Acessibilidade / Reportar erro

Necromys lasiurus (Cricetidae: Sigmodontinae) from open areas of the Atlantic Forest of Rio de Janeiro: Population structure and implications for the monitoring of hantaviruses

ABSTRACT

The hairy-tailed bolo mouse, Necromys lasiurus (Lund, 1841), which is typical of the Cerrado (CE), has been recorded in some open areas within the Atlantic Forest (AF) domain of the Brazilian state of Rio de Janeiro (RJ). In the CE, N. lasiurus is a known reservoir of zoonotic agents, and is the reservoir of an orthohantavirus genotype, Araraquara virus (ARAV), the etiological agent of Hantavirus Pulmonary Syndrome (HPS). Given this, the presence of N. lasiurus has potentially negative implications for public health in the state, and therefore it is important to elucidate the origin of its populations in RJ and their connections with populations outside the AF known to carry the ARAV. In the present study we combined phylogenetic and phylogeographic approaches to elucidate the evolutionary history of N. lasiurus populations in RJ, and to test if their dispersal into the AF domain is recent or ancient. These analyses were based on sequences of the mitochondrial Cytochrome b gene, obtained from N. lasiurus specimens from the Atlantic Forest of Rio de Janeiro (AF-RJ), together with all the sequences of this gene available for N. lasiurus in GenBank. In addition to the phylogenetic and phylogeographic analyses, the sequences were used to test among five hypothetical demographic scenarios, proposed to explain the evolutionary history of the hairy-tailed bolo mouse in the state of RJ. The results of all the analyses indicated that populations from AF and the Arid Diagonal (AD) of South America, which includes the CE, diverged in the Late Pleistocene but reconnected in the Holocene. The RJ population (AF-RJ) resulted from this recent genetic admixture among diverging populations from AF and AD. Despite the recent reconnection, no evidence has been found that the AF-RJ N. lasiurus population acts as a reservoir of ARAV, although the continued genetic connectivity with those from AD highlight the need to reinforce the public health monitoring of orthohantavirus in this rodent, especially given the potential spillover of other genotypes. Overall, then, the results of the present study provide important new insights into the evolutionary history of N. lasiurus, which should contribute to the surveillance of orthohantaviruses, and the development of more effective measures for the prevention and control of this zoonosis.

KEY WORDS:
Cytochrome b; Hantavirus; Range Expansion; Rodent; Small Mammal; Zoonoses

INTRODUCTION

The Atlantic Forest and the Cerrado biomes, are Brazilian morphoclimatic domains that have distinct biotas, although they do share some species of small mammals (Carmignotto et al. 2012Carmignotto AP, Vivo M, Langguth A (2012) Mammals of the Cerrado and Caatinga: distribution patterns of the tropical open biomes of central South America. In: Patterson BD, Costa LP (Eds) Bones, clones and biomes. The history and geography of recent Neotropical mammals. University of Chicago Press, Chicago, 307-350. https://doi.org/10.7208/chicago/9780226649214.003.0014
https://doi.org/10.7208/chicago/97802266...
). Two hypotheses have been proposed to account for the occurrence of typical Cerrado biome taxa in the Atlantic Forest biome. The first hypothesis refers to historical connections between the Cerrado biome and enclaves of open habitats in the Atlantic Forest biome, such as montane grasslands and coastal shrublands (Gonçalves et al. 2007Gonçalves PR, Myers P, Vilela JF, Oliveira JA (2007) Systematics of species of the genus Akodon (Rodentia: Sigmodontinae) in Southeastern Brazil and implications for the biogeography of the Campos de Altitude. Miscellaneous Publications Museum of Zoology University of Michigan 197: 1-24., Tavares et al. 2011Tavares WC, Pessôa LM, Gonçalves PR (2011) New species of Cerradomys from coastal sandy plains of southeastern Brazil (Cricetidae: Sigmodontinae). Journal of Mammalogy 92: 645-658. https://doi.org/10.1644/10-MAMM-096.1
https://doi.org/10.1644/10-MAMM-096.1...
, Lemos et al. 2015Lemos HM, Silva CAO, Patiu FM, Golçalves PR (2015) Barn Owl pellets (Aves: Tyto furcata) reveal a higher mammalian richness in the Restinga de Jurubatiba National Park, Southeastern Brazil. Biota Neotropical 15(2): e20140121. https://doi.org/10.1590/1676-06032015012114
https://doi.org/10.1590/1676-06032015012...
). These connections would have arisen through the constant shifts in climate and associated fluctuations in the distribution of forested and open habitats that occurred during the Pleistocene and the Holocene (Behling 1995Behling HA (1995) High resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. Journal of Paleolimnology 14: 253-268. https://doi.org/10.1007/BF00682427
https://doi.org/10.1007/BF00682427...
, Parizzi et al. 1998Parizzi MG, Salgado-Labouriau ML, Kohler HC (1998) Genesis and environmental history of Lagoa Santa, southeastern Brazil. The Holocene 8: 311-321. https://doi.org/10.1191/095968398670195708
https://doi.org/10.1191/0959683986701957...
, Behling 2002Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 177(1-2): 19-27. https://doi.org/10.1016/S0031-0182(01)00349-2
https://doi.org/10.1016/S0031-0182(01)00...
). These processes would have had significant impacts on the landscape (Behling 2003Behling H (2003) Late glacial and Holocene vegetation, climate and fire history inferred from Lagoa Nova in the southeastern Brazilian lowland. Vegetation History and Archaeobotany 12: 263-27. https://doi.org/10.1007/s00334-003-0020-9
https://doi.org/10.1007/s00334-003-0020-...
, Hadler et al. 2009Hadler P, Goin FJ, Ferigolo J, Ribeiro AM (2009) Environmental change and marsupial assemblages in Holocene successions of southern Brazil. Mammalian Biology 74: 87-99. https://doi.org/10.1016/j.mambio.2008.03.003
https://doi.org/10.1016/j.mambio.2008.03...
, Lavor et al. 2018Lavor P, Calvente A, Versieux LM, Sanmartin I (2018) Bayesian spatio-temporal reconstruction reveals rapid diversification and Pleistocene range expansion in the widespread columnar cactus Pilosocereus. Journal of Biogeography 46(1): 1-13. https://doi.org/10.1111/jbi.13481
https://doi.org/10.1111/jbi.13481...
), as well as in the composition of the present-day communities of small mammals (Hadler et al. 2009Hadler P, Goin FJ, Ferigolo J, Ribeiro AM (2009) Environmental change and marsupial assemblages in Holocene successions of southern Brazil. Mammalian Biology 74: 87-99. https://doi.org/10.1016/j.mambio.2008.03.003
https://doi.org/10.1016/j.mambio.2008.03...
, Tavares et al. 2011Tavares WC, Pessôa LM, Gonçalves PR (2011) New species of Cerradomys from coastal sandy plains of southeastern Brazil (Cricetidae: Sigmodontinae). Journal of Mammalogy 92: 645-658. https://doi.org/10.1644/10-MAMM-096.1
https://doi.org/10.1644/10-MAMM-096.1...
, Peçanha et al. 2017Peçanha WT, Althoff SL, Galiano D, Quintela FM, Maestri R, Gonçalves GL, Freitas TRO (2017) Pleistocene climatic oscillations in Neotropical open areas: Refuge isolation in the rodent Oxymycterus nasutus endemic to grasslands. Plos One 12(11): e0187329. https://doi.org/10.1371/journal.pone.0187329
https://doi.org/10.1371/journal.pone.018...
).

The second hypothesis does not exclude these histori cal processes, but considers that the recent anthropogenic deforestation and habitat fragmentation have replaced fo rested areas by open habitats, such as pastures and shrubby savanna, locally known as ‘campo sujo’ (Bastos et al. 2005Bastos EG de M, Araújo AFB, Silva HR (2005) Records of the rattlesnakes Crotalus durissus terrificus (Laurenti) (Serpentes, Viperidae) in the State of Rio de Janeiro, Brazil: a possible case of invasion facilitated by deforestation. Revista Brasileira de Zoologia 22(3): 812-815. https://doi.org/10.1590/S0101-81752005000300047
https://doi.org/10.1590/S0101-8175200500...
, Olifiers et al. 2005Olifiers N, Gentile R, Fiszon JT (2005) Relation between small-mammal species composition and anthropic variables in the Brazilian Atlantic Forest. Brazilian Journal of Biology 65(3): 495-501. https://doi.org/10.1590/S1519-69842005000300015
https://doi.org/10.1590/S1519-6984200500...
, Rocha et al. 2007Rocha CFD, Bergallo HG, Van Sluys M, Alves MAS, Jamel CE (2007) The remnants of restinga habitats in the Brazilian Atlantic Forest of Rio de Janeiro state, Brazil: Habitat loss and risk of disappearance. Brazilian Journal of Biology 67(2): 263-273. https://doi.org/10.1590/S1519-69842007000200011
https://doi.org/10.1590/S1519-6984200700...
). These man-made formations have favored the geographic expansion of species typical to the Cerrado biome into the core area of the coastal Atlantic Forest biome. These species include the maned wolf, Chrysocyon brachyurus (Illiger, 1815) (Carnivora: Canidae; Chiarello et al. 2000Chiarello AG (2000) Conservation value of a native forest fragment in a region of extensive agriculture. Revista Brasileira de Biologia 60(2): 237-247. https://doi.org/10.1590/S0034-71082000000200007
https://doi.org/10.1590/S0034-7108200000...
, Paula et al. 2013Paula RC, Rodrigues FHG, Queirolo D, Jorge RPS, Lemos FG, Rodrigues LA (2013) Avaliação do estado de conservação do Lobo-guará Chrysocyon brachyurus (Illiger, 1815) no Brasil. Biodiversidade Brasileira 3: 146-159., Bereta et al. 2017Bereta A, Freitas SR, Bueno C (2017) Novas ocorrências de Chrysocyon brachyurus (Carnivora) no estado do Rio de Janeiro indicando a expansão de sua distribuição geográfica. Boletim da Sociedade Brasileira de Mastozoologia 78: 5-8. https://www.sbmz.org/wp-content/uploads/2020/06/BolSBMz78_abr2017set2017.pdf
https://www.sbmz.org/wp-content/uploads/...
), and the rattlesnake, Crotalus durissus Linnaeus, 1758 (Squamata: Viperidae; Bastos et al. 2005Bastos EG de M, Araújo AFB, Silva HR (2005) Records of the rattlesnakes Crotalus durissus terrificus (Laurenti) (Serpentes, Viperidae) in the State of Rio de Janeiro, Brazil: a possible case of invasion facilitated by deforestation. Revista Brasileira de Zoologia 22(3): 812-815. https://doi.org/10.1590/S0101-81752005000300047
https://doi.org/10.1590/S0101-8175200500...
, Duarte & Menezes 2013Duarte MR, Menezes FA (2013) Is the population of Crotalus durissus (Serpentes, Viperidae) expanding in Brazil? Journal of Venomous Animals and Toxins including Tropical Diseases 19: 30. https://doi.org/10.1186/1678-9199-19-30
https://doi.org/10.1186/1678-9199-19-30...
). This geographic expansion of allochthonous species promoted by anthropogenic impacts may have highly deleterious ecological consequences for the native communities, similar to those caused by the invasion of exotic species and their parasites, which eventually lead to the spread of zoonotic pathogenics to new habitats and hosts (Bruno and Bard 2012Bruno SF, Bard VT (2012) Exóticos Invasores: Bioinvasores selvagens introduzidos no estado do Rio de Janeiro e suas implicações. Universidade Federal Fluminense, Niterói, vol. 1, 127 pp., Herrera et al. 2008Herrera HM, Abreu UGP, Keuroghlian A, Freitas TP, Jansen AM (2008) The role played by sympatric collared peccary (Tayassu tajacu), white-lipped peccary (Tayassu pecari), and feral pig (Sus scrofa) as maintenance hosts for Trypanosoma evansi and Trypanosoma cruzi in a sylvatic area of Brazil. Parasitology Research 103: 619-624. https://doi.org/10.1007/s00436-008-1021-5
https://doi.org/10.1007/s00436-008-1021-...
).

The hairy-tailed bolo mouse, Necromys lasiurus (Lund, 1841), which is typical of the Cerrado biome (sensu lato), has been recorded in areas of open habitat within the Atlantic Forest of Rio de Janeiro (Santos et al. 2018Santos FO, Teixeira BR, Cordeiro JLP, Sousa RHA, Lucio CS, Gonçalves PR, Lemos H, Oliveira RC, Fernandes J, Cavalcanti GR, Lemos ERS, D’Andrea PS (2018) Expansion of the range of Necromys lasiurus (Lund, 1841) into open areas of the Atlantic Forest biome in Rio de Janeiro state, Brazil, and the role of the species as a host of the hantavirus. Acta Tropica 188: 195-205. https://doi.org/10.1016/j.actatropica.2018.08.026
https://doi.org/10.1016/j.actatropica.20...
). This rodent tends to be extremely abundant in many small mammal communities of the Cerrado and the Caatinga biomes, where it has a high intraspecific genetic diversity (Becker et al. 2007Becker RG, Paise G, Baumgarten LC, Vieira EM (2007) Estrutura de Comunidades de Pequenos Mamíferos e Densidade de Necromys lasiurus (Rodentia, Sigmodontinae) em Áreas Abertas de Cerrado no Brasil Central. Mastozoología Neotropical 14(2): 157-168., Moreira 2015Moreira JC (2015) Determinantes da Estruturação Population em Espécies Brasileiras do Gênero Necromys (Rodentia, Cricetidae). PhD Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro. http://www.ppgbbe.intranet.biologia.ufrj.br/wp-content/uploads/2019/10/Tese-final-Ja%CC%82nio.pdf
http://www.ppgbbe.intranet.biologia.ufrj...
, Santos et al. 2018Santos FO, Teixeira BR, Cordeiro JLP, Sousa RHA, Lucio CS, Gonçalves PR, Lemos H, Oliveira RC, Fernandes J, Cavalcanti GR, Lemos ERS, D’Andrea PS (2018) Expansion of the range of Necromys lasiurus (Lund, 1841) into open areas of the Atlantic Forest biome in Rio de Janeiro state, Brazil, and the role of the species as a host of the hantavirus. Acta Tropica 188: 195-205. https://doi.org/10.1016/j.actatropica.2018.08.026
https://doi.org/10.1016/j.actatropica.20...
, Santos-Filho et al. 2006Santos-Filho M, Silva DJ, Sanaiotti TM (2006) Efficiency of four trap types in sampling small mammals in forest fragments, Mato Grosso, Brazil. Mastozoología Neotropical 13(2): 217-225.). In the Cerrado biome, N. lasiurus is the reservoir of an orthohantavirus genotype, known as Araraquara virus (ARAV), the etiological agent of hantavirus pulmonary syndrome (HPS) in the Brazilian Distrito Federal and the states of São Paulo, Minas Gerais, and Goiás (Suzuki et al. 2004Suzuki A, Bisordi I, Levis S, Gracia J, Pereira LE, Souza RP, Sugahara TKN, Pini N, Enria D, Souza LTM (2004) Identifying rodent hantavirus reservoirs, Brazil. Emerging Infectious Diseases 10: 2127-2134. https://doi.org/10.3201/eid1012.040295
https://doi.org/10.3201/eid1012.040295...
, Figueiredo et al. 2009Figueiredo LTM, Moreli ML, Souza LM, Borges AA, Figueiredo GG, Machado AM, et al. (2009) Hantavirus pulmonary syndrome, Central Plateau, Southeastern, and Southern Brazil. Emerging Infectious Diseases 15: 561-567. https://doi.org/10.3201/eid1504.080289
https://doi.org/10.3201/eid1504.080289...
, de Araujo et al. 2015de Araujo J, Duré AI, Negrão R, Ometto T, Thomazelli LM, Durigon EL (2015) Co-circulation in a single biome of the Juquitiba and Araraquara hantavirus detected in human sera in a sub-tropical region of Brazil. Journal of Medical Virology 87(5): 725-32. https://doi.org/10.1002/jmv.24118
https://doi.org/10.1002/jmv.24118...
, Dusi et al. 2016Dusi RM, Bredt A, Freitas DR, Bofill MI, Silva JA, Oliveira SV, Tauil PL (2016) Ten years of a hantavirus disease emergency in the Federal District, Brazil. Revista da Sociedade Brasileira de Medicina Tropical 49(1): 34-40. https://doi.org/10.1590/0037-8682-0254-2015
https://doi.org/10.1590/0037-8682-0254-2...
, Guterres et al. 2018Guterres A, Oliveira RC, Fernandes J, Maia RM, Teixeira BR, Oliveira FCG, Bonvicino CR, D’Andrea PS, Schrago CG, Lemos ERS (2018) Co-circulation of Araraquara and Juquitiba Hantavirus in Brazilian Cerrado. Microbial Ecology 75: 783-789. https://doi.org/10.1007/s00248-017-1061-4
https://doi.org/10.1007/s00248-017-1061-...
). Necromys lasiurus is also known to part of the reservoir network of other zoonoses, such as Rocky Mountain spotted fever, arenavirus, leishmaniasis, and bubonic plague (Andrade et al. 2015Andrade MS, Courtenay O, Brito MEF, Carvalho FG, Carvalho AWS, Soares F, Carvalho SM, Costa PL, Zampieri R, Floeter-Winter LM, Shaw JJ, Brandão-Filho SP (2015) Infectiousness of Sylvatic and Synanthropic Small Rodents Implicates a Multi-host Reservoir of Leishmania (Viannia) braziliensis. Plos Neglected Tropical Diseases 9(10): e0004137. https://doi.org/10.1371/journal.pntd.0004137
https://doi.org/10.1371/journal.pntd.000...
, Fernandes et al. 2015Fernandes J, de Oliveira RC, Guterres A, de Carvalho Serra F, Bonvicino CR, D’Andrea PS, Cunha RV, Levis S, de Lemos ER (2015) Co-circulation of Clade C New World Arenaviruses: New geographic distribution and host species. Infection, Genetics and Evolution 33: 242-245. https://doi.org/10.1016/j.meegid.2015.05.010
https://doi.org/10.1016/j.meegid.2015.05...
, Coelho et al. 2016Coelho MG, Ramos VN, Limongi JE, Lemos ERS, Guterres A, Costa Neto SF, et al. (2016) Serologic evidence of the exposure of small mammals to spotted-fever Rickettsia and Rickettsia bellii in Minas Gerais, Brazil. The Journal of Infection in Developing Countries 10(3): 275-282. https://doi.org/10.3855/jidc.7084
https://doi.org/10.3855/jidc.7084...
, de Oliveira et al. 2023de Oliveira ALR, Cunha MS, Bisordi I, de Souza RP, Timenetsky MDCST (2023) Serological evidence of arenavirus circulation in wild rodents from central-west, southeast, and south regions of Brazil, 2002-2006. Brazilian Journal of Microbiology 54(1): 279-284. https://doi.org/10.1007/s42770-022-00858-3
https://doi.org/10.1007/s42770-022-00858...
).

The Brazilian state of Rio de Janeiro, which is predomi nantly covered by the Atlantic Forest biome, is considered a silent zone for the occurrence of hantavirus disease, given that only a single human case has been notified up to now (Vargas et al. 2016Vargas A, Nóbrega MEB, Fonseca LX, Oliveira SV, Pereira SVC, Caldas EP, Saad E (2016) Epidemiological investigation of the first case of hantaviruses in the state of Rio de Janeiro, Brazil. Journal of Health & Biological Sciences 4(2): 111-116. https://doi.org/10.12662/2317-3076jhbs.v4i2.711.p111-116.2016
https://doi.org/10.12662/2317-3076jhbs.v...
, Oliveira et al. 2017Oliveira RC, Guterres A, Teixeira BR, Fernandes J, Penna Júnior JM, Oliveira Júnior RJ, et al. (2017) A fatal hantavirus pulmonary syndrome misdiagnosed as dengue: An investigation into the first reported case in Rio de Janeiro state, Brazil. American Journal of Tropical Medicine and Hygiene 97(1): 125-129. https://doi.org/10.4269/ajtmh.16-0845
https://doi.org/10.4269/ajtmh.16-0845...
). Nevertheless, this state is still an important area for the investigation of this zoonosis, due to the circulation of the Juquitiba virus (JUQV), an orthohantavirus genotype, also known to cause HPS, identified in humans and sigmondotine rodents in Rio de Janeiro state (Oliveira et al. 2004Oliveira RC, Rozental T, Alves-Corrêa AA, D’Andrea PS, Schatzmayr HG, Cerqueira R, Lemos ER (2004) Study of hantavirus infection in captive breed colonies of wild rodents. Memórias do Instituto Oswaldo Cruz 99(6): 575-576. https://doi.org/10.1590/s0074-02762004000600007
https://doi.org/10.1590/s0074-0276200400...
, Sobreira et al. 2008Sobreira M, Souza GT, Moreli ML, Borges AA, Morais FA, Figueiredo LT, Almeida AM (2008) A serosurvey for hantavirus infection in wild rodents from the states of Rio de Janeiro and Pernambuco, Brazil. Acta Tropica 107(2): 150-152. https://doi.org/10.1016/j.actatropica.2008.05.018
https://doi.org/10.1016/j.actatropica.20...
, Oliveira et al. 2009Oliveira RC, Teixeira BR, Mello FCA, Pereira AP, Duarte AS, Bonaldo MC, Bonvicino CR, D’Andrea PS, Lemos ERS (2009) Genetic characterization of a Juquitiba-like viral lineage in Olygoryzomys nigripes in Rio de Janeiro, Brazil. Acta Tropica 112: 212-221. https://doi.org/10.1016/j.actatropica.2009.07.029
https://doi.org/10.1016/j.actatropica.20...
, Lamas et al. 2013Lamas CC, Oliveira R, Silva RG, Vicente LH, Almeida EB, Lemos ER, Bóia MN (2013) Hantavirus infection in HIV positive individuals in Rio de Janeiro, Brazil: a seroprevalence study. The Brazilian Journal of Infectious Diseases 17(1): 120-121. https://doi.org/10.1016/j.bjid.2012.07.018
https://doi.org/10.1016/j.bjid.2012.07.0...
, Strecht 2014Strecht L (2014) Avaliação da infecção por hantavirus em amostras humanas e de roedores silvestres e sinantrópicos no estado do Rio de Janeiro. MS Dissertation, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil. https://www.arca.fiocruz.br/handle/icict/13512
https://www.arca.fiocruz.br/handle/icict...
, Oliveira et al. 2017Oliveira RC, Guterres A, Teixeira BR, Fernandes J, Penna Júnior JM, Oliveira Júnior RJ, et al. (2017) A fatal hantavirus pulmonary syndrome misdiagnosed as dengue: An investigation into the first reported case in Rio de Janeiro state, Brazil. American Journal of Tropical Medicine and Hygiene 97(1): 125-129. https://doi.org/10.4269/ajtmh.16-0845
https://doi.org/10.4269/ajtmh.16-0845...
). Thus, there is a high incidence of HPS cases reported in the neighboring states (Ministério da Saúde 2024Ministério da Saúde (2024) Casos confirmados de Hantavirose: Brasil, Grandes Regiões e Unidades Federadas, 1993 a 2019. Ministério da Saúde, Brasília. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/h/hantavirose [Acessed: 25/04/2024]
https://www.gov.br/saude/pt-br/assuntos/...
). In this case, the presence and expansion of N. lasiurus in Rio de Janeiro state may have implications in the enzootic cycles of the zoonotic agents known to be hosted by this reservoir. In this context, Santos et al. (2018Santos FO, Teixeira BR, Cordeiro JLP, Sousa RHA, Lucio CS, Gonçalves PR, Lemos H, Oliveira RC, Fernandes J, Cavalcanti GR, Lemos ERS, D’Andrea PS (2018) Expansion of the range of Necromys lasiurus (Lund, 1841) into open areas of the Atlantic Forest biome in Rio de Janeiro state, Brazil, and the role of the species as a host of the hantavirus. Acta Tropica 188: 195-205. https://doi.org/10.1016/j.actatropica.2018.08.026
https://doi.org/10.1016/j.actatropica.20...
) estimated the potential distribution of N. lasiurus in Rio de Janeiro state and hypothesized that the presence of the species in open areas of the Atlantic Forest domain may be the result of a recent expansion from the Cerrado biome. However, this hypothesis of geographic expansion has not been tested so far.

Moreira (2015Moreira JC (2015) Determinantes da Estruturação Population em Espécies Brasileiras do Gênero Necromys (Rodentia, Cricetidae). PhD Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro. http://www.ppgbbe.intranet.biologia.ufrj.br/wp-content/uploads/2019/10/Tese-final-Ja%CC%82nio.pdf
http://www.ppgbbe.intranet.biologia.ufrj...
) recorded considerable genetic diversity in the mitochondrial cytochrome b gene among N. lasiurus specimens collected in different regions of the Cerrado biome and Caatinga biome, and the Pantanal wetland biome. This pattern indicates that at least five distinct populations are found within its distribution in central Brazil. However, this study did not verify the relationship between these populations and those present within the Atlantic Forest domain of Rio de Janeiro state.

The present study used a phylogeographic approach to elucidate the evolutionary history of N. lasiurus in the Brazilian state of Rio de Janeiro, and to test the alternative hypotheses of the recent or historical dispersal of N. lasiurus populations from neighboring biomes. This analysis was used to define the phylogeographic structure of the Rio de Janeiro populations, and their phylogenetic relationships with the populations found in other biomes, and the potential connectivity between these populations. The findings of this study provide an important database for the epidemiological monitoring of the zoonoses carried by this rodent and the control of potential outbreaks in the Atlantic Forest domain of Rio de Janeiro state.

MATERIAL AND METHODS

Samples and molecular data collection

The present study was based on the analysis of N. lasiurus specimens collected from the Atlantic Forest domain of Rio de Janeiro state (License number 13373 MMA/ICMBIO/SISBIO, license CEUA L-036/2018), together with all the Cytochrome b sequences of the species available in GenBank (Appendix 1 APPENDIX Appendix 1 Details of the mitochondrial Cytochrome b gene sequences of the specimens used for analyses. Voucher number (field and/or collection numbers); GenBank accession number; and source. Species Voucher State/Locality Country GenBank Source Necromys lasiurus LBCE 7752 Rio de Janeiro/Sumidouro Brazil PP068236 LABPMR Necromys lasiurus LBCE 7764 Rio de Janeiro/Sumidouro Brazil PP068235 LABPMR Necromys lasiurus LBCE 9994 Rio de Janeiro/Cordeiro Brazil PP068234 LABPMR Necromys lasiurus LBCE 10756 Rio de Janeiro/Cantagalo Brazil PP068233 LABPMR Necromys lasiurus NPM1767 Minas Gerais/Estação Ecológica Água Limpa Brazil PP068208 NUPEM Necromys lasiurus NPM1777 Minas Gerais/Estação Ecológica Água Limpa Brazil PP068207 NUPEM Necromys lasiurus LBCE 18703 Rio de Janeiro/Rio das Ostras Brazil PP068232 LABPMR Necromys lasiurus LBCE 18944 Rio de Janeiro/Casimiro de Abreu Brazil PP068231 LABPMR Necromys lasiurus LBCE 18945 Rio de Janeiro/Casimiro de Abreu Brazil PP068230 LABPMR Necromys lasiurus LBCE 18946 Rio de Janeiro/Casimiro de Abreu Brazil PP068229 LABPMR Necromys lasiurus LBCE 18948 Rio de Janeiro/Casimiro de Abreu Brazil PP068228 LABPMR Necromys lasiurus LBCE 18949 Rio de Janeiro/Casimiro de Abreu Brazil PP068227 LABPMR Necromys lasiurus LBCE 18950 Rio de Janeiro/Casimiro de Abreu Brazil PP068226 LABPMR Necromys lasiurus LBCE 19724 Rio de Janeiro/Casimiro de Abreu Brazil PP068225 LABPMR Necromys lasiurus LBCE 19725 Rio de Janeiro/Casimiro de Abreu Brazil PP068224 LABPMR Necromys lasiurus LBCE 19726 Rio de Janeiro/Casimiro de Abreu Brazil PP068223 LABPMR Necromys lasiurus LBCE 19948 Rio de Janeiro/Casimiro de Abreu Brazil PP068221 LABPMR Necromys lasiurus LBCE 19952 Rio de Janeiro/Silva Jardim Brazil PP068220 LABPMR Necromys lasiurus LBCE 20204 Rio de Janeiro/Silva Jardim Brazil PP068219 LABPMR Necromys lasiurus LBCE 20214 Rio de Janeiro/Silva Jardim Brazil PP068218 LABPMR Necromys lasiurus LBCE 20215 Rio de Janeiro/Silva Jardim Brazil PP068217 LABPMR Necromys lasiurus LBCE 20216 Rio de Janeiro/Silva Jardim Brazil PP068216 LABPMR Necromys lasiurus LBCE 20217 Rio de Janeiro/Silva Jardim Brazil PP068215 LABPMR Necromys lasiurus LBCE 19727 Rio de Janeiro/Silva Jardim Brazil PP068222 LABPMR Necromys lasiurus NPM556 Rio de Janeiro/ARIE de Itapebussus Brazil PP068214 NUPEM Necromys lasiurus NPM565 Rio de Janeiro/ARIE de Itapebussus Brazil PP068213 NUPEM Necromys lasiurus NPM1413 Rio de Janeiro/R101 KM 123 + 800 Pista Sul Brazil PP068212 NUPEM Necromys lasiurus NPM1613 Rio de Janeiro/Fazenda Santa Rita Brazil PP068211 NUPEM Necromys lasiurus NPM1620 Rio de Janeiro/Fazenda Santa Rita Brazil PP068210 NUPEM Necromys lasiurus NPM1647 Rio de Janeiro/Fazenda Santa Rita Brazil PP068209 NUPEM Necromys lasiurus FC 154 Minas Gerais/Caratinga Brazil EF531690 Genbank Necromys lasiurus LBCE 8684 Mato Grosso do Sul/Sidrôlandia Brazil KP122251.1 Genbank Necromys lasiurus CRB 1217 São Paulo/Pedreira Brazil MT006399 Genbank Necromys lasiurus CRB 1418 São Paulo/Pedreira Brazil MT006400.1 Genbank Necromys lasiurus LBCE 10544 São Paulo/Ribeirão Grande Brazil PP214909 Genbank Necromys lasiurus NK 42164 São Paulo/Tupi Paulista Brazil EF531663 Genbank Necromys lasiurus JR 346 Rio Grande do Sul/Rondinha Brazil EF531662.1 Genbank Necromys lasiurus CRB 1889 Santa Catarina/Itá Brazil MT006403.1 Genbank Necromys lasiurus LBCE 23277 Paraná/Lidanópolis Brazil PP068237 LABPMR Necromys lasiurus LS052III Minas Gerais/Lagoa Santa Brazil EF531688.1 Genbank Necromys lasiurus CRB2704 Bahia/Correntina Brazil MT006406.1 Genbank Necromys lasiurus CRB1603 Bahia/Jaborandi Brazil MT006402 Genbank Necromys lasiurus CRB1570 Bahia/Jaborandi Brazil MT006401.1 Genbank Necromys lasiurus CRB1138 Goiás/Alto Paraíso de Goiás Brazil MT006398.1 Genbank Necromys lasiurus CRB998 Goiás/Cavalcante Brazil MT006421.1 Genbank Necromys lasiurus CRB997 Goiás/Cavalcante Brazil MT006420.1 Genbank Necromys lasiurus CRB993 Goiás/Cavalcante Brazil MT006419.1 Genbank Necromys lasiurus CRB938 Goiás/Cavalcante Brazil MT006417.1 Genbank Necromys lasiurus CRB909 Goiás/Cavalcante Brazil MT006416.1 Genbank Necromys lasiurus CRB904 Goiás/Cavalcante Brazil MT006415.1 Genbank Necromys lasiurus CRB1020 Goiás/Cavalcante Brazil MT006397.1 Genbank Necromys lasiurus CRB1014 Goiás/Cavalcante Brazil MT006396.1 Genbank Necromys lasiurus CRB504 Goiás/Corumbá de Goiás Brazil MT006408.1 Genbank Necromys lasiurus CRB1010 Goiás/Cavalcante Brazil MT006395.1 Genbank Necromys lasiurus CRB2327 Goiás/Mimoso de Goias Brazil MT006405.1 Genbank Necromys lasiurus CRB2323 Goiás/Mimoso de Goias Brazil MT006404.1 Genbank Necromys lasiurus ARB135 Mato Gosso do Sul/Costa Rica Brazil MT006393 Genbank Necromys lasiurus ARB142 Mato Gosso do Sul/Costa Rica Brazil MT006394 Genbank Necromys lasiurus ARB133 Mato Gosso do Sul/Costa Rica Brazil MT006392 Genbank Necromys lasiurus CD21 Bahia/Chapada Diamantina Brazil EF531689.1 Genbank Necromys lasiurus roe255 Pampa del Indio Argentina KF207862.1 Genbank Necromys lasiurus roe300 Pampa del Indio Argentina KF207857.1 Genbank Necromys lasiurus roe278 Pampa del Indio Argentina KF207854.1 Genbank Necromys lasiurus roe306 Pampa del Indio Argentina KF207853.1 Genbank Necromys lasiurus roe171 Pampa del Indio Argentina KF207845.1 Genbank Necromys lasiurus roe252 Pampa del Indio Argentina KF207844.1 Genbank Necromys lasiurus TK65362 Alto Paraguay Paraguay EF531673.1 Genbank Necromys lasiurus NK27519 Bella Vista Paraguay EF531665.1 Genbank Necromys lasiurus NK27506 Bella Vista Paraguay EF531664.1 Genbank Necromys lasiurus TK63511 Canindeyu Paraguay EF531667.1 Genbank Necromys lasiurus TK 61813 Canindeyu Paraguay EF531666 Genbank Necromys lasiurus TK 63980 Canindeyu Paraguay EF531668 Genbank Necromys lasiurus TK 63982 Canindeyu Paraguay EF531669 Genbank Necromys lasiurus CNP 535 Concepcion Paraguay AY273914 Genbank Necromys lasiurus TK 64302 Concepcion Paraguay AY273912 Genbank Necromys lasiurus TK64268 Concepcion Paraguay EF531671.1 Genbank Necromys lasiurus TK64242 Concepcion Paraguay EF531670.1 Genbank Necromys lasiurus UMMZ 134431 Presidente Hayes Paraguay U03528 Genbank Necromys lasiurus JPJ530 Catamarca Argentina EF531661.1 Genbank Necromys lasiurus CNP 795 Misiones Argentina EF531659 Genbank Necromys lasiurus CNP 801 Misiones Argentina EF531660 Genbank Necromys lasiurus CNP 531 Santa Fé Argentina EF531656 Genbank Necromys lasiurus CNP532 Santa Fé Argentina EF531657.1 Genbank Necromys lasiurus CNP 519 Bahia Blanca Argentina EF531654 Genbank Necromys lasiurus CNP520 Bahia Blanca Argentina EF531655.1 Genbank Necromys lasiurus CNP 472 Cerro Ventana Argentina EF531652 Genbank Necromys lasiurus CNP 473 San Mateo Argentina EF531653 Genbank Necromys lasiurus CNP 534 Misiones Argentina EF531658 Genbank Necromys lasiurus BM 79.1665 Cerro Ventana Argentina EF531651 Genbank Necromys lasiurus CRB593 Pará/Arapiranga Brazil MT006414.1 Genbank Necromys lasiurus CRB592 Pará/Arapiranga Brazil MT006413.1 Genbank Necromys lasiurus CRB586 Pará/Arapiranga Brazil MT006412.1 Genbank Necromys lasiurus CRB580 Pará/Arapiranga Brazil MT006411.1 Genbank Necromys lasiurus CRB579 Pará/Arapiranga Brazil MT006410.1 Genbank Necromys lasiurus CRB578 Pará/Arapiranga Brazil MT006409.1 Genbank Necromys lasiurus CRB2820 Mato Grosso/São José do Xingu Brazil MT006407.1 Genbank Necromys lasiurus FLV140r Tocantins/Lagoa da Confusão Brazil KR190456.1 Genbank Necromys lasiurus FLV11r Tocantins Lagoa da Confusão Brazil KR190443.1 Genbank Necromys obscurus EV 1028 San José/Estancia El Relincho Uruguay EF531682.1 Genbank Necromys obscurus GD 754 Montevideo Uruguay EF531683.1 Genbank Necromys obscurus CNP 891 Aarroyo de las Brusquitas Argentina EF531684.1 Genbank Necromys lactens CNP 892 Aarroyo de las Brusquitas Argentina EF531685.1 Genbank Necromys lactens JPJ 419 Catamarca Argentina EF531644.1 Genbank Necromys lactens JPJ 447 Tucumán Argentina EF531645.1 Genbank Necromys lactens JPJ 552 Catamarca Argentina EF531646.1 Genbank Necromys lactens JPJ 630 Jujuy Argentina EF531647.1 Genbank Necromys lactens JPJ 721 Salta Argentina EF531648.1 Genbank Necromys lactens JPJ 953 Jujuy Argentina EF531649.1 Genbank Necromys lactens JPJ1315 Salta Argentina EF531650.1 Genbank Akodon montesis OMNH 34512 Catamarca Argentina EU260470.1 Genbank Akodon montesis LMT428 - - EF101874.1 Genbank Akodon montesis LMT425 Paraná/Piraquara Brazil EF101873.1 Genbank Brucepattersonius soricinus MN 78954 - - KF815439.1 Genbank Thalpomys lasiotis isolate 1647 - - AY310347 Genbank Thalpomys lasiotis isolate 1591 - - AY310349 Genbank ). The sample consisted of a total of 98 individuals, of which, 23 were obtained from the genetic database of the Laboratório de Biologia e Parasitologia de Pequenos Mamíferos Silvestres Reservatórios (LABPMR/IOC), and eight from the Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ) collection, while the other 67 sequences were obtained from GenBank (Appendix 1). All the sequences gene rated during the present study were deposited in GenBank, under accession numbers: PP068207-PP068237.

Genomic DNA was extracted from samples of liver tissue preserved in absolute ethanol using the Chelex protocol (Walsh et al. 1991Walsh PS, Metzeger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4): 506-513. https://pubmed.ncbi.nlm.nih.gov/1867860/
https://pubmed.ncbi.nlm.nih.gov/1867860/...
). These tissue samples were obtained from N. lasiurus specimens collected from a series of different localities within the known area of occurrence of the species. The concentration and quality of the extracted DNA were verified by electrophoresis in 0.8% agarose gel. The copies of the mitocondrial Cytochrome b were amplified by Polymerase Chain Reaction (PCR), using the primers MVZ 05 and MVZ 16 (Smith and Patton 1993Smith MF, Patton JL (1993) The diversification of South American murid rodents: evidence from mitochondria DNA sequence data for the akodontine tribe. Biological Journal of the Linnean Society 50(3): 149-177. https://doi.org/10.1111/j.1095-8312.1993.tb00924.x
https://doi.org/10.1111/j.1095-8312.1993...
, 1999Smith MF and Patton JL (1999) Phylogenetic relationships and the radiation of sigmodontine rodents in South America: evidence from Cytochrome b. Journal of Mammalian Evolution 6: 89-128. https://doi.org/10.1023/A:1020668004578
https://doi.org/10.1023/A:1020668004578...
) to amplify a sequence of 800 base pairs, confirmed by electrophoresis in 1.5% agarose gel, the PCR products were purified using the PureLink™ PCR Purification kit (Invitrogen™, Waltham, MA, EUA), before being sequenced. The amplification reaction mixture contained 1.0 µl of DNA template, 2.5 µl of 10 × buffer (Invitrogen™), 1.0 µl of MgCl2 (50 mM; Invitrogen™), 0.5 µl of forward primer (10 mM), 0.5 µl of reverse primer (10 mM), 0.2 µl of dNTPs (10 mM), 0.2 µl of Platinum® Taq DNA Polymerase (Invitrogen™), and Ultrapure water for a total volume of 19.1 µl. PCR amplification conditions consisted of an initial denaturation at 94 °C for 3 minutes, followed by 35 cycles of denaturation at 94 °C for 45 seconds, annealing at 48 °C for 60 seconds, extension at 72 °C for 90 seconds, and the final extension at 72 °C for 10 minutes. The sequences obtained here were aligned manually in Chromas Pro (Technelysium Inc.), using the N. lasiurus sequences available from GenBank as a reference.

Phylogeographic analyses

Sequences were aligned in Muscle and the substitution model that best fit the original data was selected using tests implemented in MEGA X (Kumar et al. 2018Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6): 1547-1549. https://doi.org/10.1093/molbev/msy096
https://doi.org/10.1093/molbev/msy096...
). The Mesquite v. 2.75 software was used to evaluate the presence of stop codons in the sequences. The HKY+G+I model was selected as the best nucleotide substitution model based on Maximum Likelihood (ML) analyses, which were run in Phyml (Guindon et al. 2010Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307-321. https://doi.org/10.1093/sysbio/syq010
https://doi.org/10.1093/sysbio/syq010...
). Bayesian Inference (BI) of genealogies was implemented in MrBayes on the CIPRES V3.1. platform (Miller et al. 2010Miller MA, Pfeiffer W and Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop, New Orleans, 1-8. https://doi.org/10.1109/GCE.2010.5676129
https://doi.org/10.1109/GCE.2010.5676129...
). Median-joining haplotype networks (Bandelt et al. 1999Bandelt H, Forster P, Röhl A (1999). Median-joining net works for inferring intraspecific phylogenies. Molecular Biology and Evolution 16(1): 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
https://doi.org/10.1093/oxfordjournals.m...
) were also compiled in PopArt 1.7. (Leigh and Bryant 2015Leigh JW, Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6(9): 1110-1116. https://doi.org/10.1111/2041-210X.12410
https://doi.org/10.1111/2041-210X.12410...
), using GenBank sequences of the following taxa as the outgroup: Necromys obscurus (Waterhouse, 1837), Necromys lactens (Thomas, 1918), Akodon montesis Thomas, 1913, Brucepattersonius soricinus Hershkovitz, 1998, and Thalpomys lasiotis Thomas, 1916.

The most probable number of N. lasiurus genetic groups was inferred using the Bayesian Analysis of Population Structure (BAPS), run in BAPS 6.0 (Corander et al. 2008Corander J, Siren J, Arjas E (2008) Bayesian Spatial modeling of genetic Population Structure. Computational Statistics 23(1): 111-129. https://doi.org/10.1007/s00180-007-0072-x
https://doi.org/10.1007/s00180-007-0072-...
). In general, the grouping of the individuals by ecoregion or biome tended to coincide with the genetic groups inferred by this analysis. For this, the genetic mixing option was used, which includes information on the spatial relationships among the individuals in the analysis. The best K value was determined from 20 replicates with K values ranging from 1 to 10. The Arlequin 3.5 (Excoffier and Lischer 2010Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1111/j.1755-0998.2010...
) program was used to compute population statistics for the groups inferred by the phylogenetic analyses and the previously-defined groups, as well as nucleotide diversity, the fixation index (FST), the components of the Analysis of Molecular Variance (AMOVA; Excoffier et al. 1992Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2): 479-491. https://doi.org/10.1093/genetics/131.2.479
https://doi.org/10.1093/genetics/131.2.4...
), Fu’s Fs test, Tajima’s D, and the tau, theta, and raggedness parameters of the mismatch distribution of the population groups. The Fu and Tajima statistics, and the mismatch distribution, were computed to test the hypothesis of recent demographic expansion. All maps were produced in Quantum Gis® program (QGIS 2023QGIS (2023) QGIS Geographic Information System. QGIS Association. http://www.qgis.org
http://www.qgis.org...
).

Evaluation of demographic scenarios

Approximate Bayesian Analysis was used to test among five hypothetical demographic scenarios involving the Atlan tic Forest domain of Rio de Janeiro state population and the other N. lasiurus populations. These analyses were run in DIYABC Random Forest 2.1 (Colin et al. 2021Collin F-D, Durif G, Raynal L, Gautier M, Vitalis R, Lombaert E, Marin J-M, Estoup A (2021) Extending Approximate Bayesian Computation with Supervised Machine Learning to infer demographic history from genetic polymorphisms using DIYABC Random Forest. Molecular Ecology Resources 21(8): 2598-2613. https://doi.org/10.1111/1755-0998.13413
https://doi.org/10.1111/1755-0998.13413...
). This program simulates the population genetic statistics associated with each hypothetical demographic scenario, and then validates the scenarios by estimating their posterior probabilities given the empirical genetic data. The validation and posterior proba bilities were calculated using the “Random Forest” machine learning algorithm, with the scenarios being selected through the addition of the Linear Discriminant Analysis (LDA) to the axis of the vector. A total of 200,000 simulations were run assuming the HKY+ G + I substitution model, and the following priors of divergence time (t) and population size (Ne): for the three populations (N1, N2, N3), Ne was assumed to be between a minimum of 10 and maximum of 10,000, with t1= 2,000,000 generations and t2 = 100,000 generations, t1>t2, and mutation rate per generation 3 x 10-8 (lower bound) and 7.3 x 10-9 (Upper bound; Steppan and Schenck 2017Steppan SJ, Schenk JJ (2017) Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. Plos One 12(8): e0183070. https://doi.org/10.1371/journal.pone.0183070
https://doi.org/10.1371/journal.pone.018...
). All the other priors were set to the default values provided by the program. Following the simulation, the scenarios were validated using Random Forest over 1,000 regression trees. After the selection of the best-fit scenario, a new tree was generated to estimate the t1 and t2 parameters of the best scenario, with the objective of obtaining a mean value of each parameter per generation. The value in years of parameters t1 and t2 were estimated from their number of generations, assuming a mean of five generations per year (da Rosa et al. 2021da Rosa CA, Ganança PHS, Lima AP, Magnusson WE (2021) Necromys lasiurus: Lessons From a 38-Year Study in an Amazonian Savanna. Frontiers in Ecology and Evolution 9: 716384. https://doi.org/10.3389/fevo.2021.716384
https://doi.org/10.3389/fevo.2021.716384...
, Francisco et al. 1995Francisco AL, Magnusson WE, Sanaiotti TM (1995) Variation in Growth and Reproduction of Bolomys lasiurus (Rodentia: Muridae) in an Amazonian Savanna. Journal of Tropical Ecology 11: 419-428. http://www.jstor.org/stable/2560224.
http://www.jstor.org/stable/2560224...
). Given this, each year is the result of five generations reported in parameters t1 and t2.

The samples were arranged in four groups for these analyses, with one group representing the Rio de Janeiro state population, and the other three representing populations from the four ecoregions (Olson et al. 2001Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. (2001) Terrestrial Ecoregions of the world: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11): 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)0...
, Pavan et al. 2016Pavan SE, Jansa SA, Voss RS (2016) Spatiotemporal diversification of a low-vagility Neotropical vertebrate clade (short-tailed opossums, Didelphidae: Monodelphis). Journal of Biogeography 43: 1299-1309. https://doi.org/10.1111/jbi.12724
https://doi.org/10.1111/jbi.12724...
) in which the study species occurs: the Arid Diagonal ecoregion of dry ecosystems that cross eastern South Ameri ca from southwest to northeast, and in Brazil, it includes the Cerrado biome and Pantanal biomes and part of the Caatinga biome; the Amazonia ecoregion, which coincides with the Amazon biome in Brazil; and the Atlantic Forest ecoregion which, for the purposes of this analysis, includes the Pampa biome, due to the paucity of records from this ecoregion and Atlantic Forest biome (Fig. 1; see also Pavan et al. 2016 for a more detailed description of the Brazilian ecoregions). Five hypothetical evolutionary scenarios were formulated here (Fig. 2), of which, two (1 and 4) were assu med genetic isolation among the different population groups after their divergence, while the other three (2, 3, and 5) assumed secondary introgression among the groups after their divergence. In scenario 1, Arid Diagonal ecoregion is the ancestral population of Atlantic Forest ecoregion, which originates Atlantic Forest of Rio de Janeiro state population. In scenario 2, Arid Diagonal ecoregion is also the ancestral population, but in this case, it admixed with the Atlantic Forest ecoregion population, resulting in Atlantic Forest of Rio de Janeiro state population. In scenario 3, by contrast, the ancestral population is Atlantic Forest of Rio de Janeiro state population, which admixture with Atlantic Forest ecoregion before originating Arid Diagonal ecoregion. In scenario 4 and 5, Arid Diagonal ecoregion is once again the ancestral population, in the former case, originating both Atlantic Forest ecoregion and Atlantic Forest of Rio de Janeiro state population, and in the latter, admixture with Atlantic Forest of Rio de Janeiro state population before originating the Atlantic Forest ecoregion population. This analysis permitted the identification of the potential ancestral population, as well as whether the diversification of the modern populations involved gene flow or not.

Figure 1
Distribution of Necromys lasiurus sample groups by ecoregion. The points are color-coded by ecoregion and sample group. Insert map shows the Brazilian biomes.

Figure 2
The demographic scenarios formulated for testing in the DIYABC Random Forest analysis. Pop1 = Arid Diagonal ecoregion (AD), Pop2 = Atlantic Forest ecoregion (AF), Pop3 = Atlantic Forest of Rio de Janeiro state (AF-RJ). The scenarios tested here were: (1) AD as the ancestral population of AF, which originates AF-RJ, (2) AD as the ancestral population, which mixes with AF before originating AF-RJ, (3) AF-RJ as the ancestral population, which mixes with AF before originating AD, (4) AD as the ancestral population of AF and AF-RJ, and (5) AD as the ancestral population, mixing with AF-RJ before originating AF.

The sample group from the Amazonia ecoregion was not included in the population analyses, given that the main objective of these analyses was to understand the relationships between the Atlantic Forest of Rio de Janeiro state populations and the groups from the neighboring biomes, i.e., the other Atlantic Forest localities, and the Pampa, Cerrado, and Caatinga domains.

RESULTS

Phylogeography

The consensus tree generated in both ML and the BI analyses recovered four well-supported clades within N. lasiurus (Fig. 3), an arrangement also observed in the haplotype network (Fig. 4). The clades were denominated according to the classification of Moreira (2015Moreira JC (2015) Determinantes da Estruturação Population em Espécies Brasileiras do Gênero Necromys (Rodentia, Cricetidae). PhD Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro. http://www.ppgbbe.intranet.biologia.ufrj.br/wp-content/uploads/2019/10/Tese-final-Ja%CC%82nio.pdf
http://www.ppgbbe.intranet.biologia.ufrj...
), namely, central-northern clade (clade CN), which includes samples from Brazilian Amazonia biome, the Cerrado biome and the Caatinga biome, central-eastern clade (clade CE), with samples from the Cerrado biome, Caatinga biome, and Atlantic Forest biome, western-cerrado clade (clade CW), which covers the Cerrado Biome and the Chaco dry forest of Paraguay, and the large, widespread south-southeastern clade (clade SS), which includes samples from the Atlantic Forest biome, the Cerrado biome, and the Chaco of both Argentina and Paraguay. The mean p distance between groups was 0.01, except in the case of clade CW, where it was 0.02. The same four-clade structure was found in the haplotype network, in which 55 haplotypes were recognized (Fig. 4). The sequences from the Atlantic Forest domain of Rio de Janeiro state were constituted as a monophyletic group, including two samples from Minas Gerais (Fig. 3). The Atlantic Forest domain of Rio de Janeiro state group is nested within the widespread clade SS, and is genetically closer to samples from São Paulo, Rio Grande do Sul, and Santa Catarina states (Fig. 5). The structure observed in both the phylogenies and the haplotype network was also confirmed in the BAPS analysis (Fig. 6), which revealed K = 4 groups (logML = -2207.9374).

Figure 3
Consensus phylogenetic tree produced by the Maximum Likelihood (ML) and Bayesian Inference (BI) analyses of the Cytochrome b sequences of Necromys lasiurus included in the present study. The clades are color-coded according to the results of the Bayesian Analysis of Population Structure (BAPS; see Fig. 6). The samples shaded green are from Atlantic Forest domain of Rio de Janeiro state. The circles at each branch represent the bootstrap values of the ML (left semi-circles) and the posterior probabilities of the BI (right semi-circles). In the left semi-circles, white indicates bootstrap values of 0.40-0.66, while gray represents values of 0.66-0.90, and black, values of over 0.90. In the right semi-circles, white indicates a posterior probability of less than 0.64, with gray representing posterior probabilities of 0.64-0.90, and black, values of over 0.90.

Figure 4
Haplotype network of the Necromys lasiurus Cytochrome b sequences analyzed in the present study, color-coded according to the results of the Bayesian Analysis of Population Structure (BAPS; see Fig. 6). (AF-RJ) Atlantic Forest domain of Rio de Janeiro state. Mutational steps are indicated with stripes.

Figure 5
Haplotype network of the Necromys lasiurus Cytochrome b sequences obtained in the present study from localities in the Atlantic Forest and Pampa biomes (AF), color-coded by locality. (ARG) Argentina, (MS) Mato Grosso do Sul, (MG) Minas Gerais, (PY) Paraguay, (PR) Paraná, (RJ) Rio de Janeiro, (RS) Rio Grande do Sul, (SC) Santa Catarina, (SP) São Paulo. Mutational steps are indicated with stripes.

Figure 6
Results of the Bayesian Analysis of Population Structure (BAPS) of the Necromys lasiurus Cytochrome b sequences compiled in the present study, showing the four genetic clades, which are color-coded. The vertical black lines separate the sample groups. Insert map shows the Brazilian biomes.

Genetic diversity

The Atlantic Forest domain of Rio de Janeiro state group presented moderate haplotype diversity (0.4299 ± 0.1079) and low nucleotide diversity (0.003238 ± 0.002062) in comparison to the other sample groups, which presented relatively higher levels of haplotype diversity (Table 1). The lowest level of genetic divergence, in terms of the FST index, was found between the Atlantic Forest ecoregion and Arid Diagonal ecoregion sample groups, while the highest divergence was recorded between Atlantic Forest domain of Rio de Janeiro state and Arid Diagonal ecoregion (Table 2).

Table 1
Genetic diversity of the Necromys lasiurus Cytochrome b sequences analyzed in the present study. (AF-RJ) Atlantic Forest domain of Rio de Janeiro state, (AF) Atlantic Forest ecoregion, (AM) Amazonia ecoregion, (AD) Arid Diagonal ecoregion.

Table 2
Genetic distances between the Necromys lasiurus sample groups, based on the FST values. (AF-RJ) Atlantic Forest domain of Rio de Janeiro state, (AF) Atlantic Forest ecoregion, (AD) Arid Diagonal ecoregion.

The AMOVA showed that the genetic differences between the Atlantic Forest domain of Rio de Janeiro state group and the other groups (Atlantic Forest ecoregion + Arid Diagonal ecoregion) are lower than those found between individuals of the same sample group (Table 3), with FST va lues of 0.41571-0.91816 (p < 0.05). The analyses of neutrality (Tajima’s D and Fu’s Fs) of the Atlantic Forest domain of Rio de Janeiro state specimens returned negative values, although they were very close to zero, and only the D values were significant (Table 4), which indicates only a slight tendency for population expansion. This tendency was corroborated by the mismatch distribution, which did not refute the null hypothesis of demographic expansion (p = 0.34; Table 4, Fig. 7).

Figure 7
Mismatch distribution of the Necromys lasiurus samples from the Rio de Janeiro state, Brazil. The observed frequencies are shown in red, and the expected frequencies, in green.

Table 3
Results of the Analysis of Molecular Variance (AMOVA) of the N. lasiurus sample groups analyzed in the present study, arranged by set (within parentheses). (AF-RJ) Atlantic Forest domain of Rio de Janeiro state, (AF) Atlantic Forest ecoregion, (AD) Arid Diagonal ecoregion.

Table 4
Results of the analyses of population expansion in the Necromys lasiurus samples from the Atlantic Forest domain of Rio de Janeiro state (AF-RJ).

Selection of the demographic scenario

The best scenario selected by the DIYABC Random Forest analysis based on the Posterior Probability was scenario 2, with 398 “votes” and a posterior probability of 0.721 (Fig. 8). This scenario proposes secondary genetic connectivity among the Atlantic Forest domain of Rio de Janeiro state, Atlan tic Forest ecoregion, and Arid Diagonal ecoregion groups, after the divergence between Atlantic Forest ecoregion and Arid Diagonal ecoregion groups. The scenarios that proposed the complete isolation among the groups (scenarios 1 and 4) had lower posterior probabilities, with only 99 “votes” for scenario 1, and 76 “votes” for scenario 4. The other two scenarios postulating introgression presented moderate ade quacy, with scenario 3 receiving 229 “votes”, and scenario 5, 198 “votes”. These findings indicate that the scenarios with no gene flow were the least supported, in statistical terms. The mean time in years estimated for the t1 in scenario 2, which represents the time of primary divergence between Atlantic Forest ecoregion and Arid Diagonal ecoregion, was ~94,120 years (90% HPD: ~18,707 - ~266,584 years), whereas the mean value for t2, which represents the time of introgression among Atlantic Forest ecoregion, Atlantic Forest domain of Rio de Janeiro state and Arid Diagonal ecoregion, was ~7,455 years (HPD 90%: ~561 -18.459).

Figure 8
Plot of the DIYABC Random Forest simulations for the five hypothetical demographic scenarios proposed for the Necromys lasiurus groups (Atlantic Forest ecoregion, Atlantic Forest domain of Rio de Janeiro state, and Arid Diagonal ecoregion), and the location of the observed data, used to validate the best scenario. In this analysis, scenario 1 received 99 “votes”, scenario 2, 398 “votes”, scenario 3, 229 “votes”, and scenario 4, 76 “votes”, with 198 “votes” for scenario 5.

DISCUSSION

Our phylogenetic, haplotype network, BAPS, and DYABC Random Forest analyses reveal that the population of the hairy-tailed bolo mouse, N. lasiurus from Rio de Janeiro state is the result of genetic admixture between other popu lations from the Atlantic Forest ecoregion and the Arid Diagonal ecoregion of South America (Fig. 2), corroborating the model represented by the hypothetical demographic scenario 2. This scenario proposes that, following an initial event of primary divergence, the Atlantic Forest ecoregion and Arid Diagonal ecoregion were reconnected secondarily through the Atlantic Forest domain of Rio de Janeiro state population.

The timing of the secondary connection (t2) was estimated by the DIYABC Random Forest analysis at a mean value ofapproximately 7,455 years (90% HPD: ~561-18,459), which indicates that the admixture of the Atlantic Forest ecoregion and Arid Diagonal ecoregion populations that originated the Atlantic Forest domain of Rio de Janeiro state population occurred relatively recent, during the Holocene. The climatic events of the Holocene influenced the landscape of the study region (Behling 2003Behling H (2003) Late glacial and Holocene vegetation, climate and fire history inferred from Lagoa Nova in the southeastern Brazilian lowland. Vegetation History and Archaeobotany 12: 263-27. https://doi.org/10.1007/s00334-003-0020-9
https://doi.org/10.1007/s00334-003-0020-...
, Hadler et al. 2009Hadler P, Goin FJ, Ferigolo J, Ribeiro AM (2009) Environmental change and marsupial assemblages in Holocene successions of southern Brazil. Mammalian Biology 74: 87-99. https://doi.org/10.1016/j.mambio.2008.03.003
https://doi.org/10.1016/j.mambio.2008.03...
) and, in turn, the composition of the small mammal communities of the Arid Diagonal ecoregion and the Atlan tic Forest ecoregion of southern and southeastern Brazil (Hadler et al. 2009Hadler P, Goin FJ, Ferigolo J, Ribeiro AM (2009) Environmental change and marsupial assemblages in Holocene successions of southern Brazil. Mammalian Biology 74: 87-99. https://doi.org/10.1016/j.mambio.2008.03.003
https://doi.org/10.1016/j.mambio.2008.03...
, Tavares et al. 2011Tavares WC, Pessôa LM, Gonçalves PR (2011) New species of Cerradomys from coastal sandy plains of southeastern Brazil (Cricetidae: Sigmodontinae). Journal of Mammalogy 92: 645-658. https://doi.org/10.1644/10-MAMM-096.1
https://doi.org/10.1644/10-MAMM-096.1...
, Peçanha et al. 2017Peçanha WT, Althoff SL, Galiano D, Quintela FM, Maestri R, Gonçalves GL, Freitas TRO (2017) Pleistocene climatic oscillations in Neotropical open areas: Refuge isolation in the rodent Oxymycterus nasutus endemic to grasslands. Plos One 12(11): e0187329. https://doi.org/10.1371/journal.pone.0187329
https://doi.org/10.1371/journal.pone.018...
). Open habitats persisted in the Atlantic Forest ecoregion during the early and mid-Holocene, as remnants of the Late Pleistocene last glacial maximum (Behling 1995Behling HA (1995) High resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. Journal of Paleolimnology 14: 253-268. https://doi.org/10.1007/BF00682427
https://doi.org/10.1007/BF00682427...
, 2002Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 177(1-2): 19-27. https://doi.org/10.1016/S0031-0182(01)00349-2
https://doi.org/10.1016/S0031-0182(01)00...
, Parizzi et al. 1998Parizzi MG, Salgado-Labouriau ML, Kohler HC (1998) Genesis and environmental history of Lagoa Santa, southeastern Brazil. The Holocene 8: 311-321. https://doi.org/10.1191/095968398670195708
https://doi.org/10.1191/0959683986701957...
). This landscape may have favored the dispersal of N. lasiurus from the Arid Diagonal ecoregion to the coastal Atlantic Forest ecoregion, and eventually, the area today delimited by the Atlantic Forest domain of Rio de Janeiro state.

Other South American rodents typical of open habitats appear to have diverged earlier, during the Pleistocene, as in the case of the species of Cerradomys, which had its diversification occurring around 1.32 million years ago (Di-Nizo et al. 2022Di-Nizo CB, Suárez-Villota EY, Silva MJJ (2022) Species limits and recent diversification of Cerradomys (Sigmodmontinae: Oryzomyini) during the Pleistocene. PeerJ 10: e13011. https://doi.org/10.7717/peerj.13011
https://doi.org/10.7717/peerj.13011...
). Tavares et al. (2011Tavares WC, Pessôa LM, Gonçalves PR (2011) New species of Cerradomys from coastal sandy plains of southeastern Brazil (Cricetidae: Sigmodontinae). Journal of Mammalogy 92: 645-658. https://doi.org/10.1644/10-MAMM-096.1
https://doi.org/10.1644/10-MAMM-096.1...
) suggested that the similarities and past connections of the coastal restinga of Rio de Janeiro state with open areas of the Cerrado biome during this period may account for the presence of Cerradomys goytaca (Tavares, Pessôa & Gonçalves, 2011) in the lowlands of the state. Another example is the rodent Oxymycterus nasutus (Waterhouse, 1837), which also appears to have diverged and dispersed during the Pleistocene (Peçanha et al. 2017Peçanha WT, Althoff SL, Galiano D, Quintela FM, Maestri R, Gonçalves GL, Freitas TRO (2017) Pleistocene climatic oscillations in Neotropical open areas: Refuge isolation in the rodent Oxymycterus nasutus endemic to grasslands. Plos One 12(11): e0187329. https://doi.org/10.1371/journal.pone.0187329
https://doi.org/10.1371/journal.pone.018...
). Overall, then, the Late Quaternary climatic conditions contributed significantly to the recent divergence of many rodent species.

Even though the dispersal of N. lasiurus occurred before the extensive deforestation of Atlantic Forest ecoregion during the last two centuries, it is likely that recent anthropogenic modifications of the landscape, substituting forest environments by open habitats, have favored the connectivity and gene flow between the Atlantic Forest domain of Rio de Janeiro state populations and those of the Arid Diagonal ecoregion. Similar processes appear to have occurred in the case of the rattlesnake C. durissus, that expanded its range favored by shifts in land use (Guerra et al. 2023Guerra GFC, Vale MM, Tardin R, Fernandes DS (2023) Global change explains the neotropical rattlesnake Crotalus durissus (Serpentes: Viperidae) range expansion in South America. Perspectives in Ecology and Conservation 21: 200-208. https://doi.org/10.1016/j.pecon.2023.06.003
https://doi.org/10.1016/j.pecon.2023.06....
), and the recent dispersal of the maned wolf, C. brachyurus, which also appears to have been influenced by human actions (Chiarello et al. 2000Chiarello AG (2000) Conservation value of a native forest fragment in a region of extensive agriculture. Revista Brasileira de Biologia 60(2): 237-247. https://doi.org/10.1590/S0034-71082000000200007
https://doi.org/10.1590/S0034-7108200000...
, Paula et al. 2013Paula RC, Rodrigues FHG, Queirolo D, Jorge RPS, Lemos FG, Rodrigues LA (2013) Avaliação do estado de conservação do Lobo-guará Chrysocyon brachyurus (Illiger, 1815) no Brasil. Biodiversidade Brasileira 3: 146-159., Bereta et al. 2017Bereta A, Freitas SR, Bueno C (2017) Novas ocorrências de Chrysocyon brachyurus (Carnivora) no estado do Rio de Janeiro indicando a expansão de sua distribuição geográfica. Boletim da Sociedade Brasileira de Mastozoologia 78: 5-8. https://www.sbmz.org/wp-content/uploads/2020/06/BolSBMz78_abr2017set2017.pdf
https://www.sbmz.org/wp-content/uploads/...
).

The Atlantic Forest domain of Rio de Janeiro state popu lations are genetically close to the Atlantic Forest ecoregion and Arid Diagonal ecoregion populations. The small number of haplotypes observed here, which are separated by relatively few mutational steps in the haplotype network, the reduced genetic distances indicated by the FST, and the greater differentiation between the sets of samples observed in the AMOVA are all consistent with recent gene flow among these three populations (Dutech et al. 2004Dutech C, Joly H, Jarne P (2004) Gene flow, historical population dynamics and genetic diversity within French Guianan populations of a rainforest tree species, Vouacapoua americana. Heredity 92: 69-77. https://doi.org/10.1038/sj.hdy.6800384
https://doi.org/10.1038/sj.hdy.6800384...
, Cuterra et al. 2005Cuterra AP, Lacey EA, Busch C (2005) Genetic structure in a solitary rodent (Ctenomys talarum): implications for kinship and dispersal. Molecular Ecology 14: 2511-2523. https://doi.org/10.1111/j.1365-294X.2005.02551.x
https://doi.org/10.1111/j.1365-294X.2005...
, Gonçalves et al. 2009Gonçalves GL, Marinho JR, Freitas TR (2009) Genetic structure of sigmodontine rodents (Cricetidae) along an altitudinal gradient of the Atlantic Rain Forest in southern Brazil. Genetics and Molecular Biology 32(4): 882-885. https://doi.org/10.1590/S1415-47572009005000081
https://doi.org/10.1590/S1415-4757200900...
, Kajdacsi et al. 2013Kajdacsi B, Costa F, Hyseni C, Porter F, Brown J, Rodrigues G, et al. (2013) Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil. Molecular Ecology 22(20): 5056-5070. https://doi.org/10.1111/mec.12455
https://doi.org/10.1111/mec.12455...
). The persistent connectivity between the Atlantic Forest domain of Rio de Janeiro state and Arid Diagonal ecoregion populations of N. lasiurus is also supported by the recent confirmation of the presence of helminth endoparasites, recorded previously only in the Cerrado biome, in specimens collected in the municipalities of Casimiro de Abreu and Silva Jardim, in the coastal lowlands of Rio de Janeiro state (Lucio et al. 2021Lucio CS, Gentile R, Cardoso TS, Santos FO, Teixeira BR, Maldonado Júnior A, D’Andrea PS (2021) Composition and structure of the helminth community of rodents in matrix habitat areas of the Atlantic Forest of southeastern Brazil. International Journal for Parasitology: Parasites and Wildlife 15: 278-289. https://doi.org/10.1016/j.ijppaw.2021.07.001
https://doi.org/10.1016/j.ijppaw.2021.07...
).

It is interesting to note that the phylogenetic analyses included the populations of N. lasiurus from Atlantic Forest domain of Rio de Janeiro state in the clade SS of Moreira (2015Moreira JC (2015) Determinantes da Estruturação Population em Espécies Brasileiras do Gênero Necromys (Rodentia, Cricetidae). PhD Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro. http://www.ppgbbe.intranet.biologia.ufrj.br/wp-content/uploads/2019/10/Tese-final-Ja%CC%82nio.pdf
http://www.ppgbbe.intranet.biologia.ufrj...
). This clade encompasses populations from some Atlan tic Forest ecoregion localities, as well as areas of the Arid Diagonal ecoregion, and encompasses an extremely ample geographic area, with short branches in the phylogenetic tree, a star-shaped distribution in the haplotype network, and other features characteristic of a process of demographic and spatial expansion (Posada and Crandall 2001Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution 16(1): 37-45. https://doi.org/10.1016/s0169-5347(00)02026-7
https://doi.org/10.1016/s0169-5347(00)02...
). This scenario was indeed corroborated by the Tajima’s D and mismatch distribution results.

The potential for the exchange of parasites and pathogens between hosts and the introduction of these species into new habitats has clear implications for the epidemiology of zoonoses that are harmful to human health. Hantaviruses have been responsible for hundreds of deaths since their discovery in the Cerrado biome (Ministério da Saúde 2024Ministério da Saúde (2024) Casos confirmados de Hantavirose: Brasil, Grandes Regiões e Unidades Federadas, 1993 a 2019. Ministério da Saúde, Brasília. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/h/hantavirose [Acessed: 25/04/2024]
https://www.gov.br/saude/pt-br/assuntos/...
). Necromys lasiurus is known to be the reservoir of the ARAV, with a prevalence approximately 4% in the Cerrado biome populations of this rodent (Figueiredo et al. 2010Figueiredo GG, Borges AA, Campos GM, Machado AM, Saggioro FP, Sabino Júnior GS, Badra SJ, et al. (2010) Diagnóstico de infecção por hantavírus em humanos e roedores em Ribeirão Preto, Estado de São Paulo. Revista da Sociedade Brasileira de Medicina Tropical 43(4): https://doi.org/10.1590/S0037-86822010000400002
https://doi.org/10.1590/S0037-8682201000...
; Limongi et al. 2013Limongi JE, Moreira FG, Peres JB, Suzuki A, Ferreira IB, Souza RP, Pinto RMC, Pereira LE (2013) Serological survey of hantavirus in rodents in Uberlândia, Minas Gerais, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 55(3): 155-158. https://doi.org/10.1590/S0036-46652013000300003
https://doi.org/10.1590/S0036-4665201300...
, 2016Limongi JE, Oliveira RC, Guterres A, Costa Neto SF, Fernandes J, Vicente LH, et al. (2016) Hantavirus pulmonary syndrome and rodent reservoirs in the savanna-like biome of Brazil’s southeastern region. Epidemiology & Infection 144(5): 1107-1116. https://doi.org/10.1017/S095026881500237X
https://doi.org/10.1017/S095026881500237...
). Up to now, however, no evidence has been found that N. lasiurus acts as a reservoir of ARAV in the open areas of Atlantic Forest ecoregion in Rio de Janeiro state (Santos et al. 2018Santos FO, Teixeira BR, Cordeiro JLP, Sousa RHA, Lucio CS, Gonçalves PR, Lemos H, Oliveira RC, Fernandes J, Cavalcanti GR, Lemos ERS, D’Andrea PS (2018) Expansion of the range of Necromys lasiurus (Lund, 1841) into open areas of the Atlantic Forest biome in Rio de Janeiro state, Brazil, and the role of the species as a host of the hantavirus. Acta Tropica 188: 195-205. https://doi.org/10.1016/j.actatropica.2018.08.026
https://doi.org/10.1016/j.actatropica.20...
).

The existence of gene flow between host populations is an important factor in predicting the diffusion of host-associated pathogens, where populations with gene flow will exchange pathogens more easily among themselves than populations without gene flow (Vollmer et al. 2011Vollmer SA, Bormane A, Dinnis RE, Seelig F, Dobson ADM, Aanensen DM, et al. (2011) Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environmental Microbiology 13(1): 184-192. https://doi.org/10.1111/j.1462-2920.2010.02319.x
https://doi.org/10.1111/j.1462-2920.2010...
, Milholland et al. 2019Milholland MT, Castro-Arellano I, Garcia-Peña GE, Mills JN (2019) The Ecology and Phylogeny of Hosts Drive the Enzootic Infection Cycles of Hantaviruses. Viruses 11(7): 671. https://doi.org/10.3390/v11070671
https://doi.org/10.3390/v11070671...
, Saxenhofer et al. 2022Saxenhofer M, Labutin A, White TA, Heckel G (2022) Host genetic factors associated with the range limit of a European hantavirus. Molecular Ecology 31(1): 252-265. https://doi.org/10.1111/mec.16211
https://doi.org/10.1111/mec.16211...
).

Other authors suggested that the Atlantic Forest ecoregion provides more favorable conditions for the expansion of N. lasiurus and a possible introduction of ARAV. de Oliveira et al. (2013de Oliveira SV, Escobar LE, Peterson AT, Gurgel-Gonçalves R (2013) Potential geographic distribution of hantavirus reservoirs in Brazil. Plos One 8(12): e85137. https://doi.org/10.1371/journal.pone.0085137
https://doi.org/10.1371/journal.pone.008...
), in their study with ecological niche modeling, demonstrated that there is potential for the expansion of N. lasiurus mainly to the South and Southeast regions of the Atlantic Forest ecoregion. Sobral et al. (2023Sobral G, de Oliveira JA (2023) Life history variation of the Hairy-tailed Akodont (Necromys lasiurus, Rodentia, Sigmodontinae) in the Caatinga biome of northeastern Brazil. Journal of Mammalogy 104(6): 1421-1433. https://doi.org/10.1093/jmammal/gyad075
https://doi.org/10.1093/jmammal/gyad075...
), reinforces the existence of these favorable conditions, indicating that humid areas with resource availability, as observed in coastal Atlantic Forest ecoregion, favor the reproduction of this species and are related to its evolutionary success and its importance as a reservoir. Prist et al. (2021Prist PR, Prado A, Tambosi LR, Umetsu F, de Arruda Bueno A, Pardini R, Metzger JP (2021) Moving to healthier landscapes: Forest restoration decreases the abundance of Hantavirus reservoir rodents in tropical forests. Science of the Total Environment 752: 141967. https://doi.org/10.1016/j.scitotenv.2020.141967
https://doi.org/10.1016/j.scitotenv.2020...
) showed that the risk of HPS transmission is increased in degraded areas of Atlantic Forest ecoregion, which can influence transmission by approximately 45%. The occurrence of degraded areas also affects positively the abundance of N. lasiurus in up to 46%, depending on the level of degradation.

In this context, the findings of the present study on the evolutionary history of this rodent reinforce the importance of systematic monitoring of the hantavirus in Rio de Janeiro state, considering the apparent ongoing expansion of N. lasiurus in this state, and the potential for the introduction of ARAV by individuals dispersing from the Cerrado biome. The present study also provides important insights into the demographic history of N. lasiurus that led to its occurrence in the Atlantic Forest domain of Rio de Janeiro state. These findings can also be valuable for the surveillance of orthohantaviruses by local public health authorities and for the development of effective measures for preventing and controlling this highly lethal zoonosis.

ACKNOWLEDGMENTS

We thank the IOC/FIOCRUZ, the Programa de Pós-Graduação em Biodiversidade e Saúde and the Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz/FIOCRUZ for supporting this study, and Stephen Ferrari for reviewing the text and correcting the English. We appreciate the reviewers’ contributions, which increase the quality of the work. We are also grateful to the FIOCRUZ technician Jorge Pinto for technical support in the field. We also thank ICMBio for authorizing fieldwork at REBIO Poço das Antas and providing infrastructure at this site, where we were supported by Gustavo Peixoto and Rafael Puglia. The present study was financed by the Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Finance Code 001, through a Ph.D scholarship to Fernando de Oliveira Santos, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCTIC/CNPq Universal 439208/2018-1), and the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ “Sediadas” E-26/210.245/2018, APQ1 E-26/210.467/2019, COLBIO E-26/210.309/2021 and CNE E-26/201.223/2022).

LITERATURE CITED

  • Andrade MS, Courtenay O, Brito MEF, Carvalho FG, Carvalho AWS, Soares F, Carvalho SM, Costa PL, Zampieri R, Floeter-Winter LM, Shaw JJ, Brandão-Filho SP (2015) Infectiousness of Sylvatic and Synanthropic Small Rodents Implicates a Multi-host Reservoir of Leishmania (Viannia) braziliensis Plos Neglected Tropical Diseases 9(10): e0004137. https://doi.org/10.1371/journal.pntd.0004137
    » https://doi.org/10.1371/journal.pntd.0004137
  • Bastos EG de M, Araújo AFB, Silva HR (2005) Records of the rattlesnakes Crotalus durissus terrificus (Laurenti) (Serpentes, Viperidae) in the State of Rio de Janeiro, Brazil: a possible case of invasion facilitated by deforestation. Revista Brasileira de Zoologia 22(3): 812-815. https://doi.org/10.1590/S0101-81752005000300047
    » https://doi.org/10.1590/S0101-81752005000300047
  • Bandelt H, Forster P, Röhl A (1999). Median-joining net works for inferring intraspecific phylogenies. Molecular Biology and Evolution 16(1): 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
    » https://doi.org/10.1093/oxfordjournals.molbev.a026036
  • Becker RG, Paise G, Baumgarten LC, Vieira EM (2007) Estrutura de Comunidades de Pequenos Mamíferos e Densidade de Necromys lasiurus (Rodentia, Sigmodontinae) em Áreas Abertas de Cerrado no Brasil Central. Mastozoología Neotropical 14(2): 157-168.
  • Behling HA (1995) High resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. Journal of Paleolimnology 14: 253-268. https://doi.org/10.1007/BF00682427
    » https://doi.org/10.1007/BF00682427
  • Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 177(1-2): 19-27. https://doi.org/10.1016/S0031-0182(01)00349-2
    » https://doi.org/10.1016/S0031-0182(01)00349-2
  • Behling H (2003) Late glacial and Holocene vegetation, climate and fire history inferred from Lagoa Nova in the southeastern Brazilian lowland. Vegetation History and Archaeobotany 12: 263-27. https://doi.org/10.1007/s00334-003-0020-9
    » https://doi.org/10.1007/s00334-003-0020-9
  • Bereta A, Freitas SR, Bueno C (2017) Novas ocorrências de Chrysocyon brachyurus (Carnivora) no estado do Rio de Janeiro indicando a expansão de sua distribuição geográfica. Boletim da Sociedade Brasileira de Mastozoologia 78: 5-8. https://www.sbmz.org/wp-content/uploads/2020/06/BolSBMz78_abr2017set2017.pdf
    » https://www.sbmz.org/wp-content/uploads/2020/06/BolSBMz78_abr2017set2017.pdf
  • Bruno SF, Bard VT (2012) Exóticos Invasores: Bioinvasores selvagens introduzidos no estado do Rio de Janeiro e suas implicações. Universidade Federal Fluminense, Niterói, vol. 1, 127 pp.
  • Carmignotto AP, Vivo M, Langguth A (2012) Mammals of the Cerrado and Caatinga: distribution patterns of the tropical open biomes of central South America. In: Patterson BD, Costa LP (Eds) Bones, clones and biomes. The history and geography of recent Neotropical mammals. University of Chicago Press, Chicago, 307-350. https://doi.org/10.7208/chicago/9780226649214.003.0014
    » https://doi.org/10.7208/chicago/9780226649214.003.0014
  • Chiarello AG (2000) Conservation value of a native forest fragment in a region of extensive agriculture. Revista Brasileira de Biologia 60(2): 237-247. https://doi.org/10.1590/S0034-71082000000200007
    » https://doi.org/10.1590/S0034-71082000000200007
  • Coelho MG, Ramos VN, Limongi JE, Lemos ERS, Guterres A, Costa Neto SF, et al. (2016) Serologic evidence of the exposure of small mammals to spotted-fever Rickettsia and Rickettsia bellii in Minas Gerais, Brazil. The Journal of Infection in Developing Countries 10(3): 275-282. https://doi.org/10.3855/jidc.7084
    » https://doi.org/10.3855/jidc.7084
  • Collin F-D, Durif G, Raynal L, Gautier M, Vitalis R, Lombaert E, Marin J-M, Estoup A (2021) Extending Approximate Bayesian Computation with Supervised Machine Learning to infer demographic history from genetic polymorphisms using DIYABC Random Forest. Molecular Ecology Resources 21(8): 2598-2613. https://doi.org/10.1111/1755-0998.13413
    » https://doi.org/10.1111/1755-0998.13413
  • Corander J, Siren J, Arjas E (2008) Bayesian Spatial modeling of genetic Population Structure. Computational Statistics 23(1): 111-129. https://doi.org/10.1007/s00180-007-0072-x
    » https://doi.org/10.1007/s00180-007-0072-x
  • Cuterra AP, Lacey EA, Busch C (2005) Genetic structure in a solitary rodent (Ctenomys talarum): implications for kinship and dispersal. Molecular Ecology 14: 2511-2523. https://doi.org/10.1111/j.1365-294X.2005.02551.x
    » https://doi.org/10.1111/j.1365-294X.2005.02551.x
  • de Araujo J, Duré AI, Negrão R, Ometto T, Thomazelli LM, Durigon EL (2015) Co-circulation in a single biome of the Juquitiba and Araraquara hantavirus detected in human sera in a sub-tropical region of Brazil. Journal of Medical Virology 87(5): 725-32. https://doi.org/10.1002/jmv.24118
    » https://doi.org/10.1002/jmv.24118
  • de Oliveira SV, Escobar LE, Peterson AT, Gurgel-Gonçalves R (2013) Potential geographic distribution of hantavirus reservoirs in Brazil. Plos One 8(12): e85137. https://doi.org/10.1371/journal.pone.0085137
    » https://doi.org/10.1371/journal.pone.0085137
  • de Oliveira ALR, Cunha MS, Bisordi I, de Souza RP, Timenetsky MDCST (2023) Serological evidence of arenavirus circulation in wild rodents from central-west, southeast, and south regions of Brazil, 2002-2006. Brazilian Journal of Microbiology 54(1): 279-284. https://doi.org/10.1007/s42770-022-00858-3
    » https://doi.org/10.1007/s42770-022-00858-3
  • da Rosa CA, Ganança PHS, Lima AP, Magnusson WE (2021) Necromys lasiurus: Lessons From a 38-Year Study in an Amazonian Savanna. Frontiers in Ecology and Evolution 9: 716384. https://doi.org/10.3389/fevo.2021.716384
    » https://doi.org/10.3389/fevo.2021.716384
  • Di-Nizo CB, Suárez-Villota EY, Silva MJJ (2022) Species limits and recent diversification of Cerradomys (Sigmodmontinae: Oryzomyini) during the Pleistocene. PeerJ 10: e13011. https://doi.org/10.7717/peerj.13011
    » https://doi.org/10.7717/peerj.13011
  • Duarte MR, Menezes FA (2013) Is the population of Crotalus durissus (Serpentes, Viperidae) expanding in Brazil? Journal of Venomous Animals and Toxins including Tropical Diseases 19: 30. https://doi.org/10.1186/1678-9199-19-30
    » https://doi.org/10.1186/1678-9199-19-30
  • Dusi RM, Bredt A, Freitas DR, Bofill MI, Silva JA, Oliveira SV, Tauil PL (2016) Ten years of a hantavirus disease emergency in the Federal District, Brazil. Revista da Sociedade Brasileira de Medicina Tropical 49(1): 34-40. https://doi.org/10.1590/0037-8682-0254-2015
    » https://doi.org/10.1590/0037-8682-0254-2015
  • Dutech C, Joly H, Jarne P (2004) Gene flow, historical population dynamics and genetic diversity within French Guianan populations of a rainforest tree species, Vouacapoua americana Heredity 92: 69-77. https://doi.org/10.1038/sj.hdy.6800384
    » https://doi.org/10.1038/sj.hdy.6800384
  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2): 479-491. https://doi.org/10.1093/genetics/131.2.479
    » https://doi.org/10.1093/genetics/131.2.479
  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
    » https://doi.org/10.1111/j.1755-0998.2010.02847.x
  • Fernandes J, de Oliveira RC, Guterres A, de Carvalho Serra F, Bonvicino CR, D’Andrea PS, Cunha RV, Levis S, de Lemos ER (2015) Co-circulation of Clade C New World Arenaviruses: New geographic distribution and host species. Infection, Genetics and Evolution 33: 242-245. https://doi.org/10.1016/j.meegid.2015.05.010
    » https://doi.org/10.1016/j.meegid.2015.05.010
  • Figueiredo LTM, Moreli ML, Souza LM, Borges AA, Figueiredo GG, Machado AM, et al. (2009) Hantavirus pulmonary syndrome, Central Plateau, Southeastern, and Southern Brazil. Emerging Infectious Diseases 15: 561-567. https://doi.org/10.3201/eid1504.080289
    » https://doi.org/10.3201/eid1504.080289
  • Figueiredo GG, Borges AA, Campos GM, Machado AM, Saggioro FP, Sabino Júnior GS, Badra SJ, et al. (2010) Diagnóstico de infecção por hantavírus em humanos e roedores em Ribeirão Preto, Estado de São Paulo. Revista da Sociedade Brasileira de Medicina Tropical 43(4): https://doi.org/10.1590/S0037-86822010000400002
    » https://doi.org/10.1590/S0037-86822010000400002
  • Francisco AL, Magnusson WE, Sanaiotti TM (1995) Variation in Growth and Reproduction of Bolomys lasiurus (Rodentia: Muridae) in an Amazonian Savanna. Journal of Tropical Ecology 11: 419-428. http://www.jstor.org/stable/2560224
    » http://www.jstor.org/stable/2560224
  • Gonçalves PR, Myers P, Vilela JF, Oliveira JA (2007) Systematics of species of the genus Akodon (Rodentia: Sigmodontinae) in Southeastern Brazil and implications for the biogeography of the Campos de Altitude. Miscellaneous Publications Museum of Zoology University of Michigan 197: 1-24.
  • Gonçalves GL, Marinho JR, Freitas TR (2009) Genetic structure of sigmodontine rodents (Cricetidae) along an altitudinal gradient of the Atlantic Rain Forest in southern Brazil. Genetics and Molecular Biology 32(4): 882-885. https://doi.org/10.1590/S1415-47572009005000081
    » https://doi.org/10.1590/S1415-47572009005000081
  • Guerra GFC, Vale MM, Tardin R, Fernandes DS (2023) Global change explains the neotropical rattlesnake Crotalus durissus (Serpentes: Viperidae) range expansion in South America. Perspectives in Ecology and Conservation 21: 200-208. https://doi.org/10.1016/j.pecon.2023.06.003
    » https://doi.org/10.1016/j.pecon.2023.06.003
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307-321. https://doi.org/10.1093/sysbio/syq010
    » https://doi.org/10.1093/sysbio/syq010
  • Guterres A, Oliveira RC, Fernandes J, Maia RM, Teixeira BR, Oliveira FCG, Bonvicino CR, D’Andrea PS, Schrago CG, Lemos ERS (2018) Co-circulation of Araraquara and Juquitiba Hantavirus in Brazilian Cerrado. Microbial Ecology 75: 783-789. https://doi.org/10.1007/s00248-017-1061-4
    » https://doi.org/10.1007/s00248-017-1061-4
  • Hadler P, Goin FJ, Ferigolo J, Ribeiro AM (2009) Environmental change and marsupial assemblages in Holocene successions of southern Brazil. Mammalian Biology 74: 87-99. https://doi.org/10.1016/j.mambio.2008.03.003
    » https://doi.org/10.1016/j.mambio.2008.03.003
  • Herrera HM, Abreu UGP, Keuroghlian A, Freitas TP, Jansen AM (2008) The role played by sympatric collared peccary (Tayassu tajacu), white-lipped peccary (Tayassu pecari), and feral pig (Sus scrofa) as maintenance hosts for Trypanosoma evansi and Trypanosoma cruzi in a sylvatic area of Brazil. Parasitology Research 103: 619-624. https://doi.org/10.1007/s00436-008-1021-5
    » https://doi.org/10.1007/s00436-008-1021-5
  • Kajdacsi B, Costa F, Hyseni C, Porter F, Brown J, Rodrigues G, et al. (2013) Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil. Molecular Ecology 22(20): 5056-5070. https://doi.org/10.1111/mec.12455
    » https://doi.org/10.1111/mec.12455
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6): 1547-1549. https://doi.org/10.1093/molbev/msy096
    » https://doi.org/10.1093/molbev/msy096
  • Lamas CC, Oliveira R, Silva RG, Vicente LH, Almeida EB, Lemos ER, Bóia MN (2013) Hantavirus infection in HIV positive individuals in Rio de Janeiro, Brazil: a seroprevalence study. The Brazilian Journal of Infectious Diseases 17(1): 120-121. https://doi.org/10.1016/j.bjid.2012.07.018
    » https://doi.org/10.1016/j.bjid.2012.07.018
  • Lavor P, Calvente A, Versieux LM, Sanmartin I (2018) Bayesian spatio-temporal reconstruction reveals rapid diversification and Pleistocene range expansion in the widespread columnar cactus Pilosocereus Journal of Biogeography 46(1): 1-13. https://doi.org/10.1111/jbi.13481
    » https://doi.org/10.1111/jbi.13481
  • Lemos HM, Silva CAO, Patiu FM, Golçalves PR (2015) Barn Owl pellets (Aves: Tyto furcata) reveal a higher mammalian richness in the Restinga de Jurubatiba National Park, Southeastern Brazil. Biota Neotropical 15(2): e20140121. https://doi.org/10.1590/1676-06032015012114
    » https://doi.org/10.1590/1676-06032015012114
  • Leigh JW, Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6(9): 1110-1116. https://doi.org/10.1111/2041-210X.12410
    » https://doi.org/10.1111/2041-210X.12410
  • Limongi JE, Moreira FG, Peres JB, Suzuki A, Ferreira IB, Souza RP, Pinto RMC, Pereira LE (2013) Serological survey of hantavirus in rodents in Uberlândia, Minas Gerais, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 55(3): 155-158. https://doi.org/10.1590/S0036-46652013000300003
    » https://doi.org/10.1590/S0036-46652013000300003
  • Limongi JE, Oliveira RC, Guterres A, Costa Neto SF, Fernandes J, Vicente LH, et al. (2016) Hantavirus pulmonary syndrome and rodent reservoirs in the savanna-like biome of Brazil’s southeastern region. Epidemiology & Infection 144(5): 1107-1116. https://doi.org/10.1017/S095026881500237X
    » https://doi.org/10.1017/S095026881500237X
  • Lucio CS, Gentile R, Cardoso TS, Santos FO, Teixeira BR, Maldonado Júnior A, D’Andrea PS (2021) Composition and structure of the helminth community of rodents in matrix habitat areas of the Atlantic Forest of southeastern Brazil. International Journal for Parasitology: Parasites and Wildlife 15: 278-289. https://doi.org/10.1016/j.ijppaw.2021.07.001
    » https://doi.org/10.1016/j.ijppaw.2021.07.001
  • Milholland MT, Castro-Arellano I, Garcia-Peña GE, Mills JN (2019) The Ecology and Phylogeny of Hosts Drive the Enzootic Infection Cycles of Hantaviruses. Viruses 11(7): 671. https://doi.org/10.3390/v11070671
    » https://doi.org/10.3390/v11070671
  • Miller MA, Pfeiffer W and Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop, New Orleans, 1-8. https://doi.org/10.1109/GCE.2010.5676129
    » https://doi.org/10.1109/GCE.2010.5676129
  • Ministério da Saúde (2024) Casos confirmados de Hantavirose: Brasil, Grandes Regiões e Unidades Federadas, 1993 a 2019. Ministério da Saúde, Brasília. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/h/hantavirose [Acessed: 25/04/2024]
    » https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/h/hantavirose
  • Moreira JC (2015) Determinantes da Estruturação Population em Espécies Brasileiras do Gênero Necromys (Rodentia, Cricetidae). PhD Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro. http://www.ppgbbe.intranet.biologia.ufrj.br/wp-content/uploads/2019/10/Tese-final-Ja%CC%82nio.pdf
    » http://www.ppgbbe.intranet.biologia.ufrj.br/wp-content/uploads/2019/10/Tese-final-Ja%CC%82nio.pdf
  • Olifiers N, Gentile R, Fiszon JT (2005) Relation between small-mammal species composition and anthropic variables in the Brazilian Atlantic Forest. Brazilian Journal of Biology 65(3): 495-501. https://doi.org/10.1590/S1519-69842005000300015
    » https://doi.org/10.1590/S1519-69842005000300015
  • Oliveira RC, Rozental T, Alves-Corrêa AA, D’Andrea PS, Schatzmayr HG, Cerqueira R, Lemos ER (2004) Study of hantavirus infection in captive breed colonies of wild rodents. Memórias do Instituto Oswaldo Cruz 99(6): 575-576. https://doi.org/10.1590/s0074-02762004000600007
    » https://doi.org/10.1590/s0074-02762004000600007
  • Oliveira RC, Teixeira BR, Mello FCA, Pereira AP, Duarte AS, Bonaldo MC, Bonvicino CR, D’Andrea PS, Lemos ERS (2009) Genetic characterization of a Juquitiba-like viral lineage in Olygoryzomys nigripes in Rio de Janeiro, Brazil. Acta Tropica 112: 212-221. https://doi.org/10.1016/j.actatropica.2009.07.029
    » https://doi.org/10.1016/j.actatropica.2009.07.029
  • Oliveira RC, Guterres A, Teixeira BR, Fernandes J, Penna Júnior JM, Oliveira Júnior RJ, et al. (2017) A fatal hantavirus pulmonary syndrome misdiagnosed as dengue: An investigation into the first reported case in Rio de Janeiro state, Brazil. American Journal of Tropical Medicine and Hygiene 97(1): 125-129. https://doi.org/10.4269/ajtmh.16-0845
    » https://doi.org/10.4269/ajtmh.16-0845
  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. (2001) Terrestrial Ecoregions of the world: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11): 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
    » https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
  • Parizzi MG, Salgado-Labouriau ML, Kohler HC (1998) Genesis and environmental history of Lagoa Santa, southeastern Brazil. The Holocene 8: 311-321. https://doi.org/10.1191/095968398670195708
    » https://doi.org/10.1191/095968398670195708
  • Paula RC, Rodrigues FHG, Queirolo D, Jorge RPS, Lemos FG, Rodrigues LA (2013) Avaliação do estado de conservação do Lobo-guará Chrysocyon brachyurus (Illiger, 1815) no Brasil. Biodiversidade Brasileira 3: 146-159.
  • Pavan SE, Jansa SA, Voss RS (2016) Spatiotemporal diversification of a low-vagility Neotropical vertebrate clade (short-tailed opossums, Didelphidae: Monodelphis). Journal of Biogeography 43: 1299-1309. https://doi.org/10.1111/jbi.12724
    » https://doi.org/10.1111/jbi.12724
  • Peçanha WT, Althoff SL, Galiano D, Quintela FM, Maestri R, Gonçalves GL, Freitas TRO (2017) Pleistocene climatic oscillations in Neotropical open areas: Refuge isolation in the rodent Oxymycterus nasutus endemic to grasslands. Plos One 12(11): e0187329. https://doi.org/10.1371/journal.pone.0187329
    » https://doi.org/10.1371/journal.pone.0187329
  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution 16(1): 37-45. https://doi.org/10.1016/s0169-5347(00)02026-7
    » https://doi.org/10.1016/s0169-5347(00)02026-7
  • Prist PR, Prado A, Tambosi LR, Umetsu F, de Arruda Bueno A, Pardini R, Metzger JP (2021) Moving to healthier landscapes: Forest restoration decreases the abundance of Hantavirus reservoir rodents in tropical forests. Science of the Total Environment 752: 141967. https://doi.org/10.1016/j.scitotenv.2020.141967
    » https://doi.org/10.1016/j.scitotenv.2020.141967
  • QGIS (2023) QGIS Geographic Information System. QGIS Association. http://www.qgis.org
    » http://www.qgis.org
  • Rocha CFD, Bergallo HG, Van Sluys M, Alves MAS, Jamel CE (2007) The remnants of restinga habitats in the Brazilian Atlantic Forest of Rio de Janeiro state, Brazil: Habitat loss and risk of disappearance. Brazilian Journal of Biology 67(2): 263-273. https://doi.org/10.1590/S1519-69842007000200011
    » https://doi.org/10.1590/S1519-69842007000200011
  • Santos FO, Teixeira BR, Cordeiro JLP, Sousa RHA, Lucio CS, Gonçalves PR, Lemos H, Oliveira RC, Fernandes J, Cavalcanti GR, Lemos ERS, D’Andrea PS (2018) Expansion of the range of Necromys lasiurus (Lund, 1841) into open areas of the Atlantic Forest biome in Rio de Janeiro state, Brazil, and the role of the species as a host of the hantavirus. Acta Tropica 188: 195-205. https://doi.org/10.1016/j.actatropica.2018.08.026
    » https://doi.org/10.1016/j.actatropica.2018.08.026
  • Santos-Filho M, Silva DJ, Sanaiotti TM (2006) Efficiency of four trap types in sampling small mammals in forest fragments, Mato Grosso, Brazil. Mastozoología Neotropical 13(2): 217-225.
  • Saxenhofer M, Labutin A, White TA, Heckel G (2022) Host genetic factors associated with the range limit of a European hantavirus. Molecular Ecology 31(1): 252-265. https://doi.org/10.1111/mec.16211
    » https://doi.org/10.1111/mec.16211
  • Smith MF, Patton JL (1993) The diversification of South American murid rodents: evidence from mitochondria DNA sequence data for the akodontine tribe. Biological Journal of the Linnean Society 50(3): 149-177. https://doi.org/10.1111/j.1095-8312.1993.tb00924.x
    » https://doi.org/10.1111/j.1095-8312.1993.tb00924.x
  • Smith MF and Patton JL (1999) Phylogenetic relationships and the radiation of sigmodontine rodents in South America: evidence from Cytochrome b. Journal of Mammalian Evolution 6: 89-128. https://doi.org/10.1023/A:1020668004578
    » https://doi.org/10.1023/A:1020668004578
  • Sobral G, de Oliveira JA (2023) Life history variation of the Hairy-tailed Akodont (Necromys lasiurus, Rodentia, Sigmodontinae) in the Caatinga biome of northeastern Brazil. Journal of Mammalogy 104(6): 1421-1433. https://doi.org/10.1093/jmammal/gyad075
    » https://doi.org/10.1093/jmammal/gyad075
  • Sobreira M, Souza GT, Moreli ML, Borges AA, Morais FA, Figueiredo LT, Almeida AM (2008) A serosurvey for hantavirus infection in wild rodents from the states of Rio de Janeiro and Pernambuco, Brazil. Acta Tropica 107(2): 150-152. https://doi.org/10.1016/j.actatropica.2008.05.018
    » https://doi.org/10.1016/j.actatropica.2008.05.018
  • Steppan SJ, Schenk JJ (2017) Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. Plos One 12(8): e0183070. https://doi.org/10.1371/journal.pone.0183070
    » https://doi.org/10.1371/journal.pone.0183070
  • Strecht L (2014) Avaliação da infecção por hantavirus em amostras humanas e de roedores silvestres e sinantrópicos no estado do Rio de Janeiro. MS Dissertation, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil. https://www.arca.fiocruz.br/handle/icict/13512
    » https://www.arca.fiocruz.br/handle/icict/13512
  • Suzuki A, Bisordi I, Levis S, Gracia J, Pereira LE, Souza RP, Sugahara TKN, Pini N, Enria D, Souza LTM (2004) Identifying rodent hantavirus reservoirs, Brazil. Emerging Infectious Diseases 10: 2127-2134. https://doi.org/10.3201/eid1012.040295
    » https://doi.org/10.3201/eid1012.040295
  • Tavares WC, Pessôa LM, Gonçalves PR (2011) New species of Cerradomys from coastal sandy plains of southeastern Brazil (Cricetidae: Sigmodontinae). Journal of Mammalogy 92: 645-658. https://doi.org/10.1644/10-MAMM-096.1
    » https://doi.org/10.1644/10-MAMM-096.1
  • Vargas A, Nóbrega MEB, Fonseca LX, Oliveira SV, Pereira SVC, Caldas EP, Saad E (2016) Epidemiological investigation of the first case of hantaviruses in the state of Rio de Janeiro, Brazil. Journal of Health & Biological Sciences 4(2): 111-116. https://doi.org/10.12662/2317-3076jhbs.v4i2.711.p111-116.2016
    » https://doi.org/10.12662/2317-3076jhbs.v4i2.711.p111-116.2016
  • Vollmer SA, Bormane A, Dinnis RE, Seelig F, Dobson ADM, Aanensen DM, et al. (2011) Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environmental Microbiology 13(1): 184-192. https://doi.org/10.1111/j.1462-2920.2010.02319.x
    » https://doi.org/10.1111/j.1462-2920.2010.02319.x
  • Walsh PS, Metzeger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4): 506-513. https://pubmed.ncbi.nlm.nih.gov/1867860/
    » https://pubmed.ncbi.nlm.nih.gov/1867860/

ADDITIONAL NOTES

APPENDIX

Appendix 1
Details of the mitochondrial Cytochrome b gene sequences of the specimens used for analyses. Voucher number (field and/or collection numbers); GenBank accession number; and source.

Edited by

Editorial responsibility

Guilherme S.T. Garbino

Publication Dates

  • Publication in this collection
    07 June 2024
  • Date of issue
    2024

History

  • Received
    06 Nov 2023
  • Accepted
    29 Jan 2024
Sociedade Brasileira de Zoologia Caixa Postal 19020, 81531-980 Curitiba PR Brasil, Tel./Fax: (55 41) 3266-6823 - Curitiba - PR - Brazil
E-mail: sbz@sbzoologia.org.br