org/10.1016/j.jaci.2011.06.007
  • Eberhard ML, Hurwitz H, Coletta D, Sun AM. Intestinal perforation caused by larval Eustrongylides (Nematoda: Dioctophymatidae) in New Jersey. Am J Trop Med Hyg 1989; 40(6): 648-650. http://dx.doi.org/10.4269/ajtmh.1989.40.648 PMid:2742040.
    » http://dx.doi.org/10.4269/ajtmh.1989.40.648
  • Eberhard ML, Ruiz-Tiben E. Cutaneous emergence of Eustrongylides in two persons from South Sudan. Am J Med Hyg 2014; 90(2): 315-317. http://dx.doi.org/10.4269/ajtmh.13-0638 PMid:24379241.
    » http://dx.doi.org/10.4269/ajtmh.13-0638
  • Fontenelle G, Knoff M, Verícimo MA, São Clemente SC. Epicutaneous sensitization with nematode antigens of fish parasites results in the production of specific IgG and IgE. J Helminthol 2018; 92(4): 403-409. http://dx.doi.org/10.1017/S0022149X17000633 PMid:28780914.
    » http://dx.doi.org/10.1017/S0022149X17000633
  • García-López ML, Salguero-Vargas G, García-Prieto L, Osorio-Sarabia D, Pérez-Ponce de León G. Endohelminths of some species of fishes from Lake Xochimilco, Mexico. Rev Mex Biodivers 2016; 87(4): 1360-1364. http://dx.doi.org/10.1016/j.rmb.2016.06.018
    » http://dx.doi.org/10.1016/j.rmb.2016.06.018
  • Godoy MP. Peixes do Brasil. Sub-ordem Characoidei. Bacia do Rio Mogi Guassu Piracicaba: Ed. Franciscana; 1975.
  • Guagliardo S, Viozzi G, Brugni N. Pathology associated with larval Eustrongylides sp. (Nematoda: Dioctophymatoidea) infection in Galaxias maculatus (Actinopterygii: Galaxiidae) from Patagonia, Argentina. Int J Parasitol Parasites Wildl 2019; 10(12): 113-116. http://dx.doi.org/10.1016/j.ijppaw.2019.08.004 PMid:31453085.
    » http://dx.doi.org/10.1016/j.ijppaw.2019.08.004
  • Gunby P. One worm in the minnow equals too many in the gut. JAMA 1982; 248(2): 163. http://dx.doi.org/10.1001/jama.1982.03330020011004 PMid:7087103.
    » http://dx.doi.org/10.1001/jama.1982.03330020011004
  • Hochberg NS, Hamer DH. Anisakidosis: perils of the deep. Clin Infect Dis 2010; 51(7): 806-812. http://dx.doi.org/10.1086/656238 PMid:20804423.
    » http://dx.doi.org/10.1086/656238
  • Hsieh K-Y, Tsai C-C, Herbert Wu CH, Lin R-H. Epicutaneous exposure to protein antigen and food allergy. Clin Exp Allergy 2003; 33(8): 1067-1075. http://dx.doi.org/10.1046/j.1365-2222.2003.01724.x PMid:12911780.
    » http://dx.doi.org/10.1046/j.1365-2222.2003.01724.x
  • Knoff M, São Clemente SC, Karling LC, Gazarini J, Gomes DC. Helmintos com potencial zoonótico. In: Pavaneli GC, Takemoto RM, Eiras JC, editors. Parasitologia de peixes de água doce do Brasil Maringá: EDUEM; 2013. p. 17-35.
  • Kristmundsson A, Helgason S. Parasite communities of eels Anguilla anguilla in freshwater and marine habitats in Iceland in comparison with other parasite communities of eels in Europe. Folia Parasitol (Praha) 2007; 54(2): 141-153. http://dx.doi.org/10.14411/fp.2007.019 PMid:17886743.
    » http://dx.doi.org/10.14411/fp.2007.019
  • Kuraiem BP, Knoff M, Telleria EL, Fonseca MCG, Machado LDS, Cunha NCD, et al. Eustrongylides sp. (Nematoda, Dioctophymatoidea) parasitizing Hoplias malabaricus (Actinopterygii: Erythrinidae) collected from the state of Rio de Janeiro, Brazil. Rev Bras Parasitol Vet 2020; 29(1): e014519. http://dx.doi.org/10.1590/s1984-29612019094 PMid:31778530.
    » http://dx.doi.org/10.1590/s1984-29612019094
  • Leung DY. Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol 2000; 105(5): 860-876. http://dx.doi.org/10.1067/mai.2000.106484 PMid:10808164.
    » http://dx.doi.org/10.1067/mai.2000.106484
  • Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, et al. A murine model of peanut anaphylaxis: t-and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol 2000; 106(1): 150-158. http://dx.doi.org/10.1067/mai.2000.107395 PMid:10887318.
    » http://dx.doi.org/10.1067/mai.2000.107395
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-275. http://dx.doi.org/10.1016/S0021-9258(19)52451-6 PMid:14907713.
    » http://dx.doi.org/10.1016/S0021-9258(19)52451-6
  • Martínez-Aquino A, Pérez-Rodríguez R, Hernández-Mena DI, Garrido-Olvera L, Aguilar-Aguilar R, Pérez-Ponce de León PPG. Endohelminth parasites of seven goodein species (Cyprinodontiformes: Goodeidae) from Lake Zacapu, Michoacán, Central Mexico Plateau. Hidrobiologica 2012; 22(1): 89-93.
  • Martins ML, Santos RS, Marengoni NG, Takahashi HK, Onaka EM. Seasonality of Eustrongylides sp. (Nematoda: Dioctophymatidae) larvae in fishes from Paraná River, South-western Brazil. Bol Inst Pesca 2009; 35(1): 29-37.
  • McAllister CT, Bursey CR, Fayton TJ, Cloutman DG, Robison HW, Connior MB, et al. Helminth Parasites of the Blackstripe Topminnow, Fundulus notatus (Cyprinodontiformes: Fundulidae), from Arkansas and Oklahoma, U.S.A. Comp Parasitol 2016a; 83(2): 227-236. http://dx.doi.org/10.1654/4825i.1
    » http://dx.doi.org/10.1654/4825i.1
  • McAllister CT, Bursey CR, Font WF, Robison HW, Trauth SE, Cloutman DG, et al. Helminth Parasites of the Northern Studfish, Fundulus catenatus (Cypriniformes: Fundulidae) from the Ouachita and Ozark Mountains of Arkansas, U.S.A. Comp Parasitol 2016b; 83(1): 78-87. http://dx.doi.org/10.1654/1525-2647-83.1.78
    » http://dx.doi.org/10.1654/1525-2647-83.1.78
  • Measures LN. Revision of the genus Eustrongylides Jägerskiöld, 1909 (Nematoda: Dioctophymatoidea) of piscivorous birds. Can J Zool 1988; 66(4): 885-895. http://dx.doi.org/10.1139/z88-131
    » http://dx.doi.org/10.1139/z88-131
  • Meneguetti DUO, Laray MPDO, Camargo LMA. Primeiro relato de larvas de Eustrongylides sp. (Nematoda: Dioctophymatidae) em Hoplias malabaricus (Characiformes: Erythrinidae) no Estado de Rondônia, Amazônia Ocidental, Brasil. Rev Pan-Amaz Saúde 2013; 4(3): 55-58. http://dx.doi.org/10.5123/S2176-62232013000300008
    » http://dx.doi.org/10.5123/S2176-62232013000300008
  • Mierzejewska K, Kvach Y, Woźniak M, Kosowska A, Dziekońska-Rynko J. Parasites of an Asian Fish, the Chinese Sleeper Perccottus glenii, in the Włocławek Reservoir on the Lower Vistula River, Poland: In Search of the Key Species in the Host Expansion Process. Comp Parasitol 2012; 79(1): 23-29. http://dx.doi.org/10.1654/4519.1
    » http://dx.doi.org/10.1654/4519.1
  • Mitchell AJ, Overstreet RM, Goodwin AE. Eustrongylides ignotus infecting commercial bass, Morone chrysops female X Morone saxatilis male, and other fish in the southeastern USA. J Fish Dis 2009; 32(9): 795-799. http://dx.doi.org/10.1111/j.1365-2761.2009.01051.x PMid:19490394.
    » http://dx.doi.org/10.1111/j.1365-2761.2009.01051.x
  • Montenegro AKA, Vieira ACB, Cardoso MML, Souza JERT, Crispim MC. Piscivory by Hoplias aff. malabaricus (Bloch, 1794): a question of prey availability? Acta Limnol Bras 2013; 25(1): 68-78. http://dx.doi.org/10.1590/S2179-975X2013000100008
    » http://dx.doi.org/10.1590/S2179-975X2013000100008
  • Moravec F. Rhabdochona angusticaudata sp. n. (Nematoda: Rhabdochonidae) from the Japanese eel Anguilla japonica, and new records of some other nematodes from inland fishes in Japan. Folia Parasitol 2018; 65(1): 16. https://doi.org/10.14411/fp.2018.016
    » https://doi.org/10.14411/fp.2018.016
  • Moravec F, Nie P, Wang G. Some nematodes of fishes from central China, with the redescription of Procamallanus (Spirocamallanus) fulvidraconis (Camallanidae). Folia Parasitol (Praha) 2003; 50(3): 220-230. http://dx.doi.org/10.14411/fp.2003.039 PMid:14535349.
    » http://dx.doi.org/10.14411/fp.2003.039
  • Moravec F. Nematodes of freshwater fishes of the Neotropical region Praha: Academia; 1998.
  • Morozińska-Gogol J. Anisakis spp. as etiological agent of zoonotic disease and allergy in European region – an overview. Ann Parasitol 2019; 65(4): 303-314. http://dx.doi.org/10.17420/ap6504.214 PMid:32191412.
    » http://dx.doi.org/10.17420/ap6504.214
  • Mosqueda-Cabrera MA, Labastida-Valerio JA, Sotelo-Viveros AM, Becerra-García RE, Jiménez-García MI. Helmintos del pez anual Millerichthys robustus (Teleostei: Rivulidae), una especie endémica de México. Rev Mex Biodivers 2019; 90(0): e902652. http://dx.doi.org/10.22201/ib.20078706e.2019.90.2652
    » http://dx.doi.org/10.22201/ib.20078706e.2019.90.2652
  • Muzzall PM, Hessenauer JM. Parasites of age-0 walleye, Sander vitreus and yellow perch, Perca flavescens (Percidae) from Saginaw Bay, Lake Huron, Michigan, U.S.A. Comp Parasitol 2018; 85(1): 89-94. http://dx.doi.org/10.1654/1525-2647-85.1.89
    » http://dx.doi.org/10.1654/1525-2647-85.1.89
  • Nachev M, Sures B. The endohelminth fauna of barbel (Barbus barbus) correlates with water quality of the Danube River in Bulgaria. Parasitology 2009; 136(5): 545-552. http://dx.doi.org/10.1017/S003118200900571X PMid:19250599.
    » http://dx.doi.org/10.1017/S003118200900571X
  • Narr LL, O’Donnell JG, Libster B, Alessi P, Abraham D. Eustrongylidiasis: a parasitic infection acquired by eating live minnow. J Am Osteopath Assoc 1996; 96(7): 400-402. http://dx.doi.org/10.7556/jaoa.1996.96.7.400 PMid:8758872.
    » http://dx.doi.org/10.7556/jaoa.1996.96.7.400
  • Nieuwenhuizen N, Lopata AL, Jeebhay MF, Herbert DR, Robins TG, Brombacher F. Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J Allergy Clin Immunol 2006; 117(5): 1098-1105. http://dx.doi.org/10.1016/j.jaci.2005.12.1357 PMid:16675338.
    » http://dx.doi.org/10.1016/j.jaci.2005.12.1357
  • Perkin MR, Togias A, Koplin J, Sicherer S. Food allergy prevention: more than peanut. J Allergy Clin Immunol Pract 2020; 8(1): 1-13. http://dx.doi.org/10.1016/j.jaip.2019.11.002 PMid:31950900.
    » http://dx.doi.org/10.1016/j.jaip.2019.11.002
  • Pinacho-Pinacho CD, Pérez-Ruiz MA, Sereno-Uribe AL, García-Varela M, Martínez-Ramírez E. Richness and similarity of helminth communities of the freshwater fish Profundulus punctatus (Pisces: Cyprinodontidae) from Oaxaca, Mexico. Rev Mex Biodivers 2014; 85(4): 1129-1138. http://dx.doi.org/10.7550/rmb.41776
    » http://dx.doi.org/10.7550/rmb.41776
  • Rego AA, Eiras JC. Ecologia da parasitose de peixes e aves do rio Cuiabá (Mato Grosso, Brasil) por Eustrongylides ignotus (Nematoda: Dioctophymidae). Actas Col. Luso-Esp. Ecol. Bacias Hidrogr. e Rec. Zoológicos 1988; 1: 335-341.
  • Rego AA, Vicente JJ. Eustrongylides ignotus Jagerskiold, 1909 (Nematoda: Dioctophymatoidea), parasito de peixes, anfíbios, répteis e aves. Distribuição e taxonomia. Cienc Cult 1988; 40(5): 478-483.
  • Ribeiro J, Knoff M, Felizardo NN, Vericimo MA, Clemente SCS. Resposta imunológica a antígenos de Hysterothylacium deardorffoverstreetorum de peixes teleósteos. Arq Bras Med Vet Zootec 2017; 69(2): 422-428. http://dx.doi.org/10.1590/1678-4162-9383
    » http://dx.doi.org/10.1590/1678-4162-9383
  • Rodrigues LC, Santos ACG, Ferreira EM, Teófilo TS, Pereira DM, Costa FN. Parasitologic aspects of traíra (Hoplias malabaricus) from the São Bento city, MA. Arq Bras Med Vet Zootec 2017; 69(1): 264-268. http://dx.doi.org/10.1590/1678-4162-8798
    » http://dx.doi.org/10.1590/1678-4162-8798
  • Rosas-Valdez R, Domínguez-Domínguez O, Choudhury A, Pérez-Ponce de León PPG. Helminth Parasites of the Balsas Catfish Ictalurus balsanus (Siluriformes: Ictaluridae) in Several Localities of the Balsas River Drainage, Mexico: Species Composition and Biogeographical Affinities. Comp Parasitol 2007; 74(2): 204-210. http://dx.doi.org/10.1654/4263.1
    » http://dx.doi.org/10.1654/4263.1
  • Salgado-Maldonado G, Mercado-Silva N, Cabañas-Carranza G, Caspeta-Mandujano JM, Aguilar-Aguilar R, Iñiguez-Dávalos LI. Helminth parasites of freshwater fishes of the Ayuquila River, Sierra de Manantlán biosphere reserve, West Central Mexico. Comp Parasitol 2004; 71(1): 67-72. http://dx.doi.org/10.1654/4067
    » http://dx.doi.org/10.1654/4067
  • Santamaria Babi LF, Picker LJ, Perez Soler MT, Drzimalla K, Flohr P, Blaser K, et al. Circulating allergen-reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen. J Exp Med 1995; 181(5): 1935-1940. http://dx.doi.org/10.1084/jem.181.5.1935 PMid:7722470.
    » http://dx.doi.org/10.1084/jem.181.5.1935
  • Teraki Y, Hotta T, Shiohara T. Increased circulating skin-homing cutaneous lymphocyte-associated antigen (CLA)+ type 2 cytokine-producing cells, and decreased CLA+ type 1 cytokine-producing cells in atopic dermatitis. Br J Dermatol 2000; 143(2): 373-378. http://dx.doi.org/10.1046/j.1365-2133.2000.03665.x PMid:10951148.
    » http://dx.doi.org/10.1046/j.1365-2133.2000.03665.x
  • Uña-Gorospe M, Herrera-Mozo I, Canals ML, Martí-Amengual G, Sanz-Gallen P. Occupational disease due to Anisakis simplex in fish handlers. Int Marit Health 2018; 69(4): 264-269. http://dx.doi.org/10.5603/IMH.2018.0042 PMid:30589066.
    » http://dx.doi.org/10.5603/IMH.2018.0042
  • Urdes LD, Marin MP, Diaconescu C, Nicolae CG, Hangan M. Diaconescu C, Nicolae CG, Hangan M. First case report of Eustrongylidosis in eel (Anguilla anguilla) populations inhabiting Danube Delta lakes. Agric Agric Sci Procedia 2015; 6: 277-280. http://dx.doi.org/10.1016/j.aaspro.2015.08.072
    » http://dx.doi.org/10.1016/j.aaspro.2015.08.072
  • Vericimo MA, Figueiredo I, Teixeira GA, Clemente SC. Experimental anisakid infections in mice. J Helminthol 2015; 89(5): 620-624. http://dx.doi.org/10.1017/S0022149X14000340 PMid:24780178.
    » http://dx.doi.org/10.1017/S0022149X14000340
  • Wang LF, Lin JY, Hsieh KH, Lin RH. Epicutaneous exposure of protein antigen induces a predominant Th2-like response with high IgE production in mice. J Immunol 1996; 156(11): 4077-4082. PMid:8666772.
  • Wittner M, Turner JW, Jacquette G, Ash LR, Salgo MP, Tanowitz HB. Eustrongylidiasis - a parasitic infection acquired by eating sushi. N Engl J Med 1989; 320(17): 1124-1126. http://dx.doi.org/10.1056/NEJM198904273201706 PMid:2710174.
    » http://dx.doi.org/10.1056/NEJM198904273201706

Publication Dates

  • Publication in this collection
    26 Apr 2021
  • Date of issue
    2021

History

  • Received
    16 Oct 2020
  • Accepted
    16 Feb 2021
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br