Acessibilidade / Reportar erro

Nanocomposites used in the treatment of skin lesions: a scoping review

Nanocompuestos utilizados en el tratamiento de lesiones cutáneas: una revisión de alcance

ABSTRACT

Objective:

To map the nanocomposites used in the treatment of skin lesions.

Method:

A scoping review, according to the Joanna Briggs Institute methodology, carried out on eight databases, a list of references and Google Scholar to answer the question: “Which nanocomposites are used as a cover for the treatment of skin lesions?”. Two independent reviewers selected the final sample using inclusion/exclusion criteria using the EndNote® and Rayyan programs. Data was extracted using an adapted form and reported using the PRISMA checklist extension, and the protocol was registered in the Open Science Framework (OSF).

Results:

21 articles were selected, with nanofibers, nanogels and nanomembranes as the nanocomposites described in wound healing, alone or in association with other therapies: negative pressure and elastic. Silver nanomaterials stand out in accelerating healing due to their antimicrobial and anti-inflammatory action, but caution should be exercised due to the risk of cytotoxicity and microbial resistance.

Conclusion:

Nanocomposites used in wound treatment are effective in accelerating healing and reducing costs, and the addition of bioactives to nanomaterials has added extra properties that contribute to healing.

DESCRIPTORS
Wounds and Injuries; Skin Ulcer; Nanocomposites; Nanogels

RESUMEN

Objetivo:

Mapear los nanocompuestos utilizados en el tratamiento de lesiones cutáneas.

Método:

Revisión de alcance, según la metodología del Instituto Joanna Briggs, realizada sobre ocho bases de datos, una lista de referencias y Google Scholar para responder a la pregunta: “¿Qué nanocompuestos se utilizan como cobertura para el tratamiento de lesiones cutáneas?”. Dos revisores independientes seleccionaron la muestra final mediante criterios de inclusión/exclusión utilizando los programas EndNote® y Rayyan. Los datos se extrajeron mediante un formulario adaptado y se notificaron utilizando la extensión de la lista de comprobación PRISMA, y el protocolo se registró en el Open Science Framework (OSF).

Resultados:

Se seleccionaron 21 artículos, con nanofibras, nanogeles y nanomembranas como los nanocompuestos descritos en la cicatrización de heridas, solos o en asociación con otras terapias: presión negativa y elástica. Los nanomateriales con plata destacan en la aceleración de la cicatrización por su acción antimicrobiana y antiinflamatoria, pero se recomienda precaución en su uso por el riesgo de citotoxicidad y resistencia microbiana.

Conclusión:

Los nanocompuestos utilizados en el tratamiento de heridas son eficaces para acelerar la cicatrización y reducir costes, y la adición de bioactivos a los nanomateriales ha añadido propiedades adicionales que contribuyen a la cicatrización.

DESCRIPTORES
Heridas y lesiones; Úlcera cutánea; Nanocompuestos; Nanogeles

RESUMO

Objetivo:

Mapear os nanocompostos utilizados no tratamento de lesões cutâneas.

Método:

Revisão de escopo, conforme metodologia Joanna Briggs Institute, realizada em oito bases de dados, lista de referências e Google Scholar para responder à pergunta: “Quais os nanocompostos utilizados como cobertura para o tratamento de lesões cutâneas?”. Dois revisores independentes, selecionaram a amostra final mediante critérios de inclusão/exclusão usando os programas EndNote® e Rayyan. Os dados foram extraídos com formulário adaptado e reportados pela extensão do checklist PRISMA, o protocolo foi registrado na Open Science Framework (OSF).

Resultados:

21 artigos selecionados, trouxeram nanofibras, nanogéis e nanomembranas como os nanocompostos descritos na cicatrização de feridas, isolados ou em associação a outras terapias: pressão negativa e elástica. Os nanomateriais com prata destacam-se em acelerar a cicatrização pela ação antimicrobiana e anti-inflamatória, recomenda-se cautela no uso pelo risco de citotoxicidade e resistência microbiana.

Conclusão:

Os nanocompostos utilizados no tratamento de feridas são eficientes em acelerar a cicatrização e reduzir custos, a adição de bioativos aos nanomateriais agregaram propriedades extras que contribuem com a cicatrização.

DESCRITORES
Ferimentos e Lesões; Úlcera Cutânea; Nanocompostos; Nanogéis

INTRODUCTION

Nanotechnology has had a major impact on the development of science and specifically on technological innovation. The synthesis and design of nanoscale structures present the most diverse possibilities for use in health care and scientific research (11. Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Aspects of nanomaterials in wound healing. Curr Drug Deliv. 2018;16(1):26–41. doi: http://doi.org/10.2174/1567201815666180918110134. PubMed PMID: 30227817.
https://doi.org/10.2174/1567201815666180...
,22. Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review. Polymers. 2021;13(12):1962. doi: http://doi.org/10.3390/polym13121962. PubMed PMID: 34199209.
https://doi.org/10.3390/polym13121962...
). In this context, there is the manufacture of nanocomposites, defined as structures in which at least one of their components is on the nanometric scale (1 to 1000 nanometers)(33. Pacheco JC, Hurtado L, Urdaneta N, Cantanhede Fo AJC, Araújo RNM, Sabinio MA. Micro-nanofibras de poli (ácido láctico) fabricadas por electrospinning y encapsulación de 2-[(e)-4-(dimetilamino) benzilideno)] indan-1-ona. Rev Latinoam Metal Mater. 2019 [cited 2023 Sep 17];39(2):94–104. Available from: https://l1nq.com/zCzvS.
https://l1nq.com/zCzvS...
,44. Cui S, Sun X, Li K, Gou D, Zhou Y, Hu J, et al. Polylactide nanofibers delivering doxycycline for chronic wound treatment. Mater Sci Eng C Mater Biol Appl. 2019;104:109745. doi: http://doi.org/10.1016/j.msec.2019.109745. PubMed PMID: 31499963.
https://doi.org/10.1016/j.msec.2019.1097...
).

With its ability to modulate chemical properties, nanotechnology is an efficient strategy for advanced wound care. It offers a wide variety of nanomaterials for topical use in isolation, or in conjunction with scientific consensus therapies, in specific skin lesions, promoting a marked improvement in healing in both scenarios(55. Silva MMP, Aguiar MIF, Rodrigues AB, Miranda MDC, Araújo MÂM, Rolim ILTP, et al. Utilização de nanopartículas no tratamento de feridas: revisão sistemática. Rev Esc Enferm USP. 2018;51:e03272. doi: http://doi.org/10.1590/s1980-220x2016043503272. PubMed PMID: 29319738.
https://doi.org/10.1590/s1980-220x201604...
).

Among the different designs presented, it is worth highlighting: scaffolds with three-dimensional and porous structures (scaffolds); fibrous structures interwoven with polymeric filaments and a large surface area (nanofibers); three-dimensional polymer networks containing hydrophilic and cross-linked groups (nanogels); interphases with a selective or semi-permeable barrier through the combination of organic and inorganic compounds (nanomembranes); hollow cylinders or tubes (nanotubes). In this way, nanocomposites have various possible uses, such as: controlled release or transportation of drugs and bioactive substances, support for cell growth and differentiation, bone and tissue regeneration(66. Bordoni M, Scarian E, Rey F, Gagliardi S, Carelli S, Pansarasa O, et al. Biomaterials in neurodegenerative disorders: a promising therapeutic approach. Int J Mol Sci. 2020;21(9):3243. doi: http://doi.org/10.3390/ijms21093243. PubMed PMID: 32375302.
https://doi.org/10.3390/ijms21093243...

7. Chang W, Shah MB, Zhou G, Walsh K, Rudraiah S, Kumbar SG, et al. Polymeric nanofibrous nerve conduits coupled with laminin for peripheral nerve regeneration. Biomed Mater. 2020;15(3):035003. doi: http://doi.org/10.1088/1748-605X/ab6994. PubMed PMID: 31918424.
https://doi.org/10.1088/1748-605X/ab6994...
-88. Li C, Obireddy SR, Lai WF. Preparation and use of nanogels as carriers of drugs. Drug Deliv. 2021;28(1):1594–602. doi: http://doi.org/10.1080/10717544.2021.1955042. PubMed PMID: 34308729.
https://doi.org/10.1080/10717544.2021.19...
).

In this scenario, research involving the transport of bioactive substances between the blood-brain barrier and mimetics of the extracellular matrix stands out(22. Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review. Polymers. 2021;13(12):1962. doi: http://doi.org/10.3390/polym13121962. PubMed PMID: 34199209.
https://doi.org/10.3390/polym13121962...
). This ability to mimic the extracellular environment and provide differentiated cell growth makes nanomaterials a great promise for the tissue regeneration process(66. Bordoni M, Scarian E, Rey F, Gagliardi S, Carelli S, Pansarasa O, et al. Biomaterials in neurodegenerative disorders: a promising therapeutic approach. Int J Mol Sci. 2020;21(9):3243. doi: http://doi.org/10.3390/ijms21093243. PubMed PMID: 32375302.
https://doi.org/10.3390/ijms21093243...
). The manufacture of nanocomposites with biocompatible materials, providing mechanical support without a biological response in the host organism, gives them the ability to modulate the complex healing process and accelerate tissue repair(77. Chang W, Shah MB, Zhou G, Walsh K, Rudraiah S, Kumbar SG, et al. Polymeric nanofibrous nerve conduits coupled with laminin for peripheral nerve regeneration. Biomed Mater. 2020;15(3):035003. doi: http://doi.org/10.1088/1748-605X/ab6994. PubMed PMID: 31918424.
https://doi.org/10.1088/1748-605X/ab6994...
,99. Domingues EAR, Urizzi F, Souza FR. Efeito da terapia fotodinâmica em feridas agudas e crônicas: revisão de escopo. Enferm Atual In Derme. 2022;96(38):021243. doi: http://doi.org/10.31011/reaid-2022-v.96-n.38-art.1360.
https://doi.org/10.31011/reaid-2022-v.96...
).

Depending on the progression of the healing process, skin lesions can be classified as acute or chronic. In acute lesions, the hemostasis process is triggered after vascular rupture with a continuous and dynamic evolution of the healing phases, the dominant physiological changes are vascular and exudative, located at the point of aggression with retraction of the margins in up to three weeks; in chronic lesions, there is a staging or sequential deviation of the healing phases, the inflammatory phase remains for a long time, compromising an orderly repair and prolonging the retraction of the margins for a period of more than three weeks(1010. Bhattacharya D, Ghosh B, Mukhopadhyay M. Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnol. 2019;13(8):778–85. doi: http://doi.org/10.1049/iet-nbt.2018.5312. PubMed PMID: 31625517.
https://doi.org/10.1049/iet-nbt.2018.531...
). Tissue repair still represents a major clinical and scientific challenge, in which specialized efforts are directed at reducing the physiological, functional, institutional and financial impact of a wound(1010. Bhattacharya D, Ghosh B, Mukhopadhyay M. Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnol. 2019;13(8):778–85. doi: http://doi.org/10.1049/iet-nbt.2018.5312. PubMed PMID: 31625517.
https://doi.org/10.1049/iet-nbt.2018.531...
,1111. Naskar A, Kim KS. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12(6):499. doi: http://doi.org/10.3390/pharmaceutics12060499. PubMed PMID: 32486142.
https://doi.org/10.3390/pharmaceutics120...
).

This challenge is driving several researchers towards the possibility of using innovative materials in scientific research that can speed up the wound healing process(1010. Bhattacharya D, Ghosh B, Mukhopadhyay M. Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnol. 2019;13(8):778–85. doi: http://doi.org/10.1049/iet-nbt.2018.5312. PubMed PMID: 31625517.
https://doi.org/10.1049/iet-nbt.2018.531...
,1111. Naskar A, Kim KS. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12(6):499. doi: http://doi.org/10.3390/pharmaceutics12060499. PubMed PMID: 32486142.
https://doi.org/10.3390/pharmaceutics120...
). Thus, some properties, such as biocompatibility characteristics, designs of structures similar to the extracellular matrix and the carrying of bioactive substances; added to the promising results in the area of skin care resulting from the efficiency of nanocomposites in preventing skin lesions(1212. Queiroz Schmidt FM, Serna González CV, Mattar RC, Lopes LB, Santos MF, Santos VLCG. Topical application of a cream containing nanoparticles with vitamin E for radiodermatitis prevention in women with breast cancer: a randomized, triple-blind, controlled pilot trial. Eur J Oncol Nurs. 2022;61:102230. doi: http://doi.org/10.1016/j.ejon.2022.102230. PubMed PMID: 36403542.
https://doi.org/10.1016/j.ejon.2022.1022...
) give nanomaterials too much scientific interest. However, knowledge of nanotechnology, the nanomaterials that can be made, their possible applications and results is prevalent among professionals in the field of biomedical and materials engineering(1111. Naskar A, Kim KS. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12(6):499. doi: http://doi.org/10.3390/pharmaceutics12060499. PubMed PMID: 32486142.
https://doi.org/10.3390/pharmaceutics120...
).

The development of research using nanotechnology is among the thematic priorities for the period from 2020 to 2023 within the scope of Brazil’s Ministry of Science, Technology, Innovation and Communications. Ministerial Ordinance No. 1122 of March 19, 2020 reinforces that nanotechnology can contribute to the innovation base for products that are intensive in scientific and technological knowledge(1313. Brasil. Portaria no 1.122, de 19 de março de 2020. Define as prioridades, no âmbito do Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC), no que se refere a projetos de pesquisa, de desenvolvimento de tecnologias e inovações, para o período 2020 a 2023 [Internet]. Diário Oficial da União; Brasília; 24 março 2020. Seção 1, p. 19 [cited 2023 Sep 17]. Available from: https://www.in.gov.br/en/web/dou/-/portaria-n-1.122-de-19-de-marco-de-2020-249437397.
https://www.in.gov.br/en/web/dou/-/porta...
).

From this perspective, professionals directly involved in health care, especially nursing in the context of tissue injury care, need to have ownership and mastery of technological innovation, including the use of nanocomposites in the healing process.

However, there is a notorious conceptual and knowledge gap at national and international level regarding the specification and possibilities of using nanomaterials as a therapeutic covering in the healing process. A preliminary search was conducted in July 2022 in the Virtual Health Library and in the databases COCHRANE, CINAHL, EMBASE, SCOPUS, Web of Science and MEDLINE via PubMed, where until July 15, 2022 no scoping reviews or systematic reviews in progress or completed were found that addressed aspects related to the topic of interest.

Therefore, the relevance of this scoping review proposal is justified, which aims to map nanocomposites used as coverings in skin lesions during the healing process. It is hoped that these materials can be used in future research in order to contribute to professional assistance.

METHOD

This is a scoping review of the literature, developed according to the methodology proposed by the Joanna Briggs Institute (JBI)(1414. Peters MDJ, Godfrey CM, McInerney P, Munn Z, Tricco AC, Khalil H. Scoping reviews. In: Joanna Briggs Institute, editor. JBI manual for evidence synthesis. Adelaide: JBI; 2020. Chapter 11. doi: http://doi.org/10.46658/JBIMES-20-12.
https://doi.org/10.46658/JBIMES-20-12...
). The findings of this review were reported according to the PRISMA 2020 checklist (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension(1515. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. A declaração PRISMA 2020: diretriz atualizada para relatar revisões sistemáticas. Rev Panam Salud Publica. 2022;46(1):e112. doi: http://doi.org/10.26633/RPSP.2022.112. PubMed PMID: 36601438.
https://doi.org/10.26633/RPSP.2022.112...
). The research protocol for this study is registered on the Open Science Framework (OSF) platform (https://osf.io/2gudk/).

Research Question

To formulate the guiding question, the acronym PCC was used, in which “P” represents the population (people with skin lesions); “C” the concept (nanocomposites or nanogels); and “C” the context (broad, without restriction). Thus, the guiding question of this study was: “Which nanocomposites are used as a cover for the treatment of skin lesions?”.

Sources of Information and Inclusion Criteria

We considered studies published in full, with no restrictions on methodological design, languages or time limits. We considered articles published in journals and publications from the gray literature, such as course completion papers, theses and dissertations.

Inclusion/exclusion criteria were defined for each letter of the acronym PCC. Thus, studies whose population was patients with skin lesions were included. Regardless of the etiology, whether acute wounds or chronic wounds, patients with pre-existing illnesses in home care, outpatient care or in a healthcare institution were considered. Within the concept, the studies included used the nanocomposites or nanogels developed as the primary covering for wounds, regardless of the synthesis technique or design. Studies in which the coverings were applied exclusively to assess antimicrobial action, without evaluating healing progress, were disregarded. The context of this review was broad, with no restrictions on the context of care (hospital, home or outpatient) or any specific area of knowledge.

Search Strategy

Searches were carried out in the following databases: Medical Literature and Retrieval System online (MEDLINE) via National Center for Biotechnology Information (NCBI/PubMed), Latin American and Caribbean Literature in Health Sciences (LILACS), Nursing Database (BDENF) and Spanish Bibliographic Index in Health Sciences (IBECS), via the Virtual Health Library, EMBASE via Elsevier, COCHRANE, CINAHL and Web of Science (WOS) were accessed via the Journal Portal of the Coordination for the Improvement of Higher Education Personnel (CAPES). Additional strategies included searching Google Scholar and cross-referencing. The searches were conducted between July and December 2022 and updated in February 2024.

The databases were searched using controlled descriptors from the Health Sciences Descriptor Database (DeCS), Medical Subject Headings (MeSH), Emtree and CINAHL titles, as well as keywords and synonyms. In order to broaden the findings, the strategies were defined by the reviewers with the help of a librarian. Chart 1 shows the construction syntax, descriptors/keywords and Boolean operators used in the high-sensitivity search in the MEDLINE/ NCBI/PubMed database. The other strategies can be found in the scoping review protocol: (https://osf.io/2gudk/).

Chart 1
Construction syntax, descriptors/keywords and Boolean operators used in the MEDLINE/NCBI/PubMed database – Teresina, PI, Brazil, 2024.

Selection of Studies

After searching the databases, the results found were uploaded to EndNote web (Clarivate Analytics, Pennsylvania, United States of America) where duplicates were identified and removed. The Rayyan software (Qatar Computing Research Institute, Doha, Qatar) was used to analyze, select and exclude the articles, where the remaining duplicates were also analyzed and excluded.

Screening and evaluation of the references found was carried out by two reviewers in a blind evaluation, and divergent cases were evaluated by a third reviewer. The pre-selected studies were read in full and assessed against the inclusion criteria already defined.

Data Extraction

A tool developed by the reviewers was used to extract data from the included articles, which was based on the model available in the JBI manual and is available for consultation on the OSF platform (https://osf.io/2gudk/).

Presentation of Results

The data extracted was presented in the form of tables and narrative discussion, taking into account the aim of this scoping review.

RESULTS

After selecting the databases using the search strategies set up, 5,614 articles were retrieved: MEDLINE/PubMed N = 1,754, LILACS N = 19, BDENF N = 5, IBECS N = 2, EMBASE N = 1,203, COCHRANE N = 62, WEB OF SCIENCE N = 758, CINAHL N = 1,811, grey literature N = 100, list of references N = 14. Duplicates were then excluded and the title and abstract were read, applying the inclusion/exclusion criteria.

Of those eligible for full reading, 106 articles were removed according to the exclusion criteria: 48 were animal models, 18 in vitro studies, 3 non-cutaneous lesions, 3 studies the material was not nanocomposite, 13 referred to nanotechnology as a potential perspective for healing, 2 discussed electrospinning, 5 did not deal with the application of the nanocomposite, 9 the objective was antimicrobial potential, 3 did not specify the population and 1 the object of study was absorption rate of the dressing and 1 was discarded because it had undergone a retraction. In this review, the final sample totaled 21 selected studies.

The process of searching for and selecting the studies in this review is shown in the flowchart (Figure 1), according to the recommendations of the JBI, following a checklist adapted from PRISMA.

Figure 1
PRISMA flowchart for the selection of review articles. Teresina, PI, Brazil, 2024. Source: Prepared by authors based on PRISMA 2020(1515. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. A declaração PRISMA 2020: diretriz atualizada para relatar revisões sistemáticas. Rev Panam Salud Publica. 2022;46(1):e112. doi: http://doi.org/10.26633/RPSP.2022.112. PubMed PMID: 36601438.
https://doi.org/10.26633/RPSP.2022.112...
).

Among the 21 studies included in this review, the publication years were: 2021 with 5 (23.8%), followed by 4 (19%) in 2019, 3 (14.2%) in 2023, 2 (9.5%) in 2012, 2 (9.5%) in 2016 and 2 (9.5%) in 2018 and one (4.7%) in 2015, one (4.7%) in 2017 and finally one (4.7%) in 2022. The English language was unanimous (100%).

The geographical distribution of publications was concentrated in the United States (USA) and China with 3 (14.2%), 2 (9.5%) in the Czech Republic, Egypt and Iran and one (4.7%) in Greece, France, Canada, Brazil, Malaysia, Sweden, Poland, Mexico and Switzerland. As for the professional areas responsible for the research, nursing was only responsible for 2 (9.5%) publications independently and 3 (14.2%) jointly with medicine, with a predominance of articles in the area of medicine (dermatology) with 6 (28.5%), oncology and traumatology with one (4.7%) each, pharmacology independently 2 (9.5%) and in partnership with medicine there were also three (14.2%) and finally 3 (14.2%) publications from medicine with nanoscience (materials).

In terms of methodological design, there were five clinical trials(16–20), three case studies(2121. McCarthy KD, Donovan RM. Management of a patient with toxic epidermal necrolysis using silicone transfer foam dressings and a secondary absorbent dressing. J Wound Ostomy Continence Nurs. 2016;43(6):650–1. doi: http://doi.org/10.1097/WON.0000000000000287. PubMed PMID: 27820589.
https://doi.org/10.1097/WON.000000000000...
2323. López-Goerne T, Ramírez-Olivares P, Pérez-Dávalos LA, Velázquez-Muñoz JA, Reyes-González J. Catalytic nanomedicine. Cu/TiO2–SiO2 nanoparticles as treatment of diabetic foot ulcer: a case report. Curr Nanomed. 2019;10(3):290–5. doi: http://doi.org/10.2174/2468187309666190906121924.
https://doi.org/10.2174/2468187309666190...
), eight randomized clinical trials(2424. Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–6. doi: http://doi.org/10.1016/j.burns.2006.06.020. PubMed PMID: 17175106.
https://doi.org/10.1016/j.burns.2006.06....
3131. Saghafi F, Ramezani V, Jafari-Nedooshan J, Zarekamali J, Kargar S, Tabatabaei SM, et al. Efficacy of topical atorvastatin-loaded emulgel and nano-emulgel 1% on post-laparotomy pain and wound healing: a randomized double-blind placebo-controlled clinical trial. Int Wound J. 2023;20(10):4006–14. doi: http://doi.org/10.1111/iwj.14289. PubMed PMID: 37382345.
https://doi.org/10.1111/iwj.14289...
), one retrospective(3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...
) and prospective(3333. Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative study between silver nanoparticles dressing (SilvrSTAT Gel) and conventional dressing in diabetic foot ulcer healing: a prospective randomized study. Int J Low Extrem Wounds. 2023;22(1):48–55. doi: http://doi.org/10.1177/1534734620988217. PubMed PMID: 33686887.
https://doi.org/10.1177/1534734620988217...
) study each and three case series(3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
3636. Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf.
https://woundsinternational.com/wp-conte...
) with similar study objects on the use of various nanocomposites in the treatment of skin lesions. The etiologies of the wounds were: burns(2424. Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–6. doi: http://doi.org/10.1016/j.burns.2006.06.020. PubMed PMID: 17175106.
https://doi.org/10.1016/j.burns.2006.06....
), radiodermatitis(1616. Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
https://doi.org/10.3390/cancers13112596...
), toxic necrolysis epidermitis(2121. McCarthy KD, Donovan RM. Management of a patient with toxic epidermal necrolysis using silicone transfer foam dressings and a secondary absorbent dressing. J Wound Ostomy Continence Nurs. 2016;43(6):650–1. doi: http://doi.org/10.1097/WON.0000000000000287. PubMed PMID: 27820589.
https://doi.org/10.1097/WON.000000000000...
) and surgical necrolysis(3131. Saghafi F, Ramezani V, Jafari-Nedooshan J, Zarekamali J, Kargar S, Tabatabaei SM, et al. Efficacy of topical atorvastatin-loaded emulgel and nano-emulgel 1% on post-laparotomy pain and wound healing: a randomized double-blind placebo-controlled clinical trial. Int Wound J. 2023;20(10):4006–14. doi: http://doi.org/10.1111/iwj.14289. PubMed PMID: 37382345.
https://doi.org/10.1111/iwj.14289...
) with one study each, pressure injuries(2020. Li C, Xianqing W, You G. Clinical effect and collaborative nursing of polycaprolactone/gelatin nanofiber membrane in the treatment of stage 2 pressure injury. Acta Med Mediter. 2023;39:615. doi: http://doi.org/10.19193/0393-6384_2023_2_88.
https://doi.org/10.19193/0393-6384_2023_...
,2929. Fulco I, Erba P, Valeri RC, Vournakis J, Schaefer DJ. Poly-N-acetyl glucosamine nanofibers for negative-pressure wound therapies. Wound Repair Regen. 2015;23(2):197–202. doi: http://doi.org/10.1111/wrr.12273. PubMed PMID: 25703411.
https://doi.org/10.1111/wrr.12273...
) with two studies, venous ulcers with six studies(1717. Šíma P, Schůrek J, Forostyak S, Džupa V, Arenberger P. Management of leg ulcers using combined PRP therapy on a nanofiber carrier: results of a pilot study. Acta Chir Orthop Traumatol Cech. 2022;89(3):204–7. doi: http://doi.org/10.55095/achot2022/030. PubMed PMID: 35815487.
https://doi.org/10.55095/achot2022/030...
,1919. Arenbergerova M, Arenberger P, Bednar M, Kubat P, Mosinger J. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol. 2012;21(8):619–24. doi: http://doi.org/10.1111/j.1600-0625.2012.01536.x. PubMed PMID: 22775997.
https://doi.org/10.1111/j.1600-0625.2012...
,2222. Menezes PP, Gomes CVC, Carvalho YMBG, Santos NGL, Andrade VM, Oliveira AMS, et al. Evaluation of the use of compressive stockings impregnated with hesperetin-based nanocapsules in the healing of venous ulcers: a case report. Clin Med Insights Case Rep. 2019;12:1–6. doi: http://doi.org/10.1177/1179547619858977. PubMed PMID: 31360076.
https://doi.org/10.1177/1179547619858977...
,2525. Meaume S, Dompmartin A, Lok C, Lazareth I, Sigal M, Truchetet F, et al. Quality of life in patients with leg ulcers: results from CHALLENGE, a double-blind randomised controlled trial. J Wound Care. 2017;26(7):368–79. doi: http://doi.org/10.12968/jowc.2017.26.7.368. PubMed PMID: 28704156.
https://doi.org/10.12968/jowc.2017.26.7....
,3030. Kelechi TJ, Mueller M, Hankin CS, Bronstone A, Samies J, Bonham PA. A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol. 2012;66(6):e209–15. doi: http://doi.org/10.1016/j.jaad.2011.01.031. PubMed PMID: 21620515.
https://doi.org/10.1016/j.jaad.2011.01.0...
,3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
) and diabetic foot ulcers with nine studies(1818. Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–19. doi: http://doi.org/10.1007/s43440-021-00220-8. PubMed PMID: 33826133.
https://doi.org/10.1007/s43440-021-00220...
,2323. López-Goerne T, Ramírez-Olivares P, Pérez-Dávalos LA, Velázquez-Muñoz JA, Reyes-González J. Catalytic nanomedicine. Cu/TiO2–SiO2 nanoparticles as treatment of diabetic foot ulcer: a case report. Curr Nanomed. 2019;10(3):290–5. doi: http://doi.org/10.2174/2468187309666190906121924.
https://doi.org/10.2174/2468187309666190...
,2626. Motawea A, Abd El-Gawad AEGH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot. 2019;40:14–21. doi: http://doi.org/10.1016/j.foot.2019.03.007. PubMed PMID: 30999080.
https://doi.org/10.1016/j.foot.2019.03.0...
2828. Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
https://doi.org/10.1016/j.intimp.2021.10...
,3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...
3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
,3636. Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf.
https://woundsinternational.com/wp-conte...
).

Among the articles selected, there was a wide variety in the design of the nanocomposites tested, which included nanofibers(1616. Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
https://doi.org/10.3390/cancers13112596...
2020. Li C, Xianqing W, You G. Clinical effect and collaborative nursing of polycaprolactone/gelatin nanofiber membrane in the treatment of stage 2 pressure injury. Acta Med Mediter. 2023;39:615. doi: http://doi.org/10.19193/0393-6384_2023_2_88.
https://doi.org/10.19193/0393-6384_2023_...
,2727. Tsang KK, Kwong EWY, To TSS, Chung JWY, Wong TKS. A pilot randomized, controlled study of nanocrystalline silver, Manuka honey, and conventional dressing in healing diabetic foot ulcer. Evid Based Complement Alternat Med. 2017;2017:5294890. doi: http://doi.org/10.1155/2017/5294890. PubMed PMID: 28239398.
https://doi.org/10.1155/2017/5294890...
3030. Kelechi TJ, Mueller M, Hankin CS, Bronstone A, Samies J, Bonham PA. A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol. 2012;66(6):e209–15. doi: http://doi.org/10.1016/j.jaad.2011.01.031. PubMed PMID: 21620515.
https://doi.org/10.1016/j.jaad.2011.01.0...
), nanogels(2323. López-Goerne T, Ramírez-Olivares P, Pérez-Dávalos LA, Velázquez-Muñoz JA, Reyes-González J. Catalytic nanomedicine. Cu/TiO2–SiO2 nanoparticles as treatment of diabetic foot ulcer: a case report. Curr Nanomed. 2019;10(3):290–5. doi: http://doi.org/10.2174/2468187309666190906121924.
https://doi.org/10.2174/2468187309666190...
,2626. Motawea A, Abd El-Gawad AEGH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot. 2019;40:14–21. doi: http://doi.org/10.1016/j.foot.2019.03.007. PubMed PMID: 30999080.
https://doi.org/10.1016/j.foot.2019.03.0...
,3333. Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative study between silver nanoparticles dressing (SilvrSTAT Gel) and conventional dressing in diabetic foot ulcer healing: a prospective randomized study. Int J Low Extrem Wounds. 2023;22(1):48–55. doi: http://doi.org/10.1177/1534734620988217. PubMed PMID: 33686887.
https://doi.org/10.1177/1534734620988217...
), nanoemulsion(3131. Saghafi F, Ramezani V, Jafari-Nedooshan J, Zarekamali J, Kargar S, Tabatabaei SM, et al. Efficacy of topical atorvastatin-loaded emulgel and nano-emulgel 1% on post-laparotomy pain and wound healing: a randomized double-blind placebo-controlled clinical trial. Int Wound J. 2023;20(10):4006–14. doi: http://doi.org/10.1111/iwj.14289. PubMed PMID: 37382345.
https://doi.org/10.1111/iwj.14289...
), nanomembrane(3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
), synthetic dressings with at least one of the components on a nanoscale(2121. McCarthy KD, Donovan RM. Management of a patient with toxic epidermal necrolysis using silicone transfer foam dressings and a secondary absorbent dressing. J Wound Ostomy Continence Nurs. 2016;43(6):650–1. doi: http://doi.org/10.1097/WON.0000000000000287. PubMed PMID: 27820589.
https://doi.org/10.1097/WON.000000000000...
,2424. Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–6. doi: http://doi.org/10.1016/j.burns.2006.06.020. PubMed PMID: 17175106.
https://doi.org/10.1016/j.burns.2006.06....
,2525. Meaume S, Dompmartin A, Lok C, Lazareth I, Sigal M, Truchetet F, et al. Quality of life in patients with leg ulcers: results from CHALLENGE, a double-blind randomised controlled trial. J Wound Care. 2017;26(7):368–79. doi: http://doi.org/10.12968/jowc.2017.26.7.368. PubMed PMID: 28704156.
https://doi.org/10.12968/jowc.2017.26.7....
,3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...
,3636. Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf.
https://woundsinternational.com/wp-conte...
), sprays with nanoparticles(3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
), and nanocapsules(2222. Menezes PP, Gomes CVC, Carvalho YMBG, Santos NGL, Andrade VM, Oliveira AMS, et al. Evaluation of the use of compressive stockings impregnated with hesperetin-based nanocapsules in the healing of venous ulcers: a case report. Clin Med Insights Case Rep. 2019;12:1–6. doi: http://doi.org/10.1177/1179547619858977. PubMed PMID: 31360076.
https://doi.org/10.1177/1179547619858977...
) in compression stockings with a predominance of studies using nanosilver(2121. McCarthy KD, Donovan RM. Management of a patient with toxic epidermal necrolysis using silicone transfer foam dressings and a secondary absorbent dressing. J Wound Ostomy Continence Nurs. 2016;43(6):650–1. doi: http://doi.org/10.1097/WON.0000000000000287. PubMed PMID: 27820589.
https://doi.org/10.1097/WON.000000000000...
,2424. Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–6. doi: http://doi.org/10.1016/j.burns.2006.06.020. PubMed PMID: 17175106.
https://doi.org/10.1016/j.burns.2006.06....
,2727. Tsang KK, Kwong EWY, To TSS, Chung JWY, Wong TKS. A pilot randomized, controlled study of nanocrystalline silver, Manuka honey, and conventional dressing in healing diabetic foot ulcer. Evid Based Complement Alternat Med. 2017;2017:5294890. doi: http://doi.org/10.1155/2017/5294890. PubMed PMID: 28239398.
https://doi.org/10.1155/2017/5294890...
,3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...
3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
) with good results and some recommendations regarding its use (Chart 2).

Chart 2
Data extracted from the studies included in the scoping review – Teresina, PI, Brazil, 2024.

Healing in diabetic foot ulcers has been described at around 95.8%(2626. Motawea A, Abd El-Gawad AEGH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot. 2019;40:14–21. doi: http://doi.org/10.1016/j.foot.2019.03.007. PubMed PMID: 30999080.
https://doi.org/10.1016/j.foot.2019.03.0...
), 85%(3333. Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative study between silver nanoparticles dressing (SilvrSTAT Gel) and conventional dressing in diabetic foot ulcer healing: a prospective randomized study. Int J Low Extrem Wounds. 2023;22(1):48–55. doi: http://doi.org/10.1177/1534734620988217. PubMed PMID: 33686887.
https://doi.org/10.1177/1534734620988217...
), 81.8%(2727. Tsang KK, Kwong EWY, To TSS, Chung JWY, Wong TKS. A pilot randomized, controlled study of nanocrystalline silver, Manuka honey, and conventional dressing in healing diabetic foot ulcer. Evid Based Complement Alternat Med. 2017;2017:5294890. doi: http://doi.org/10.1155/2017/5294890. PubMed PMID: 28239398.
https://doi.org/10.1155/2017/5294890...
), 71%(2828. Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
https://doi.org/10.1016/j.intimp.2021.10...
) and a reduction of ±7 cm(1818. Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–19. doi: http://doi.org/10.1007/s43440-021-00220-8. PubMed PMID: 33826133.
https://doi.org/10.1007/s43440-021-00220...
), pressure sores at 16.4%(2929. Fulco I, Erba P, Valeri RC, Vournakis J, Schaefer DJ. Poly-N-acetyl glucosamine nanofibers for negative-pressure wound therapies. Wound Repair Regen. 2015;23(2):197–202. doi: http://doi.org/10.1111/wrr.12273. PubMed PMID: 25703411.
https://doi.org/10.1111/wrr.12273...
) and a reduction of ±15 cm(2020. Li C, Xianqing W, You G. Clinical effect and collaborative nursing of polycaprolactone/gelatin nanofiber membrane in the treatment of stage 2 pressure injury. Acta Med Mediter. 2023;39:615. doi: http://doi.org/10.19193/0393-6384_2023_2_88.
https://doi.org/10.19193/0393-6384_2023_...
); leg ulcers a reduction of ±5 cm(1919. Arenbergerova M, Arenberger P, Bednar M, Kubat P, Mosinger J. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol. 2012;21(8):619–24. doi: http://doi.org/10.1111/j.1600-0625.2012.01536.x. PubMed PMID: 22775997.
https://doi.org/10.1111/j.1600-0625.2012...
) and a reduction of 43 days in treatment time(3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
); venous ulcers healing was 92.8%(2222. Menezes PP, Gomes CVC, Carvalho YMBG, Santos NGL, Andrade VM, Oliveira AMS, et al. Evaluation of the use of compressive stockings impregnated with hesperetin-based nanocapsules in the healing of venous ulcers: a case report. Clin Med Insights Case Rep. 2019;12:1–6. doi: http://doi.org/10.1177/1179547619858977. PubMed PMID: 31360076.
https://doi.org/10.1177/1179547619858977...
), 86.4%(3030. Kelechi TJ, Mueller M, Hankin CS, Bronstone A, Samies J, Bonham PA. A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol. 2012;66(6):e209–15. doi: http://doi.org/10.1016/j.jaad.2011.01.031. PubMed PMID: 21620515.
https://doi.org/10.1016/j.jaad.2011.01.0...
); surgical wounds healing was 93%(3131. Saghafi F, Ramezani V, Jafari-Nedooshan J, Zarekamali J, Kargar S, Tabatabaei SM, et al. Efficacy of topical atorvastatin-loaded emulgel and nano-emulgel 1% on post-laparotomy pain and wound healing: a randomized double-blind placebo-controlled clinical trial. Int Wound J. 2023;20(10):4006–14. doi: http://doi.org/10.1111/iwj.14289. PubMed PMID: 37382345.
https://doi.org/10.1111/iwj.14289...
) and burns 90.7%(2424. Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–6. doi: http://doi.org/10.1016/j.burns.2006.06.020. PubMed PMID: 17175106.
https://doi.org/10.1016/j.burns.2006.06....
).

As for the compounds associated with nanocomposites, a wide variety of products have been described: the aqueous extract of Pinus halepensis bark(1616. Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
https://doi.org/10.3390/cancers13112596...
), platelet-rich plasma(1717. Šíma P, Schůrek J, Forostyak S, Džupa V, Arenberger P. Management of leg ulcers using combined PRP therapy on a nanofiber carrier: results of a pilot study. Acta Chir Orthop Traumatol Cech. 2022;89(3):204–7. doi: http://doi.org/10.55095/achot2022/030. PubMed PMID: 35815487.
https://doi.org/10.55095/achot2022/030...
,2828. Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
https://doi.org/10.1016/j.intimp.2021.10...
), mesenchymal stem cells(2828. Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
https://doi.org/10.1016/j.intimp.2021.10...
), venlafaxine and doxycycline(1818. Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–19. doi: http://doi.org/10.1007/s43440-021-00220-8. PubMed PMID: 33826133.
https://doi.org/10.1007/s43440-021-00220...
), tetraphenyl-porphyrin photosensitizer(1919. Arenbergerova M, Arenberger P, Bednar M, Kubat P, Mosinger J. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol. 2012;21(8):619–24. doi: http://doi.org/10.1111/j.1600-0625.2012.01536.x. PubMed PMID: 22775997.
https://doi.org/10.1111/j.1600-0625.2012...
), phenytoin(2626. Motawea A, Abd El-Gawad AEGH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot. 2019;40:14–21. doi: http://doi.org/10.1016/j.foot.2019.03.007. PubMed PMID: 30999080.
https://doi.org/10.1016/j.foot.2019.03.0...
), Cu/TiO2-SiO2(2323. López-Goerne T, Ramírez-Olivares P, Pérez-Dávalos LA, Velázquez-Muñoz JA, Reyes-González J. Catalytic nanomedicine. Cu/TiO2–SiO2 nanoparticles as treatment of diabetic foot ulcer: a case report. Curr Nanomed. 2019;10(3):290–5. doi: http://doi.org/10.2174/2468187309666190906121924.
https://doi.org/10.2174/2468187309666190...
), atorvastatin(3131. Saghafi F, Ramezani V, Jafari-Nedooshan J, Zarekamali J, Kargar S, Tabatabaei SM, et al. Efficacy of topical atorvastatin-loaded emulgel and nano-emulgel 1% on post-laparotomy pain and wound healing: a randomized double-blind placebo-controlled clinical trial. Int Wound J. 2023;20(10):4006–14. doi: http://doi.org/10.1111/iwj.14289. PubMed PMID: 37382345.
https://doi.org/10.1111/iwj.14289...
), nanooligosaccharide factor (NOSF)(2525. Meaume S, Dompmartin A, Lok C, Lazareth I, Sigal M, Truchetet F, et al. Quality of life in patients with leg ulcers: results from CHALLENGE, a double-blind randomised controlled trial. J Wound Care. 2017;26(7):368–79. doi: http://doi.org/10.12968/jowc.2017.26.7.368. PubMed PMID: 28704156.
https://doi.org/10.12968/jowc.2017.26.7....
,3636. Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf.
https://woundsinternational.com/wp-conte...
) and hespertine(2222. Menezes PP, Gomes CVC, Carvalho YMBG, Santos NGL, Andrade VM, Oliveira AMS, et al. Evaluation of the use of compressive stockings impregnated with hesperetin-based nanocapsules in the healing of venous ulcers: a case report. Clin Med Insights Case Rep. 2019;12:1–6. doi: http://doi.org/10.1177/1179547619858977. PubMed PMID: 31360076.
https://doi.org/10.1177/1179547619858977...
).

DISCUSSION

The technological advance inherent in the development of nanotechnology strengthens and disseminates in the academic field technological possibilities for resolving preponderant issues in the field of health(3737. Huang R, Hu J, Qian W, Chen L, Zhang DL. Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma. 2021;9:b026. doi: http://doi.org/10.1093/burnst/tkab026. PubMed PMID: 34778468.
https://doi.org/10.1093/burnst/tkab026...
). The manufacture of nanocomposites for the health care of patients with skin lesions is being explored with this nanotechnological development, resulting in the supply of synthetic dressings with silver nanoparticles(2121. McCarthy KD, Donovan RM. Management of a patient with toxic epidermal necrolysis using silicone transfer foam dressings and a secondary absorbent dressing. J Wound Ostomy Continence Nurs. 2016;43(6):650–1. doi: http://doi.org/10.1097/WON.0000000000000287. PubMed PMID: 27820589.
https://doi.org/10.1097/WON.000000000000...
,2424. Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–6. doi: http://doi.org/10.1016/j.burns.2006.06.020. PubMed PMID: 17175106.
https://doi.org/10.1016/j.burns.2006.06....
,3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...
,3636. Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf.
https://woundsinternational.com/wp-conte...
), biomaterials with nanocrystalline silver(2727. Tsang KK, Kwong EWY, To TSS, Chung JWY, Wong TKS. A pilot randomized, controlled study of nanocrystalline silver, Manuka honey, and conventional dressing in healing diabetic foot ulcer. Evid Based Complement Alternat Med. 2017;2017:5294890. doi: http://doi.org/10.1155/2017/5294890. PubMed PMID: 28239398.
https://doi.org/10.1155/2017/5294890...
,3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
), nanofibers loaded with bioactive substances(1616. Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
https://doi.org/10.3390/cancers13112596...
,1818. Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–19. doi: http://doi.org/10.1007/s43440-021-00220-8. PubMed PMID: 33826133.
https://doi.org/10.1007/s43440-021-00220...
,1919. Arenbergerova M, Arenberger P, Bednar M, Kubat P, Mosinger J. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol. 2012;21(8):619–24. doi: http://doi.org/10.1111/j.1600-0625.2012.01536.x. PubMed PMID: 22775997.
https://doi.org/10.1111/j.1600-0625.2012...
,3030. Kelechi TJ, Mueller M, Hankin CS, Bronstone A, Samies J, Bonham PA. A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol. 2012;66(6):e209–15. doi: http://doi.org/10.1016/j.jaad.2011.01.031. PubMed PMID: 21620515.
https://doi.org/10.1016/j.jaad.2011.01.0...
,3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
), nanofibers loaded with growth factors(1717. Šíma P, Schůrek J, Forostyak S, Džupa V, Arenberger P. Management of leg ulcers using combined PRP therapy on a nanofiber carrier: results of a pilot study. Acta Chir Orthop Traumatol Cech. 2022;89(3):204–7. doi: http://doi.org/10.55095/achot2022/030. PubMed PMID: 35815487.
https://doi.org/10.55095/achot2022/030...
,2828. Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
https://doi.org/10.1016/j.intimp.2021.10...
) or even synthetic dressings with growth factors(2525. Meaume S, Dompmartin A, Lok C, Lazareth I, Sigal M, Truchetet F, et al. Quality of life in patients with leg ulcers: results from CHALLENGE, a double-blind randomised controlled trial. J Wound Care. 2017;26(7):368–79. doi: http://doi.org/10.12968/jowc.2017.26.7.368. PubMed PMID: 28704156.
https://doi.org/10.12968/jowc.2017.26.7....
), hydrogels with growth factors(2626. Motawea A, Abd El-Gawad AEGH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot. 2019;40:14–21. doi: http://doi.org/10.1016/j.foot.2019.03.007. PubMed PMID: 30999080.
https://doi.org/10.1016/j.foot.2019.03.0...
), nanogels(2323. López-Goerne T, Ramírez-Olivares P, Pérez-Dávalos LA, Velázquez-Muñoz JA, Reyes-González J. Catalytic nanomedicine. Cu/TiO2–SiO2 nanoparticles as treatment of diabetic foot ulcer: a case report. Curr Nanomed. 2019;10(3):290–5. doi: http://doi.org/10.2174/2468187309666190906121924.
https://doi.org/10.2174/2468187309666190...
,3333. Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative study between silver nanoparticles dressing (SilvrSTAT Gel) and conventional dressing in diabetic foot ulcer healing: a prospective randomized study. Int J Low Extrem Wounds. 2023;22(1):48–55. doi: http://doi.org/10.1177/1534734620988217. PubMed PMID: 33686887.
https://doi.org/10.1177/1534734620988217...
), nanoemulsions(3131. Saghafi F, Ramezani V, Jafari-Nedooshan J, Zarekamali J, Kargar S, Tabatabaei SM, et al. Efficacy of topical atorvastatin-loaded emulgel and nano-emulgel 1% on post-laparotomy pain and wound healing: a randomized double-blind placebo-controlled clinical trial. Int Wound J. 2023;20(10):4006–14. doi: http://doi.org/10.1111/iwj.14289. PubMed PMID: 37382345.
https://doi.org/10.1111/iwj.14289...
) and the possibility of associating adjuvant therapies with nanocomposites(2222. Menezes PP, Gomes CVC, Carvalho YMBG, Santos NGL, Andrade VM, Oliveira AMS, et al. Evaluation of the use of compressive stockings impregnated with hesperetin-based nanocapsules in the healing of venous ulcers: a case report. Clin Med Insights Case Rep. 2019;12:1–6. doi: http://doi.org/10.1177/1179547619858977. PubMed PMID: 31360076.
https://doi.org/10.1177/1179547619858977...
,2929. Fulco I, Erba P, Valeri RC, Vournakis J, Schaefer DJ. Poly-N-acetyl glucosamine nanofibers for negative-pressure wound therapies. Wound Repair Regen. 2015;23(2):197–202. doi: http://doi.org/10.1111/wrr.12273. PubMed PMID: 25703411.
https://doi.org/10.1111/wrr.12273...
).

The transport of bioactive substances, growth factors and compounds such as silver through nanoparticles, nanogels, nanofibers and scaffolds adds to nanotechnology an efficient perspective for modulating the healing process and accelerating tissue repair(1717. Šíma P, Schůrek J, Forostyak S, Džupa V, Arenberger P. Management of leg ulcers using combined PRP therapy on a nanofiber carrier: results of a pilot study. Acta Chir Orthop Traumatol Cech. 2022;89(3):204–7. doi: http://doi.org/10.55095/achot2022/030. PubMed PMID: 35815487.
https://doi.org/10.55095/achot2022/030...
,1818. Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–19. doi: http://doi.org/10.1007/s43440-021-00220-8. PubMed PMID: 33826133.
https://doi.org/10.1007/s43440-021-00220...
,2828. Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
https://doi.org/10.1016/j.intimp.2021.10...
). The use of silver in nanocomposites has been explored repeatedly in studies aimed at studying the healing potential of nanostructures due to their added properties such as antimicrobial potential, antibiofilm and anti-inflammatory action(2121. McCarthy KD, Donovan RM. Management of a patient with toxic epidermal necrolysis using silicone transfer foam dressings and a secondary absorbent dressing. J Wound Ostomy Continence Nurs. 2016;43(6):650–1. doi: http://doi.org/10.1097/WON.0000000000000287. PubMed PMID: 27820589.
https://doi.org/10.1097/WON.000000000000...
,2424. Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–6. doi: http://doi.org/10.1016/j.burns.2006.06.020. PubMed PMID: 17175106.
https://doi.org/10.1016/j.burns.2006.06....
,3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...
,3333. Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative study between silver nanoparticles dressing (SilvrSTAT Gel) and conventional dressing in diabetic foot ulcer healing: a prospective randomized study. Int J Low Extrem Wounds. 2023;22(1):48–55. doi: http://doi.org/10.1177/1534734620988217. PubMed PMID: 33686887.
https://doi.org/10.1177/1534734620988217...
,3636. Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf.
https://woundsinternational.com/wp-conte...
).

Nanocomposites with silver nanoparticles were the predominant object of study in the texts analyzed, with satisfactory results promoting accelerated tissue repair, control of microorganisms and modulation of the inflammatory process(2121. McCarthy KD, Donovan RM. Management of a patient with toxic epidermal necrolysis using silicone transfer foam dressings and a secondary absorbent dressing. J Wound Ostomy Continence Nurs. 2016;43(6):650–1. doi: http://doi.org/10.1097/WON.0000000000000287. PubMed PMID: 27820589.
https://doi.org/10.1097/WON.000000000000...
,2727. Tsang KK, Kwong EWY, To TSS, Chung JWY, Wong TKS. A pilot randomized, controlled study of nanocrystalline silver, Manuka honey, and conventional dressing in healing diabetic foot ulcer. Evid Based Complement Alternat Med. 2017;2017:5294890. doi: http://doi.org/10.1155/2017/5294890. PubMed PMID: 28239398.
https://doi.org/10.1155/2017/5294890...
,3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...

33. Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative study between silver nanoparticles dressing (SilvrSTAT Gel) and conventional dressing in diabetic foot ulcer healing: a prospective randomized study. Int J Low Extrem Wounds. 2023;22(1):48–55. doi: http://doi.org/10.1177/1534734620988217. PubMed PMID: 33686887.
https://doi.org/10.1177/1534734620988217...
-3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
,3636. Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf.
https://woundsinternational.com/wp-conte...
). However, it should be used with caution due to its cytotoxicity to cells and tissues compared to classic ionic compounds(2727. Tsang KK, Kwong EWY, To TSS, Chung JWY, Wong TKS. A pilot randomized, controlled study of nanocrystalline silver, Manuka honey, and conventional dressing in healing diabetic foot ulcer. Evid Based Complement Alternat Med. 2017;2017:5294890. doi: http://doi.org/10.1155/2017/5294890. PubMed PMID: 28239398.
https://doi.org/10.1155/2017/5294890...
,3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
,3838. Hashim PW, Nia JK, Han G, Ratner D. Nanoparticles in dermatologic surgery. J Am Acad Dermatol. 2020;83(4):1144–9. doi: http://doi.org/10.1016/j.jaad.2019.04.020. PubMed PMID: 30991121.
https://doi.org/10.1016/j.jaad.2019.04.0...
). The absorption of silver at the cellular level with a potential cytotoxic effect and the antimicrobial resistance of pathogens colonized in the wound bed as a result of prolonged use(3939. Datta D, Kumar RS. A review on wound management with special reference to nanotechnology. Int J Res Pharm Sci. 2020;11(3):2815-24. doi: http://doi.org/10.26452/ijrps.v11i3.2356.
https://doi.org/10.26452/ijrps.v11i3.235...
,4040. Erawati T, Fitriani RD, Hariyadi DM. Topical antimicrobial microparticle-based polymeric materials for burn wound infection. Trop J Nat Prod Res. 2021;5(10):1694–702. doi: http://doi.org/10.26538/tjnpr/v5i10.1.
https://doi.org/10.26538/tjnpr/v5i10.1...
) reinforce the need to control and ration the use of silver for a period of no more than four weeks(4141. Swanson T, Ousey K, Haesler E, Bjarnsholt T, Carville K, Idensohn P, et al. IWII Wound Infection in Clinical Practice consensus document: 2022 update. J Wound Care. 2022;31(Sup12):S10–21. doi: http://doi.org/10.12968/jowc.2022.31.Sup12.S10. PubMed PMID: 36475844.
https://doi.org/10.12968/jowc.2022.31.Su...
).

The use of silver nanocomposites has been described in epithelial lesions of different etiologies, with similar results in studies regarding the possibility of accelerating the healing process. In lesions resulting from burns, the silver nanocomposite promoted faster healing compared to the use of silver sulfadiazine(2424. Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–6. doi: http://doi.org/10.1016/j.burns.2006.06.020. PubMed PMID: 17175106.
https://doi.org/10.1016/j.burns.2006.06....
). In a case study of a patient with toxic epidermal necrolysis (TEN), the synthetic dressing with nanosilver promoted pain relief and rapid epithelialization(2121. McCarthy KD, Donovan RM. Management of a patient with toxic epidermal necrolysis using silicone transfer foam dressings and a secondary absorbent dressing. J Wound Ostomy Continence Nurs. 2016;43(6):650–1. doi: http://doi.org/10.1097/WON.0000000000000287. PubMed PMID: 27820589.
https://doi.org/10.1097/WON.000000000000...
). A retrospective study of patients with venous lesions and pressure injuries showed that the use of a synthetic dressing with nano-silver reduced healing time by more than half, with a consequent reduction in hospital costs(3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...
,3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
). In diabetic foot lesions, the use of silver nanocomposites not only reduced the size of the lesion and healing time, but also promoted the control of microorganisms, since these patients tend to have a potential risk of infection, and reduced costs in the context of the hospital care provided(2727. Tsang KK, Kwong EWY, To TSS, Chung JWY, Wong TKS. A pilot randomized, controlled study of nanocrystalline silver, Manuka honey, and conventional dressing in healing diabetic foot ulcer. Evid Based Complement Alternat Med. 2017;2017:5294890. doi: http://doi.org/10.1155/2017/5294890. PubMed PMID: 28239398.
https://doi.org/10.1155/2017/5294890...
,3333. Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative study between silver nanoparticles dressing (SilvrSTAT Gel) and conventional dressing in diabetic foot ulcer healing: a prospective randomized study. Int J Low Extrem Wounds. 2023;22(1):48–55. doi: http://doi.org/10.1177/1534734620988217. PubMed PMID: 33686887.
https://doi.org/10.1177/1534734620988217...
,3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
,3636. Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf.
https://woundsinternational.com/wp-conte...
). However, the studies did not report the systemic use of antibiotic therapy, the performance of biopsies or tissue cultures, or any adverse effects from the use of silver in the patients included in the samples.

Because of their physical, chemical and optical properties, synthetic polymers are the preferred raw material for making nanofibers(4242. Kang HJ, Chen N, Dash BC, Hsia HC, Berthiaume F. Self-assembled nanomaterials for chronic skin wound healing. Adv Wound Care. 2021;10(5):221–33. doi: http://doi.org/10.1089/wound.2019.1077. PubMed PMID: 32487014.
https://doi.org/10.1089/wound.2019.1077...
,4343. Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, et al. An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics. 2020;12(10):983. doi: http://doi.org/10.3390/pharmaceutics12100983. PubMed PMID: 33080849.
https://doi.org/10.3390/pharmaceutics121...
). In the studies analyzed, they were preferentially chosen due to the excellent results resulting from their similarity to the extracellular matrix, thus contributing to the deposition of cells involved in the healing process and accelerating the regeneration of injured epithelial tissue(1616. Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
https://doi.org/10.3390/cancers13112596...
2020. Li C, Xianqing W, You G. Clinical effect and collaborative nursing of polycaprolactone/gelatin nanofiber membrane in the treatment of stage 2 pressure injury. Acta Med Mediter. 2023;39:615. doi: http://doi.org/10.19193/0393-6384_2023_2_88.
https://doi.org/10.19193/0393-6384_2023_...
,2525. Meaume S, Dompmartin A, Lok C, Lazareth I, Sigal M, Truchetet F, et al. Quality of life in patients with leg ulcers: results from CHALLENGE, a double-blind randomised controlled trial. J Wound Care. 2017;26(7):368–79. doi: http://doi.org/10.12968/jowc.2017.26.7.368. PubMed PMID: 28704156.
https://doi.org/10.12968/jowc.2017.26.7....
,2828. Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
https://doi.org/10.1016/j.intimp.2021.10...
,2929. Fulco I, Erba P, Valeri RC, Vournakis J, Schaefer DJ. Poly-N-acetyl glucosamine nanofibers for negative-pressure wound therapies. Wound Repair Regen. 2015;23(2):197–202. doi: http://doi.org/10.1111/wrr.12273. PubMed PMID: 25703411.
https://doi.org/10.1111/wrr.12273...
).

The possibility of incorporating bioactive compounds or components gives nanocomposites biocompatibility characteristics and also potentials such as anti-inflammatory, antioxidant and antimicrobial activity, which make it possible to accelerate the healing of skin lesions(1616. Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
https://doi.org/10.3390/cancers13112596...
,2525. Meaume S, Dompmartin A, Lok C, Lazareth I, Sigal M, Truchetet F, et al. Quality of life in patients with leg ulcers: results from CHALLENGE, a double-blind randomised controlled trial. J Wound Care. 2017;26(7):368–79. doi: http://doi.org/10.12968/jowc.2017.26.7.368. PubMed PMID: 28704156.
https://doi.org/10.12968/jowc.2017.26.7....
,2727. Tsang KK, Kwong EWY, To TSS, Chung JWY, Wong TKS. A pilot randomized, controlled study of nanocrystalline silver, Manuka honey, and conventional dressing in healing diabetic foot ulcer. Evid Based Complement Alternat Med. 2017;2017:5294890. doi: http://doi.org/10.1155/2017/5294890. PubMed PMID: 28239398.
https://doi.org/10.1155/2017/5294890...
,3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
,3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
). Evidence strongly supports the fact that nanotechnology makes it possible to incorporate bioactive substances such as cellulose, chitosan and curcumin, giving the nanocomposite not only organic and cellular biocompatibility, but also additional properties that enhance its results and possible applications(3939. Datta D, Kumar RS. A review on wound management with special reference to nanotechnology. Int J Res Pharm Sci. 2020;11(3):2815-24. doi: http://doi.org/10.26452/ijrps.v11i3.2356.
https://doi.org/10.26452/ijrps.v11i3.235...
,4444. Hermosilla J, Pastene-Navarrete E, Acevedo F. Electrospun fibers loaded with natural bioactive compounds as a biomedical system for skin burn treatment: a review. Pharmaceutics. 2021;13(12):2054. doi: http://doi.org/10.3390/pharmaceutics13122054. PubMed PMID: 34959336.
https://doi.org/10.3390/pharmaceutics131...
,4545. Pinelli F, Ortolà ÓF, Makvandi P, Perale G, Rossi F. In vivo drug delivery applications of nanogels: a review. Nanomedicine. 2020;15(27):2707–27. doi: http://doi.org/10.2217/nnm-2020-0274. PubMed PMID: 33103960.
https://doi.org/10.2217/nnm-2020-0274...
).

Studies with the addition of cellulose(1616. Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
https://doi.org/10.3390/cancers13112596...
,1818. Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–19. doi: http://doi.org/10.1007/s43440-021-00220-8. PubMed PMID: 33826133.
https://doi.org/10.1007/s43440-021-00220...
,3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
), collagen(2020. Li C, Xianqing W, You G. Clinical effect and collaborative nursing of polycaprolactone/gelatin nanofiber membrane in the treatment of stage 2 pressure injury. Acta Med Mediter. 2023;39:615. doi: http://doi.org/10.19193/0393-6384_2023_2_88.
https://doi.org/10.19193/0393-6384_2023_...
) and chitosan(3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
) to nanostructures corroborate the evidence with similar results in promoting healing in less time(1616. Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
https://doi.org/10.3390/cancers13112596...
,1818. Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–19. doi: http://doi.org/10.1007/s43440-021-00220-8. PubMed PMID: 33826133.
https://doi.org/10.1007/s43440-021-00220...
,2020. Li C, Xianqing W, You G. Clinical effect and collaborative nursing of polycaprolactone/gelatin nanofiber membrane in the treatment of stage 2 pressure injury. Acta Med Mediter. 2023;39:615. doi: http://doi.org/10.19193/0393-6384_2023_2_88.
https://doi.org/10.19193/0393-6384_2023_...
,3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
,3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
), with a reduction in changes and costs(3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
,3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
), improving quality of life(2020. Li C, Xianqing W, You G. Clinical effect and collaborative nursing of polycaprolactone/gelatin nanofiber membrane in the treatment of stage 2 pressure injury. Acta Med Mediter. 2023;39:615. doi: http://doi.org/10.19193/0393-6384_2023_2_88.
https://doi.org/10.19193/0393-6384_2023_...
). The biocompatibility of the nanocomposite led to a reduction in peripheral neuropathy(1818. Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–19. doi: http://doi.org/10.1007/s43440-021-00220-8. PubMed PMID: 33826133.
https://doi.org/10.1007/s43440-021-00220...
) and a reduction in erythema and pruritus(1616. Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
https://doi.org/10.3390/cancers13112596...
).

Not only the incorporation of natural compounds, but also the incorporation of growth factors as a strategy to enhance wound healing can be seen to be quite effective(2525. Meaume S, Dompmartin A, Lok C, Lazareth I, Sigal M, Truchetet F, et al. Quality of life in patients with leg ulcers: results from CHALLENGE, a double-blind randomised controlled trial. J Wound Care. 2017;26(7):368–79. doi: http://doi.org/10.12968/jowc.2017.26.7.368. PubMed PMID: 28704156.
https://doi.org/10.12968/jowc.2017.26.7....
,2626. Motawea A, Abd El-Gawad AEGH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot. 2019;40:14–21. doi: http://doi.org/10.1016/j.foot.2019.03.007. PubMed PMID: 30999080.
https://doi.org/10.1016/j.foot.2019.03.0...
,2828. Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
https://doi.org/10.1016/j.intimp.2021.10...
,3636. Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf.
https://woundsinternational.com/wp-conte...
). Although they can contribute, none of the studies have made a comparative analysis of the isolated effect of the components carried by the nanocomposites.

The complexity of the healing process of skin lesions, as it involves numerous cellular structures, such as growth factors and cytokines, makes it imperative to develop technology and materials capable of succeeding and modulating the action of these structures in the lesion bed(3737. Huang R, Hu J, Qian W, Chen L, Zhang DL. Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma. 2021;9:b026. doi: http://doi.org/10.1093/burnst/tkab026. PubMed PMID: 34778468.
https://doi.org/10.1093/burnst/tkab026...
,4646. Alavi M, Rai M. Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: an overview. Expert Rev Anti Infect Ther. 2020;18(10):1021–32. doi: http://doi.org/10.1080/14787210.2020.1782740. PubMed PMID: 32536223.
https://doi.org/10.1080/14787210.2020.17...
). Significant advances in nanotechnology in the last decade have made it possible to incorporate growth factors into nanofibers, nanogels and scaffolds with a positive and evident effect on reducing tissue repair time(1717. Šíma P, Schůrek J, Forostyak S, Džupa V, Arenberger P. Management of leg ulcers using combined PRP therapy on a nanofiber carrier: results of a pilot study. Acta Chir Orthop Traumatol Cech. 2022;89(3):204–7. doi: http://doi.org/10.55095/achot2022/030. PubMed PMID: 35815487.
https://doi.org/10.55095/achot2022/030...
,2525. Meaume S, Dompmartin A, Lok C, Lazareth I, Sigal M, Truchetet F, et al. Quality of life in patients with leg ulcers: results from CHALLENGE, a double-blind randomised controlled trial. J Wound Care. 2017;26(7):368–79. doi: http://doi.org/10.12968/jowc.2017.26.7.368. PubMed PMID: 28704156.
https://doi.org/10.12968/jowc.2017.26.7....
,2626. Motawea A, Abd El-Gawad AEGH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot. 2019;40:14–21. doi: http://doi.org/10.1016/j.foot.2019.03.007. PubMed PMID: 30999080.
https://doi.org/10.1016/j.foot.2019.03.0...
,2828. Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
https://doi.org/10.1016/j.intimp.2021.10...
,3333. Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative study between silver nanoparticles dressing (SilvrSTAT Gel) and conventional dressing in diabetic foot ulcer healing: a prospective randomized study. Int J Low Extrem Wounds. 2023;22(1):48–55. doi: http://doi.org/10.1177/1534734620988217. PubMed PMID: 33686887.
https://doi.org/10.1177/1534734620988217...
).

It was possible to observe through this review that the use of nanocomposites is not only emerging as an individual therapy for the healing process, but also in association with advanced adjuvant treatments such as compressive therapy and negative pressure therapy, with congruent outcomes accelerating the healing process(1919. Arenbergerova M, Arenberger P, Bednar M, Kubat P, Mosinger J. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol. 2012;21(8):619–24. doi: http://doi.org/10.1111/j.1600-0625.2012.01536.x. PubMed PMID: 22775997.
https://doi.org/10.1111/j.1600-0625.2012...
,2222. Menezes PP, Gomes CVC, Carvalho YMBG, Santos NGL, Andrade VM, Oliveira AMS, et al. Evaluation of the use of compressive stockings impregnated with hesperetin-based nanocapsules in the healing of venous ulcers: a case report. Clin Med Insights Case Rep. 2019;12:1–6. doi: http://doi.org/10.1177/1179547619858977. PubMed PMID: 31360076.
https://doi.org/10.1177/1179547619858977...
). Nanotechnology is emerging as a therapeutic possibility for skin lesions, either individually or in combination, and its concomitant use with therapies described in various guidelines on the subject is referenced as safe, beneficial and effective, with results maximized by combining adjuvant therapies with nanotechnology(11. Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Aspects of nanomaterials in wound healing. Curr Drug Deliv. 2018;16(1):26–41. doi: http://doi.org/10.2174/1567201815666180918110134. PubMed PMID: 30227817.
https://doi.org/10.2174/1567201815666180...
,1111. Naskar A, Kim KS. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12(6):499. doi: http://doi.org/10.3390/pharmaceutics12060499. PubMed PMID: 32486142.
https://doi.org/10.3390/pharmaceutics120...
,4747. Bahmad HF, Poppiti R, Alexis J. Nanotherapeutic approach to treat diabetic foot ulcers using tissue-engineered nanofiber skin substitutes: a review. Diabetes Metab Syndr. 2021;15(2):487–91. doi: http://doi.org/10.1016/j.dsx.2021.02.025. PubMed PMID: 33668000.
https://doi.org/10.1016/j.dsx.2021.02.02...
).

In isolation or in association with advanced adjuvant treatments, the use of nanocomposites has shown significant efficacy in reducing the healing time of skin lesions in chronic and morbid patients, contributing to an effective reduction in the costs incurred by healthcare institutions in providing care(3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...
,3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
,3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
). The chronicity of skin lesions results in long periods of hospitalization with prolonged occupation of hospital beds and outpatient vacancies, and the availability of therapeutic measures or effective materials is necessary to reduce the costs resulting from delayed healing in patients(3232. Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
https://doi.org/10.1111/iwj.13576...
,3434. Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
https://doi.org/10.12968/jowc.2018.27.Su...
,3535. Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
https://doi.org/10.1097/01.ASW.000053470...
). With the results presented, nanotechnology has emerged as an effective therapeutic measure in the production of nanomaterials capable of reducing healing time and consequently reducing healthcare costs for patients with chronic injuries(1010. Bhattacharya D, Ghosh B, Mukhopadhyay M. Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnol. 2019;13(8):778–85. doi: http://doi.org/10.1049/iet-nbt.2018.5312. PubMed PMID: 31625517.
https://doi.org/10.1049/iet-nbt.2018.531...
,1111. Naskar A, Kim KS. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12(6):499. doi: http://doi.org/10.3390/pharmaceutics12060499. PubMed PMID: 32486142.
https://doi.org/10.3390/pharmaceutics120...
,3838. Hashim PW, Nia JK, Han G, Ratner D. Nanoparticles in dermatologic surgery. J Am Acad Dermatol. 2020;83(4):1144–9. doi: http://doi.org/10.1016/j.jaad.2019.04.020. PubMed PMID: 30991121.
https://doi.org/10.1016/j.jaad.2019.04.0...
).

The progress of nanotechnology as a therapeutic for skin lesions depends on the development of biocompatible nanomaterials that favor the wound healing process and this involves understanding the interaction of nanomaterial components with the lesion bed and the factors involved in the complex healing process. It is imperative that health professionals involved in caring for people with skin lesions take ownership of nanotechnology. The positive results make nanofibers, scaffolds, nanogels and nanomaterials associated with biomaterials an efficient technology to implement.

This review identified restrictions on the use of nanomaterials by professionals directly involved in caring for skin lesions, such as nurses, with a limited number of studies conducted by these professionals. In addition, few clinical research studies were identified involving large numbers of patients and the limited use of nanomaterial manufacturing techniques in the areas of tissue engineering.

The limitations of this study include the fact that other eligible studies may not have been included because they were not indexed in the databases selected for this review and were not retrieved by the gray literature search, despite the fact that a broad and highly sensitive search was carried out in the sources investigated. Furthermore, no methods or instruments were used to assess the quality of the studies included.

CONCLUSION

This study showed that the use of nanofibers, nanogels, nanoemulsions and nanomembranes in isolation or associated with adjuvant therapies such as negative pressure therapy and compression therapy is a therapeutic possibility for the treatment of skin lesions, with nanocomposites being effective in speeding up the healing process and reducing healthcare costs. The possibility of adding bioactive substances increases additional properties to the nanocomposites to modulate the tissue regeneration process.

The results of this scoping review still show insufficient results for the application of nanomaterials in the field of human research, with regard to their use in skin lesions, since the number of phase III clinical trials found is still low in the literature consulted.

It can be seen that the field of study is little explored in the national literature, and is more explored internationally, reflecting a large gap to be filled with future research, in view of the emerging need for research into low-cost synthetic nanocomposites and/or sustainable biomaterials for the treatment of skin lesions.

  • Financial support This work was carried out with the support of the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) – Funding Code 001

REFERENCES

  • 1.
    Chakrabarti S, Chattopadhyay P, Islam J, Ray S, Raju PS, Mazumder B. Aspects of nanomaterials in wound healing. Curr Drug Deliv. 2018;16(1):26–41. doi: http://doi.org/10.2174/1567201815666180918110134. PubMed PMID: 30227817.
    » https://doi.org/10.2174/1567201815666180918110134
  • 2.
    Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review. Polymers. 2021;13(12):1962. doi: http://doi.org/10.3390/polym13121962. PubMed PMID: 34199209.
    » https://doi.org/10.3390/polym13121962
  • 3.
    Pacheco JC, Hurtado L, Urdaneta N, Cantanhede Fo AJC, Araújo RNM, Sabinio MA. Micro-nanofibras de poli (ácido láctico) fabricadas por electrospinning y encapsulación de 2-[(e)-4-(dimetilamino) benzilideno)] indan-1-ona. Rev Latinoam Metal Mater. 2019 [cited 2023 Sep 17];39(2):94–104. Available from: https://l1nq.com/zCzvS
    » https://l1nq.com/zCzvS
  • 4.
    Cui S, Sun X, Li K, Gou D, Zhou Y, Hu J, et al. Polylactide nanofibers delivering doxycycline for chronic wound treatment. Mater Sci Eng C Mater Biol Appl. 2019;104:109745. doi: http://doi.org/10.1016/j.msec.2019.109745. PubMed PMID: 31499963.
    » https://doi.org/10.1016/j.msec.2019.109745
  • 5.
    Silva MMP, Aguiar MIF, Rodrigues AB, Miranda MDC, Araújo MÂM, Rolim ILTP, et al. Utilização de nanopartículas no tratamento de feridas: revisão sistemática. Rev Esc Enferm USP. 2018;51:e03272. doi: http://doi.org/10.1590/s1980-220x2016043503272. PubMed PMID: 29319738.
    » https://doi.org/10.1590/s1980-220x2016043503272
  • 6.
    Bordoni M, Scarian E, Rey F, Gagliardi S, Carelli S, Pansarasa O, et al. Biomaterials in neurodegenerative disorders: a promising therapeutic approach. Int J Mol Sci. 2020;21(9):3243. doi: http://doi.org/10.3390/ijms21093243. PubMed PMID: 32375302.
    » https://doi.org/10.3390/ijms21093243
  • 7.
    Chang W, Shah MB, Zhou G, Walsh K, Rudraiah S, Kumbar SG, et al. Polymeric nanofibrous nerve conduits coupled with laminin for peripheral nerve regeneration. Biomed Mater. 2020;15(3):035003. doi: http://doi.org/10.1088/1748-605X/ab6994. PubMed PMID: 31918424.
    » https://doi.org/10.1088/1748-605X/ab6994
  • 8.
    Li C, Obireddy SR, Lai WF. Preparation and use of nanogels as carriers of drugs. Drug Deliv. 2021;28(1):1594–602. doi: http://doi.org/10.1080/10717544.2021.1955042. PubMed PMID: 34308729.
    » https://doi.org/10.1080/10717544.2021.1955042
  • 9.
    Domingues EAR, Urizzi F, Souza FR. Efeito da terapia fotodinâmica em feridas agudas e crônicas: revisão de escopo. Enferm Atual In Derme. 2022;96(38):021243. doi: http://doi.org/10.31011/reaid-2022-v.96-n.38-art.1360.
    » https://doi.org/10.31011/reaid-2022-v.96-n.38-art.1360
  • 10.
    Bhattacharya D, Ghosh B, Mukhopadhyay M. Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnol. 2019;13(8):778–85. doi: http://doi.org/10.1049/iet-nbt.2018.5312. PubMed PMID: 31625517.
    » https://doi.org/10.1049/iet-nbt.2018.5312
  • 11.
    Naskar A, Kim KS. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12(6):499. doi: http://doi.org/10.3390/pharmaceutics12060499. PubMed PMID: 32486142.
    » https://doi.org/10.3390/pharmaceutics12060499
  • 12.
    Queiroz Schmidt FM, Serna González CV, Mattar RC, Lopes LB, Santos MF, Santos VLCG. Topical application of a cream containing nanoparticles with vitamin E for radiodermatitis prevention in women with breast cancer: a randomized, triple-blind, controlled pilot trial. Eur J Oncol Nurs. 2022;61:102230. doi: http://doi.org/10.1016/j.ejon.2022.102230. PubMed PMID: 36403542.
    » https://doi.org/10.1016/j.ejon.2022.102230
  • 13.
    Brasil. Portaria no 1.122, de 19 de março de 2020. Define as prioridades, no âmbito do Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC), no que se refere a projetos de pesquisa, de desenvolvimento de tecnologias e inovações, para o período 2020 a 2023 [Internet]. Diário Oficial da União; Brasília; 24 março 2020. Seção 1, p. 19 [cited 2023 Sep 17]. Available from: https://www.in.gov.br/en/web/dou/-/portaria-n-1.122-de-19-de-marco-de-2020-249437397
    » https://www.in.gov.br/en/web/dou/-/portaria-n-1.122-de-19-de-marco-de-2020-249437397
  • 14.
    Peters MDJ, Godfrey CM, McInerney P, Munn Z, Tricco AC, Khalil H. Scoping reviews. In: Joanna Briggs Institute, editor. JBI manual for evidence synthesis. Adelaide: JBI; 2020. Chapter 11. doi: http://doi.org/10.46658/JBIMES-20-12.
    » https://doi.org/10.46658/JBIMES-20-12
  • 15.
    Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. A declaração PRISMA 2020: diretriz atualizada para relatar revisões sistemáticas. Rev Panam Salud Publica. 2022;46(1):e112. doi: http://doi.org/10.26633/RPSP.2022.112. PubMed PMID: 36601438.
    » https://doi.org/10.26633/RPSP.2022.112
  • 16.
    Kyritsi A, Kikionis S, Tagka A, Koliarakis N, Evangelatou A, Papagiannis P, et al. Management of acute radiodermatitis in non-melanoma skin cancer patients using electrospun nanofibrous patches loaded with pinus halepensis bark extract. Cancers. 2021;13(11):2596. doi: http://doi.org/10.3390/cancers13112596. PubMed PMID: 34073193.
    » https://doi.org/10.3390/cancers13112596
  • 17.
    Šíma P, Schůrek J, Forostyak S, Džupa V, Arenberger P. Management of leg ulcers using combined PRP therapy on a nanofiber carrier: results of a pilot study. Acta Chir Orthop Traumatol Cech. 2022;89(3):204–7. doi: http://doi.org/10.55095/achot2022/030. PubMed PMID: 35815487.
    » https://doi.org/10.55095/achot2022/030
  • 18.
    Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–19. doi: http://doi.org/10.1007/s43440-021-00220-8. PubMed PMID: 33826133.
    » https://doi.org/10.1007/s43440-021-00220-8
  • 19.
    Arenbergerova M, Arenberger P, Bednar M, Kubat P, Mosinger J. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol. 2012;21(8):619–24. doi: http://doi.org/10.1111/j.1600-0625.2012.01536.x. PubMed PMID: 22775997.
    » https://doi.org/10.1111/j.1600-0625.2012.01536.x
  • 20.
    Li C, Xianqing W, You G. Clinical effect and collaborative nursing of polycaprolactone/gelatin nanofiber membrane in the treatment of stage 2 pressure injury. Acta Med Mediter. 2023;39:615. doi: http://doi.org/10.19193/0393-6384_2023_2_88.
    » https://doi.org/10.19193/0393-6384_2023_2_88
  • 21.
    McCarthy KD, Donovan RM. Management of a patient with toxic epidermal necrolysis using silicone transfer foam dressings and a secondary absorbent dressing. J Wound Ostomy Continence Nurs. 2016;43(6):650–1. doi: http://doi.org/10.1097/WON.0000000000000287. PubMed PMID: 27820589.
    » https://doi.org/10.1097/WON.0000000000000287
  • 22.
    Menezes PP, Gomes CVC, Carvalho YMBG, Santos NGL, Andrade VM, Oliveira AMS, et al. Evaluation of the use of compressive stockings impregnated with hesperetin-based nanocapsules in the healing of venous ulcers: a case report. Clin Med Insights Case Rep. 2019;12:1–6. doi: http://doi.org/10.1177/1179547619858977. PubMed PMID: 31360076.
    » https://doi.org/10.1177/1179547619858977
  • 23.
    López-Goerne T, Ramírez-Olivares P, Pérez-Dávalos LA, Velázquez-Muñoz JA, Reyes-González J. Catalytic nanomedicine. Cu/TiO2–SiO2 nanoparticles as treatment of diabetic foot ulcer: a case report. Curr Nanomed. 2019;10(3):290–5. doi: http://doi.org/10.2174/2468187309666190906121924.
    » https://doi.org/10.2174/2468187309666190906121924
  • 24.
    Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–6. doi: http://doi.org/10.1016/j.burns.2006.06.020. PubMed PMID: 17175106.
    » https://doi.org/10.1016/j.burns.2006.06.020
  • 25.
    Meaume S, Dompmartin A, Lok C, Lazareth I, Sigal M, Truchetet F, et al. Quality of life in patients with leg ulcers: results from CHALLENGE, a double-blind randomised controlled trial. J Wound Care. 2017;26(7):368–79. doi: http://doi.org/10.12968/jowc.2017.26.7.368. PubMed PMID: 28704156.
    » https://doi.org/10.12968/jowc.2017.26.7.368
  • 26.
    Motawea A, Abd El-Gawad AEGH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot. 2019;40:14–21. doi: http://doi.org/10.1016/j.foot.2019.03.007. PubMed PMID: 30999080.
    » https://doi.org/10.1016/j.foot.2019.03.007
  • 27.
    Tsang KK, Kwong EWY, To TSS, Chung JWY, Wong TKS. A pilot randomized, controlled study of nanocrystalline silver, Manuka honey, and conventional dressing in healing diabetic foot ulcer. Evid Based Complement Alternat Med. 2017;2017:5294890. doi: http://doi.org/10.1155/2017/5294890. PubMed PMID: 28239398.
    » https://doi.org/10.1155/2017/5294890
  • 28.
    Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: a randomized clinical trial. Int Immunopharmacol. 2021;101(Pt B):108282. doi: http://doi.org/10.1016/j.intimp.2021.108282. PubMed PMID: 34737130.
    » https://doi.org/10.1016/j.intimp.2021.108282
  • 29.
    Fulco I, Erba P, Valeri RC, Vournakis J, Schaefer DJ. Poly-N-acetyl glucosamine nanofibers for negative-pressure wound therapies. Wound Repair Regen. 2015;23(2):197–202. doi: http://doi.org/10.1111/wrr.12273. PubMed PMID: 25703411.
    » https://doi.org/10.1111/wrr.12273
  • 30.
    Kelechi TJ, Mueller M, Hankin CS, Bronstone A, Samies J, Bonham PA. A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol. 2012;66(6):e209–15. doi: http://doi.org/10.1016/j.jaad.2011.01.031. PubMed PMID: 21620515.
    » https://doi.org/10.1016/j.jaad.2011.01.031
  • 31.
    Saghafi F, Ramezani V, Jafari-Nedooshan J, Zarekamali J, Kargar S, Tabatabaei SM, et al. Efficacy of topical atorvastatin-loaded emulgel and nano-emulgel 1% on post-laparotomy pain and wound healing: a randomized double-blind placebo-controlled clinical trial. Int Wound J. 2023;20(10):4006–14. doi: http://doi.org/10.1111/iwj.14289. PubMed PMID: 37382345.
    » https://doi.org/10.1111/iwj.14289
  • 32.
    Hurd T, Woodmansey EJ, Watkins HMA. A retrospective review of the use of a nanocrystalline silver dressing in the management of open chronic wounds in the community. Int Wound J. 2021;18(6):753–62. doi: http://doi.org/10.1111/iwj.13576. PubMed PMID: 33660375.
    » https://doi.org/10.1111/iwj.13576
  • 33.
    Essa MS, Ahmad KS, Zayed ME, Ibrahim SG. Comparative study between silver nanoparticles dressing (SilvrSTAT Gel) and conventional dressing in diabetic foot ulcer healing: a prospective randomized study. Int J Low Extrem Wounds. 2023;22(1):48–55. doi: http://doi.org/10.1177/1534734620988217. PubMed PMID: 33686887.
    » https://doi.org/10.1177/1534734620988217
  • 34.
    Nair HKR. Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series. J Wound Care. 2018;27(Sup9a):S32–6. doi: http://doi.org/10.12968/jowc.2018.27.Sup9a.S32. PubMed PMID: 30207850.
    » https://doi.org/10.12968/jowc.2018.27.Sup9a.S32
  • 35.
    Sivlér T, Sivlér P, Skog M, Conti L, Aili D. Treatment of nonhealing ulcers with an allograft/xenograft substitute: a case series. Adv Skin Wound Care. 2018;31(7):306–9. doi: http://doi.org/10.1097/01.ASW.0000534701.57785.cd. PubMed PMID: 29889104.
    » https://doi.org/10.1097/01.ASW.0000534701.57785.cd
  • 36.
    Long Z, Jun W, Shijun Z, Don J, Xinzhao F, Galea E. Diabetic foot ulcer management with TLC-NOSF (Technology Lipido-colloid Nano-oligosaccharide Factor). Wound Dressings. 2021 [cited 2023 Sep 17];12(4):54–61. Available from: https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf
    » https://woundsinternational.com/wp-content/uploads/sites/8/2023/02/051d2a30ab8c72df639077c369a2bc40.pdf
  • 37.
    Huang R, Hu J, Qian W, Chen L, Zhang DL. Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma. 2021;9:b026. doi: http://doi.org/10.1093/burnst/tkab026. PubMed PMID: 34778468.
    » https://doi.org/10.1093/burnst/tkab026
  • 38.
    Hashim PW, Nia JK, Han G, Ratner D. Nanoparticles in dermatologic surgery. J Am Acad Dermatol. 2020;83(4):1144–9. doi: http://doi.org/10.1016/j.jaad.2019.04.020. PubMed PMID: 30991121.
    » https://doi.org/10.1016/j.jaad.2019.04.020
  • 39.
    Datta D, Kumar RS. A review on wound management with special reference to nanotechnology. Int J Res Pharm Sci. 2020;11(3):2815-24. doi: http://doi.org/10.26452/ijrps.v11i3.2356.
    » https://doi.org/10.26452/ijrps.v11i3.2356
  • 40.
    Erawati T, Fitriani RD, Hariyadi DM. Topical antimicrobial microparticle-based polymeric materials for burn wound infection. Trop J Nat Prod Res. 2021;5(10):1694–702. doi: http://doi.org/10.26538/tjnpr/v5i10.1.
    » https://doi.org/10.26538/tjnpr/v5i10.1
  • 41.
    Swanson T, Ousey K, Haesler E, Bjarnsholt T, Carville K, Idensohn P, et al. IWII Wound Infection in Clinical Practice consensus document: 2022 update. J Wound Care. 2022;31(Sup12):S10–21. doi: http://doi.org/10.12968/jowc.2022.31.Sup12.S10. PubMed PMID: 36475844.
    » https://doi.org/10.12968/jowc.2022.31.Sup12.S10
  • 42.
    Kang HJ, Chen N, Dash BC, Hsia HC, Berthiaume F. Self-assembled nanomaterials for chronic skin wound healing. Adv Wound Care. 2021;10(5):221–33. doi: http://doi.org/10.1089/wound.2019.1077. PubMed PMID: 32487014.
    » https://doi.org/10.1089/wound.2019.1077
  • 43.
    Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, et al. An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics. 2020;12(10):983. doi: http://doi.org/10.3390/pharmaceutics12100983. PubMed PMID: 33080849.
    » https://doi.org/10.3390/pharmaceutics12100983
  • 44.
    Hermosilla J, Pastene-Navarrete E, Acevedo F. Electrospun fibers loaded with natural bioactive compounds as a biomedical system for skin burn treatment: a review. Pharmaceutics. 2021;13(12):2054. doi: http://doi.org/10.3390/pharmaceutics13122054. PubMed PMID: 34959336.
    » https://doi.org/10.3390/pharmaceutics13122054
  • 45.
    Pinelli F, Ortolà ÓF, Makvandi P, Perale G, Rossi F. In vivo drug delivery applications of nanogels: a review. Nanomedicine. 2020;15(27):2707–27. doi: http://doi.org/10.2217/nnm-2020-0274. PubMed PMID: 33103960.
    » https://doi.org/10.2217/nnm-2020-0274
  • 46.
    Alavi M, Rai M. Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: an overview. Expert Rev Anti Infect Ther. 2020;18(10):1021–32. doi: http://doi.org/10.1080/14787210.2020.1782740. PubMed PMID: 32536223.
    » https://doi.org/10.1080/14787210.2020.1782740
  • 47.
    Bahmad HF, Poppiti R, Alexis J. Nanotherapeutic approach to treat diabetic foot ulcers using tissue-engineered nanofiber skin substitutes: a review. Diabetes Metab Syndr. 2021;15(2):487–91. doi: http://doi.org/10.1016/j.dsx.2021.02.025. PubMed PMID: 33668000.
    » https://doi.org/10.1016/j.dsx.2021.02.025

Edited by

ASSOCIATE EDITOR

Vanessa de Brito Poveda

Publication Dates

  • Publication in this collection
    13 May 2024
  • Date of issue
    2024

History

  • Received
    18 Oct 2023
  • Accepted
    27 Mar 2024
Universidade de São Paulo, Escola de Enfermagem Av. Dr. Enéas de Carvalho Aguiar, 419 , 05403-000 São Paulo - SP/ Brasil, Tel./Fax: (55 11) 3061-7553, - São Paulo - SP - Brazil
E-mail: reeusp@usp.br