Acessibilidade / Reportar erro

Concreto leve com agregado graúdo proveniente de resíduo cerâmico sob elevadas temperaturas

Resumo

Com o uso crescente de materiais reciclados provenientes da construção civil, principalmente como substituição de parte dos agregados em misturas de concreto, torna-se necessário suprir o meio técnico com informações sobre o desempenho destas novas misturas. Resultados de pesquisas, nacionais e internacionais, disponíveis quanto ao emprego de resíduos cerâmicos na produção de concreto, ressaltam bons resultados de desempenho mecânico deste novo material em situação ambiente. Entretanto, no que diz respeito ao desempenho sob elevadas temperaturas, pouco se conhece do comportamento deste material. Neste contexto, buscou-se verificar o desempenho às elevadas temperaturas de misturas de concreto produzidas com agregados provenientes de resíduos de blocos cerâmicos; com avaliação da resistência mecânica residual quando exposto às elevadas temperaturas - resistência à compressão axial e módulo de deformação e, também, o comportamento destas misturas quanto à tendência ao lascamento em situação de incêndio. Na avaliação da resistência mecânica residual foi empregado o método RILEM-129 MHT [1[1] RILEM TC 129-MHT. Recommendation of RILEM TC 129-MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures - Compressive strength for service and accident conditions, V.28, p. 410-414, 1995.] e, a tendência ao lascamento foi avaliada segundo procedimento sugerido por Souza e Moreno [2[2] SOUZA, A.A.A; MORENO JR., A.L. Proposta de avaliação em laboratório do lascamento explosivo do concreto em situação de incêndio. Concreto & Construção, v. 4, p. 96-103, 2010.]. Em ambas, as citadas avaliações, não existe padrão nacional normatizado e, no caso do lascamento, nem mesmo internacional. Foram empregadas três misturas de concreto, uma preparada com agregado graúdo natural de basalto (referência) e outras duas com substituição de parte deste agregado natural por agregado proveniente de resíduos de blocos cerâmicos (substituição de 40% e de 100% em volume). Ao final, conclui-se que a substituição de agregado graúdo natural por agregado leve, proveniente de resíduo de blocos cerâmicos, pode ser uma excelente alternativa de incremento de desempenho do concreto ao fogo. Desta forma, os resultados de resistência mecânica e de lascamento, em situação de incêndio, inéditos em nosso país, podem auxiliar sobremaneira o meio técnico científico nacional na tomada de decisões quanto ao emprego deste material, alternativo, na indústria da construção civil nacional.

Palavras-chave:
concreto; resíduos; dosagem; incêndio

Abstract

With the increasing use of recycled materials from civil construction, mainly as substitute for some aggregates in concrete mixtures, it is necessary to obtain technical information on the performance of these new mixtures. National and international research on the use of ceramic waste in concrete production highlight good results of this new material’s mechanical performance in environmental situations. However, little is known about its behavior at high temperatures. In this context, we sought to verify the performance of concrete mixtures produced with aggregates from ceramic block waste at high temperatures, with evaluation of their residual mechanical strength, axial compressive strength and elastic modulus, and also their tendency to spalling in fire situations. The RILEM-129 MHT method [1[1] RILEM TC 129-MHT. Recommendation of RILEM TC 129-MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures - Compressive strength for service and accident conditions, V.28, p. 410-414, 1995.] was used for the assessment of residual mechanical strength, and the tendency to spalling was evaluated according to the procedure suggested by Souza and Moreno [2[2] SOUZA, A.A.A; MORENO JR., A.L. Proposta de avaliação em laboratório do lascamento explosivo do concreto em situação de incêndio. Concreto & Construção, v. 4, p. 96-103, 2010.]. In both these evaluations, there is no national standard, and, in the case of spalling, not even an international standard. Three concrete mixtures were used, one prepared with natural coarse basalt aggregate (reference) and the other two by replacing part of this natural aggregate with aggregate from ceramic block waste (40% and 100% of substitution in volume). In the end, it is concluded that the substitution of natural coarse aggregate for lightweight aggregate from ceramic block waste can be an excellent alternative to increase the resistance of concrete to fire. Thus, the results of mechanical strength and spalling in a fire situation, unprecedented in our country, can greatly support the decision-making about the use of this alternative material in the national construction industry.

Keywords:
concrete; waste; dosage; fire

1. Introdução

Em função do crescimento populacional, a humanidade se depara, atualmente, com o problema da grande quantidade de lixo e resíduos gerados. Grande parte deste material descartado pode, e deve ser reciclado. Embora existam poucos programas nacionais de reciclagem e reuso, especialmente dos resíduos cerâmicos (Campos e Paulon [3[3] CAMPOS, M.A.; PAULON, V.A. Utilização de agregados alternativos de isoladores elétricos de porcelana em concretos. Concreto y Cemento. Investigación y Desarrollo, vol. 7 núm. 1, de la pág. 30 a la 43, Julio - Diciembre de 2015.]), vale destacar a crescente busca de soluções para reduzir este citado impacto ambiental e, preservar os recursos naturais; com pesquisas nacionais e internacionais voltadas ao desenvolvimento de métodos e tecnologias de reuso de alguns destes resíduos cerâmicos na indústria da construção civil.

Segundo Campos e Paulon [3[3] CAMPOS, M.A.; PAULON, V.A. Utilização de agregados alternativos de isoladores elétricos de porcelana em concretos. Concreto y Cemento. Investigación y Desarrollo, vol. 7 núm. 1, de la pág. 30 a la 43, Julio - Diciembre de 2015.], a indústria cerâmica, que engloba desde o tijolo cerâmico, revestimentos, louças sanitárias e isoladores elétricos de porcelana, possui um elevado índice de descarte de material durante o processo de fabricação, transporte e eventual substituição. É premente, neste caso, o estudo de formas de reuso deste material, sendo uma delas o emprego deste resíduo cerâmico como agregado graúdo na produção de concretos para fins estruturais. Neste caso, os elementos estruturais fabricados com estas misturas de concreto alternativas devem atender parâmetros necessários de projeto que visam, sobretudo, a segurança das edificações, tanto em situação ambiente quanto em situação de incêndio.

Em situação ambiente vários autores [4,5,6,7,8,9], estudaram a possível substituição dos agregados naturais pelos reciclados cerâmicos e de resíduos de construção e demolição. Em todos os trabalhos consultados, os autores concluem que a redução da resistência à compressão do concreto é diretamente proporcional ao incremento da porcentagem de substituição do agregado natural pelo reciclado e que, mesmo com a citada redução, a substituição de agregado natural por agregado proveniente de resíduo cerâmico pode ser viável; com resultados favoráveis até mesmo quanto ao desempenho mecânico exigido para concretos com fins estruturais.

No que diz respeito ao desempenho desta mistura alternativa de concreto em situação de incêndio, existem poucos resultados disponíveis na literatura internacional consultada e, vale observar, são inexistentes em âmbito nacional. Neste sentido, insere-se este trabalho, que se propõe a avaliar a resistência mecânica residual de concretos leves produzidos com agregados graúdos provenientes de resíduos de cerâmica vermelha sob elevadas temperaturas e verificar a tendência ao lascamento explosivo desta mistura.

2. Resistência mecânica residual do concreto usual e leve sob elevadas temperaturas

Cânovas [10[10] CÁNOVAS, M.F. Patologia e Terapia do Concreto Armado. 522 p. São Paulo: PINI, 1988.], destaca que o efeito do fogo nas estruturas de concreto está, diretamente, correlacionado ao comportamento dos materiais que compõe a mistura. Propriedades físicas, mecânicas e térmicas dos materiais componentes do concreto controlam a resposta da mistura sob elevadas temperaturas, sendo o tipo de agregado graúdo um dos parâmetros condicionantes deste comportamento (Mehta e Monteiro [11[11] MEHTA, P. K.; MONTEIRO, P. J. M. Concreto: Microestrutura, propriedades e materiais. 2. ed. São Paulo: IBRACON, 2014.]). Neville [12[12] NEVILLE, A. M. Propriedades do concreto. 2ª Edição. Ed. PINI. São Paulo, 1997.] , afirma que misturas com menor consumo de cimento, sofrem uma perda na resistência mecânica após a exposição à temperaturas elevadas menor do que misturas mais ricas, que misturas executadas com agregados de menor densidade tendem a apresentar resistência mecânica residual superior às misturas executadas com agregados de densidade maior, que concretos de alta resistência à compressão apresentam resistência à compressão residual, pós aquecimento, menores do que os concretos de resistência usual e que a resistência mecânica residual é menor em concretos saturados do que em concretos secos.

Vale destacar que, atualmente, face à importância do parâmetro “tipo de agregado graúdo” no comportamento do concreto ao fogo, códigos normativos nacionais e internacionais como a NBR 15200 [13[13] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15200. Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 2012.], ACI 216R-89 [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] e o EUROCODE 1 [15[15] EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 1991-1-2. Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. CEN, Bruxelas, 2002.], o colocam como único parâmetro de diferenciação do comportamento mecânico de misturas de concreto sob temperaturas elevadas, deixando à revelia parâmetros tão importantes como a classe de resistência à compressão, o teor de umidade e mesmo a porosidade.

Tantos são os parâmetros envolvidos no comportamento do concreto ao fogo que se verifica a grande dispersão de resultados nacionais e internacionais, no que diz respeito à resistência mecânica residual após aquecimento, quando estes resultados são avaliados em função deste único parâmetro: o tipo de agregado. Resultados nacionais disponíveis na literatura consultada apresentam diferenças significativas, alcançando, em muitos casos, 70% [16,17].

Estas diferenças podem ser explicadas, em parte, pela variação na metodologia de avaliação desta resistência mecânica residual, em laboratório. Nacionalmente, inexiste procedimento normatizado e, internacionalmente, o método RILEM-129 MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures (1995) [1[1] RILEM TC 129-MHT. Recommendation of RILEM TC 129-MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures - Compressive strength for service and accident conditions, V.28, p. 410-414, 1995.].

Destaca-se, também, que não são todos os tipos de agregados que estão referenciados nestes códigos normativos citados; que ficam restritos a apresentar a evolução da resistência mecânica residual, em função da temperatura, de concretos produzidos com agregados silicosos e calcáreos [13, 14 e 15].

No caso do concreto produzido com agregados leves, somente o ACI 216R-89 [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] o referencia. Este fato pode ser explicado pela escassez de pesquisas nacionais ou internacionais sobre o assunto. Apresenta-se, a seguir, algumas destas pesquisas.

Souza e Moreno [18[18] SOUZA, A. A. A. ; MORENO JR, A.L. . Assessment of the influence of the type of aggregates and reydration on concrete submitted to high temperatures. Revista IBRACON de Estruturas e Materiais , v. 3, p. 477-493, 2010.] estudaram a redução de resistência à compressão, com a elevação da temperatura, de um concreto preparado com argila expandida, submetido a temperaturas de 300ºC e 600ºC, de acordo com a Curva Padrão, da International Organization for Standadization - ISO 834 [19[19] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Fire Resistance Tests - Elements of Building Construction. Part 1: General Requirements. ISO 834. Geneva, 2014.]. Ao final, os autores concluem que a resistência residual do concreto preparado com argila expandida está muito próxima dos valores referenciados por códigos normativos internacionais para os concretos leves.

Laneyrie et al. [20[20] LANEYRIE, C.; BEAUCOUR, A.L.; GREEN, M.F.; HEBERT, R.L.; LEDESERT, B.; NOUMOWE, A. Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures. Construction and Building Materials 111, 368-378, 2016.] avaliaram a resistência mecânica residual de concretos produzidos com agregados reciclados após exposição até temperaturas de 750 °C. Foram utilizadas três misturas com relação água/cimento de 0,6 e mais três com 0,3. Para cada relação água/cimento foi produzida uma mistura com agregado natural, outra com agregado de concreto reciclado e uma terceira com agregados produzidos com resíduos de construção e demolição. As amostras para os testes mecânicos foram cilíndricas, com 110 mm de diâmetro por 220 mm de altura. As temperaturas de aquecimento foram de 20°C, 150°C, 300°C, 450°C, 600°C e 750°C. A taxa de aquecimento foi de 0,5°C por minuto e, atingida a temperatura desejada, esta foi mantida por duas horas. Neste estudo, os autores concluíram que a resistência mecânica residual foi pouco afetada em função do tipo de agregado graúdo empregado.

Toric et al. [21[21] TORIC, N.; BOKO, I.; JURADIN, S.; BALOEVIC, G. Mechanical properties of lightweight concrete after fire exposure. Structural Concrete 17, No. 6, 2016.] desenvolveram quatro misturas de concreto leve com 100% de argila expandida, utilizada como agregado miúdo e graúdo, com o objetivo de analisar as propriedades mecânicas pós-incêndio, imediatamente após o resfriamento e até 96 horas após o resfriamento, de acordo com recomendação RILEM TC 129-MHT [1[1] RILEM TC 129-MHT. Recommendation of RILEM TC 129-MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures - Compressive strength for service and accident conditions, V.28, p. 410-414, 1995.]. A amostra utilizada foi cilíndrica de 75 mm de diâmetro e 225 mm de altura e as temperaturas de teste foram de 20, 200, 400 e 600°C. A taxa de aquecimento foi 2,5°C /min, patamar de aquecimento de 2,5 horas e resfriamento lento de 1°C /min. Os resultados mostraram diferenças significativas, de até 59,7%, para a resistência mecânica residual com um tempo de resfriamento de 96 horas e, de 48,9%, imediatamente após o resfriamento quando aquecidos à temperaturas de 600°C.

Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.] estudaram a resistência mecânica residual, pós aquecimento, de uma mistura de concreto produzida com agregados naturais e de três misturas de concreto feitas com resíduos de tijolos cerâmicos, nos teores de substituição de 20, 50 e 100%. Foram moldadas amostras cilíndricas de 150 mm de diâmetro e 300 mm de altura para ensaios de módulo de deformação e amostras cúbicas de 150 mm para ensaios de resistência à compressão axial. As temperaturas de aquecimento foram de 200, 400 e 600°C, a taxa de aquecimento foi de 2,5°C /min., patamar de aquecimento de 1 hora e resfriamento lento de 1,5°C /min. Estes valores foram escolhidos como uma aproximação à recomendação RILEM TC 129-MHT [1[1] RILEM TC 129-MHT. Recommendation of RILEM TC 129-MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures - Compressive strength for service and accident conditions, V.28, p. 410-414, 1995.]. Ao final os autores observam que a resitência mecânica residual das misturas de concreto produzido com agregados cerâmicos foi superior à da mistura de referência; sendo as misturas com maiores teores de substituição as de melhor comportamento.

Rajawat et al. [23[23] RAJAWAT, D.;SIDDIQUE, S.;SHRIVASTAVA, S;CHAUDHARY, S.;GUPTA, T. Influence of fine ceramic aggregates on the residual properties of concrete subjected to elevated temperature. Fire and Materials. 2018;1-9.] também estudaram misturas de concreto com areia de resíduo cerâmico provenientes de louças sanitárias, com teores de substituições de 50 e 100%. As amostras eram cúbicas, medindo 100 mm de arestas para os ensaios de resistência à compressão. As temperaturas de testes foram de 200°C, 500°C e 800°C, a uma taxa de aquecimento de 5°C por minuto e um tempo de exposição de 1 hora. Ao final, os autores observam que a perda de resistência mecânica, em função da temperatura, para os concretos produzidos com a areia de resíduo cerâmico é menor; quando comparada a concretos produzidos com areia natural.

Yan et al. [24[24] YAN, R.; YANG, S.; GUO, M.Z.; POON, C.S. Comparative evaluation of fire resistance of partition wall blocks prepared with waste materials. Journal of Cleaner Production 182, 156-165, 2018.] produziram amostras de concreto cilíndricas com diâmetro de 50 mm e altura de 50mm, com agregados reciclados, e avaliaram sua resistência mecânica residual após aquecimento. Três tipos de resíduos foram utilizados na forma de agregado miúdo, um de polipropileno, um de vidro e outro de isopor e, como agregado graúdo, somente utilizou-se o agregado proveniente de resíduo de construção e demolição. As amostras foram aquecidas até as temperaturas de 300°C, 500 °C e 800 °C, a uma taxa de 2,5°C /min., com tempo de exposição de 4 horas. Os autores concluem, ao final, que a resistência mecânica residual é menor para os traços com agregados graúdos de resíduo de construção e demolição e 100% de agregados miúdos de resíduo de vidro, chegando a 84%.

Apresentado um apanhado geral de resultados internacionais sobre a resistência mecânica residual de misturas de concreto leve executadas com materiais alternativos, pós aquecimento, deve-se ressaltar a expressiva diferença entre resultados. Este fato justifica este trabalho; onde os resultados aqui obtidos serão acrescentados aos já existentes, contribuindo para um melhor entendimento do comportamento destes concretos leves alternativos sob temperaturas elevadas.

3. Lascamento do concreto usual e leve sob elevada temperaura

Outra preocupação atual em relação ao concreto em situação de incêndio é o fenômeno do lascamento; caracterizado pelo destacamento de partes da superfície aquecida do concreto e que pode, assim, contribuir para a aceleração da ruína da estrutura durante um incêndio. Este lascamento, quando explosivo, com destacamento repentino e violento de uma camada superficial de concreto, foi observado por vários autores ao longo dos anos [25 a 32]. Internacionalmente, o fenômeno é conhecido com “spalling”.

Segundo Souza e Moreno [2[2] SOUZA, A.A.A; MORENO JR., A.L. Proposta de avaliação em laboratório do lascamento explosivo do concreto em situação de incêndio. Concreto & Construção, v. 4, p. 96-103, 2010.], dentre os vários parâmetros intervenientes no lascamento, o tipo de agregado graúdo da mistura de concreto pode ser destacado como um dos mais intervenientes e, que concretos leves tem mais propensão ao lascamento que concretos de densidade usual.

Ainda segundo Souza e Moreno [2[2] SOUZA, A.A.A; MORENO JR., A.L. Proposta de avaliação em laboratório do lascamento explosivo do concreto em situação de incêndio. Concreto & Construção, v. 4, p. 96-103, 2010.], não existe um procedimento de ensaio normatizado para avaliação em laboratório da tendência ao lascamento explosivo no concreto. Nada, ainda, está estabelecido em relação ao tamanho das amostras, preparo das amostras (execução e cura), tempo de exposição à temperatura, evolução da temperatura ao longo do tempo (taxas de elevação) ou quantificação do fenômeno (degradação das amostras em termos de fissuração e desprendimento de camada superficial das amostras). Os autores descrevem em seu trabalho um método para verificação do lascamento do concreto utilizando amostras em forma de placas retiradas de um corpo de prova prismático, de dimensão de 150 mm de altura, 150 mm de largura e 500 mm de comprimento.

Na literatura técnica internacional existem vários trabalhos de pesquisa sobre o lascamento do concreto sob temperaturas elevadas [25 a 32]. Nestes trabalhos, o tamanho das amostras, a taxa de aquecimento, o teor de umidade, a temperatura máxima de exposição das amostras, a existência ou não de armadura de aço, e mesmo a metodologia de ensaio, são muito diferentes e, portanto, torna-se difícil uma avaliação criteriosa dos resultados com vistas a uma previsão do fenômeno. Existe, sim, consenso de que uma avaliação do fenômeno, em escala real do elemento estrutural, é praticamente inviável economicamente; resultando em propostas de metodologias de avaliação em laboratório do fenômeno usando amostras em tamanho reduzido, avaliadas em pequenos fornos, a gás [28, 29, 30] ou elétricos [31[31] HERTZ, K. D.;SØRENSEN, L. S. Test method for spalling of fire exposed concrete. Fire Safety Journal 2005; 40(5):466-476.].

No que diz respeito ao lascamento de concretos, aquecidos, e produzidos com agregados leves ou agregados reciclados, os resultados de pesquisas encontradas na literatura internacional são escassos e descritos a seguir.

Ke Cheng He et al. [33[33] HE, K. C.; GUO, R. X.; MA, Q. M.; YAN, F.; LIN, Z.W.; SUN, Y L. Experimental Research on High Temperature Resistance of Modified Lightweight Concrete after Exposure to Elevated Temperatures. Hindawi Publishing Corporation Advances in Materials Science and Engineering, Article ID 5972570, 2016.], avaliaram o lascamento nos concretos leves produzidos com argila expandida. Quatro misturas de concreto foram avaliadas, uma de referência produzida com agregado graúdo de calcário, outra produzida com argila expandida, outra mistura idêntica à segunda, com argila expandida com superfície impermeabilizada com produtos da região e, a última mistura também idêntica à segunda, com argila expandida com superfície impermeabilizada com outro tipo de produto da região não mencionado no trabalho. Para todas misturas foram moldados prismas de 100x100x300 mm que foram aquecidos em ambas as faces a 200°C, 400°C, 600°C, 800°C, 1000°C e 1200°C a uma taxa de aquecimento de 10°C por minuto. Ao final os autores relatam que o lascamento não foi observado para as misturas produzidas com argila expandida com superfícies impermeabilizadas e que foi observado para as outras misturas; para temperaturas acima de 400°C. A quantificação do lascamento foi feita de forma visual e através da medida de perda de massa.

Laneyrie et al. [19[19] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Fire Resistance Tests - Elements of Building Construction. Part 1: General Requirements. ISO 834. Geneva, 2014.], investigaram o fenômeno do lascamento em misturas de concreto produzidas com agregados reciclados. Foram utilizados três misturas com relação água/cimento de 0,6 e mais três com 0,3. Para cada relação água/cimento foi produzido um concreto com agregado natural do tipo calcário, outro com agregado de concreto reciclado e outro com agregado de resíduos de construção e demolição. As amostras possuíam 160 mm de diâmetro e 50 mm de espessura e foram aquecidas em apenas uma das faces. As temperaturas de aquecimento foram de 20°C, 150°C, 300°C, 450°C, 600°C. e 750°C. A taxa de aquecimento foi de 0,5°C por minuto e, atingida a temperatura desejada, esta foi mantida por duas horas. Ao final os autores relatam que não houve lascamento de nenhuma das amostras produzidas com agregados reciclados.

Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.], avaliaram o possível lascamento de amostras de concretos produzidas com agregados graúdos provenientes de resíduos de tijolos cerâmicos. Foram moldadas amostras cúbicas de 150mm. As temperaturas de aquecimentos foram de 200, 400 e 600°C e a taxa de elevação da temperatura com o tempo foi de 1,5 a 2,5°C/min, em aproximação ao recomendado pela RILEM TC 129-MHT [1[1] RILEM TC 129-MHT. Recommendation of RILEM TC 129-MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures - Compressive strength for service and accident conditions, V.28, p. 410-414, 1995.]. Como resultado, os autores relatam pequeno lascamento nas amostras submetidas a 600°C.

Bodnóravá et al. [34[34] BODNÁROVÁ, L.; HELA, R.; HUBERTOVÁ, M.; NOVÁKOVÁ, I. Behavior of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures. World Academy of Science, Engineering and Technology International Journal of Civil, Architectural, Structural and Construction Engineering Vol: 8 No:12, 2014.], avaliaram o possível lascamento de placas de concreto de 100x300x1050 mm, produzidas com argila expandida e expostas a temperatura de até 1050°C de acordo com a Curva Padrão, da International Organization for Standadization - ISO 834 [19[19] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Fire Resistance Tests - Elements of Building Construction. Part 1: General Requirements. ISO 834. Geneva, 2014.]. Ao final os autores observam que o lascamento ocorreu para temperaturas acima de 700°C e, que o teor de umidade das amostras com agregado leve, deve ser inferior a 10% para que o lascamento não seja observado, pois a presença de umidade faz com que ocorra ruptura do agregado.

Em função do exposto, observa-se que ainda muito deve ser feito para avaliar o fenômeno do lascamento do concreto em situação de incêndio. No que diz respeito a concretos produzidos com agregado leve ou agregados reciclados o caminho a percorrer, antes que o fenômeno seja explicado e quantificado, é ainda bem maior. Este trabalho tenta dar alguns passos nesta direção, avaliando o lascamento sob temperaturas elevadas de misturas de concreto produzidas com agregado leve proveniente de resíduos de blocos cerâmicos.

4. Materiais e programa experimental

4. Misturas de concreto

Para este trabalho, foram feitas três misturas de concreto (Tabela [1]), uma executada com agregado natural (REF) e outras duas com substituições de 40% e 100% (S40 e S100), do agregado natural por agregado proveniente de resíduo cerâmico reciclado. Foi fixada a relação água cimento em 0,49 para todas as misturas.

Tabela 1
Misturas de concreto com e sem resíduo

4.2 Propriedades dos materiais utilizados

As características dos agregados empregados neste trabalho estão apresentadas na tabela [2[2] SOUZA, A.A.A; MORENO JR., A.L. Proposta de avaliação em laboratório do lascamento explosivo do concreto em situação de incêndio. Concreto & Construção, v. 4, p. 96-103, 2010.].

Tabela 2
Propriedades físicas dos materiais utilizados

O agregado graúdo convencional apresentou britas com diâmetros de 9,5 mm a 25 mm. O agregado graúdo reciclado foi obtido do material resultante da trituração de resíduos de fábricas de produção de telhas e blocos cerâmicos da região de Campinas/SP.

O cimento utilizado foi o CP II E32, cimento composto com até 10% de escória de alto forno, considerado comum para obras de pequeno porte e, usual na região de Campinas/SP.

4.3 Avaliação da resistência à compressão e módulo de deformação residuais

Para cada mistura de concreto avaliada foram executadas 40 amostras cilíndricas, de 100 mm de diâmetro por 300 mm de altura, para verificação das propriedades mecânicas residuais pós aquecimento até as temperaturas de 200, 400, 600 e 800°C. Para aquecimento das amostras foi utilizado o forno modelo ML 1300/60, com temperatura máxima de aquecimento de 1300 ºC existente no Laboratório de Estruturas e Materiais de Construção Civil da Faculdade de Engenharia Civil, Arquitetura e Urbanismo (FEC) da UNICAMP.

A metodologia empregada seguiu o disposto, internacionalmente, pela RILEM-129 MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures (1995) [1[1] RILEM TC 129-MHT. Recommendation of RILEM TC 129-MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures - Compressive strength for service and accident conditions, V.28, p. 410-414, 1995.], que adota taxa de aquecimento, e resfriamento, de 1ºC por minuto; com permanência de 60 minutos da amostra sob a temperatura de interesse. A escolha desta metodologia visa a internacionalização das avaliações, de forma que seja possível a comparação de resultados nacionais e internacionais.

A resistência à compressão residual do concreto foi determinada de acordo com a recomendação da RILEM TC 129-MHT Parte 3 [42[42] RILEM TC 129-MHT. Test methods for mechanical properties of concrete at high temperatures - Compressive strength for service and accident conditions. Materials and Structures, [s.l.], V.28, p. 410-414, 1995.], aplicando-se uma carga de compressão uniaxial em direção ao eixo central a uma taxa de 0,5 MPa por segundo. O módulo de deformação do concreto foi determinado de acordo com a recomendação da RILEM TC 129-MHT Parte 5 [43[43] RILEM TC 129-MHT. Test methods for mechanical properties of concrete at high temperatures - Modulus of elasticity for service and accident conditions. Materials and Structures, [s.l.], V.37, p. 139-144, mar.2004.].

4.4 Avaliação do lascamento explosivo (spalling)

Nesta etapa do trabalho, buscou-se avaliar o possível lascamento das misturas de concreto executadas, quando submetidas à Curva Padrão da International Organization for Standadization - ISO 834 [19[19] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Fire Resistance Tests - Elements of Building Construction. Part 1: General Requirements. ISO 834. Geneva, 2014.] por 60 minutos até uma temperatura de 925ºC.

Na inexistência de procedimento nacional ou internacional normatizado, o procedimento empregado foi o proposto por Souza e Moreno [18[18] SOUZA, A. A. A. ; MORENO JR, A.L. . Assessment of the influence of the type of aggregates and reydration on concrete submitted to high temperatures. Revista IBRACON de Estruturas e Materiais , v. 3, p. 477-493, 2010.], que consiste em aquecer uma das faces de uma amostra prismática de 150x150mm de seção transversal e 100 mm de espessura. O aquecimento foi feito aos 100 dias de idade das amostras. Antes do aquecimento as amostras foram colocadas em estufa, à temperatura de 100ºC, até a constância de massa. Após este estágio, uma das faces foi saturada em água e aquecida.

Para aquecimento das amostras foi utilizado o forno existente no Laboratório de Estruturas e Materiais de Construção Civil da Faculdade de Engenharia Civil, Arquitetura e Urbanismo (FEC) da UNICAMP, Figura [1a] e Figura [1b]. Cada amostra foi encaixada em abertura frontal existente no equipamento e vedada com manta de lã de vidro. O controle das temperaturas do forno e da amostra foi feito com termopares ligados a um aquisitor automático de dados, posicionados conforme especificação da ISO 834 [19[19] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Fire Resistance Tests - Elements of Building Construction. Part 1: General Requirements. ISO 834. Geneva, 2014.]. Ao final do aquecimento as amostras foram avaliadas, visualmente, em relação ao lascamento e ao panorama de fissuração.

Figura 1a
Forno para aquecimento das amostras e ensaio de lascamento (spalling)

Figura 1b
Amostra posicionada para ensaio de lascamento (spalling)

5. Resultados e discussões

5.1 Resistência residual à compressão

Verificou-se, conforme esperado, que os valores de resistência à compressão axial decrescem à medida que se aumenta a porcentagem de substituição de parte do agregado graúdo por resíduo de cerâmica vermelha e à medida que se aumenta a temperatura de aquecimento (Tabela [3]). Esta redução de resistência mecânica, em temperatura ambiente, é atribuída à baixa densidade e resistência mecânica do agregado reciclado de cerâmica vermelha em relação ao agregado natural.

Tabela 3
Propriedades mecânicas das misturas de concreto

Na Figura [2] são apresentados os resultados desta pesquisa, os resultados obtidos pelos principais pesquisadores referenciados neste trabalho [18, 21 e 22] que utilizaram agregado leve na mistura, bem como as curvas preconizadas pelos códigos nacionais e internacionais pertinentes. Vale ressaltar que, no caso da Norma Nacional NBR 15200 [13[13] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15200. Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 2012.] e do EUROCODE 2 [15[15] EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 1991-1-2. Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. CEN, Bruxelas, 2002.]; os valores indicados são inerentes a concretos executados com agregados silicosos e, embora não esteja claro nos textos destes códigos, referentes a amostras destas misturas aquecidas sem carga e rompidas à compressão axial sob aquecimento; histórico de carga que, reconhecidamente, resulta em valores de resistência mecânica residual superiores aquelas obtidas com ensaios de amostras aquecidas sem carga e ensaiadas após resfriamento lento. Na Figura [2], com histórico de carga semelhante ao adotado nesta pesquisa, apresenta-se, também, a evolução da resistência à compressão residual de amostras de concreto executado com agregado leve de argila expandida (peso específico de 450 kg/m3) preconizados pelo ACI [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] e referente à amostras aquecidas sem carga e rompidas à compressão axial após resfriamento lento.

Figura 2
Valores de redução da resistência à compressão axial das misturas de concreto com teores de substituição (0%, 40% e 100%)

Na Tabela 4 apresenta-se parâmetros geométricos e metodológicos empregados por estes códigos e pesquisadores sob comparação.

Tabela 4
Dados comparativos dos parâmetros de ensaios (resistência residual)

Tabela 5
Dados comparativos dos parâmetros de ensaios (lascamento)

Na Figura [2] pode-se observar que a substituição do agregado graúdo por resíduo de cerâmica vermelha resulta em concretos mais resistentes ao fogo, ou seja, as perdas de resistência para os concretos com 40% e 100% de substituição são menores quando comparadas ao concreto de referência. Este incremento da resistência ao fogo de concretos executados com resíduos de cerâmica vermelha, segundo Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.], pode ser explicado pelo fato do coeficiente de expansão térmica dos resíduos de cerâmica vermelha ser bem menor do que o do agregado natural, fazendo com que as variações volumétricas deste agregado reciclado sejam compatíveis com as deformações ocorridas na matriz, resultando assim em menores tensões internas e, portanto, menos fissuração da mistura com o aquecimento. Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.] também observa que agregados de resíduos de cerâmica vermelha são mais estáveis em temperaturas mais altas do que agregados de origem natural e, ainda, que com o aumento da temperatura, a influência da menor resistência do resíduo de cerâmica vermelha (comparado com os agregado de origem natural) na resistência à compressão do concreto é menor, já que é progressivamente governada pela matriz cimentícia, ou seja, em misturas com agregados de resíduos de cerâmica vermelha, com o aumento da temperatura de exposição, a parte mais fraca do concreto não é mais o agregado, mas sim a matriz cimentícia, que é basicamente semelhante em todas as misturas de concreto.

Já a resistência residual do concreto produzido com agregado natural silicoso deste trabalho é menor que os preconizados pela NBR 15200 [13[13] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15200. Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 2012.]. Estes resultados já eram esperados, uma vez que o histórico de carga empregado nesta pesquisa é diferente do histórico de carga considerado na NBR 15200 [13[13] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15200. Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 2012.]. É de conhecimento geral da área que o aquecimento sem carga e ruptura posterior após resfriamento lento resulta em resistências residuais à compressão inferiores. Após resfriado o concreto, o óxido de cálcio (CaO) formado durante o aquecimento passa pelo processo de reidratação; processo esse largamente expansivo que, consequentemente, contribui para a maior microfissuração do concreto, resultando, portanto, em resistências residuais menores. Outro fator que pode contribuir para a menor resistência residual de amostras de concreto aquecidas, e resfriadas antes da ruptura à compressão, é o desenvolvimento de fissuras na região entre agregado graúdo e a pasta de cimento durante o processo de resfriamento.

Quando se compara os resultados da mistura de referência desta pesquisa (REF) com a curva sugerida pelo ACI [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.], com agregado graúdo e histórico de carga, similares aos deste trabalho, nota-se que a evolução da resistência à compressão residual é bastante semelhante; o que reforça a afirmação desta influência ressaltada no parágrafo anterior.

Comparando-se os resultados desta pesquisa com os de Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.], que utilizou agregado cerâmico similar ao deste trabalho, os resultados de Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.] apresentam-se mais favoráveis, com maior resistência mecânica residual após aquecimento. Este fato evidencia a grande influência da geometria das amostras e do tempo de exposição à temperatura desejada na resistência mecânica residual do concreto. Embora com composição da mistura similar, Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.] empregou amostras maiores, e as aqueceu por menos tempo à temperatura de interesse do que as amostras deste trabalho; resultando, portanto, em um grau de deterioração menor das amostras quando aquecidas. A importância da padronização da geometria das amostras, taxa de elevação da temperatura e tempo de exposição, nos resultados de resistência à compressão residual após aquecimento, também pode ser comprovada observando-se os resultados obtidos por Souza e Moreno [18[18] SOUZA, A. A. A. ; MORENO JR, A.L. . Assessment of the influence of the type of aggregates and reydration on concrete submitted to high temperatures. Revista IBRACON de Estruturas e Materiais , v. 3, p. 477-493, 2010.] e Toric et al [21[21] TORIC, N.; BOKO, I.; JURADIN, S.; BALOEVIC, G. Mechanical properties of lightweight concrete after fire exposure. Structural Concrete 17, No. 6, 2016.]; que empregaram argila expandida como agregado graúdo do concreto e taxas de elevação de temperatura bastante distintas. A taxa de elevação da temperatura empregada por Souza e Moreno[18[18] SOUZA, A. A. A. ; MORENO JR, A.L. . Assessment of the influence of the type of aggregates and reydration on concrete submitted to high temperatures. Revista IBRACON de Estruturas e Materiais , v. 3, p. 477-493, 2010.] foi 6 vezes maior que a empregada por Toric et al [21[21] TORIC, N.; BOKO, I.; JURADIN, S.; BALOEVIC, G. Mechanical properties of lightweight concrete after fire exposure. Structural Concrete 17, No. 6, 2016.]. Uma taxa de elevação de temperatura elevada pode implicar em maior deterioração do concreto com a temperatura, favorecendo fissuração e eventuais pequenos lascamentos; o que pode explicar os resultados mais favoráveis obtidos por Toric et al [21[21] TORIC, N.; BOKO, I.; JURADIN, S.; BALOEVIC, G. Mechanical properties of lightweight concrete after fire exposure. Structural Concrete 17, No. 6, 2016.] quando comparados aos de Souza e Moreno [18[18] SOUZA, A. A. A. ; MORENO JR, A.L. . Assessment of the influence of the type of aggregates and reydration on concrete submitted to high temperatures. Revista IBRACON de Estruturas e Materiais , v. 3, p. 477-493, 2010.].

Por fim, resta observar que a curva proposta pelo ACI 216 R89 [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] para concreto com agregado leve de argila expandida, peso específico de 450 kg/m3, aquecimento sem carga e ruptura após resfriamento lento, apresenta resistências mecânicas residuais em função da temperatura de aquecimento sempre menores que aquelas observadas para as misturas de concreto leve desta pesquisa e dos demais pesquisadores aqui relatados. Este fato pode justificar, em futuras revisões da NBR 15200 [13[13] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15200. Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 2012.], a adoção da curva do ACI 216 R89 [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] para o comportamento de concretos leves sob elevadas temperaturas; pelo menos enquanto resultados nacionais pertinentes, obtidos em trabalhos similares ao aqui apresentado, não sejam obtidos.

Estes resultados, únicos em nosso País, devem fornecer subsídios para um futuro entendimento do comportamento de concretos leves nacionais sob elevadas temperaturas.

5.2 Módulo de deformação residual

Pela Tabela [3] nota-se, assim como ocorrido para a resistência à compressão em temperatura ambiente, que o módulo de deformação longitudinal das misturas de concreto com substituição de agregado natural pelo cerâmico reciclado (S40 e S100) apresentou decréscimos em relação ao módulo de deformação obtido para a mistura de concreto de referência (REF). Observa-se, de início, que as propriedades físicas e mecânicas do agregado graúdo têm grande influência no valor do módulo de deformação do concreto executado com este agregado; com valores de módulo, quase sempre incrementados com o aumento da resistência mecânica do agregado graúdo. O agregado reciclado cerâmico empregado nesta pesquisa teve densidade e resistência à compressão bem menor que o agregado natural empregado na mistura de referência (REF); razão que justifica a diferença entre os módulos de deformação apresentados neste trabalho; com o módulo de deformação diminuindo em função do incremento de substituição do agregado natural pelo cerâmico.

Na Figura [3] são apresentados os resultados desta pesquisa, os resultados obtidos pelos principais pesquisadores referenciados neste trabalho [18 e 22] que utilizaram agregado leve na mistura, bem como as curvas preconizadas pelos códigos nacionais e internacionais pertinentes. Vale ressaltar que, no caso da Norma Nacional NBR 15200 [13[13] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15200. Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 2012.] e do EUROCODE 2 [15[15] EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 1991-1-2. Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. CEN, Bruxelas, 2002.], os valores indicados são inerentes a concretos executados com agregados silicosos e, embora não esteja claro nos textos destes códigos, referentes a amostras destas misturas aquecidas sem carga e rompidas à compressão axial sob aquecimento; histórico de carga que, reconhecidamente, resulta em valores de módulo de deformação residual superiores aqueles obtidas com ensaios de amostras aquecidas sem carga e ensaiadas após resfriamento lento. Na Figura [3], apresenta-se, também, a evolução do módulo de deformação residual de amostras de concreto executado com agregado silicoso e agregado leve de argila expandida (peso específico de 450 kg/m3) preconizadas pelo ACI [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] e referente às amostras aquecidas sem carga e rompidas à compressão axial sob aquecimento. Diferente do preconizado pelo ACI [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] para a resistência à compressão residual, este código normativo optou por não fazer distinção entre históricos de carga no caso do módulo de deformação residual do concreto após aquecimento.

Figura 3
Valores da redução dos módulos de elasticidade das misturas de concreto com teores de substituição (0%, 40% e 100%)

Na Tabela 4 apresenta-se parâmetros geométricos e metodológicos empregados por estes códigos e pesquisadores sob comparação.

Na Figura [3] pode-se observar que a substituição do agregado graúdo por resíduo de cerâmica vermelha resulta em concretos mais resistentes ao fogo, ou seja, as perdas no módulo de deformação para os concretos com 40 e 100% de substituição são menores quando comparadas ao concreto de referência. Este pequeno incremento do módulo de deformação residual, embora bastante inferior ao observado para a resistência à compressão residual para as mesmas misturas, pode ser explicado da mesma forma; recorrendo-se à pesquisa de Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.].

Similar ao ocorrido anteriormente para a resistência à compressão residual, o módulo de deformação residual do concreto produzido com agregado natural silicoso deste trabalho é menor que o preconizado pela NBR 15200 [13[13] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15200. Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 2012.] e pelo ACI 216 [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] para concretos executados com este mesmo agregado. Estes resultados já eram esperados e, também, podem ser explicados da mesma forma que os resultados para a resistência à compressão; colocando o histórico de carga diferente como parâmetro interveniente nos resultados em comparação.

Comparando-se os resultados desta pesquisa com os de Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.], que utilizou agregado cerâmico similar ao deste trabalho, os resultados de Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.] apresentam-se bastante favoráveis, com maior módulo de deformação residual após aquecimento. Este fato evidencia, mais uma vez, a grande influência da geometria das amostras e do tempo de exposição à temperatura desejada no módulo de deformação residual do concreto. Embora com composição da mistura similar, Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.] empregou amostras maiores, e as aqueceu por menos tempo à temperatura de interesse, do que as amostras deste trabalho; resultando, portanto, em um grau de deterioração menor das amostras quando aquecidas. Entretanto, ressalta-se que Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.] apresenta resultados do módulo de deformação residual para temperaturas de aquecimento até 400ºC.

Por fim, resta observar que a mesma sugestão destes autores, de emprego da curva proposta pelo ACI 216 R89 [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] para concreto com agregado leve, momentaneamente, em futura revisão da NBR 15200 [13[13] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15200. Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 2012.] deve ser reavaliada para o caso do módulo de deformação residual. Quando se compara os resultados desta pesquisa com a curva sugerida pelo ACI 216R-89 [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] para agregados leves, nota-se que a evolução do módulo de deformação residual tem diferenças que devem ser ressaltadas. A partir dos 350ºC, aproximadamente, o módulo de deformação residual preconizado por esse código normativo é maior, ou seja, menos conservador, do que os resultados obtidos neste trabalho. Vale observar que os resultados disponíveis na literatura, que geraram a curva em questão preconizada pelo ACI 216R-89 [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.] para o módulo de deformação residual, eram bastante escassos à epoca; o que pode explicar as diferenças observadas. Da mesma forma, resta observar que, embora em números absolutos os resultados em comparação tenham diferenças da ordem de 100%, em números relativos esta diferença é muito baixa (30% contra 15% em sua maior diferença); ou seja, nesta faixa de temperatura o módulo de deformação residual apresenta-se muito baixo; em qualquer uma das curvas em comparação.

5.3 Lascamento explosivo (spalling)

Não foi observado qualquer lascamento; explosivo ou não; nas amostras de concreto avaliadas neste trabalho. Foi possível observar (Figura [4]) que a mistura de concreto com 100% de substituição de agregado natural silicoso pelo agregado reciclado de cerâmica vermelha apresentou um panorama de fissuração menos agressivo que o da amostra de referência; porém, sem ocorrência do lascamento em nenhum dos concretos testados, mesmo para temperaturas superiores a 800oC.

Figura 4
Corpos de prova após ensaio de lascamento explosivo (temperatura: 925°C)

Como ressaltado anteriormente, no que diz respeito ao lascamento de concretos, aquecidos, e produzidos com agregados leves ou agregados reciclados, os resultados de pesquisas encontradas na literatura internacional são muito escassos. Dos trabalhos internacionais apresentados, o lascamento foi observado em Ke Cheng He et al. [33[33] HE, K. C.; GUO, R. X.; MA, Q. M.; YAN, F.; LIN, Z.W.; SUN, Y L. Experimental Research on High Temperature Resistance of Modified Lightweight Concrete after Exposure to Elevated Temperatures. Hindawi Publishing Corporation Advances in Materials Science and Engineering, Article ID 5972570, 2016.], Bodnóravá et al. [34[34] BODNÁROVÁ, L.; HELA, R.; HUBERTOVÁ, M.; NOVÁKOVÁ, I. Behavior of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures. World Academy of Science, Engineering and Technology International Journal of Civil, Architectural, Structural and Construction Engineering Vol: 8 No:12, 2014.] e Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.]. Em todos esses trabalhos foi empregado agregado leve na mistura de concreto; argila expandida nos dois primeiros e agregado reciclado cerâmico no último. Vale observar que o lascamento foi observado em um número reduzido das amostras avaliadas e para temperaturas variadas de avaliação; acima de 700 oC em Bodnóravá et al. [34[34] BODNÁROVÁ, L.; HELA, R.; HUBERTOVÁ, M.; NOVÁKOVÁ, I. Behavior of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures. World Academy of Science, Engineering and Technology International Journal of Civil, Architectural, Structural and Construction Engineering Vol: 8 No:12, 2014.], acima de 400 oC em Ke Cheng He et al. [33[33] HE, K. C.; GUO, R. X.; MA, Q. M.; YAN, F.; LIN, Z.W.; SUN, Y L. Experimental Research on High Temperature Resistance of Modified Lightweight Concrete after Exposure to Elevated Temperatures. Hindawi Publishing Corporation Advances in Materials Science and Engineering, Article ID 5972570, 2016.] e para 600 oC em Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.].

Uma vez que não existe um procedimento de ensaio normatizado para avaliação em laboratório da tendência ao lascamento explosivo no concreto; nestes trabalhos, o tamanho das amostras, a taxa de aquecimento, o teor de umidade, a temperatura máxima de exposição das amostras e mesmo a metodologia de ensaio, foram muito diferentes e, portanto, torna-se difícil uma avaliação criteriosa dos resultados com vistas a uma comparação com os resultados desta pesquisa. Da mesma forma, parâmetros de caracterização do concreto julgados importantes na avaliação do fenômeno do lascamento não foram disponibilizados. Não existem informações, em todos eles, de parâmetros como a porosidade, teor de umidade no dia do ensaio, tempo e temperatura de ocorrência do lascamento, etc.

Deve ser ressaltado, também, que na maioria destes trabalhos o objetivo principal nem foi a avaliação do lascamento; mas sim a avaliação da resistência à compressão residual do concreto após aquecimento e posterior resfriamento. Dos trabalhos internacionais apresentados, somente o de Bodnóravá et al. [34[34] BODNÁROVÁ, L.; HELA, R.; HUBERTOVÁ, M.; NOVÁKOVÁ, I. Behavior of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures. World Academy of Science, Engineering and Technology International Journal of Civil, Architectural, Structural and Construction Engineering Vol: 8 No:12, 2014.] foi idealizado para avaliação do lascamento. Entretanto, neste trabalho o agregado graúdo empregado foi a argila expandida, diferente do agregado empregado nesta pesquisa e, portanto, inviabilizando qualquer tentativa de comparação dos resultados.

Em Martins et al [22[22] MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.] foi observado pequeno lascamento em algumas das amostras avaliadas após aquecimento até 600 oC, e posterior resfriamento. O agregado graúdo empregado foi o mesmo deste trabalho; entretanto, a geometria das amostras, a taxa de elevação da temperatura com o tempo, a resistência à compressão da mistura em temperatura ambiente e mesmo a metodologia de avaliação do lascamento foram muito diferentes do trabalho de pesquisa aqui apresentado. Avaliar, isoladamente, qualquer um destes parâmetros, no caso do lascamento só seria viável se estes parâmetros fossem, ao menos, um pouco semelhantes.

Por fim, ressalta-se a necessidade de padronização na avaliação do lascamento do concreto, em laboratório, sob elevadas temperaturas. Esta padronização é necessária. Os parâmetros envolvidos no fenômeno são muitos, correlacionados e, portanto, de difícil avaliação isolada sem esta padronização.

6. Conclusões

Em relação à pesquisa aqui apresentada, verificou-se que:

  • a) Em temperatura ambiente, como esperado, quando se substitui o agregado natural convencional pelo agregado reciclado cerâmico, a resistência mecânica diminui; com resistência à compressão e módulo de deformação, diminuindo em função de um incremento no teor de substituição;

  • b) A substituição do agregado graúdo natural por resíduo de cerâmica vermelha resulta em concretos mais resistentes ao fogo, ou seja, as perdas de resistência à compressão e módulo de deformação para os concretos com 40 e 100% de substituição são menores quando comparadas ao concreto de referência;

  • c) Os resultados de redução de resistência mecânica (resistência à compressão e módulo de deformação), com o incremento de temperatura, de concretos preparados com agregados leves aqui avaliados foram menores quando comparados aos valores preconizados pelo ACI 216R-89 [14[14] AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.]; sugere-se então a adoção destas curvas para efeito de estimativa de resistência residual para concretos leves nacionais enquanto resultados de pesquisa, similares a realizada neste trabalho, não sejam disponibilizados;

  • d) Em relação à tendência ao lascamento, pode-se verificar que os concretos produzidos com resíduos de cerâmica vermelha permaneceram estáveis; não ocorrendo o lascamento até para temperaturas superiores a 800°C;

  • e) Ressalta-se a necessidade de padronização na avaliação do lascamento do concreto, em laboratório, sob elevadas temperaturas. Esta padronização é necessária. Os parâmetros envolvidos no fenômeno são muitos, correlacionados e, portanto, de difícil avaliação isolada sem esta padronização;

  • f) Os resultados deste trabalho, únicos em nosso País, devem fornecer subsídios para um futuro entendimento do comportamento de concretos leves nacionais sob elevadas temperaturas.

7. Agradecimentos

Os autores agradecem ao Espaço da Escrita - Coordenadoria Geral da Universidade - UNICAMP - pelos serviços de idiomas prestados.

8. Bibliographic references

  • [1]
    RILEM TC 129-MHT. Recommendation of RILEM TC 129-MHT: Test Methods for Mechanical Properties of Concrete at High Temperatures - Compressive strength for service and accident conditions, V.28, p. 410-414, 1995.
  • [2]
    SOUZA, A.A.A; MORENO JR., A.L. Proposta de avaliação em laboratório do lascamento explosivo do concreto em situação de incêndio. Concreto & Construção, v. 4, p. 96-103, 2010.
  • [3]
    CAMPOS, M.A.; PAULON, V.A. Utilização de agregados alternativos de isoladores elétricos de porcelana em concretos. Concreto y Cemento. Investigación y Desarrollo, vol. 7 núm. 1, de la pág. 30 a la 43, Julio - Diciembre de 2015.
  • [4]
    JANKOVIC, K.; DRAGAN, N.; DRAGAN, B. Concrete paving blocks and flags made with crushed brick as aggregate. Construction and Building Materials 28: 659-663, 2012.
  • [5]
    MUELLER, A.; SCHNELL, A.; RUEBNER, K. The manufacture of lightweight aggregates from recycled masonry rubble. Construction and Building Materials 98: 376-387, 2015.
  • [6]
    AWOYERA, P.; AKINMUSURU, J. O.; NDAMBUKI, J.M. Green concrete production with ceramic wastes and laterite, Construction and Building Materials 117: 29-36, 2016.
  • [7]
    ZHOU, C.; CHEN, Z. Mechanical properties of recycled concrete made with different types of coarse aggregate. Construction and Building Materials 134: 497-506, 2017.
  • [8]
    DERRICK J, ANDERSON; SCOTT T, SMITH; FRANCIS T.K, AU. “Mechanical properties of concrete utilising waste ceramic as coarse aggregate”. Construction and Building Materials 117 (2016) 20-28.
  • [9]
    MELICEVIC, I..;BJEGOVIC, D.; SIDDIQUE, Experimental research of concrete floor blocks with crushed bricks and tiles aggregate. Construction and Building Materials, 94 , 775-783, 2015.
  • [10]
    CÁNOVAS, M.F. Patologia e Terapia do Concreto Armado. 522 p. São Paulo: PINI, 1988.
  • [11]
    MEHTA, P. K.; MONTEIRO, P. J. M. Concreto: Microestrutura, propriedades e materiais. 2. ed. São Paulo: IBRACON, 2014.
  • [12]
    NEVILLE, A. M. Propriedades do concreto. 2ª Edição. Ed. PINI. São Paulo, 1997.
  • [13]
    ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15200. Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 2012.
  • [14]
    AMERICAN CONCRETE INSTITUTE. (ACI). Guide for Determining the Fire Endurance of Concrete Elements. ACI 216R-89. ACI. New York, 1996.
  • [15]
    EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 1991-1-2. Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. CEN, Bruxelas, 2002.
  • [16]
    SOLLERO, M.B.S.; MORENO JR., A.L. Post-Fire Residual Mechanical Properties of High Strength Concrete (HSC) Made with Basalt Aggregate. 9th International Conference on Structures in Fire (SIF),Princeton Univ, Princeton, JUN 08-10, 2016.
  • [17]
    ALMEIDA, J. M. A. Comportamento em altas temperaturas e na reidratação do concreto convencional e não convencional com cinza de casca de arroz. Tese (Doutorado) - Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul. Porto Alegre, 2017.
  • [18]
    SOUZA, A. A. A. ; MORENO JR, A.L. . Assessment of the influence of the type of aggregates and reydration on concrete submitted to high temperatures. Revista IBRACON de Estruturas e Materiais , v. 3, p. 477-493, 2010.
  • [19]
    INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Fire Resistance Tests - Elements of Building Construction. Part 1: General Requirements. ISO 834. Geneva, 2014.
  • [20]
    LANEYRIE, C.; BEAUCOUR, A.L.; GREEN, M.F.; HEBERT, R.L.; LEDESERT, B.; NOUMOWE, A. Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures. Construction and Building Materials 111, 368-378, 2016.
  • [21]
    TORIC, N.; BOKO, I.; JURADIN, S.; BALOEVIC, G. Mechanical properties of lightweight concrete after fire exposure. Structural Concrete 17, No. 6, 2016.
  • [22]
    MARTINS, D.J.; CORREIA, J.R.; BRITO, J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire and Materials, Fire Mater; 40:289-304, 2016.
  • [23]
    RAJAWAT, D.;SIDDIQUE, S.;SHRIVASTAVA, S;CHAUDHARY, S.;GUPTA, T. Influence of fine ceramic aggregates on the residual properties of concrete subjected to elevated temperature. Fire and Materials. 2018;1-9.
  • [24]
    YAN, R.; YANG, S.; GUO, M.Z.; POON, C.S. Comparative evaluation of fire resistance of partition wall blocks prepared with waste materials. Journal of Cleaner Production 182, 156-165, 2018.
  • [25]
    KRZEMIEŃ, K.; HAGER, I. Assessment of Concrete Susceptibility to Fire Spalling: A Report on the State-of-the-art in Testing Procedures. Procedia Engineering, Vol. 108, 2015, pp. 285-292, ISSN 1877-7058.
  • [26]
    KODUR, K. Properties of Concrete at Elevated Temperatures. ISRN Civil Engineering, vol. 2014, Article ID 468510, 15 p. doi:10.1155/2014/468510
  • [27]
    HERTZ, K. D.;SORENSEN, L. S. Test method for spalling of fire exposed concrete. Fire Safety Journal 2005; 40(5):466-476.
  • [28]
    HUISMANN, S.; WEISE, F.; MENG, B.; SCHNEIDER, U. Transient strain of high strength concrete at elevated temperatures and the impact of polypropylene fibers. Material and Structures.vol. 45,issue 5, 2012, pp. 793-801.
  • [29]
    HAN, C. G.; HWANG, Y. S.; YANG, S. H.; GOWRIPALAN, N. Performance of spalling resistance of high performance concretewith polypropylene fiber contents and lateral confinement. Cement and Concrete Research 2005; 35:1747-1753.
  • [30]
    HAN, C. G., HAN, M. C., HEO, Y. S. Improvement of residual compressive strength and spalling resistance of high-strengthRC columns subject to fire. Construction and Building Materials 2009; 23:107-116.
  • [31]
    HERTZ, K. D.;SØRENSEN, L. S. Test method for spalling of fire exposed concrete. Fire Safety Journal 2005; 40(5):466-476.
  • [32]
    HERTZ, K. D. Limits of spalling of fire-exposed concrete. Fire Safety Journal 2003; 38(2):103-116.
  • [33]
    HE, K. C.; GUO, R. X.; MA, Q. M.; YAN, F.; LIN, Z.W.; SUN, Y L. Experimental Research on High Temperature Resistance of Modified Lightweight Concrete after Exposure to Elevated Temperatures. Hindawi Publishing Corporation Advances in Materials Science and Engineering, Article ID 5972570, 2016.
  • [34]
    BODNÁROVÁ, L.; HELA, R.; HUBERTOVÁ, M.; NOVÁKOVÁ, I. Behavior of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures. World Academy of Science, Engineering and Technology International Journal of Civil, Architectural, Structural and Construction Engineering Vol: 8 No:12, 2014.
  • [35]
    ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 53: Agregado graúdo -Determinação da massa específica, massa específica aparente e absorção de água. Rio de Janeiro, jul. 2003.
  • [36]
    ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 52: Agregado miúdo. -Determinação da massa específica e massa específica aparente. Rio de Janeiro, jul. 2002.
  • [37]
    ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 30: Agregado miúdo - Determinação da absorção de água. Rio de Janeiro, jul. 2001.
  • [38]
    ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 45: Agregados - Determinação da massa unitária e do volume de vazios. Rio de Janeiro, mar. 2006.
  • [39]
    ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 248: Agregados. Determinação da composição granulométrica. Rio de Janeiro, jul. 2003.
  • [40]
    ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 46. Agregados - Determinação do material fino que passa através da peneira 75 µm, por lavagem. Rio de Janeiro, jul. 2003.
  • [41]
    ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7218: Agregados - Determinação do teor de argila em torrões e materiais friáveis. Rio de Janeiro, agosto 1987.
  • [42]
    RILEM TC 129-MHT. Test methods for mechanical properties of concrete at high temperatures - Compressive strength for service and accident conditions. Materials and Structures, [s.l.], V.28, p. 410-414, 1995.
  • [43]
    RILEM TC 129-MHT. Test methods for mechanical properties of concrete at high temperatures - Modulus of elasticity for service and accident conditions. Materials and Structures, [s.l.], V.37, p. 139-144, mar.2004.

Datas de Publicação

  • Publicação nesta coleção
    01 Jun 2020
  • Data do Fascículo
    Mar-Apr 2020

Histórico

  • Recebido
    03 Dez 2018
  • Aceito
    03 Jul 2019
IBRACON - Instituto Brasileiro do Concreto Instituto Brasileiro do Concreto (IBRACON), Av. Queiroz Filho, nº 1700 sala 407/408 Torre D, Villa Lobos Office Park, CEP 05319-000, São Paulo, SP - Brasil, Tel. (55 11) 3735-0202, Fax: (55 11) 3733-2190 - São Paulo - SP - Brazil
E-mail: arlene@ibracon.org.br